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Abstract 

In this paper, reinforced concrete beams subjected to blast and impact loads are examined. Two 

single degree of freedom models are proposed to predict the response of the beam. The first model 

(denoted as “energy model”) is developed from the law of energy balance and assumes that the 

deformed shape of the beam is represented by its first vibration mode. In the second model (named 

“dynamic model”), the dynamic behavior of the beam is simulated by a spring-mass oscillator. In 

both formulations, the strain rate dependencies of the constitutive properties of the beams are 

considered by varying the parameters of the models at each time step of the computation according 

to the values of the strain rates of the materials (i.e. concrete and reinforcing steels). The efficiency 

of each model is evaluated by comparing the theoretical results with experimental data found in 

literature. The comparison shows that the energy model gives a good estimation of the maximum 

deflection of the beam at collapse, defined as the attainment of the ultimate strain in concrete. On 

the other hand, the dynamic model generally provides a smaller value of the maximum 
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displacement. However, both approaches yield reliable results, even though they are based on some 

approximations. Being also very simple to implement, they may serve as an useful tool in practical 

applications. 

Keywords: Blast loads; impact loads; RC beams; flexural failure; SDOF models; strain rate. 

1.  Introduction 

Some special structures are designed in order to resist to exceptional events. For instance, military 

buildings or strategic constructions, such as nuclear power plants, may need to sustain blast loads 

caused by explosions; slabs and beams making up the structure of a turbine building or of an 

industrial warehouse can be subjected to the impacts of falling objects; retaining walls in 

mountainous regions are usually damaged by the falls of heavy rocks. Thus, the structural elements 

making up these special constructions should possess enough strength and ductility to withstand 

such dynamic loads without collapsing. 

Explosions and impacts of falling objects represent two important cases of impulsive loads, which 

are characterized by rapid changes in time and by high intensity. Under these loads, structural 

elements experience very high strain rates, hence their constitutive properties do not remain 

constant but change significantly during time. Therefore, when analyzing the behavior of a 

structural element subjected to impulsive loads, it is necessary to account for the variations of 

material properties due to strain rates. 

In practical applications, beams or columns acted upon by dynamic loads are usually schematized 

as Single Degree Of Freedom (SDOF) systems. Morison (2006) distinguished the SDOF methods in 

two groups: the Modal Method and the Equivalent SDOF Method. In the first, older approach, the 

response of the structural element is approximated by its first free vibration mode. In the second 

approach, instead, the beam (or the column) is modeled as a SDOF oscillator, the mass, resistance 

and load of which are related, respectively, to the kinetic energy, strain energy and external work of 

the represented beam. The Equivalent SDOF Method has proved to be the most efficient of the two 

approaches (Morison, 2006), so much so that it is still used nowadays. Different versions of the 
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Equivalent SDOF Method for the particular case of impulsive loads have been proposed so far. For 

example, Fisher and Häring (2009) determined the parameters of the SDOF system by minimizing 

the differences between the theoretical deflections and velocities provided by their model and the 

experimental responses given by blast tests. Yang and Lok (2007) derived the dynamic strength of a 

reinforced concrete structure from the analysis of a SDOF model, which includes strain rate effects. 

Nassr et al. (2013) used a SDOF model, which accounts both for secondary moment due to axial 

load and for the influence of strain rate, to investigate the strength and stability of steel columns 

subjected to blast loads. 

In other, more sophisticated approaches, the beam is subdivided into many small elements along its 

length. These approaches, generally denoted as Multi Degree Of Freedom (MDOF) methods, allow 

to evaluate the overall response of the beam, and represent the basics of the finite elements (FE) 

codes. Li et al. (2009) developed a three-dimensional dynamic nonlinear FE model to study the 

response of a frame structure (typical of a turbine building) under explosions, focusing in particular 

on the effects of cladding panels. Fujikake et al. (2009) also considered the variation of strain rate 

effects along the depth of the beam cross-section by dividing the latter into fibers parallel to its 

width. Recently, Carta and Stochino (2013) have proposed a new method, whereby the equation of 

motion of a reinforced concrete beam is based on Euler-Bernoulli’s theory and the elastic-plastic 

behavior of the beam is described by a smooth bending moment - curvature relationship. By solving 

the nonlinear equation of motion through a finite difference scheme, it is possible to calculate the 

response at any point of the beam axis and at any instant of time. 

Numerical simulations based on the distinct element method have also been adopted. For instance, 

they were performed by Kusano et al. (1992) and by Masuya et al. (1994) to examine the behavior 

of concrete elements subjected to impact loads. 

Structures under impulsive loads can be analyzed also by imposing energy balance conditions 

(Westine and Baker, 1975; Foo et al., 2011; Crupi et al., 2012). These “energy” models are usually 

simpler than MDOF approaches and require less computational effort. On the other hand, they 
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usually provide less details about the response of the structure. 

The validity of any theoretical model needs to be assessed by comparing the results it provides with 

experimental data. For blast and impact loads, it is difficult to find thorough and accurate 

experimental works in literature. The reason is twofold: first, the experimental apparatus needed for 

the test is elaborate and expensive; second, national security laws rarely permit the circulation of 

information related to protection measures against bombs or other explosives. Two important 

exceptions are represented by the experimental works of Magnusson and Hallgren (2000, 2003, 

2010), who tested many reinforced concrete beams to air blast loading, and of Fujikake et al. 

(2009), who subjected several under-reinforced concrete beams to the impacts of a drop hammer 

from different heights. Other experimental results for reinforced concrete members can be found in 

the papers by Hudson and Darwin (2005) and Tachibana et al. (2010). On the other hand, the 

behavior of steel elements under impulsive loads was investigated, for instance, by Alves and Jones 

(2002) and Nassr et al. (2012). 

In this paper, reinforced concrete (RC) beams under blast and impact loads are examined. In 

particular, beams with low reinforcement ratio are considered, which generally fail in flexure. The 

properties of the materials and the characteristics of the cross-section of the beam are presented in 

Section 2. Two SDOF models are used to approximate the dynamic behavior of the beam, denoted 

as “energy model” and “dynamic model”. They are thoroughly described in Section 3. For both 

approaches, strain rate effects are taken into account, as detailed in Section 4. In Section 5, the 

theoretical results given by the two models are compared with the experimental findings carried out 

by Magnusson and Hallgren (2000) for the case of blast loads, while the tests performed by 

Fujikake et al. (2009) are used as benchmark for the case of impact loads. The effects of strain rate 

are shown explicitly in Section 6. Finally, some concluding remarks are provided in Section 7. 

2.  Material and sectional properties of the beam 

2.1  Constitutive properties of concrete and reinforcing steel 

The stress-strain relations of concrete and reinforcing steel are drawn from the fib Bulletin n. 55 
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(2010), and they are reported in the following. 

In case of uniaxial compression, concrete stress σc (<0) and strain εc (<0) are related by the 

following expression (fib, 2010, § 5.1.8.1): 

 ( )
( )

2
c c1 c c1

c cm c c,lim
c c1

/ / for
1 2 /
ε ε ε ε

σ ε ε
ε ε

⋅ −
= <

+ − ⋅

kf
k

, (1) 

where the quantities fcm, k, εc1 and εc,lim depend on the concrete grade (fib, 2010, Table 5.1-8). Eq. 

(1) is plotted qualitatively in Fig. 1a, where fcu is the ultimate compressive strength of concrete. The 

tensile strength of concrete is neglected, since it is significantly lower than its compressive strength. 

 

 

 

 

 

 

 

Fig. 1: Relations between stress and strain for concrete (a) and reinforcing steel (b) considered in this paper. 

 

The elastic-plastic behavior of reinforcing steel can be idealized by the bilinear diagram sketched in 

Fig. 1b (fib, 2010, § 5.2.9). The quantities Es, fyk and εsy shown in Fig. 1b represent, respectively, 

the Young’s modulus, the yield strength and the yield strain of steel. The stress-strain diagram of 

reinforcing steel is assumed to be symmetrical in tension and compression. 
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and strain diagrams at the yield state are plotted in Figs. 2b and 2c, respectively. The neutral axis 

depth at the yield state, here indicated by xy, is calculated from the translational equilibrium 

condition, given by 

 
y

c ss ss yk s
0

dσ σ+ =∫
x

b y A f A . (2) 

In the equation above, b is the width of the cross-section, σss is the stress in the compressive 

reinforcement, while As and Ass are the areas of tensile and compressive reinforcements.1 By using 

Eq. (1) and the strain diagram at the yield state shown in Fig. 2c, Eq. (2) becomes 
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∫ . (3b) 

In the formulae above, d and d ' stand for the effective depths of tensile and compressive 

reinforcements, respectively. 

The resistant bending moment at the yield state, here denoted by My, can be obtained by imposing 

the equilibrium of rotation around the tensile reinforcement: 

 ( ) ( )
y

y c ss ss
0

- d - '
x

M b d y y A d dσ σ= +∫ . (4) 

By introducing the expression (2) of σc into Eq. (4) and assuming a linear strain distribution, the 

expression of My is modified as follows: 

                                                
1 In this paper, the subscripts “s” and “ss” are used to distinguish quantities related to tensile and compressive 
reinforcements, respectively. 
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Fig. 2: (a) Cross-section of a doubly reinforced concrete beam. Yield state: stress diagram (b) and strain 

diagram (c). Ultimate state: stress diagram (d) and strain diagram (e). 

 

The stress and strain diagrams at the ultimate state are represented schematically in Figs. 2d and 2e, 

respectively. The neutral axis depth xu and the resistant bending moment Mu are determined from 

the translational and rotational equations of equilibrium at the ultimate state, respectively. In 

particular, xu is obtained by solving either of the following implicit equations: 
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Mu is given explicitly by either of the following expressions: 
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Finally, the curvature at the yield state θy is given by 

 sy
y

y-
ε

θ =
d x

, (8) 

while the curvature at the ultimate state θu is calculated with the following formula: 

 c,lim
u

ux
ε

θ = . (9) 

2.3  Bending moment - curvature relation 

The relation between bending moment M and curvature θ is usually approximated by a bilinear 

diagram2, which is obtained by using the quantities θy, θu, Μy and Μu, determined in Section 2.2. 

This diagram (which is shown in Fig. 3a) allows to simplify the formulation of the problem and the 

calculations. However, it does not provide a satisfactory representation of the physical reality. In 

fact, experimental flexural tests on reinforced concrete beams rarely show an abrupt transition from 

the elastic to the plastic regime. 

A smoother relationship between bending moment and curvature in the whole deformation range is 

adopted in this paper (see also Carta and Stochino, 2013), which reads 

 tanh KM M
M
θ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (10) 

                                                
2 In other approaches a trilinear diagram is considered, in which the first change of slope coincides with the first 
cracking of concrete. In this work this situation is not taken into account, because the tensile strength of concrete is 
disregarded. 
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The relation (10), which is plotted in Fig. 3b, has proved to give better results than the bilinear 

diagram of Fig. 3a (Carta and Stochino, 2013). The parameters K  and M  represent, respectively, 

the initial slope of the curve and the maximum value of the bending moment. They can be estimated 

from the bilinear diagram of Fig. 3a. In particular, K  is taken as 

 y

yθ
=
M

K . (11) 

M is calculated by assuming that the areas A1 and A2, shown in Figs. 3a and 3b, are equal. The 

equivalence of A1 and A2, based on energy considerations, leads to the following implicit equation: 
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θ θ θ
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− + ⎡ ⎤⎛ ⎞
= ⇒ = ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (12) 

from which M  can be derived. 

 

 

 

 

 

 

Fig. 3: (a) Bilinear relation between bending moment and curvature; (b) smooth bending moment - curvature 

relation considered in this work, obtained from Eq. (10). 
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collapse, which is generally achieved during the loading process (Riedel et al., 2012). Moreover, 

since the time when the impulsive load is applied is generally much smaller than the oscillation 

period of the beam, the failure of the beam usually occurs before the first peak of oscillation. 

3.1  Energy model 

The conservation of energy law requires that the external work on the beam (W) equal the sum of 

the kinetic energy (K) and the strain energy (U) of the beam at each instant of time: 

 ( ) ( ) ( )W t K t U t= + . (13) 

The external work is given by 

 
1 10 0 0 0

( , ) ( , )( ) ( , ) d d ( ) d ( ) ( , ) d
t l t tn m
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i j j

i j

v x t v x t vW t q x t x t F t t M t x t t
t t t x= =

∂ ∂ ∂ ∂⎡ ⎤= + + ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
∑ ∑∫∫ ∫ ∫ , (14) 

where x is the axial coordinate, t is time, l is the length of the beam, v is the transverse 

displacement, q is the transverse distributed load, Fi are the point forces (perpendiculal to x) and Mj 

are the concentrated moments, as shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

Fig. 4: Schematic representation of the beam, subjected to a distributed load q, to point forces Fi and to 

concentrated moments Mj. 
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where µ is the mass per unit length. 

By using Eq. (10) to relate bending moment and curvature and neglecting axial and shear 

deformations (which are much smaller than flexural deformations), the strain energy of the beam is 

defined as 

 
( , ) 2 2

2
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∫ ∫ ∫ , (16) 

where θ = - ∂2v/∂x2 in the chosen reference system (see Fig. 4). 

For a simply supported beam under symmetrical loads, as will be considered in Section 5, the 

deformed shape of the beam v(x,t) can be expressed as the sum of odd sinusoidal modes: 
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Cox et al. (1978) proved that the difference between the maximum strain obtained by taking only 

the first mode (i = 1) and the maximum strain determined by accounting also for the third mode (i = 

3) is less than 3%. Therefore, in the present work it is assumed that the displacement function is 

given by 

 0
π( , ) ( )sin xv x t V t
l

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (18) 

which contains the only unknown V0(t). Accordingly, the curvature is expressed by 
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With this approximation, the kinetic and strain energy of the beam assume the following forms: 
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The external work depends on the loads acting on the beam. In Section 5 two kinds of external 

loads are examined: a uniformly distributed load q0(t), and a point force F(t) applied at the mid-span 

section of the beam. For these two cases, the external work is given by 

 0 0
0 0

0 0 0

( ) π 2 ( )( ) ( ) sin d d ( ) d
π

t l tV t x l V tW t q t x t q t t
t l t

∂ ∂⎛ ⎞= =⎜ ⎟
∂ ∂⎝ ⎠∫ ∫ ∫  (22a) 

and 

 0

0

( )( ) ( ) d
t V tW t F t t

t
∂

=
∂∫ , (22b) 

respectively. 

After substituting Eq. (20), Eq. (21) and either Eq. (22a) or Eq. (22b) into Eq. (13), the latter is 

solved in Section 5 by employing the Finite Difference approach. The integral appearing in Eq. (21) 

is computed numerically through the trapezoidal method. 

3.2  Dynamic model 

The dynamic study of the beam can be performed by idealizing the beam as a SDOF oscillator (see 

Fig. 5a), consisting of a lumped mass and an elastic spring. 

The properties of the equivalent SDOF oscillator are labeled with the subscript “E”. In particular, 

ME denotes the equivalent mass of the oscillator, which is given by ME = KLM·Mb, where Mb is the 

mass of the beam and KLM is a coefficient which accounts for the boundary conditions of the beam, 

the type of load and the regime considered (elastic or plastic). For example, for a simply supported 

beam, ME,el = 0.78·Mb and ME,pl = 0.66·Mb in case of a uniformly distributed load, while ME,el = 

0.49·Mb and ME,pl = 0.33·Mb in case of a point force applied at the mid-span section of the beam 

(Biggs, 1964, Table 5.1). On the other hand, vE represents the displacement of the equivalent SDOF 

oscillator corresponding to the mid-span deflection of the beam, while PE is the load acting on it. 

The latter is taken as PE(t) = q0(t)·l (if the beam is subjected to a uniformly distributed load q0) or as 

PE(t) = F(t) (when the beam is excited by a point force F at the middle point of its axis). Finally, KE 

is the equivalent stiffness, which varies from the elastic to the plastic range, as shown in the 
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following. 

 

 

 

 

 

 

 

Fig. 5: (a) Equivalent SDOF oscillator representing the beam of Fig. 4, having mass ME and stiffness KE; the 

displacement generated by the force PE is indicated by vE. (b) Load-displacement diagram of the equivalent 

SDOF oscillator. 

 

The SDOF oscillator is assumed to be characterized by a bilinear load - displacement diagram, as 

sketched in Fig. 5b. The yield load Py and the ultimate load Pu are obtained from equilibrium 

conditions. In particular, for the case of a uniformly distributed transverse load, they are given by 

 y
y

8 M
P

l
⋅

= ; (23a) 

 u
u
8 MP
l
⋅

= . (23b) 

On the other hand, when the beam is loaded by a transverse point force applied at its mid-span 

section, Py and Pu are calculated as 

 y
y

4 M
P

l
⋅

= ; (24a) 

 u
u
4 MP
l
⋅

= . (24b) 

The yield displacement vEy is determined from the elastic theory of structures. More specifically, for 

a uniformly distributed load: 
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3

y
Ey

5
384
P l

v
K

= , (25a) 

while for a point force applied at the center of the beam axis: 

 
3

y
Ey 48

P l
v

K
= . (25b) 

In the formulae above, K  is the flexural stiffness of the beam, given by Eq. (11). When deriving 

Eqs. (23) and Eq. (25a), it was assumed that Py = qy·l and Pu = qu·l, where qy and qu are the values 

of the uniformly distributed load at the yield and ultimate states, respectively. The last quantity that 

needs to be determined in order to construct the load - displacement diagram of the SDOF oscillator 

is vEu, which represents the ultimate displacement of the SDOF oscillator. Its plastic component vEp 

can be evaluated assuming the formation of a plastic hinge, as shown in Fig. 6. In this scenario, vEu 

can be expressed by 

 ( )p p p
Eu Ey Ep Ey Ey Ey u y p

1
2 2 2 2 4

ll lv v v v v v l l
ϕ θ

θ θ
⋅

= + = + ⋅ = + ⋅ = + ⋅ − ⋅ ⋅ . (26) 

In the equation above, ϕp is the plastic rotation, lp is the length of the plastic hinge and θp = θu - θy is 

the plastic curvature. The length of the plastic hinge cannot be calculated exactly. In this work, it is 

estimated by the following approximate formula proposed by Mattock (see Fujikake et al., 2009): 

 p 0.05= + ⋅l d l . (27) 

 

 

 

 

 

 

Fig. 6: (a) Assumed deformation mechanism in the plastic range, with the generation of a plastic hinge at the 

mid-span section of the beam; (b) detail of the plastic hinge. 

ϕp/2 

ϕp 

ϕp/2 

lp 

h 

(b) 
 

vEp 

l / 2 

(a) 
 

ϕp/2 

l / 2 

ϕp/2 

plastic hinge 



Please cite this document as: F. Stochino, G. Carta, SDOF models for reinforced concrete beams under impulsive loads 
accounting for strain rate effects, Nuclear Engineering and Design, Volume 276, September 2014, Pages 74-86, ISSN 
0029-5493, http://dx.doi.org/10.1016/j.nucengdes.2014.05.022.  

 15 

 

The equivalent stiffnesses in the elastic range (KE,el) and in the plastic range (KE,pl) can be obtained 

from simple geometric calculations (refer to Fig. 5b): 

 y
E,el

Ey

P
K

v
= ; (28a) 

 u y
E,pl

Eu Ey

−
=

−

P P
K

v v
. (28b) 

Finally, the equations of motion of the equivalent SDOF oscillator in the elastic and plastic regimes 

have the following forms: 

 ( ) ( ) ( ) ( )
2
E

E,el E,el E E E Ey2

d for 0
d

+ = ≤ ≤
v tM K t v t P t v v
t

; (29a) 

 ( ) ( ) ( ) ( ) ( ) ( )
2
E

E,pl E,pl E E,el E,pl Ey E Ey E Eu2

d for
d
v tM K t v t K t K t v P t v v v
t

+ + − = < ≤⎡ ⎤⎣ ⎦ . (29b) 

The ordinary differential equations (29) are integrated in Section 5 by employing the Finite 

Difference method. 

4.  Introduction of strain rate sensitivity into the formulations of the SDOF models 

4.1  Dependence of material properties on strain rate 

The constitutive properties of concrete and reinforcing steel vary significantly with strain rate. The 

strain rate dependence of each property of both materials is specified by the CEB Information 

Bulletin n. 187 (1988), as reported below. The superscript “dyn” (which is the abbreviation for 

“dynamic”) will be henceforth appended to the quantities that are modified by strain rate. 

The dynamic strength of concrete is calculated with either of the following formulae (CEB, 1988, § 

3.3.1): 

 f cm
dyn = f cm ⋅

!εc
30 ⋅10−6
#

$
%

&

'
(

1.026⋅α

if !εc ≤ 30s
−1 ; (30a) 

 f cm
dyn = f cm ⋅γ ⋅ !εc

1/3 if !εc > 30s
−1 . (30b) 
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Here !εc  represents the strain rate of concrete, while α and γ are two parameters given by α = 

1/(5+3·fcm/4) and γ = 10^(6.156·α-0.492), respectively. The static concrete strains εc1 and εc,lim are 

increased by using the following expressions (CEB, 1988, § 3.3.1; Asprone et al., 2012): 

 εc1
dyn = εc1 ⋅

!εc
30 ⋅10−6
#

$
%

&

'
(

0.02

; (31a) 

 εc,lim
dyn = εc,lim ⋅

!εc
30 ⋅10−6
#

$
%

&

'
(

0.02

. (31b) 

The dynamic strength of reinforcing steel (both in tension and in compression) is augmented by the 

strain rate !εs  according to either of the following relations (CEB, 1988, § 3.4.2): 

 f yk
dyn = f yk ⋅ 1+

6
f yk
ln

!εs

5⋅10−5
#

$
%

&

'
(

)

*
+
+

,

-
.
.
if !εs ≤10s−1 ; (32a) 

 f yk
dyn = f yk ⋅ 1+

6
f yk
ln 2 ⋅105( )

"

#
$
$

%

&
'
'
if !εs >10s−1 . (32b) 

On the other hand, the Young’s modulus Es does not depend on strain rate (CEB, 1988, § 3.4.3). 

4.2  Procedure to account for strain rate in the energy model 

The properties of both concrete and steel are modified at each time step of the computation by using 

Eqs. (30)-(32). Since the constitutive properties of the two materials depend on their strain rates, the 

latter need to be calculated. Thus, after deriving the initial sectional characteristics (xy, My, xu, Mu, 

K , M ) from the static material properties, the following procedure is carried out at each time step: 

1) the transverse displacement V0 appearing in Eq. (18) is determined by solving Eq. (13), as 

outlined at the end of Section 3.1; 

2) the maximum curvature θ = π2/l 
2·V0 (see Eq. (19)) is calculated; 

3) considering the value of the curvature at the previous instant of time,  

the rate of curvature !θ  = ∂θ/∂t is obtained; 

4) the bending moment M corresponding to the curvature θ is found from Eq. (10); 
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5) the value of M is used to calculate the neutral axis depth x by means of the rotational equilibrium 

equation around the tensile reinforcement; 

6) the strain of concrete and the strains of tensile and compressive reinforcements are obtained by 

using the linear strain diagram (which can be easily constructed knowing the values of x and θ): εc = 

θ · x, εs = θ · (d-x), εss = θ · (x-d'); 

7) by referring to the values of the strains at the previous time step, the rates of strain of concrete 

and steel reinforcements are determined; 

8) the augmented properties of the material are evaluated according to Eqs. (30)-(32); 

9) the values of the sectional characteristics (xy, My, xu, Mu) are updated; 

10) the new values of K  and M  are calculated from Eqs. (11) and (12). 

This procedure is stopped when concrete reaches its ultimate strain, i.e. when the criterion of 

collapse is fulfilled. 

4.3  Procedure to account for strain rate in the dynamic model 

The procedure to include the effects of strain rate into the formulation of the dynamic model is very 

similar to that relative to the energy model, described in the previous section. Only the first three 

steps are different: 

1) at each time step, the equivalent displacement of the SDOF oscillator vE is calculated from either 

Eq. (29a) or Eq. (29b), for instance by using the Finite Difference approach; 

2) the equivalent velocity !vE = dvE / dt  is obtained by knowing the value of vE at the previous time 

step; 

3) the equivalent curvature θE and its rate !θE  can be assessed by linking the SDOF oscillator to the 

beam it represents. For clarity’s sake, the case of a simply supported beam is examined in the 

following. In the elastic regime, θE and !θE  can be easily obtained from the elastic theory of 

structures. In particular, if a uniformly distributed load is imposed, they are given by the following 

expressions: 
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 E
E E Ey2

48 for 0
5

θ
⋅

= ≤ ≤
⋅

v v v
l

; (33a) 

 !θE =
48 ⋅ !vE
5⋅ l 2

for 0 ≤vE ≤vEy . (33b) 

On the other hand, if the beam is subjected to a point force at its mid-span section, they are 

calculated through the following formulae: 

 E
E E Ey2

12 for 0v v v
l

θ
⋅

= ≤ ≤ ; (34a) 

 !θE =
12 ⋅ !vE
l 2

for 0 ≤vE ≤vEy . (34b) 

In the plastic regime, θE and !θE  are instead evaluated by referring to the deformation mechanism of 

Fig. 6. Simple geometric considerations yield: 

 p E Ey
E y y Ey E Eu

p p

12 for
/2

v v
v v v

l l l
ϕ

θ θ θ
−

= + = + ⋅ ⋅ ≤ ≤ ; (35a) 

 !θE = 2 ⋅
!vE
l /2

⋅
1
lp

for vEy ≤vE ≤vEu . (35b) 

Here, vE - vEy represents the plastic displacement. 

The computational process continues by following the steps 4-10 described in Section 4.2. 

5.  Comparison with experimental data 

In this section, the validity of each SDOF model proposed in this work is verified through 

comparison with some experimental data available in literature. Two different situations are 

investigated. In the first case, a simply supported beam subjected to a uniformly distributed load 

produced by an explosion is examined. The second setup consists of a simply supported beam under 

a point force at its mid-span section, caused by the impact of a drop hammer. 

5.1  RC beam under explosion 

In this application, the experimental findings presented in a report by Magnusson and Hallgren 

(2000) are taken as benchmark. These two authors carried out a series of tests, in which they 
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subjected different beams to air blast loading in a shock tube. The beams were made of reinforced 

concrete (some of which strengthened by fibers) and were simply supported. Considering the used 

amount of explosive and the distance of the beam from the charge, the load produced by the air 

blast can be considered as uniformly distributed (Magnusson et al., 2010). Further information on 

the characteristics of the beams and about the experimental apparatus is provided in Appendix A.1. 

Two different beams tested by Magnusson and Hallgren (2000) are analyzed in this paper. The first 

one is labeled as “B40-D5” by the authors of the experiments. The time-history of the maximum 

transverse displacement vmax, registered at the mid-span section of the beam by a deflection gauge, 

is shown in grey line in Fig. 7. This curve has been interrupted at the instant of time when the 

maximum experimental concrete strain was recorded. This is in agreement with the failure criterion 

chosen in this paper, which is defined as the attainment of the maximum concrete strain. 

The dashed black line of Fig. 7 represents the theoretical results given by the energy model. They 

are obtained by applying the Finite Difference scheme to Eq. (13), after substituting Eqs. (20), (21) 

and (22a) into it. Null initial conditions (i.e. V0 (t=0) = dV0/dt (t=0) = 0) are imposed, because the 

beam is at rest before the impulsive charge is detonated. The derivatives are approximated with 

finite differences of the 2nd order accuracy. Convergence studies have shown that a good choice of 

the time step is 10-5 s. The heavy dot inside the curve indicates the transition from the elastic to the 

plastic range, while the cross at the end of the curve identifies the maximum displacement, obtained 

when εc = εc,lim. 

The prediction of the dynamic model is displayed in dotted black line in Fig. 7. This prediction is 

determined by solving the set of differential equations (29) through the Finite Difference method. 

The approximation of the derivatives with finite differences and the time step are identical to those 

adopted for the energy model. Initial displacement and velocity are set equal to zero also in this 

case. 

Fig. 7 shows that the energy model gives a good estimation of the maximum displacement recorded 

experimentally, while the dynamic model provides a lower value than the experimental result. 
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Nonetheless, both the theoretical curves are very close to the experimental time-history. 

It is important to notice that the last part of the experimental curve exhibits an abrupt change, which 

can be attributed either to a small damage of the experimental apparatus or, more probably, to the 

crushing of concrete. 

The differences between the energy and the dynamic models are here explained. In the elastic 

regime, the maximum curvature determined with the energy model is θ = π2/l 
2·V0, while that 

computed through the dynamic model is given by Eq. (33a). Yielding is attained for a given value 

of the curvature. Therefore, since the coefficient that multiplies the displacement in the formula for 

the curvature of the energy model (i.e. π2/l 
2) is slightly larger than that of the dynamic model (i.e. 

48/5l 
2), the yield displacement given by the energy model is slightly smaller than that calculated 

with the dynamic model. In the plastic regime, instead, the displacement obtained from the dynamic 

model is much smaller because the curvature is localized at the mid-span section due to the 

formation of a plastic hinge, hence the beam fails with a relatively small deflection. On the other 

hand, in the energy model the curvature is distributed along the whole beam (see Eq. (19)), hence 

the beam undergoes a larger displacement before reaching the ultimate limit state. 
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Fig. 7: Time-histories of the maximum deflection of beam B40-D5, tested by Magnusson and Hallgren 

(2000): experimental results (grey line); prediction given by the energy model (dashed black line); prediction 

provided by the dynamic model (dotted black line). For each model, the heavy dot represents the transition 

from the elastic to the plastic regime, while the cross indicates the attainment of the collapse criterion. 

 

The results relative to another beam, denoted as “B100-D2(16)” by Magnusson and Hallgren 

(2000), are shown in Fig. 8. Similarly to beam B40-D5, the energy model provides an accurate 

prediction of the maximum displacement obtained experimentally, while the dynamic model 

underestimates it. We also observe that, in this case, there are some discrepancies between the 

theoretical and experimental time-histories, probably due to a non-uniform shock wave pressure on 

the beam (see Fig. A.3). 
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Fig. 8: Analogous curves to those displayed in Fig. 7, but relative to beam B100-D2(16), tested by 

Magnusson and Hallgren (2000). 

 

5.2  RC beam under the impact of a drop hammer 

In this section, a simply supported beam excited by a concentrated dynamic force acting at its mid-

span section is examined. Such a force can be exerted by the drop of a weight, as in the experiments 

by Fujikake et al. (2009), who tested three different types of RC beams to the fall of a hammer from 

four different heights. Being under-reinforced, the beams exhibited a flexural failure. In this section, 

two beams belonging to the “S1616” series and subjected to the drop of the hammer from 1.2 m and 

0.3 m are analyzed. The details of the tests are presented in Appendix A.2. 

The experimental time-histories for these two cases are shown in grey lines in Figs. 9 and 10. The 

maximum concrete strains are not provided, therefore the curves have been cut off at the instant of 

time since the hammer stays in contact with the beam. In fact, at this instant of time the inertia of 
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the beam is increased by the additional mass of the hammer, which is not negligible because it is 

about three times larger than the mass of the beam. This instant of time can be easily identified from 

the time-history of the impact force, as it corresponds to the time when the force becomes almost 

constant (see Fujikake et al., 2009, Fig. 6). 

The theoretical time-histories of the maximum displacements for the two beams under 

investigation, predicted by the energy model, are plotted in dashed black lines in Figs. 9 and 10. 

The theoretical values are calculated by employing the Finite Difference method to solve Eq. (13), 

where the kinetic energy, the strain energy and the external work are expressed by Eqs. (20), (21) 

and (22b), respectively. The dotted black lines in Figs. 9 and 10 represent, instead, the results of the 

dynamic model (Eqs. (29)). As in Section 5.1, for each case the separation between the elastic and 

plastic ranges and the fulfillment of the failure criterion are indicated by a heavy dot and a cross, 

respectively. It should be pointed out that, when the drop height is equal to 0.3 m (Fig. 10), the 

beam does not collapse, but the computations are stopped at the instant of time when the 

experimental curve has been truncated. 
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Fig. 9: Comparison between the experimental data taken from the paper by Fujikake et al. (2009) and the 

theoretical results obtained from the two models presented in this paper, relative to the beam of the S1616 

series subjected to the drop of a hammer from a height of 1.2 m. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Same as in Fig. 9, but in the case of a hammer falling from a height of 0.3 m. 
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In the case of the larger drop height, shown in Fig. 9, the energy model is the one which gives the 

best estimate of the maximum displacement. In addition, the theoretical curves are very close to the 

experimental findings. In the case of the smaller drop height, displayed in Fig. 10, the dynamic 

model provides a slightly better prediction of the test results. 

In both Figs. 9 and 10, the yield displacement predicted by the energy model is larger that the yield 

displacement provided by the dynamic model. This is due to the fact that the yield curvature in the 

energy model is given by θ = π2/l 
2·V0, while the yield curvature in the dynamic model is calculated 

by means of Eq. (34a). Being 12 > π2, for the same value of the curvature that defines the yield 

state, the displacement at the end of the elastic regime produced by the dynamic model has to be 

smaller than the same displacement predicted by the energy model. 

6.  Strain rate effects 

The theoretical curves shown in Figs. 7-10 were obtained by taking into account the variation of the 

material properties with strain rate. In this section, the same curves are determined by ignoring the 

influence of strain rate on the constitutive properties of concrete and reinforcing steel. This is 

accomplished by introducing the static properties of the materials into the formulations of the 

energy and dynamic models. 

The time-histories of the deflections of the four beams investigated in Section 5, calculated without 

strain rate effects, are plotted in solid lines in Fig. 11. More specifically, Figs. 11a and 11b refer to 

the beams tested by Magnusson and Hallgren (2000), while Figs. 11c and 11d correspond to the 

experimental findings by Fujikake et al. (2009). In the same figures, the dashed lines are determined 

using the dynamic properties of the materials (these curves are identical to those displayed in Figs. 

7-10). In addition, the percent differences between the two situations are included in Fig. 11 (the 

plus sign indicates that strain rate amplifies the maximum displacement, while the minus sign 

means that the maximum displacement is lower if strain rate effects are taken into account). 
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Fig. 11: Comparison between the deflection time-histories obtained without strain rate effects (solid lines) 

and with the influence of strain rate (dashed lines), for both the energy model (black lines) and the dynamic 

model (grey lines). Beams tested by Magnusson and Hallgren (2000): (a) B40-D5; (b) B100-D2(16). Beams 

tested by Fujikake et al. (2009): (c) S1616, drop height of 1.2 m; (d) S1616, drop height of 0.3 m. 

 

From Fig. 11 it is apparent that, when the beam reaches the failure criterion (cases (a)-(c)), the 

energy model with strain rate effects energy model without strain rate effects 

dynamic model with strain rate effects dynamic model without strain rate effects 

0 
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maximum displacement can be significantly increased by strain rate effects. This is due to the fact 

that the dynamic properties of the materials are larger than the static ones. Accordingly, also the 

characteristic properties of the section (i.e. My, Mu, θy, θu, K , M ) are amplified. On the other hand, 

if the beam is far from failure (case (d)), the deflection of the beam is lower when dynamic 

properties are considered. This can be explained by comparing the bending moment - curvature 

diagrams with and without strain rate effects, which are displayed qualitatively in Fig. 12. This 

figure shows that the flexural stiffness of the beam is larger in the case with strain rate; therefore, if 

the beam is far from failure, namely for small values of the curvature, the maximum displacement 

detected in the beam at a certain time is lower if strain rate effects are taken into account. 

Nonetheless, the ultimate curvature in the case with strain rate is higher; accordingly, the beam 

undergoes a larger deflection before collapsing if strain rate effects are considered. 

 

 

 

 

 

 

 

 

 

Fig. 12: Qualitative diagrams relating bending moment and curvature with and without strain rate effects. 

 

Diagrams between bending moment and curvature similar to the curves sketched in Fig. 12 can be 

found in the paper by Asprone et al. (2012, Fig. 1), which show that both the maximum moment 

and the maximum curvature increase with the value of the strain rate. 
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7.  Conclusions 

In this paper, two models characterized by one degree of freedom have been proposed to calculate 

the response of a structural element under impulsive loads: the energy model, based on the law of 

energy balance, and the dynamic model, developed from the equation of motion of a forced mass-

spring oscillator. Both models are simple and easy to implement in numerical codes. Furthermore, 

since there is only one unknown to determine, the computational time required to obtain the 

solution of the problem is very short. For all these reasons, both models are convenient to use in 

practical applications. 

Under impulsive loads (explosions, high impacts, etc.), the strain rates of the materials of the RC 

beam result to be very large. Therefore, strain rate effects have been incorporated into the 

formulations of the two models by modifying the constitutive properties of concrete and reinforcing 

steel in each time step of the computational process. The importance of accounting for strain rate 

effects has been demonstrated explicitly in this paper by showing that the results obtained with 

strain rate effects are very different from those derived with the static properties of the materials. 

Comparison with test data relative to different experiments found in literature has shown that the 

energy model provides a good prediction of the maximum displacement of the structural element at 

failure, while the dynamic model generally underestimates it. In addition, in most of the cases 

examined, the time-history of the maximum deflection determined with either of the two models is 

close to the experimental time-history. However, it should be remarked that both models are based 

on some approximations. In particular, in the energy model it is assumed that the shape of the 

structural element coincides with its first vibration mode. In the dynamic model, instead, the 

equivalent parameters of the oscillator (mass, stiffness and load) and the length of the plastic hinge 

are estimated by means of approximate formulae. 

In future work, it is intended to include more vibration modes (and, hence, more degrees of 

freedom) in the formulation of the energy model, in order to check if the theoretical results are 

improved. In addition, structural elements with different boundary conditions and applied loads will 
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be investigated. 

An alternative approach to study the dynamic response of a beam under impulsive loads consists in 

employing the Finite Element Method (FEM). This method should be formulated such that the 

variations of the material properties with strain rate are taken into account, otherwise the numerical 

results would not fit well the experimental data (Carta and Stochino, 2013). The FEM is a 

consolidated, versatile and powerful tool, that is suitable to solve complex problems. On the other 

hand, the models presented in this paper are simpler and need less input parameters, hence they can 

be useful to better understand the physics underneath the problem. Moreover, they demand far less 

computational effort, thus they can be used to process large sets of data in a reasonable time, as 

required for example in sensitivity analyses. 
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Appendix A.  Experimental details 

In this appendix, detailed information on the experimental tests considered in this paper is 

presented. 

A.1  Tests by Magnusson and Hallgren (2000) 

Magnusson and Hallgren (2000) subjected simply supported RC beams to the pressure waves 

generated by the detonations of sphere-shape explosive charges. The experiments were conducted 

in a shock tube, schematized in Fig. A.1. The beams had a doubly reinforced rectangular cross-

section, and stirrups were provided to increase the shear strength. The geometrical and mechanical 

properties of the beams analyzed in this paper are reported in Table A.1. 
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Fig. A.1: Experimental setup of the tests performed by Magnusson and Hallgren (2000). 

 

 B40-D5 B100-D2(16) 

span of the beam 1.5 m 1.5 m 

width of the cross-section 0.300 m 0.300 m 

depth of the cross-section 0.160 m 0.160 m 

cover 0.025 m 0.025 m 

tensile reinforcement 5 φ16 mm 5 φ16 mm 

compressive reinforcement 2 φ10 mm 2 φ10 mm 

compressive strength of concrete 43 MPa 109 MPa 

yield strength of reinforcing steel 604 MPa 604 MPa 

Young’s modulus of reinforcing steel 210 GPa 210 GPa 

 

Table A.1: Characteristics of the beams tested by Magnusson and Hallgren (2000). 

 

The pressures registered on the two beams  are shown in Figs. A.2 and A.3. In each figure two 
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diagrams are plotted, because two pressure gauges were employed by Magnusson and Hallgren for 

each beam. In the numerical computations, the average of the two diagrams has been used to 

calculate the dynamic load acting on each beam. It is worth noticing that the time-history of the load 

is very irregular and jagged, hence a closed form solution of the problem cannot be obtained. 

In Tables A.2 and A.3, the maximum concrete strains in the two beams registered in the 

experiments are compared with the corresponding quantities obtained from the two models. In the 

same tables, the theoretical strain rates of both tensile and compressive reinforcements are 

indicated. Yielding is reached only in the tensile reinforcing steels. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.2: Reflected pressures recorded on beam B40-D5 (Magnusson and Hallgren, 2000, Fig. A1.6). 
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Fig. A.3: Reflected pressures recorded on beam B100-D2(16) (Magnusson and Hallgren, 2000, Fig. A1.8). 

 

 εc,lim (‰) εs (‰) εss (‰) 

experimental values 3.6 --- --- 

energy model 4.3 5.3 2.0 

dynamic model 4.4 5.7 2.0 

 

Table A.2: Strains relative to beam B40-D5. 

 

 εc,lim (‰) εs (‰) εss (‰) 

experimental values 5.0 --- --- 

energy model 3.7 9.6 0.6 

dynamic model 3.7 10.6 0.4 

 

Table A.3: Strains relative to beam B100-D2(16). 
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A.2  Tests by Fujikake et al. (2009) 

Fujikake and co-workers carried out impact load tests with the experimental apparatus sketched in 

Fig. A.4. The hammer was dropped from different heights. In this paper, we have considered the 

S1616 series of beams, and in particular the results obtained with a drop height of 1.2 m and with a 

drop height of 0.3 m. 

Also in this case, the beams were simply supported, had a doubly reinforced rectangular cross-

section and contained stirrups. The details of the beams belonging to the S1616 series are provided 

in Table A.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 

 

 

. A.4: Experimental setup designed by Fujikake et al. (2009). 
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span of the beam 1.4 m 

width of the cross-section 0.15 m 

depth of the cross-section 0.25 m 

cover 0.04 m 

area of tensile reinforcement 3.97·10-4 m2 

area of compressive reinforcement 3.97·10-4 m2 

compressive strength of concrete 42 MPa 

yield strength of reinforcing steel 426 MPa 

 

Table A.4: Geometrical and mechanical properties of the S1616 series of beams tested by Fujikake et al. 

(2009). 

 

The contact force between the hammer and the beam was recorded during time by using a load cell. 

The time-histories of the contact forces for the S1616 series with 1.2 m drop height and with 0.3 m 

drop height are shown in Fig. A.5 and Fig. A.6, respectively. 

Unfortunately, Fujikake and co-authors did not measure the strains of concrete and reinforcing 

steels. 
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Fig. A.5: Impact force versus time for the S1616 series of beams, with a drop height equal to 1.2 m 

(Fujikake et al. (2009), Fig. 5d). 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.6: Impact force versus time for the S1616 series of beams, with a drop height equal to 0.3 m 

(Fujikake et al. (2009), Fig. 5b). 
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