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1. Introduction 

The organic-inorganic trihalide perovskites have attracted much attention for their 

amazing achievements in the application for solar cells.[1-4] The power conversion 

efficiency (PCE) of perovskite solar cells has increased from 3.8% to more than 25% 

in the past ten years.[5-10] They have been proved to be great active materials for 

different optoelectronic devices.[11-17] With tunable bandgap, high absorption 

coefficient, long carrier lifetime and the low cost, easy processing procedures for thin 

film devices, perovskites are very potential for the next generation 

photovoltaics.[18-27] 

 

In this thesis, I summarize the evolution of perovskite solar cells concisely and 

demonstrate the research results on two dimensional perovskites. First part shows the 

orientation and phase control about the 2D lead perovskite PEA2MA4Pb5I16, and novel 

hole transport layer that is beneficial for solar cell devices. The PCE of this perovskite 

solar cell achieves beyond 14%. Then ultrafast spectroscopy and pump-probe 

researches on 2D tin perovskite BA2MAn-1SnnI3n+1 with n=1 and 2 are revealing the 

carrier behavior in these samples. Results show in n=1 sample, the carriers are mainly 

excitons whereas in n=2 sample, the carriers are mainly free carriers. 
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1.1. Perovskite structure 

Perovskite, initially representing the metal oxide compound calcium titanium oxide 

(CaTiO3), was named after Russian mineralogist Lev Perovski. Now, all the 

compounds with the formula ABX3 could be called perovskites.[28] Figure 1.1 shows 

the ideal structure. In this case, the crystal structure is perfectly cubic with B cation 

surrounded by six X anions, forming [BX6]
4- octahedron. Those octahedra connect 

each other in all three dimensional directions enclosing A cation in the centre of eight 

octahedra. 

 

Two factors are necessary to maintain this unique structure. One is Goldschmidt 

tolerance factor t given by the equation below,  

)R(R 2

RR
t

XB

XA

+

+
=  

where RA, RB and RX are radii of A, B and X ions respectively; the other is octahedron 

factor, μ = RB/RX. Only when t ranging from 0.81 to 1.11 and μ ranging from 0.44 to 

0.90 are both satisfied, the perovskite structure could be stable with little distortion. If 

t is valued in the range of 0.89-1.0, the structure will be cubic and lower t values lead 

to tetragonal or orthorhombic structures.[29-32] 

 

For metal halide perovskites, X is selected from Cl-, Br- and I-, while Cs+, 

methylammonium (CH3NH3
+, MA) and formamidinium (HC(NH2)2

+, FA) could be 

used as A cations. Thus the B cation should be bivalent, it can be selected from 14 

different elements (rare earth, alkaline earth and IV main group), most commonly are 

Pb2+ and Sn2+.[33-37] 

1.2. Tunable bandgap (Eg) 

Since there are several different choices for A, B and X, by substituting or mixing of 
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them, perovskite with very a wide range of bandgap (from 1.24 eV to 3.10 eV, which 

is the light range from 400 nm to 1000 nm, in Figure 1.2) could be achieved.[38-48] 

 

With given A and B cations, the bandgap decreases with the increasing of X anion 

radii, that is Eg(Cl) > Eg(Br) > Eg(I). By mixing different X anions, perovskite with 

different bandgaps could be obtained. For instance, the bandgap of MAPbBr3 is about 

2.3 eV, but introducing Cl and I in, the bandgap could vary from 1.57 eV to 3.17 eV, 

corresponding to MAPbBraI3-a and MAPbClbBr3-b (a and b ranging from 0 to 3).[49, 

50] Owing to this excellent feature, perovskite could be fabricated with bandgaps 

varying in almost whole visible light spectrum. Besides, for MAPbI3 perovskite, by 

Figure 1.1 Perovskite structure, the big pink spheres represent A cations, the green spheres 

inside octahedra are B cations, small red spheres are X anions and the blue octahedra are 

[BX6]. 
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changing MA cation, from Cs, MA, to FA, the radius increases, from 1.81, 2.70 to 

2.79, the correlated bandgap decreases (Eg(Cs) = 1.73 eV, Eg(MA) = 1.55 eV, Eg(FA) 

= 1.48 eV).[51, 52] The last way to regulate the bandgap is substituting B, metal 

cation. Pb can be doped or replaced by Sr, Ca, Cd, Sn, Ge and so forth. Both 

calculation and experimental studies demonstrate the decrease of bandgap.[53-55] 

1.3. High absorption coefficient 

For the first and second generation solar cells, to collect most of the light from the sun, 

the light absorber layers should be around 300 μm and 2 μm respectively.[56, 57] 

Figure 1.3 demonstrates the optical absorption mechanism of different solar cells. For 

Si, the first generation, although the absorption at band edge is from Si p orbitals to Si 

p and s orbitals, the indirect bandgap nature determines low absorption coefficient and 

very thick absorber layer to utilize majority of sunlight. 

 

Figure 1.2 Bandgap region covered by different perovskite materials 
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GaAs, as one of the second generation, possesses direct bandgap, which is beneficial 

for light absorber. However, the conductive band minimum is composed by s orbitals 

of Ga and As, leading to lower electronic density of states. Thus, the optical 

absorption is still not so high.  

 

Differently, perovskites have direct bandgap and the conductive band minimum is 

derived from Pb p orbitals. With higher density of states, the absorption coefficient is 

2 to 4 times higher than GaAs at visible light range. MAPbI3 has the absorption 

coefficient at order of 2*105 cm-1 at 500 nm, which means 300 to 500 nm thickness of 

MAPbI3 could absorb the excitation light thoroughly. This thinner absorber layer also 

means less material cost for solar cells.[58] 

1.4. Charge recombination 

In metal halide perovskites, the initial decay at low excitation carrier density is 

approximately monoexponential corresponding to monomolecular decay.[59, 60] But 

Figure 1.3 The schematic optical absorption of (a) first generation, (b) GaAs as prototypes for 

second generation, (c) perovskite solar cell absorber.[23] 
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with the increasing of excitation carrier density, the initial decay time becomes 

shorter.[61] This dynamics can be depicted by the equation of time dependent carrier 

density n: 

3

3

2

21 nknknk
dt

dn
−−−=  

where k1n is monomolecular recombination with rate k1, k2n
2 is bimolecular 

recombination with rate k2 and k3n
3 is Auger recombination with rate k3. Table 1 

summarizes the results of k1, k2 and k3 through global fitting of different 

materials.[62] 

The monomolecular recombination is defined by a process generated by a single 

particle which can be an electron in CB, a hole in VB (trap-assisted recombination) or 

an exciton meaning bounded electron-hole pair (excitonic recombination). 

Bimolecular recombination, depending on both electrons and holes, can be viewed as 

intrinsic photon-radiative recombination correlated to the reverse process of light 

absorption. Auger recombination process involves three carriers, energy coming from 

the recombination of electron and hole is absorbed by third carrier, leading to the 

excitation of this carrier to higher energy level. Then the carrier relaxes to the bottom 

Table 1 aChemical formulae, where MA is CH3NH3 (methylammonium) and FA is HC(NH2)2 

(formamidinium). bThrough a solution precursor or via dual-source vapor deposition under 

vacuum. cPerovskite flat films or infusions into a mesoporous metal oxide matrix. 

dCharge-carrier mobility at terahertz frequencies. eMonomolecular rate constant. fBimolecular 

rate constant. gAuger rate constant. 
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of conductive band with thermalization process. Figure 1.4 depicts the scheme of the 

three different recombinations. 

 

Generally, at very low carrier density, most of the perovskite materials make the 

monomolecular recombination the dominant process. However, with carrier density of 

1017-1018 cm-3, the recombination is mainly bimolecular recombination. Auger 

recombination can only be observed at very high carrier density >1019 cm-3.[63-67] It 

is noticeable that the photophysics of perovskite films is very different from of 

perovskite solar cell devices. Actually, the recombination lifetime of perovskite film 

can reach to several microseconds whereas the lifetime measured in perovskite device 

is sub-microsecond, even in optimized devices with PCE>20%.[68] This is mainly 

Figure 1.4 Recombination mechanisms, monomolecular recombination, including excitonic 

recombination (a) and trap-assisted recombination (b); bimolecular recombination (c); Auger 

recombination (d). 
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attributed to the separation of photo-generated electrons and holes caused by charge 

transport layers. As a result, the photoluminescence is really so weak that cannot be 

accurately measured by TRPL measurements. Considering the commonly observed 

correlation between the lifetime and device PCE, TRPL lifetime is still a reasonable 

parameter for defect density and suitability for solar cells. [69] 

1.5. Metal halide perovskite solar cells 

In 2009, Miyasaka and coworkers firstly applied MAPbBr3 and MAPbI3 as light 

absorbers in solar cells. Efficiency reached to 3.13% and 3.81% respectively.[5] 

Subsequently, Park and colleagues improved the PCE to 6.54% with MAPbI3 

quantum dots as light sensitizer in 2011. But the perovskite could dissolve into the 

redox electrolyte gradually, leading to about 80% degradation in 10 min.[70] 

 

Figure 1.5 Highest confirmed power conversion efficiency of all different solar cells every year. 

The yellow circle with red outline represents perovskite solar cells (not stabilized).[3] 
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To improve the stability, liquid electrolytes must be substituted. In 2012, Park, Grätzel 

and coworkers introduced a solid state hole transport layer (HTL), spiro-OMeTAD, 

which increased PCE to 9.7% and significantly enhanced device stability.[71] 

Simultaneously, Snaith and colleagues found perovskite itself might transport 

electrons effectively, then they substituted TiO2 electron transport layer (ETL) by 

insulating Al2O3. The results exhibited an increased PCE of 10.7% and lower energy 

loss, 1.1V open circuit voltage with 1.55eV band gap. On this basis, they employed 

vapor deposition method to fabricate perovskite in a planar heterojunction device 

structure and achieved PCE of 15.4%.[72, 73] 

 

After those pioneer works, more and more researches sprung up and the PCE of 

perovskite solar cells increased rapidly.[74-79] In 2014, Seok and coworkers boosted 

the PCE to 16.2% with no hysteresis by a solvent-engineering technology for 

depositing extremely uniform perovskite film.[80] Soon after, Yang and colleagues 

suppressed the carrier recombination in absorber by controlling formation of 

perovskite and careful choice of other charge transport layers. The PCE of their 

devices achieved to 19.3%.[81] 

 

More recently, this year in 2019, You and coworkers added PEAI salt on FA-MA 

mixed perovskite films and found reduced defects and suppressed non-radiative 

recombination. The PCE of their devices reached to 23.32%.[82] Only several months 

later, from the newest NREL statistics, the record PCE has increased to 25.2%, 

accomplished by KRIST/MIT shown in Figure 1.5. All these breakthroughs are 

showing the bright prospects for the industrialization of perovskite photovoltaics.[83, 

84] 

 

However, despite the quickly increased PCE of devices, stability is a big issue that 

limits the industrialization.[85] As can be seen in Figure 1.5, only perovskite solar 
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cell is denoted as “not stabilized”. Moisture, either rain or water vapor can lead to the 

degradation, the mechanism can be described as below:[86] 

4(MAPbI3•H2O) ↔ MA4PbI6•2H2O + 3PbI2 + 2H2O 

MA4PbI6•2H2O ↔ 4(MAI) + PbI2 + 2H2O 

Another factor is high temperature, some studies imply that at temperature higher than 

100°, the surface of MAPbI3 decomposeds to PbI2, CH3I and NH3. Finally, Pb2+ will 

be easily oxidized to Pb4+ when exposed to ambient condition.[87, 88] 

 

Additionally, the toxicity level of Pb2+ is even higher than conventional Cd2+ in CdTe. 

Due to the stability in ecosystem, once the lead and its compounds are releasing into 

the environment, the harm will be almost eternal.[54, 89] To protect environment and 

implement sustainable development, it is necessary to replace lead by other non-toxic, 

environment friendly metal element. 

1.6. Two dimensional hybrid perovskite 

Since the instability is an inevitable constraint for perovskite solar cells, developing 

stable perovskite attracts more and more attention.[90-93] One of the methods is to 

reduce the dimension of perovskites. For MAPbI3 perovskite, [PbI6]
4- octahedra are 

Figure 1.6 2D perovskite structures, from right to left are structures with n number 1, 2, 3, 4 

which mean layers of [PbI6]4- octahedra and infinite, that is 3D.[46] 
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connected to each other in all the three dimensions thus it is called 3D perovskite. 

Table 2 Reported different large organic cations for 2D perovskite structure.[50] 
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When some of the MA are exchanged by much larger organic cations, then the 

octahedra will separate, leading to a lower-dimensional structure, including 2D, 1D 

and even 0D.[94, 95] 

 

Among the different structures, 2D perovskites are very good candidates for solar 

cells. The formula of those kind of 2D perovskites is A'2An-1BnX3n+1, where A, B and 

X are the same with their 3D counterparts, while A' is an organic cation much larger 

than A, such as phenethylammonium (PEA, C6H5CH2CH2NH3
+) and butylammonium 

(BA, CH3CH2CH2CH2NH3
+).[96, 97] Different kinds of A' are summarized in Table 

2.[98] Thus, by regulating the molar ratio of the precursors, different 2D perovskites 

with n layers [BX6]
4- octahedra separated by 2 layers A' cations could be obtained, 

from pure 2D (n = 1) to 3D (n = infinity), depicted in Figure 1.6.[99]  

 

The large organic cation layers confine the charge transport between different 

octahedral [BX6]
4- layers, acting as natural insulating “barriers” and the octahedra 

Figure 1.7 Absorbance of different 2D perovskite (BA2MAn-1PbnI3n+1) and 3D perovskite 

(MAPbI3), the bandgap decreases with the increase of n number.[51] 
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layers as conductive “wells”. This special structure leads to much broader bang gap 

~2.6 eV than 3D one 1.5 eV for low n, which is not a suitable band gap for solar cells. 

Differently, from n = 4, high n members possess narrower band gap ~1.7 eV (Figure 

1.7) and better stability in the air environment. [97, 100] 

 

Those quasi-2D perovskites are investigated extensively for light absorption materials 

in solar cell applications in recent years.[101] In 2014, Smith et al firstly employed a 

3-layer PEA2MA2Pb3I10 perovskite as light absorber in solar cells, in a n-i-p device 

structure, with TiO2 as electron transport layer (ETL) and Spiro-OMeTAD as hole 

transport layer (HTL).[102] Enhanced stability resulted, but only 4.73% of PCE. Soon 

after, Cao et al used BA as large organic cation using the same device structure and 

made n=1 to 4 perovskite solar cells with the highest PCE at 4.02%.[100] Those 

pioneering attempts show the critical issue that is the multiple-quantum-well structure 

is a great obstacle for out-of-plane charge transport. Thus, to control the growth 

orientation of “wells”, to make them perpendicular to ETL and HTL is highly 

Figure 1.8 Promising metal substitutions for lead free organic inorganic hydrid perovskites.[57] 
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advantageous for charge transport and electron-hole separation. To achieve this goal, 

several methods have been developed. Tsai et al applied hot-casting method when 

depositing BA2MA3Pb4I13 (n=4) thin films on substrates, before deposition of 

perovskite thin films, the substrates are preheated to a temperature of ~150°C. They 

successfully fabricated oriented 2D thin films and increased the PCE to 12.52%.[103] 

Other efforts, such as Cesium doping, adding additive in perovskite precursor solution 

and so forth, also achieved some excellent results.[104-107] All these achievements 

imply that 2D perovskites are promising substitutions for solar cells.[108, 109] 

1.7. Lead free hybrid perovskite 

Not many choices can be select to replace Pb in perovskites, not only because the 

tolerance factor constraint, but also the electronic structure of Pb. Pb is rather 

important to stabilize the structure according to theoretical calculation studies. To date, 

Figure 1.9 Absorption spectra of CsGeI3, MAGeI3 and FAGeI3 hybrid perovskites, with CsSnI3 

as comparison.[61] 
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only Sn, Ge, Cu and some double perovskites are proved that can be potential 

candidates (Figure 1.8).[110] 

 

As in the same main group, Sn is similar to Pb. The radii of Sn and Pb are 1.35 Å and 

1.49 Å respectively, which encourages to be a substitution. [111-113] Snaith et al 

firstly reported MASnI3 solar cells in 2014.[114] Studies exhibit that MASnI3 possess 

highly symmetrical α-phase of P4mm group even at room temperature. The absorption 

edge is much broader than MAPbI3, approximate to 1000 nm with bandgap estimated 

at 1.23 eV. But the PCE is much lower compared to Pb counterpart, only 6.4%. 

Almost the same time, Kanatzidis et al developed mixed MASnI3-xBrx as light 

absorber material.[115] With the increasing of x, the absorption blue shift from 

950nm (MASnI3) to 577nm (MASnBr3), leading to the film color changing form dark 

brown to bright yellow. The best PCE is achieved by MASnIBr2 solar cells, which is 

5.73%. Since the low PCE of pure tin perovskite, lots of people start to research on 

Sn-Pb mixed perovskites. However, more recently, Loi et al applied FASnI3 as active 

Figure 1.10 Optical absorption of Cs2AgBiBr6. Inset: Tauc plot showing optical bandgap of 

1.95 eV with phonon of 0.12 eV.[65] 
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layer for solar cells. By inducing a small amount of 2D tin perovskite, the perovskite 

thin film showed high crystallinity and preferable orientation. Compare to the pristine 

3D thin film, this 2D/3D thin films got reduced number of grain boundaries, 

suppressed tin vacancies and longer carrier lifetimes. As a result, device with PCE of 

9.0% was achieved, which is the highest PCE of tin perovskite solar cells so far.[116] 

 

Ge (germanium), is another similar element that may replace Pb for perovskites. The 

radius of Ge2+ is 0.73 Å, and the tolerance factor of MAGeCl3, MAGeBr3 and 

MAGeI3 are 1.005, 0.988, and 0.965 respectively, which are all in ideal range for 

perovskite structure.[117, 118] Stoumpos et al reported a series of Ge perovskite, 

CsGeI3, MAGeI3, FAGeI3 etc in 2015.[117] Studies exhibited that the bandgap is 

strongly affected by the A cations, ranging from 1.63 to 2.8 eV. Bandgaps of CsGeI3, 

MAGeI3, FAGeI3 are 1.63, 2.0 and 2.35 eV, as shown in Figure 1.9.[119] Although 

Ge is suitable for ideal tolerance factor, but it is so small that cannot fit the [GeI6]
4- 

Figure 1.11 Schematic representation of double perovskite structure and the variety of different 

metal elements, normal 3D perovskite as comparison. 
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octahedron well, leading to structural distortions. So far, very few studies have been 

reported because of the instability of Ge2+, even worse than Sn2+. The PCE of works 

done by Krishnamoorthy et al and Kopacic et al are all less than 1%.[119, 120] 

Further researches still need to be carried on for revealing material properties and 

improving solar cell PCE of Ge perovskites. 

 

Recently, Karunadasa et al reported a double perovskite, Cs2AgBiBr6, incorporating 

Bi3+ in a 3D perovskite framework for the first time in 2016.[121] This is a new line 

of thoughts to solve the issues of mostly studied Pb perovskites. The absorption 

region of Cs2AgBiBr6 starts from 1.8 eV and at 2.1 eV there is a sharp increase. The 

Tauc plot exhibits that it possess an indirect bandgap of 1.95 eV with phonon energy 

0.12 eV, which may be useful for tandem solar cells (Figure 1.10). With different 

permutation and combination of BI and BIII elements, different double perovskite can 

be obtained (Figure 1.11).[122, 123] The biggest advantage is this kind of perovskite 

is rather stable. Woodward et al synthesized Cs2AgBiBr6 and Cs2AgBiCl6 perovskite 

and found that they were rather stable to light irradiation or moisture.[124] However, 

the indirect bandgap nature again implied future use for tandem solar cells. Giustino 

et al reported direct bandgap double perovskite, Cs2AgInCl6.[125] The measured 

optical bandgap is 3.3 eV with a very weak absorption at 2.1 eV. And it is very 

interesting that there is a reversible color changing from white to orange under UV 

light irradiation. After these pioneer researches on double perovskite material 

properties, some solar cell devices were fabricated. However, same as Ge perovskite 

solar cells, the PCE is very low, which is not higher than 3%, not the stability, the 

main constraint is the not suitable bandgap. Future works should be focused on this 

issue. 

1.8. Scope of this thesis 

In this thesis, considering the two disadvantages of perovskite, efforts were made on 
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stability and non-toxicity. 

 

First of all, quasi-2D lead perovskite (n=5, PEA2MA4Pb5I16) solar cells were 

fabricated. Vacuum assisted method was employed to deposit the perovskite thin films. 

Since it is not easy to obtain pure n=5 perovskite, XRD (X-ray diffraction) and 

GIWAXS (grazing incident wide angle X-ray scattering) measurements were 

performed to confirm the phases of the perovskite thin film and the crystal grow 

orientation. Results shows that films deposited by conventional method show much 

n=2 phase at the bottom side which is not beneficial to charge transport, whereas 

films deposited by vacuum method show mainly n=5 phase with little n=2 phase. The 

vacuum-films also exhibit more compact morphology with less grain boundaries and 

cracks. Then, by introducing a novel, pH neutral hole transport layer into the devices, 

PCE increases to above 14%. 

 

Secondly, 2D tin perovskite thin films were fabricated (n = 1, 2, 3, BA2MAn-1SnnI3n+1). 

With conventional method for film deposition, it is fine to get rather pure n=1 and 2 

samples, but not for n=3. Still by using vacuum assisted method single phase of n=3 

can be achieved. Then TRPL (time-resolved photoluminescence ) and pump-probe 

spectroscopy measurements were carried on to detect the behavior of photo generated 

carriers in the samples. The results of TRPL exhibit in n=1 sample, the photo 

generated carriers are mainly excitons while in n=2 sample, the carriers are free 

carriers. The n=3 sample is not really clear because of the low reproducibility which 

made the results unreliable. In addition, pump-probe results furtherly confirmed the 

results of TRPL measurements. Besides the fast degradation of the samples in the air 

may also be one of the reason for uncertainty for n=3 sample, all the samples 

degraded more than 50% within 30 min. 



Chapter 2. Synthesis and characterization 

21 
 

2. Synthesis and characterization 

2.1. Perovskite thin film deposition 

Perovskite thin film deposition is very important in making solar cell devices.[126, 

127] The quality of film directly determines the PCE of the devices.[128] A smooth, 

compact with less grain boundaries thin film is beneficial to solar cell devices. 

Various methods have been developed to achieve this goal. 

2.1.1. Spin-coating method 

Spin-coating may be the most widely used method to deposit perovskite thin 

films.[129-133] This technique includes one-step, two-steps and anti-solvent method, 

scheme depicted in Figue 2.1. 

 

One-step spin-coating. This should be the easiest for operation. For instance, to 

deposit MAPbI3 film, first of all, precursor chemical MAI and PbI2 are dissolved in 

DMF (Dimethylformamide), DMSO (Dimethyl sulfoxide) or GBL (γ-Butyrolactone) 

solvent. After the precursors dissolve in the solvent homogeneously, for a 3×3 cm 

substrate, 2 or 3 drops (80-120 μL) will be enough for spin-coating. Then by 

regulating the spin speed, film with different thickness will be fabricated. Besides, the 

concentration and solvent type will also affect the thickness. After the deposition, the 

as prepared film should be heated to ~100° for further crystallization. Films fabricated 

in this way usually has an issue of coverage, besides the film morphology is also not 

with high quality. 

 

Two-steps spin-coating. This method is separated in two steps. First, PbI2 in DMF is 

deposited on the substrate at specified temperature, after cooling down, the substrate 

with PbI2 thin film is soaked in MAI/IPA solution to react to MAPbI3 thin film. 
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Another way is still spin-coating MAI on the substrates following the PbI2 deposition 

step. Finally, same as one-step, the film is annealed at ~100°. 

 

Anti-solvent method. Anti‐solvents can change the supersaturation, the nucleation 

and also the crystal growth rates, thereby they will strongly affect the crystallization 

kinetics and final morphology. Generally, this method is processed in two 

spin-coating speed, a very short time for low speed (within 2 s) and a long time for 

high speed (up to 60 s). Anti-solvent is added at high speed. Proficiency of adding 

anti-solvents is important in this process, because too fast leading to washed away of 

perovskite in the center of the thin films while too slow leading to very large cracks of 

the final thin film that can be seen by eyes.[134] Crystallization starts when 

Figure 2.1 Scheme for different spin-coating method to deposit MAPbI3 thin films, (a) is 

one-step, (b) is two-steps, IPA represents iso-propanol alcohol and (c) is anti-solvent technique, 

anti-solvent can be CB (chlorobenzene), toluene, diethyl ether etc. 
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anti-solvent is added, by annealing is still necessary for totally crystallization. 

 

Comparing the three solution-process methods, one-step is the easiest one for 

operation, but thin films fabricated in this way are difficult to form uniform 

morphology and high coverage. In contrast, two-steps and anti-solvent method are 

preferable to get smooth, compact films, but they need higher proficiency level for 

operation, especially the anti-solvent method.[135-137] 

2.1.2. Vapor deposition 

Scalable and highly reproducible fabrication is indispensable for industralization, 

comparing to the uncertainty with solution processing methods, vapor deposition can 

completely satisfy those requests. In double sources vapor deposition, MAI and PbI2 

are evaporated to compacted TiO2 at 120° and 325° in high vacuum degree (~10-7 

mbar) chamber simultaneously. Different from solution processing, the homogeneity 

of the final films is remarkably improved.[73] Yang et al modified the procedure and 

avoid high temperature and high vacuum. They spin-coated PbI2 on compacted TiO2, 

followed by heating the substrate inside MAI vapor with nitrogen. By this way, they 

achieved good morphology for films and 12.1% PCE for solar cells.[138] 

2.2.  X-ray diffraction (XRD) 

In 1912, on the basis of theoretical prediction, Laue confirmed that the atoms at a 

distance from tens to hundreds picometers to each other in crystal materials are 

periodically arranged. This periodically arranged structure can become diffraction 

gratings for X-ray and the experiment becomes the first milestone of X-ray diffraction. 

When a beam of monochromatic X-rays is incident on the crystal, since the crystals 

are composed of unit cells which are regularly arranged by atoms, the distance 

between these regularly arranged atoms is the same order of magnitude as the X-ray 

diffraction analysis of the incident X-ray wavelength, so it is scattered by different 

atoms. The X-rays interfere with each other and produce strong X-ray diffraction in 
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some special directions. The orientation and intensity of the diffraction lines in the 

spatial distribution are closely related to the crystal structure. The diffraction patterns 

produced by each crystal reflect the atoms arrangement rules inside the crystal. This is 

the basic principle of X-ray diffraction, scheme in Figure 2.2.[139] 

 

The diffraction can be described by Bragg’s Law, 2d sinθ = nλ, where d is the 

distance of diffraction planes, θ is the angle of incident X-ray and diffraction planes, n 

is any integer, and λ is the wavelength of the X-ray. The angle of incidence of X-ray 

and transmission is 2θ. Different diffraction planes can be denoted by dhkl, where hkl 

are called Miller Indices. With different θ, X-ray can be diffracted by all the planes (if 

there is the plane growing in the crystal). Then, after comparing the hkl from 

experiments with standard reference patterns, we can determine the phase of the 

samples. 

2.3. Optical absorption 

Absorption spectrum is commonly used for bandgap determination of semiconductor 

materials. When the incident light photon energy is larger than the bandgap of the 

semiconductor, the light will be absorbed by the semiconductor, leading to the 

Figure 2.2 Scheme for X-ray diffraction 
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electron transition from the valence band to conduction band. The basic principle is 

given by Beer-Lambert law, A=εlc, where A is the absorbance, ε is the molar 

attenuation coefficient, l is the optical path length, that is how long does the light pass 

in the sample, and c is concentration of the attenuating species.[140] 

 

Absorption spectra of 2D tin perovskite films are measured with a UV/Visible Perkin   

Elmer Lambda 950 spectrometer. Using this spectrometer, absorbance data can be 

measured directly, and then after the film thickness is measured, we can get the Tauc 

plot. 

2.4. Time-resolved photoluminescence (TRPL) 

TRPL is one of the measurements of ultrafast spectroscopy and the core of the 

measurement is the laser.[141, 142] The first question is how to change continuous 

wave laser to ultra short laser pulse. Depending on the duration and energy of the 

pulses we want to produce, two engineering solutions are available: Q-switch or a 

Figure 2.3 Scheme of charped pulse amplifier. 
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variable attenuator inside the laser cavity (usually resulting in high energy pulses with 

the duration of several nanoseconds); mode-locking of the light modes inside the laser 

cavity (for obtaining pico- and femtosecond pulses). In the case of this thesis, 

mode-locking is applied to generate laser pulse and the laser is from Ti:Sapphire 

oscillator. 

 

After generated laser pulse, we need to amplify the laser pulse since the laser come 

from the oscillator has very high repetition and narrow tuning range. To obtain higher 

pulse energies, a technique called chirped pulse amplification is employed (Figure 

2.3). In this technique, the initial short laser pulse is stretched in time by a factor of a 

thousand through a pair of gratings. Then the power of the pulse is amplified. Finally, 

a second pair of gratings reverses the stretching process and compresses the pulse. 

 

Now we have the last question, the tuning range is only from 700-1000 nm. The next 

is to amplify the energy range. Optical parametric amplification is used for this 

process. 

 

First of all, the laser beam (denoted as pump) with frequency ωp is split into two 

beams with frequency ωs and ωi which are signal and idler. The relation is given by 

equation ωp = ωi + ωs. This effect is achieved using a non-linear crystal. The 

wavelengths of the signal and idler are determined by the phase matching condition, 

which can be modified by changing the angle between the incident pump laser and the 

optical axes of the crystal. This means that signal’s wavelength can be tuned just 

turning the crystal using a stepper motor. In the special case of ωs = ωi, we have the 

exact reverse of the second-harmonic generation, which is called degenerate 

parametric amplification. 

 

After the signal has been produced, the OPA will amplify it, using again nonlinear 

processes in crystals. A pump photon excites the system to a virtual energy level, 

whose decay is stimulated by a signal photon. Therefore, another photon is emitted 
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with the same direction, energy and phase of the signal one. Since we are interested in 

a monochromatic beam, the idler is filtered and only the signal can escape the OPA. 

Due to the conservation of energy, it follows that it is impossible to obtain a signal 

with a wavelength lower than the pump. This can be obtained doubling the signal 

using second-harmonic generation. Now we have the laser that can perform TRPL 

measurements. 

2.5. Pump-probe spectroscopy 

The diagram of a general pump-probe measurement is shown in Figure 2.4.[143] In 

pump-probe system, the laser pulse is split to two pulse by a beam splitter. The two 

split beams are called pump pulse and probe pulse, generally the pump pulse is much 

more powerful than the probe pulse and also has a larger size of beam spot that can 

totally cover probe beam spot. There is a time delay system to regulate the time delay 

between pump and probe and the two laser beams must be temporally coincident on 

the sample. The strong pump excites the sample and changes the state of the sample, 

then the weak probe detects the perturbation changes.[142, 144] By measuring the 

differential transmission with different delay time, we can know the dynamic process 

of the material. In this experiment, the ∆T/T is measured. The experiment set up is 

shown in Figure 2.5. 

 

Figure 2.4 Diagram of pump-probe measurement. 
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There are three phenomenon can be observed in this measurement. First one is named 

ground state photobleaching, with the spectral shape of ground state absorption after 

thermalization. In this case, the pump pulse reduces the number of absorbing 

molecules in the ground state inducing an absorption decrease at probe frequencies 

equal or higher than the ground state absorption. The result is the increasing of ∆T/T. 

The second one is stimulated emission, which leads to an increasing of photons with 

the same direction, wavelength and phases. The pump pulse populates the excited 

state, the probe photon can stimulate it to emit back to the ground state. In this case 

the ∆T/T is still increased. The third one is called photoinduced absorption, that is in 

this case, the probe excited electron from excited state to higher excited level. Thus, 

the transmission is decreased and ∆T/T shows a negative value. 

 

Figure 2.5 Pump-probe spectroscopy set up for the experiments. 
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3. Quasi-2D lead perovskite solar cells 

2D perovskites are being studied by more and more researches since their stability. 

Various film processing methods were developed to improve the device PCE. But the 

device structure has not been optimized so much, especially for the hole transport 

layer. Generally, solar cells are employing spiro-OMeTAD or PEDOT: PSS as hole 

transport layer (HTL) in solar cells and they are also the most commonly used in 2D 

perovskite solar cells. But the drawbacks are apparent, the conductivity of 

spiro-OMeTAD is really low (~10-5 S cm-1), and in this kind of structure TiO2 or other 

metal oxides will be used as electron transport layer (ETL) which need very high 

temperature (~300°C) for deposition. PEDOT: PSS is widely used in p-i-n structure 

which has easy device fabrication process and possess higher conductivity (~1.35 × 

10-3 S cm-1).[84, 88, 102, 145] But it’s not a pH neutral material, the acidity is 

corrosive to the anode which may cause device defect, decreasing the device 

performance.[146] Thus, a suitable HTL with pH neutral, high conductivity and 

matched work function is needed for improving the solar cell performance.[147, 148] 

Herein, we report on how the different HTL affect the device of p-i-n 2d perovskite 

(PEA2MA4Pb5I16) solar cells. 

 

In this part, we prepared quasi-2D lead perovskite and by XRD, absorption 

spectroscopy and GIWAXS measurements confirmed the composition phases of the 

film. By a different processing method, the orientation of film growth was controlled 

to charge transport preferable direction. PCP-Na[149] (structure in Figure A7) was 

employed as the HTL for solar cells and PEDOT: PSS was chosen as the control 

experiment. PCP-Na possesses an electrical conductivity (1.66 × 10-3 S cm-1) a little 

bit higher than PEDOT: PSS. The HOMO level of PCP-Na (-5.22 eV) is closer to the 

valence band of PEA2MA4Pb5I16 perovskite (-5.3 eV) comparing to PEDOT: PSS 

(-5.11 eV) which results in the enhancement of open circuit voltage of solar 
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cells.[150] 

3.1. Experimental section 

3.1.1. Film deposition and device fabrication 

Materials. PEDOT: PSS water dispersion (Clevios VP AI 4083) was acquired from 

Heraeus. PEAI, MAI (>98%) and PbI2 (>99.99%) were purchased from TCI 

EUROPE N.V. PCBM was purchased from Solenne BV. C60 (>99.9%), BCP (99.99%), 

DMF (99.8%), and DMSO (99.8%) were purchased from Sigma Aldrich. All the 

materials were used as received without further purification. PCP-Na was synthesized 

following a previously reported method.[149] 

 

Perovskite film deposition. The precursor solution was mixed by 0.4 mmol PEAI, 

0.8 mmol MAI, 1 mmol PbI2 and 0.4 mmol ammonium thiocyanate (NH4SCN) in 1 

mL DMF solvent or DMF/DMSO mixed solvent with ration of 1:2. The 2D 

perovskite precursor solution in pure DMF was deposited at a speed of 5000 rpm for 

45 s followed by 100 ℃ annealing for 10 min on the hotplate. The solution with 

mixed solvent was deposited at a speed of 5000 rpm for 20 s, The above films were 

immediately annealed at 100 °C for 10 min (conventional method) or put in vacuum 

for 5 min and then annealed at 100 °C for 10 min (vacuum assisted method). The 

as-prepared films on glass were for further characterizations. 

 

Device fabrication and Characterizations. ITO glasses were cleaned in soap water 

ultrasonication, followed by washing with water, acetone, isopropyl alcohol in 

sequence. Then the substrates were treated by UV-ozone for 10 min to remove 

organic residues which may affect the deposition of hole transport layers. PEDOT: 

PSS was spin-coated on the cleaned ITO substrates at a speed of 3000 rpm for 60 s. 

PCP-Na was dissolved in solvent mixture of water and methanol with the volume 

ratio of 3:7 and was spin-coated on the substrates at a speed of 3000 rpm for 30 s. The 
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HTL coated substrates were dried at 140 ℃ for 15 min. Then the substrates were 

transferred to a glove box filled with nitrogen. On those substrates, PEA2MA4Pb5I16 

films were deposited in the same way above. Then PCBM solution in chlorobenzene 

of 20 mg mL-1 was deposited at a speed of 1000 rpm for 60 s. 20 nm of C60, 6 nm 

BCP and 100 nm aluminum were sequentially evaporated on top of PCBM layer 

under vacuum degree <10-7 mbar. The J–V curves of the devices were measured at 

295 K using a Keithley 2400 source meter under simulated AM 1.5 G solar 

illumination using a Steuernagel Solar constant 1200 metal halide lamp in a 

nitrogen-filled glove box. The light intensity was calibrated to be 100 mW cm−2 by 

using a Si reference cell and correcting the spectral mismatch. A shadow mask (0.04 

cm2) was used to exclude lateral contributions beyond the device area. 

3.1.2. Film characterizations 

Absorbance, XRD patterns and SEM measurements. The absorbance of the 

perovskite films was recorded on Shimatzu UV–vis–NIR spectrophotometer (UV 

3600). XRD patterns were recorded in air on a Bruker D8 Advance X-ray 

diffractometer with a Cu Kα source (λ = 1.54 Å) and a Lynxeye detector. SEM images 

of perovskite films were taken in vacuum on an FEI NovaNano SEM 650 with an 

acceleration voltage of 5 kV. 

 

GIWAXS measurement. Grazing incidence wide-angle X-ray scattering (GIWAXS) 

measurements were performed using a MINA X-ray scattering instrument built on a 

Cu rotating anode source (λ=1.5413 Å). 2D patterns were collected using a Vantec500 

detector (1024x1024 pixel array with pixel size 136x136 microns) located 93 mm 

away from the sample. The perovskite films were placed in reflection geometry at 

certain incident angles αI with respect to the direct beam using a Huber goniometer. 

GIWAXS patterns were acquired using an incident angle of 2° in order to probe the 

thin film structure at an X-ray penetration depth of the entire film thickness. For an 

ideally flat surface, the value of the X-ray penetration depth (i.e. the depth into the 
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material measured along the surface normal where the intensity of X-rays falls to 1/e 

of its value at the surface) depends on the X-ray energy (wavelength λ), the critical 

angle of total reflection, αc, and the incident angle, αi, and can be estimated using the 

relation: 𝛬 =
𝜆

4𝜋√
2

(𝛼𝑖
2−𝛼𝑐

2)
2
+4𝛽2−(𝛼𝑖

2−𝛼𝑐
2)

, where β  is the imaginary part of the 

complex refractive index of the compound. The direct beam center position on the 

detector and the sample-to-detector distance were calibrated using the diffraction 

rings from standard silver behenate and Al2O3 powders. All the necessary corrections 

for the GIWAXS geometry were applied to the raw patterns using the FIT2D and the 

GIXGUI Matlab toolbox. The reshaped GIWAXS patterns, taking into account the 

inaccessible part in reciprocal space (wedge-shaped corrected patterns), are presented 

as a function of the vertical and parallel scattering vectors qz and qr. The scattering 

vector coordinates for the GIWAXS geometry are given by: 

𝑞 =

{
 
 

 
 𝑞𝑥 =

2𝜋

𝜆
(cos(2𝜃𝑓) cos(𝛼𝑓) − cos(𝛼𝑖))

𝑞𝑦 =
2𝜋

𝜆
(sin(2𝜃𝑓) cos(𝛼𝑓))

𝑞𝑧 =
2𝜋

𝜆
(sin(𝛼𝑖) + sin(𝛼𝑓))

 

where 2𝜃𝑓 is the scattering angle in the horizontal direction and 𝛼𝑓 is the exit angle 

in the vertical direction. The parallel component of the scattering vector is thus 

calculated as 𝑞𝑟 = √𝑞𝑥2 + 𝑞𝑦2.[151] 

 

PL measurement. The samples were excited at laser wavelength 400 nm by the 

second harmonic of a mode-locked Ti:sapphire (Mira 900) laser delivering pulses of 

150 fs. The laser repetition rate is 76 MHz; a pulse picker was inserted in the optical 

path to reduce the repetition rate. A 150 mm focal length lens was used to focus the 

beam, and the emission was collected by a spectrometer with a 50 lines mm
−1

 grating. 

The steady-state PL was recorded with a CCD camera from Hamamatsu (Hamamatsu, 

Japan). Time-resolved PL was measured with the streak camera. 
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3.2. Results and discussion 

3.2.1. Solar cells with different hole transport layers 

3.2.1.1. Film morphology and structure 

The device structure is shown in Figure 3.1a and Figure 3.1b shows the related work 

function respectively. X-ray diffraction (XRD) patterns are shown in Figure 3.1c. 

Diffraction patterns for both the thin films on PEDOT: PSS and PCP-Na demonstrate 

oriented growth. The two main peaks at 2θ aroud 14.17° and 28.54° are assigned to 

(110) and (220) facets respectively. The small peaks in PCP-Na sample at 3.96°, 7.88°, 

11.82°, 15.74°, 19.72°, 23.70°, 27.73° and 31.77° are correlated to (002), (004), (006), 

Figure 3.1 (a) device structure of the solar cells, (b) work function of different layers correlated 

to device structure, (c,d) XRD patterns and UV-vis absorption of the different samples. 
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(008), (0010), (0012), (0014) and (0016) facets, indicating the presence of n=2 

member. The optical absorbance of thin films grown on different HTLs is shown in 

Figure 3.1d. The small ripples at 564 nm, 608 nm and 643 nm belong to low n=2, 3, 

and 4 members respectively, indicating different phases exist in the thin films. 

 

The pattern for the thin film on PCP-Na exhibits higher crystallinity than on PEDOT: 

PSS, indicating PCP-Na as supporting layer is better for 2d perovskite crystallization. 

To furtherly confirm the growth orientation of the thin films, grazing incidence 

wide-angle X-ray scattering (GIWAXS) measurements were carried on. Results are 

shown in Figure 3.2, with all the panels showing sharp, discrete Bragg spots. At the 

lowest incident angle of 0.25°, probing the first several tens of nanometers on the top 

surface of the thin films, the images of thin films grown on PEDOT: PSS (Figure 

3.2a) and PCP-Na (Figure 3.2c) are very similar. The Brag spot at around qz=1 Å-1 

represents the (110) plane grown along in-plane direction which is much stronger than 

qy=1 Å-1 representing (110) plane grown along out-of-plane direction. It means that 

the (110) plane is mainly growing along in-plane direction indication the [PbI6]
-4 

Figure 3.2 GIWAXS images of PEDOT: PSS sample (a, b) and PCP-Na sample (d, e) 

investigated at 0.25° and 2°, respectively and related structure of the thin films (c, f). 
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octahedron layers are perpendicular to the substrates. The results measured at highest 

incident angle of 2°, probing the last several tens of nanometers on the bottom surface 

of the thin films, are shown in Figure 3.2b (PEDOT: PSS) and 3.2d (PCP-Na). Still 

they are very similar but in Figure 3.2b, at around qz=0.75 Å-1, there appears a small 

Debye-Scherrer ring indexed as the (006) plane of n=2 phase. But the Debye-Scherrer 

ring means that at this part of the thin films, the “wells” and “barriers” are growing 

randomly way lead to form defects determined to charge transport from bottom to 

upper layers. 

 

The morphology of the thin films grown on PEDOT: PSS and PCP-Na were measured 

by scanning electron microscope (SEM). As shown in Figure 3.3a, PEA2MA4Pb5I16 

grown on PEDOT: PSS substrate has some large pinholes and obvious grain 

boundaries on the film, which may cause current leakage by forming shunts and 

trap-assisted recombination. Furthermore, the HTL and ETL may contact each other 

directly through pinholes, short-circuiting the device. On the other hand, in Figure 

3.3b, the film grown on PCP-Na shows much better quality, less pinholes and more 

uniform surface which may help to reduce trap states. 

3.2.1.2. Photoluminescence measurements 

To further understand the charge recombination process in perovskite thin films, 

Figure 3.3 SEM images of 2D perovskite thin films on PEDOT: PSS (a) and PCP-Na (b) 

substrates, the scale-bar is 2 um. 
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steady state and time-resolved photoluminescence (TRPL) measurements were 

performed on pristine perovskite on glass and on different HTLs. Results are shown in 

Figure 3.4. Steady state PL (Figure 3.4a, b) intensity, measured from the two 

different sides of the samples, is reduced in the presence of HTLs, indicating efficient 

charge transfer from perovskite to HTL. In Figure 3.4b, the spectra measured from 

backside display weak peaks at 526 nm and 581 nm which are corresponding to n=1 

and n=2 phase (details in semilogarithmic plots of Figure A1). The TRPL spectra 

measured from frontside (Figure 3.4c) are very similar to samples on different HTLs. 

The lifetime are 26.7 ns for PEDOT: PSS sample and 24.9 ns for PCP-Na sample. But 

the PL decay measured from backside, the lifetime for PCP-Na sample is 49.4 ns 

Figure 3.4 (a) and (b) are steady state photoluminescence of 2D perovskite thin films in DMF 

solvent precursors grown on different substrates, glass, glass/PEDOT:PSS and glass/PCP-Na. 

Front side means on perovskite side, back side means on glass side. (c) and (d) are time 

resolved PL spectra correspond to (a) and (b). 
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which is significantly longer than PEDOT: PSS sample 35.0 ns. This effect may 

attribute to the less oriented growth of PEDOT: PSS film, leading to the low efficient 

charge transport and more recombination of charge carriers. 

Figure 3.5 (a) J-V curves, (b) IPCE spectra, (c) Max power point track, and (d) PCE 

distribution of devices using different HTL. 

Table 3. Performance parameters of devices using different HTL. 
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3.2.1.3. Device performance 

To investigate the solar cell performance, a p-i-n architecture was employed, namely 

ITO/(PEDOT: PSS or PCP-Na)/Perovskite/PCBM/C60/BCP/Al. Figure 3.5a shows 

the J-V curve of the solar cells using different HTLs and the relevant parameter details 

are summarized in Table 3. The best performance is obtained for the device using 

PCP-Na as HTL, with a VOC value of 1.15 V, a JSC of 15.54 mA cm-2, a FF of 0.79 and 

a PCE of 14.12% in forward scan. In reverse scan, the device shows a VOC of 1.14 V, a 

JSC of 16.17 mA cm-2, an FF of 0.71 and a PCE of 13.35%. As a comparison, the 

device using PEDOT: PSS as HTL shows a VOC of 1.09 V, a JSC of 14.30 mA cm-2, a 

FF of 0.61 and a PCE of 9.62% in forward scan and a VOC of 1.07 V, a JSC of 14.16 

mA cm-2, a FF of 0.58 and a PCE of 8.76% in reverse scan. The tracks of max power 

point of the devices are shown in Figure 3.5b, the steady state PCE are 13.44% and 

9.42% for PCP-Na and PEDOT: PSS, respectively. Figure 3.5c shows the external 

Figure 3.6. Dark J-V curves of two different solar cell devices. 
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quantum efficiency spectra of the different devices. The current density integrated 

from the spectra are 15.97 mA cm-2 and 14.70 mA cm-2 corresponding to PCP-Na and 

PEDOT: PSS respectively, which closely match the JSC value obtained by J-V curves. 

 

Dark current refers to the reverse direct current generated when the P-N junction is 

under reverse bias conditions with no incident light. It is generally caused by the 

diffusion of carriers or defects on the surface and inside of the device and impurities. 

The principle of diffusion is that inside the P-N junction, there are many electrons in 

the N region, and there are many holes in the P region. Because of the difference in 

concentration, electrons in the N region are diffused into the P region, and holes in the 

P region are diffused into the N region, despite the P-N junction. The built-in electric 

field prevents this diffusion, but in reality, the diffusion has been going on, only to 

achieve a dynamic equilibrium, which is the formation of diffusion current. In 

addition, when there are defects on the surface and inside of the device, the defect 

level acts as a recombination center. When electrons and holes are captured by the 

defect level, the movement of carriers forms an electric current. The impurity also 

functions as a recombination center in the device, with the same principles as defects. 

The dark J-V curves (Figure 3.6) are showing under dark condition, PCP-Na device 

generates dark current much smaller than PEDOT: PSS samples. This indicates that 

the PCP-Na device has less defect density than PEDOT: PSS one which is 

Figure 3.7 Light intensity dependence of JSC (a) and VOC (b) of the devices using different HTL. 
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corresponded to the SEM and GIWAXS measurements. 

 

To further understand the recombination in presence of different HTL, we measured 

the light-intensity dependence of JSC and VOC. The results are shown in Figure 3.7. In 

Figure 3.7a, the JSC to light intensity plot of PCP-Na has a slope closer to 1, and 

Figure 3.7b shows the semilogarithmic plots of the VOC to light intensity of the 

devices, the PCP-Na device exhibits a much smaller slope (1.35 kT q-1) than PEDOT: 

PSS device (1.93 kT q-1). These results indicate more equal trapping recombination of 

electrons and holes occurs in PEDOT: PSS device, which is corresponded to the SEM 

and GIWAXS measurements. The air stability of the thin films was also evaluated. In 

Figure A2, after 80 days in the air, the thin films still remain good crystallization and 

the images of the thin films exhibit one edge of the film on PEDOT: PSS turn yellow 

while the film on PCP-Na is still dark brown. 

 

In addition, I also applied this new HTL in 3D lead perovskite to see if it could 

improve the performance of solar cell devices. (FAPbI3)0.87(MAPbBr3)0.17 was 

employed as the active perovskite layer. The device performance is improved from 

PCE of 12.32% (PEDOT: PSS) with JSC 19.75 mA cm-2, VOC 0.87 V, FF 0.72 to PCE 

of 15.73% (PCP-Na) with JSC 21.03 mA cm-2, VOC 0.99 V, FF 0.75 (J-V curves in 

Figure A3). 

3.2.2. Comparison of two deposition methods for mixed solvent 

3.2.2.1. Film morphology and structure 
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In the conventional method, the wet films were put on a hot plate at 100 ℃ 

immediately after spin-coating, and they turned dark red after 10 seconds due to fast 

evaporation of the solvent (Figure 3.8a). These films appear very rough, non-uniform 

and not very reflective to the eye. In vacuum assisted method, the films were placed 

in vacuum immediately after the same spin-coating procedure, after 5 minutes in the 

chamber they appear as dark red, uniform and very reflective (Figure 3.8b). The films 

were then put on the hot plate at 100 ℃ for 10 min. The morphology of the thin films 

is shown in Figure 3.8c, d. The conventional sample film (denoted as M1) forms 

large grains but also with very large cracks and pinholes, resulting open grain 

boundaries and increased defect densities. Differently, vacuum sample film (denoted   

as M2). 

 

The absorption spectra of the thin films in Figure 3.9 exhibit an absorption onset at 

around 780 nm resembling of 3D MAPbI3 films. They show several higher energy 

Figure 3.8 Preparation scheme and SEM images of conventional method (a,c) and vacuum 

assisted method. 
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peaks due to strong excitonic absorption associated with 2D phases. These features 

suggest that the quasi-2D films consist of multiple perovskite phases. Perovskite M1 

film exhibits much stronger absorption corresponding to the n=2 phase at 569 nm and 

weak absorption consistent with the n=1 phase at 514 nm. Perovskite M2 film 

displays a much weaker absorption from the n=1 and 2 phases, but absorption 

corresponding to the n=3 (609 nm), 4 (640 nm) and 5 (663 nm) phases are observed. 

Such distinctive features in the absorption spectra imply the presence of domains of 

different phase composition in these RPP films. 

 

The two type of perovskite films display rather distinct X-ray diffraction (XRD) 

patterns (Figure 3.10). M1 film exhibits two intense diffraction peaks at 2θ = 14.15º 

and 28.48º, which are assigned to the (110) and (220) crystallographic planes, 

respectively. It also exhibits several evenly spaced peaks at 2θ = 3.96º, 7.88º, 11.82º, 

15.76º, 19.72º, 23.70º and 27.725º, which are indexed as the (002) (004)...to (0014) 

planes of the n=2 phase. In addition, another two very weak peaks at low reflection 

angles (2θ = 5.48º and 10.72º) are assigned to the (002) and (004) planes of the n=1 

phase. The n=3, 4, 5 phases do not show any peaks at low diffraction angle (2θ < 

Figure 3.9 UV-vis absorption of M1 film (black), M2 film (red) and 3D MAPbI3 film. 
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14.15º), most probably due to their preferential orientation. M2 film exhibits two  

dominant peaks from the (110) and (220) planes, indicating preferential orientation of 

the perovskite domains. Diffraction peaks from the n=1 and 2 phases are visible but 

very weak due to their small volume fractions. Similar to the M1 film, the 5≥n≥3 

phases have the same preferential orientation, exhibiting dominant (110) and (220) 

planes. 

 

In order to probe the orientation of the perovskite phases with respect to the substrate, 

we carried out grazing incidence wide-angle X-ray scattering (GIWAXS) 

measurements at incident angles of 0.25° and 2° (Figure 3.11). Both M1 and M2 

films show remarkably sharp Bragg spots at different X-ray penetration depths. 

Indexing the intense Bragg spot at qz≈0.89 Å-1 confirms that the infinity ≥n≥ 3 phases 

in these films are oriented with their (110) planes packing in the out-of-plane direction, 

thus the octahedron layers are perpendicular to the substrate. The Bragg spot at 

qy≈0.89 Å-1 assigned to the in-plane-oriented (110) plane is much weaker than that at 

qz≈0.89 Å-1, indicating the dominant vertical orientation of the infinity ≥n≥ 3 phases. 

This is a common feature of the M1 and M2 films. 

Figure 3.10 XRD patterns of M1 film (black) and M2 film (red). 
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The M1 film shows intense Bragg spots at qz≈ 0.25 A-1, 0.54 A-1 and 0.78 A-1 in the 

entire film, which are indexed as the (002), (004) and (006) planes of the n=2 phase 

with octahedron layers parallel to the substrate (Figure 3.11a-c). In addition, a Bragg 

spot at qz≈ 0.39 A-1 is observed belonging to the (002) plane of the n=1 phase parallel 

to the substrate. Since PEA organic double layers is a potential barrier for charge 

transport, such preferential parallel alignment of the n≤2 phases inhibits charge  

transport and collection of charges in the vertical direction of the solar cells. The M2 

film does not show any diffraction spots from n=1 and 2 phases at shallow X-ray  

penetration depth (Figure 3.11d-f). Very weak diffraction signal of the n=2 phase is  

observed in the out-of-plane direction at the bottom of the film (Figure 3.11e) due to 

its small volume fraction. Therefore, the vertically oriented octahedron layers in M2 

film, facilitate charge transport and collection in the corresponding solar cells. 

Figure 3.11 GIWAXS images of M1 film (a,b) and M2 film (c,d), measured on 0.25 and 2, 

which is on bottom and top of the film, respectively. Structure illustration of M1 film (c) and M2 

film (f). 
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3.2.2.2. Device performance 

The device structure is same with the one shown in Figure 3.1a. Both M1 and M2 are 

employed in PEDOT: PSS and PCP-Na devices. Results are obvious that M2 devices  

Device VOC/V JSC/mA cm-2 FF PCE/% 

PEDOT_M1 F 0.81 7.97 0.37 2.40 

PEDOT_M1 R 0.74 7.93 0.30 1.79 

PEDOT_M2 F 1.06 15.50 0.65 10.57 

PEDOT_M2 R 1.06 15.82 0.66 11.07 

PCP-Na_M1 F 0.99 6.31 0.53 3.31 

PCP-Na_M 1 R 0.96 6.63 0.57 3.65 

PCP-Na_M2 F 1.10 17.09 0.73 13.70 

PCP-Na_M2 R 1.10 17.52 0.73 14.14 

Table 4. Devices with perovskite films M1 and M2 on different hole extraction layers under one 

sun condition. 

Figure 3.12. J-V curves of devices using different hole transport layers, PEDOT: PSS (a) and 

PCP-Na (b). M1 device film shown in black and M2 film device shown in red. 
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possess higher PCE than M1 devices (Figure 3.12). In PCP-Na devices, device with 

M2 film exhibits a VOC valued of 1.10 V, a JSC of 17.09 mA cm-2, an FF of 0.73 and a 

PCE of 13.70% in forward scan. In reverse scan, the device shows a VOC of 1.10 V, a 

JSC of 17.52 mA cm-2, an FF of 0.73 and a PCE of 14.14%. While the M1 device  

shows a VOC of 0.985 V, a JSC of 6.31 mA cm-2, a FF of 0.53 and a PCE of 3.31% in  

forward scan and a VOC of 0.959 V, a JSC of 6.63 mA cm-2, a FF of 0.57 and a PCE of 

3.65% in reverse scan. In PEDOT: PSS devices, they show the same trend with M2 

device PCE 10.57% (11.07%), much higher than M1 2.40% (1.79%). Detailed data of 

J-V curves are summarized in Table 4. 

3.2.2.3. Conclusion 

In this chapter, we developed a vacuum-assisted fabrication method for quasi-2D 

perovskite (PEA2MA4Pb5I16) thin films which is rather useful to improve the film 

morphology with mixed solvent precursors. Films deposited in this method have 

shown very smooth and reflective surface with compact and less grain boundary 

morphology. It also can improve the phase distribution and growth orientation to 

become more preferable for charge transport at in-plane direction. The stability of 

those thin films can be up to more than 2 months with little degradation. 

Meanwhile, a novel hole transport layer, PCP-Na was employed to replace PEDOT: 

PSS. PCP-Na is pH neutral and possess an electrical conductivity (1.66 × 10-3 S cm-1) 

a little bit higher than PEDOT: PSS (1.35 × 10-3 S cm-1). The HOMO level of PCP-Na 

(-5.22 eV) is closer to the valence band of PEA2MA4Pb5I16 perovskite (-5.3 eV) 

comparing to PEDOT: PSS (-5.11 eV) which results in the enhancement of open 

circuit voltage of solar cells. With these improvements, PCE of solar cells was 

improved beyond 14%. 
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4. Photophysics of 2D tin perovskite 

Different from the lead counterpart, studies on tin perovskite are not so many. 

Although the approximate 10% has appealed plenty of studies, there still exists 

various issues need to be solved and the photophysics needs to be elucide.[152-157] 

In this part, 2D tin perovskites BA2MAn-1SnnI3n+1 with different n numbers were 

fabricated and the photogenerated carriers were studied through ultrafast systems to 

understand the carrier behaviors in the perovskite. 

4.1. Experimental section 

4.1.1. Synthesis of BA2MAn-1SnnI3n+1 thin films 

The thin films were deposited by spin-coating method. Stoichiometric MAI, BAI and 

SnI2 were dissolved in DMF, that is 0:2:1 for BA2SnI4 (n=1), 1:2:2 for BA2MASn2I7 

(n=2) and 2:2:3 for BA2MA2Sn3I10 (n=3). The concentration of Sn2+ was 0.5 M. The 

glass substrates were cleaned by soap water with ultrasonic at 50℃ for 10 min, then 

washed by deionized water. After that, the substrates were washed by acetone and 

isopropanol with ultrasonic for 10 min subsequently. The precursor solutions were 

then heated to 70°C for 30 min and spin-coated at a speed of 3000 rpm for 30 s with a 

acceleration of 1500 rpm/s. Then the thin films were annealed at 75°C for 10 min. 

4.1.2. Film characterization 

X-ray diffraction. X-ray diffraction measurement was carried at room temperature 

using a Bruker D8-Discover diffractometer (Bragg-Brentano geometry) for crystals 

with parallel beam geometry and Cu Ka wavelength (λ=1.5418Å), operated at 40 kV 

and 40 mA using a step size of 0.05° and a time per step of 1 s. For n=1 sample, the 

Bragg angle was scanned from 5 to 40. For n=2 sample, it was 3 to 40 and 2 to 40 for 

n=3 sample. 
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AFM and UV-vis absorption. Film morphology and thickness is roughly measured 

Figure 4.1. XRD patterns for BA2SnI4 (n=1), BA2MASn2I7 (n=2) and BA2MA2Sn3I10 (n=3) thin 

films deposited by normal spin-coating method, arranged from up to down. 



Chapter 4. Photophysics of 2D tin perovskite 

49 
 

by atomic force spectroscopy with a NT-MDT Solver P47H-Pro in semicontact mode 

by a high-resolution non-contact silicon tip. Absorption spectra of perovskite films are 

measured with a UV/Visible Perkin Elmer Lambda 950 spectrometer. The wavelength 

range is from 350nm to 1100nm. 

Time-resolved photoluminescence. Since tin perovskites are even more unstable 

than lead perovskites, all the samples were measured in vacuum circumstance.  

Samples were excited with a regenerative amplified laser (Coherent Libra) delivering 

130‐fs‐long pulses at a repetition rate of 1 KHz. Photoluminescence was dispersed 

with a grating spectrometer (Princeton Instruments Acton SpectraPro 2300i equipped 

with a 50 gr mm−1 grating blazed) and detected by a streak camera (Hamamatsu). 

4.2. Results and discussion 

4.2.1. Synthesis for single phase 

Generally, for 2D perovskites, it is rather tough to get a very pure phase of target 

material. The n=1 sample, since there is only large organic cation, can be pure phase. 

When trying to increase the n number, as described in chapter 3, the n=5 sample is 

actually a mixture of 3D and different 2D phases. Here, in this experiment, first of all, 

all the films were deposited by the normal method and XRD results are shown in 

Figure 4.1.  

The n=1 is obvious pure material, and the peaks at 2θ of 6.5°, 12.9°, 19.35°, 25.9° and 

32.5° can be indexed as the (002), (004), (006), (008) and (0010) planes respectively. 

In n=2 sample, things become different. The main peaks at 4.55°, 9.05°, 13.55°, 18° 

and 27.1° belong to (002), (004), (006), (008) and (0012). Besides, there are also 

some weak peaks, only the two ripples at 22.55° and 31.7° are (0010) and (0014) of 

n=2 material. Other ripples are peaks from n=1 or maybe because randomly growth 

orientation reflectivity. Considering the limit of detection of XRD is 2% and the 

intensity of the ripples, we can consider the n=2 as a 97% pure material. But for the 

n=3 sample, the XRD pattern shows many irregular peaks of this film through this 
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deposition method. Despite the (00l) planes of n=3 phase, some peaks of n=1 and 2 

phases are also observed, implying the film is a mixture of different phases. 

4.2.2. Optical absorption and free energy 

For thin films samples, there is an equation to describe the absorption:  

                           αd

0d eII −=  (4.1) 

where Id is the transmission light, I0 is the incident light, α is the absorption 

coefficient of the material, d is the thickness of the film, that is the distance of light 

passing the sample. As seen in Figure 4.2, the Y axis is absorbance, which is given by 

log10 (I0/Id). The shift up of n=2 sample from 750 to 1100 nm might be the roughness 

of the film (Figure B1). The light scatters when arriving on the surface of the film. 

Since the n=3 sample is a mixture, 2 very small shoulder peaks can be seen at the 

same wavelength of n=1 and 2 samples which also confirms the mixture phases of the 

sample. Figure 4.3 shows the degradation of the samples, from the absorption spectra, 

Figure 4.2. Optical absorption of 3 different samples. 
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we can see all the samples degrades very fast in the air circumstance. Within 30 min, 

the absorption of all the samples degrade more than 50%. 

 

Figure 4.3. Optical absorption degradation of 3 different samples. Blue is fresh sample, black 

is after TRPL measurement in vacuum, others are exposed to air. 
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To determine the bandgap of the materials, Tauc to Energy plot of the samples are 

extracted from the absorbance data.[158] The Tauc and Davis-Mott relation can be 

written by  

                         (αhυ)n = K(hυ-Eg) (4.2) 

This relation is usually used to probe the optical bandgap energy for materials. In this 

equation, α is the absorption coefficient, hυ is the photon energy, K is an energy 

independent constant, Eg is the optical bandgap energy and n represents the nature of 

transition. Its value is fixed, 2 for direct allowed transition, 0.5 for indirect allowed 

transition, 2/3 for direct forbidden transition and 1/3 for indirect forbidden transition. 

For the Y axis, (αhυ)n, hυ can be given by 1240/wavelength with unit eV; α, with the 

Beer-Lambert absorption equation, can be given by 2.303*absorbance/d with unit 

cm-1, and for these 2D tin perovskite samples, the n is 2. The X axis is just hυ. Thus, 

we extract the Tauc plot data from absorbance data. Figure 4.4 shows the Tauc plot of 

Figure 4.4. Tauc plot from absorption of n=1 and 2 samples. 



Chapter 4. Photophysics of 2D tin perovskite 

53 
 

(4.3) 

the n=1 and n=2 samples and from the absorption peak we can know the bandgap 

should be 2.00 eV and 1.72 eV respectively. 

 

The free energy (μoc) of the perovskites are given by optical method with the external 

photoluminescence quantum yield (EQY).[159] The μoc is equal to the energy 

splitting of quasi-fermi level of electrons in conductive band and holes in valence 

band.[160, 161] According to the Kirchhoff’s law of radiation, which represents the 

detailed balance between emission and absorption, generalized by Würfel to account 

for non-equilibrium electron and hole populations[162]: 

 

𝐽𝑃𝐿 = ∫𝛼(𝜔)
𝛺

4𝜋2ħ3𝑐0
2

(ħ𝜔)2

𝑒
ħ𝜔−𝜇
𝑘𝑇 − 1

𝑑(ħ𝜔) ≈ 𝐽0,𝑟𝑎𝑑𝑒
𝜇
𝑘𝑇 

 

Figure 4.5. External photoluminescence quantum yield as a function of excitation intensity of 

n=1 and 2 samples. 
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(4.4) 

where 𝐽𝑃𝐿 is the emitted photon current density, which is proportional to the external 

photoluminescence intensity; 𝛼(𝜔)  is absorptivity depending on the absorption 

coefficient and thickness of the sample; 𝛺 is the effective external emission angle; c0 

is the speed of light; T is the temperature. The right side of the equation holds for 

excitation levels typical of solar illumination when Bose function can be substituted 

by Boltzmann distribution. For further calculation, 𝐽𝑃𝐿 can be described by EQY, for 

EQY = 𝐽𝑃𝐿/𝐽𝑒𝑥. Then equation (4.3) can be written by 

 

𝜇 = 𝑘𝑇𝑙𝑛
𝐽𝑃𝐿
𝐽0,𝑟𝑎𝑑

= 𝑘𝑇[𝑙𝑛
𝐽𝑒𝑥
𝐽0,𝑟𝑎𝑑

+ 𝑙𝑛(𝐸𝑄𝑌)] = 𝜇𝑂𝐶,𝑟𝑎𝑑 + 𝑘𝑇𝑙𝑛(𝐸𝑄𝑌) 

 

where μoc,rad is the maximum of the free energy when the EQY is 1, which means only 

radiative recombination happens under open circuit condition. 
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Figure 4.6. Free energy (μOC) and maximum (μOC,rad) as a function of excitation intensity of 

n=1 and 2 samples. 
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(4.5) 

(4.6) 

Sample Bandgap (eV) EQY (%) μoc,rad (eV) μoc (eV) 

BA2SnI4 2.00 0.32±0.08 1.701 1.552±0.006 

BA2MASn2I7 1.72 0.9±0.2 1.440 1.319±0.006 

If all photons with energy higher than bandgap are absorbed, the 
𝜇𝑂𝐶,𝑟𝑎𝑑

𝑒
 will be the 

SQ limit of open circuit voltage. The non-radiative recombinations only affect the 

EQY, with 10 drop the free energy will lost 60 meV under the temperature of 300K. 

With the previous work in our group, the μoc,rad can be given by the equation below: 

 

𝜇𝑂𝐶,𝑟𝑎𝑑 = 𝐸𝑔𝑎𝑝
𝑇𝑠𝑢𝑛 − 𝑇

𝑇
+ 𝑘𝑇𝑙𝑛

𝑇𝑠𝑢𝑛
𝑇

+ 𝑘𝑇𝑙𝑛[𝑓(𝑇, 𝑇𝑠𝑢𝑛 , 𝐸𝑔𝑎𝑝)
𝛺𝑠𝑢𝑛𝑎̅𝑠𝑢𝑛
𝛺𝑎̅𝑇

] 

 

In this equation, k is Boltzmann constant, Tsun is 5541 K, T is 300 K, Ωsun/Ω = 

6.8*10-5/π. 𝑎̅𝑠𝑢𝑛 and 𝑎̅𝑇 are the spectrally averaged film absorptivity, weighted by 

the black-body radiation spectra at Tsun = 5541 K and T = 300 K, respectively. 

𝑓(𝑇, 𝑇𝑠𝑢𝑛 , 𝐸𝑔𝑎𝑝) is depicted as 

 

𝑓(𝑇, 𝑇𝑠𝑢𝑛 , 𝐸𝑔𝑎𝑝) =

2(
𝑘𝑇𝑠𝑢𝑛
𝐸𝑔𝑎𝑝

)2 + 2
𝑘𝑇𝑠𝑢𝑛
𝐸𝑔𝑎𝑝

+ 1

2(
𝑘𝑇
𝐸𝑔𝑎𝑝

)2 + 2
𝑘𝑇
𝐸𝑔𝑎𝑝

+ 1
 

 

Thus, with equation (4.5) and (4.6) we can calculate the μoc,rad under 1 sun irradiation 

which is 66 μW cm-2, consequently we can get the μoc,rad of the whole light intensity 

series. Then with equation (4.4) we can calculate the free energy after measuring the 

EQY of the sample. Unless EQY is unit, the free energy is equal to μoc,rad, or the free 

energy will be less than μoc,rad. 

 

Figure 4.5 is the EQY of the samples, measured by integrating sphere method. Under 

Table 5. Summary of bandgap, EQY and free energy of the two samples. 
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1 sun condition (66 μW cm-2), the EQY of the samples are 0.32% (n=1) and 0.9% 

(n=2), the results of free energy are shown in Figure 4.6, summarized in Table 5. 

4.2.3. Ultrafast spectroscopy measurements 

Figure 4.7 shows the log-log plot of PL0 to injected carrier density n0. PL0 is the PL 

intensity at time 0, which means the initial intensity immediately after the laser pulse 

strike on the sample. This intensity is measured by TRPL measurement. The injected 

carriers are photo-generated carriers and the density can be given by the fluence of 

laser pulse Φ, excitation photon energy hυexc and absorption coefficient of the 

excitation light αexc. The equation is n0=Φαexc/hυexc. Φ can be given by laser power 

divided by frequency and spot area; hυexc is the photon energy of 400 nm which is the 

excitation wavelength; αexc can be given by the absorbance of 400 nm light and the 

thickness of the sample. Thus we get the plot of PL0 to injected carrier density. As 

Figure 4.7. Photoluminescence intensity at decay time 0 as a function of injected carrier 

density 
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seen in the figure, n=1 sample shows linear behavior while n=2 sample shows 

quadratic behavior. The light emission of samples are due to the radiative 

recombination including excitonic recombination and bimolecular recombination. The 

recombination rate can be described as Rrad=B1n+B2n
2. If in the sample excitons are 

main charge carriers, then Rrad=B1n and PL0 is proportional to n and if free carriers 

are main charge carriers, then Rrad=B2n
2 and PL0 is proportional to n2. Thus, 

according to the results we can consider in n=1 sample excitons are main carriers and 

in n=2 sample there are more free carriers. As can be seen in Figure 4.8, the decays 

become shorter with the increasing of laser pulse, and lifetimes extracted from the 

Figure 4.8. TRPL decay of different laser pulse fluence, upper is n=1 sample, fluence from 

0.65 to 362.61 μJ cm
-2

; down is n=2, fluence from 0.79 to 32.34 μJ cm
-2

. 
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decays in Figure 4.8 are shown in Figure 4.9. The lifetime of n=2 sample is 

decreasing faster than n=1 sample. 

 

To further confirm the photo-generated charge carriers in the two samples, 

pump-probe spectroscopy was carried out. Figure 4.10 is the plot of ∆T/T as a 

function of probe wavelength. For n=1 sample, photo-bleaching appears with two 

bleaching peaks at 522 nm and 603 nm. The 2 negative peaks at 560 nm and 627 nm 

are because of photoinduced absorption which leads to the excitation of electrons 

from one excited state to another. In n=2 sample, it is very different from n=1. Only 

one broadened positive peak at 685 nm. The result is corresponding to the TRPL 

measurement that is excitons in n=1 sample and free carrier in n=2 sample. 

Figure 4.9. TRPL lifetime extracted from Figure. 4.8, black dots represent n)1 sample, and red 

dots represent n=2 sample.. 
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4.2.4. Conclusion 

In this chapter, BA2SnI4 and BA2MASn2I7 single phase thin films were fabricated. 

The absorption spectra determine the bandgaps of them are 2.00 eV and 1.72 eV, 

indicating higher n number of BA2MAn-1SnnI3n+1 perovskite possess smaller bandgap 

which will be more suitable for solar cell absorber materials. Besides, TRPL and 

pump-probe spectroscopy measurements were proceeded to get a good understanding 

of the photo-generated carriers in the samples. 

Further studies need to be accomplished for higher n number tin perovskite to 

understand the inner nature of this materials. Since the stability of tin perobskite is 

much worse than lead one, even 2D tin perovskite will degrade in 1h, how to solve the 

stability issue is another great challenge for tin perovskite solar cells. 

 

Figure 4.10. Pump-probe spectroscopy of the n=1 and n=2 samples. Differential transmission 

of probe pulse as a function of probe wavelength. 
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5. Summary and outlook 

Solar energy is the origin energy needed for life on earth, coming from the 

photosynthesis of plants. Solar cells is the most direct way to this inexhaustible 

energy resource. The first and second generation solar cells have been industrialized 

for several decades. Although the cost of these solar cells have decreased more than 

90%, researchers are still contributing to new, simply operated, highly efficient solar 

cells. Under this circumstance, perovskite comes into everyone’s view. 

Perovskite have already been studied for 10 year. Too many achievement are 

accomplished by researchers throughout the world. Despite the more than 25% power 

conversion efficiency, stability is always the biggest issue as the NREL statistics 

denoted “not stabilized” for perovskite solar cell every year. Hence, people tried to 

solve or avoid this problem. 2D perovskite is one of the ideas for improving stability. 

However, the confinement-well structure is not preferable for charge transport unless 

the growth orientation can be regulated. In this thesis, we also provided a film 

deposition method to improve the growth orientation and phase distribution for 

quasi-2D perovskite. Although result shows the film is mixture of different phases, the 

PCE is increased beyond 14% and the film is much more stable than those 3D films 

when exposed to ambient environment. 

Another problem is toxicity of lead, which is almost eternal harm when released to the 

natural environment. Then tin perovskite solar cells have sprung out with highest PCE 

9% to date. 3D tin perovskite possess lower bandgap than lead one, leading to high 

JSC but low VOC. However, the photophysics of tin perovskite materials is still not very 

clear. Considering 2D tin perovskite should be more stable, we tried to fabricate 

different 2D tin perovskite thin films. The n=1 and n=2 films were successfully 

fabricated. Using time-resolved photoluminescence and pump-probe spectroscopy, the 

carrier behaviors were monitored and determined excitons for n=1 and free carriers 

for n=2. But the stability of 2D tin perovskite is much worse, they will degrade in 1h. 
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For the future, stability is still the one need to be improved especially for tin 

perovskite. Also, understanding the natural photophysics of tin perovskite material is 

another topic. After revealing the photophysics of tin perovskite, it might be possible 

to improve the PCE to higher level. 
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Supporting information to chapter 3 

Device fabrication of (FAPbI3)0.83(MAPbBr3)0.17 3D perovskite 

The device structure is the same with quasi-2D perovskite solar cells, and the 

substrates were prepared in the same way when fabricating 2D perovskite solar cells. 

The only difference is the perovskite deposition process. 

 

The precursor solution is prepared by mixing stiochiometric of FAI, PbI2, MABr, 

PbBr2 that is the molar ratio of 0.83:0.83:0.17:0.17 in DMF/DMSO 4/1 mixed solvent. 

The concentration of Pb2+ is 1.3M. ITO substrates are washed by deionized water, 

actone and isopropanol subsequently. Then the substrates are treat by UV-ozone for 

10 min followed by deposition of PEDOT:PSS or PCP-Na. Then the coated substrates 

are dried at 140℃ for 20 min. The perovskite film was deposited using the 

anti-solvent technique, and spin-coated, firstly at a speed of 2000 rpm for 2s, secondly 

at a speed of 4000 rpm for 30s and 0.2mL chlorobenzene was added as anti-solvent at 

13s. Then the thin film was annealed at 100 ℃ for 10 min. Then PCBM solution in 

chlorobenzene of 20 mg mL-1 was deposited at a speed of 1000 rpm for 60 s. 20 nm of 

C60, 6 nm BCP and 100 nm aluminum were sequentially evaporated on top of PCBM 

layer under vacuum degree <10-7 mbar. 

 

Device characterization method, XRD, UV-vis absorption, SEM images and 

photoluminescence were all the same with 2D perovskite solar cells. 
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Figure A1. Semilogarithmic plots of steady state spectra of thin films grown on different 

substrates, glass, glass/PEDOT:PSS, glass/PCP-Na measured from perovskite side (up) and 

glass side (down). 



Università degli Studi di Cagliari 

64 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A2. XRD patterns and film images on different HTL of fresh sample and 80 days in the 

air, (a, c) film on PEDOT: PSS, (b, d) film on PCP-Na. 

Figure A3. J-V curves of the 3D peovskite solar cells with device structure as: 

ITO/HTL/(FAPbI3)0.83(MAPbBr3)0.17/PC61BM/C60/BCP/Al. 
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Figure A4. UV-vis absorption (a), XRD patterns (b) and SEM images (c) for PEDOT: PSS 

sample and (d) for PCP-Na sample. The scale-bar of SEM images is 2 um. 
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Figure A5. Steady state photoluminescence (a) and TRPL spectra for different samples (b) 

excited from perovskite side, (c) excited from glass side. 
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Figure A7. Molecule structure of PCP-Na 

Figure A6. Modification of solvent for vacuum assisted deposition method, the DMF/DMSO 

1/2 shows the best device performance. The details are in the table below. 
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Figure B2. PL spectra of the 2 samples under excitation of continuous-wave laser (405 nm). 

The orange curves (610.6 nm) belong to n=1 sample and red curves (710.8 nm) belong to n=2 

sample. 

Supporting information to chapter 4 

 

  

Figure B1. AFM images of n=1 (left) and n=2 (right) samples, the image size is 50×50 μm. 
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Figure B4. The XRD pattern of n=3 thin film that deposited by vacuum-assisted method with 

some modifications at last. It is very unstable so that the XRD pattern was measured for several 

times each time with fresh sample. 

Figure B3. Steady state spectra of n=1 and n=2 samples corresponding to Figure 4.8, under 

excitation of 400 nm. 
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