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Abstract: Energy storage systems can improve the uncertainty and variability related to renewable 
energy sources such as wind and solar create in power systems. Aside from applications such as 
frequency regulation, time-based arbitrage, or the provision of the reserve, where the placement of 
storage devices is not particularly significant, distributed storage could also be used to improve 
congestions in the distribution networks. In such cases, the optimal placement of this distributed 
storage is vital for making a cost-effective investment. Furthermore, the now reached massive 
spread of distributed renewable energy resources in distribution systems, intrinsically uncertain 
and non-programmable, together with the new trends in the electric demand, often unpredictable, 
require a paradigm change in grid planning for properly lead with the uncertainty sources and the 
distribution system operators (DSO) should learn to support such change. This paper considers the 
DSO perspective by proposing a methodology for energy storage placement in the distribution 
networks in which robust optimization accommodates system uncertainty. The proposed method 
calls for the use of a multi-period convex AC-optimal power flow (AC-OPF), ensuring a reliable 
planning solution. Wind, photovoltaic (PV), and load uncertainties are modeled as symmetric and 
bounded variables with the flexibility to modulate the robustness of the model. A case study based 
on real distribution network information allows the illustration and discussion of the properties of 
the model. An important observation is that the method enables the system operator to integrate 
energy storage devices by fine-tuning the level of robustness it willing to consider, and that is 
incremental with the level of protection. However, the algorithm grows more complex as the system 
robustness increases and, thus, it requires higher computational effort. 

Keywords: decision-making; distribution network planning; uncertainty; robust optimization; 
energy storage system 

 

1. Introduction 

The share of renewable power generation in the global electricity generation is anticipated to 
expand from today’s 23% to levels between 30%–45% by 2030 [1]. This technological alteration 
requires a rethinking in the way power systems are planned, maximize the benefits from renewables 
affordably and securely. Since renewable energy integration brings new challenges into the 
distribution network planning an accurate planning model, which incorporates system uncertainty 
introduced by renewable resources and loads, is necessary for making planning decision. 

The technological development of large-scale electrochemical energy storage system (ESS) has 
resulted in capital cost reductions and increased roundtrip efficiency enables them to become a 
feasible option to deploy in the distribution network [2,3]. Storage applications such as energy 
arbitrage [4], peak shaving [5], frequency regulation [6], voltage support [7], and congestion 
management [8] have made it vital to integrate more ESS in the distribution network. Thus, optimal 
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planning and management of ESS are essential to identify ideal configurations. However, many of 
the optimization algorithms proposed in recent literature do not adequately deal with uncertainties. 
For instance, the real amount and position of distributed generation (DG) that is going to be 
connected to the system, the mix of renewable energy sources (RES), the cost of ESS or the level of 
participation and the cost for active demand [9]. 

Sizing of ESSs in distribution networks from DSO has been discussed in [10]. The number and 
locations of the ESSs are assumed to be given. An AC-optimal power flow (AC-OPF) with 
semidefinite programming (SDP) convex relaxation is adopted for network simulation. To consider 
uncertainties in the model, a stochastic optimization approach has been considered. Two different 
problems have been formulated respectively for the siting and sizing of ESS in distribution networks 
coupled with a wind farm in [11]. However, the authors considered a linearized DC-optimal power 
flow (DC-OPF), and the wind power forecast is assumed perfect. Apart from siting and operation, 
the authors of [12] suggest the life cycle payment of storage. They present two models for a 
transmission-constrained power network with storage. Both models use a DC-OPF framework. The 
first model selects optimal siting and operation of the storage assuming a fixed group of different 
storage technologies. The second model expands the DC-OPF framework to optimize the storage 
technology mix, new storage capacity investments, and the network allocation of these resources. The 
authors of [13] provide a mathematical model that simultaneously optimizes transmission switching 
operations, ESS siting and sizing decisions and taking into account the limits on maximum allowable 
load shedding and renewable energy curtailment amounts in the power system. The methodology 
proposed in [4], based on a linearized DC-OPF, captured both the monetary and technical advantages 
of investment in storage and adopted a sensitivity analysis to assess the impact of uncertain 
parameters. As opposed to an analytical approach, the authors of [14] detail a heuristic approach for 
finding the optimal location(s) and size of a multi-purpose ESS including transmission and 
distribution parts without considering the uncertainty in the model. In the transmission storage part, 
a sensitivity analysis is performed using complex-valued neural networks (CVNN) and time domain 
power flow (TDPF) to obtain the optimal ESS location(s). In [15] a multi-criteria approach where a 
genetic algorithm (NSGA-II) has been used to identify the optimal place, size, and scheduling of 
energy storage in the distribution network. The authors created a full multi-objective (MO) 
optimization procedure able to identify the Pareto set of design options with fixed network topology 
for a given medium voltage (MV) network. In addition to that, the same authors of [15] have proposed 
a multi-criteria analysis approach selecting the best planning alternative for energy storage 
integration in the distribution system [16]. However, heuristic techniques often required a high 
computational burden and are not guaranteed to converge in global optima [17]. 

Convex relaxation techniques have been developed to obtain an acceptable solution while 
ensuring algorithmic efficiency. The two most commonly used relaxations for distribution network 
are semi-definite program (SDP) and second-order cone programming (SOCP). Though both SOCP 
and SDP have been proven exact under certain conditions [18,19]. In this paper, SOCP has been 
adopted due to its higher algorithmic performances that imply fast convergence to global optima and 
to reduce the heavy computation cost.  

The current literature on energy storage study is divided into three classifications: (i) storage 
sizing, (ii) storage operation, and (iii) storage siting. Less publications exist about the optimal 
location(s) of the ESS than publications on optimal sizing likely due to the difficulty of finding 
optimal sites [20,21]. Storage siting is the least researched and most complicated of these three 
classifications. The optimal operation studies of ESS consider that energy and power ratings of a 
storage unit are given, the purpose of these studies is to identify operation strategies to optimize the 
exploitation of resources able of contributing to network support at minimum cost. These studies 
typically do not address network constraints. The optimal ESS size (i.e., energy and power ratings) 
depends on the state at which the storage is optimally operated [22]. In turn, optimal storage siting 
depends on the amount of the storage being considered and how it will be controlled. This problem 
becomes even more complicated when it considers distributed storage rather than a single storage 
unit. If this is the case, the amount of storage located is typically undefined at first. ESSs are 
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considered one of the solutions to manage the DG downsides and to help incorporate RES in the 
distribution networks, which rely largely on the flexibility of resources [23,24]. 

Capital intensity is the main barrier to the deployment of ESS [25]. Investment in the ESS, 
therefore, requires a trade-off between long-term investment costs, short-term operating conditions, 
and the benefits that these services will offer. It includes optimizing their network position (i.e., 
location) and operating parameters (e.g., size and operating profile) simultaneously [26]. The 
objective of the optimization is generally multiple since it spans from the reduction of CAPEX 
(Capital Expenditures) for network upgrade to the reduction of energy loss costs as well as power 
quality costs [27]. RES and electric vehicles (EVs) integration as well as the engagement of customers 
in flexibility programs are opening new opportunities for ESS and making clear the need for optimal 
siting and sizing methodologies [28]. 

ESS technologies can operate on different timescales, ranging from seconds to hours. The 
services offered by ESS can be divided into power- and energy-related services, based on the 
timescale of interest [29]. Transient stability and ancillary services, such as frequency regulation, 
spinning reserve, and voltage control are power-related services. Back-up power provision, black-
start, uninterruptible power supply (UPS), standing reserve, and seasonal energy storage are typical 
examples of energy-related services [28,30]. Both ESS owners and other system stakeholders can 
benefit from the provision or the usage of these services. 

The ESS optimal positioning and sizing problem aims at the maximization of the benefit-cost 
ratio subject to the non-linear/non-convex network constraints that make the solution more 
cumbersome and requires specific mathematical tool [31]. The research on the topic has been 
dramatically increasing in the last two years since ESS are crucial for the energy transition towards 
the carbon free world, but there is still room for new contributions, particularly on dealing with the 
uncertainties modeling. 

For these reasons, the paper proposes an application of the Robust Optimization (RO) to solve 
the ESS optimal location problem in distribution networks operated by a DSO. The objective of the 
optimization problem is to use ESS for delivering power without any violation of technical limits 
(e.g., maximum and minimum nodal voltage), minimizing the resort to RES or combined heat and 
power (CHP) generation curtailment and load shaving. Indeed, the DSO can evaluate the ESS 
installation as a non-network option to avoid the expensive and time consuming building or 
revamping of networks, particularly in the current situation of limited markets of services offered by 
customers or other producers. However, the convenience to do this strictly depends on the site, size, 
and operation of the ESS, that in turn, depend on the state of the network, that is intrinsically 
uncertain. The approach proposed in the paper deals with the uncertainties with an original 
implementation of the Robust Optimization. The algorithm has been validated with an exemplary 
distribution network representative of one class of the Italian distribution classes of networks 
produced by the project ATLANTIDE (Archivio TeLemAtico per il riferimento Nazionale di reTI di 
Distribuzione Elettrica” that means “Digital archive for the national electrical distribution reference 
networks”) [32]. 

The paper is organized as follows: Section 2 describes the detailed formulation of energy storage 
placement problem. Section 3 discusses the uncertainty modeling approach. Section 4 describes the 
solution methodology of a robust optimization problem. Sections 5 and 6 present the case study with 
real data and conclusion, respectively. Finally, in the Appendix A the nomenclature of the symbols 
used in the mathematical formulation has been reported. 

2. Deterministic Formulation of Energy Storage Planning 

The objective function (OF) of the deterministic model consists of minimizing the operational 
extra-cost that should be sustained for complying with the technical constraints. Such cost includes 
the penalty terms for RES (𝐶௡ோாௌ௖) and biomass CHP generation curtailment (𝐶௡஼ு௉௖), and the cost of 
shaving the peak loads (𝐶௡௉௅ௌ). Furthermore, since the goal of the paper is to evaluate the contribution 
of energy storages to the management of the network, even in uncertain conditions, the investment 
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cost 𝐶௡஼஺௉ா௑_ாௌௌ  to be sustained for the storage allocated in the network is added to the operational 
cost, as in (1). 

min 𝐶௧௢௧ = min ൝෍ൣ𝐶௡ோாௌ௖ + 𝐶௡஼ு௉௖ + 𝐶௡௉௅ௌ + 𝐶௡஼஺௉ா௑_ாௌௌ൧ே
௡ୀଵ ൡ    (1) 

This minimization is subject to voltage and current limits, power flow equations, and storage 
technical constraints. In the following, each cost term and constraints are detailed. 

2.1. Penalty for RES Curtailment 𝐶௡ோாௌ௖  
To strongly penalize the generation curtailment of RES, the cost of curtailed energy due to 

network constraint violations has been monetized as twice the price of energy paid in the wholesale 
market cEN (here, 58 €/MWh, according to the average Italian energy selling price) [33], as in (2). 

𝐶௡ோாௌ௖ = ෍ 2 ∙ 𝑐ாே ∙ 𝑃௡ோாௌ௖(𝑡)        𝑛 = 1 ⋯ 𝑁்
௧ୀଵ  (2) 

where 𝑃௡ோாௌ௖(𝑡) is the energy curtailed at the time interval t by the RES generator connected to the 
n-th bus of the network. 

Since the increment of the network hosting capacity may be quantified via the possibly avoided 
curtailment of RES production, the smaller this term, the better the storage allocation solution. 

2.2. Penalty for Biomass CHP Curtailment 𝐶௡஼ு௉௖  
This cost for biomass CHP curtailment is assumed proportional to the avoided cost for fuel 

saving F [€/MWh], increased by 20%. The fuel cost F has been considered here equal to 80 €/MWh, 
by assuming the average gas price ≈ 35 c€/m3 ≈ 36 €/MWht and by hypothesizing an efficiency for the 
electric conversion about 45%. This assumption allows penalizing also the CHP curtailments, with 
high cost, as in (3). 

𝐶௡஼ு௉௖ = ෍ 1.2 ∙ 𝐹 ∙ 𝑃௡஼ு௉௖(𝑡)         𝑛 = 1 ⋯ 𝑁்
௧ୀଵ  (3) 

where 𝑃௡஼ு௉௖(𝑡) is the energy curtailed at the time interval t by the biomass CHP connected to the n-
th bus of the network. 

2.3. Peak Load Shaving Cost 𝐶௡௉௅ௌ  
Regarding the term referred to the active customers, in this paper only the cost of shaving the 

peak loads has been considered, by assuming that it is not possible to fully control the customer 
demand but only cut a quote of their consumption in some critical conditions. It is assumed, as the 
RES curtailment, that this curtailed energy is paid at twice the energy price 𝑐ாே  to penalize load 
curtailment with the higher cost, as renewable generation curtailment, according to (4). 

𝐶௡௉௅ௌ = ෍ 2 ∙ 𝑐ாே ∙ 𝑃௡௉௅ௌ(𝑡)                     𝑛 = 1 ⋯ 𝑁்
௧ୀଵ  (4) 

where 𝑃௡௉௅ௌ(𝑡) is the energy curtailed at the time interval t to the customer connected to the n-th bus 
of the network. 

2.4. Storage Investment Cost 𝐶௡஼஺௉ா௑_ாௌௌ  
The storage investment cost (𝑆𝐶𝑛) is a function of the size of the storage in terms of rated power 

and energy as in (5). 𝑆𝐶௡ =  𝑐௉ ∙ 𝑃௡௥௔௧௘ௗ + 𝑐ா ∙ 𝐸௡௥௔௧௘ௗ     𝑛 = 1 ⋯ 𝑁 (5) 
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where cP and cE are the specific costs of the ESS adopted technology, reliant respectively on the power 
rating 𝑃௡௥௔௧௘ௗ and the nominal capacity 𝐸௡௥௔௧௘ௗ  of the n-th ESS located in the network (here cP = 200 
€/kW and cE = 400 €/kWh, according to the market cost of lithium-ion technology [15]). 

To consider this cost in the objective function (1), only a daily quote of SCn is added to the 
operational terms of (1), calculated as in (6). 𝐶௡஼஺௉ா௑_ாௌௌ = 𝐾ௌ365 ∙ 𝑆𝐶௡               𝑛 = 1 ⋯ 𝑁     (6) 

where Ks is a capital recovery factor (here Ks = 0.1, for considering 10 years as ESS lifetime). 
In this paper, it is assumed that the storages are DSO owned and managed for relieving 

contingencies. Thus, the ESS OPEX (operational expenditures) is not considered in the optimization. 
According to this point of view, it is supposed that the minimization of the network operational cost, 
in terms of reduction of the curtailed power from RES and to loads, that would be necessary to relieve 
contingencies, represents the only incomes that allow DSO to pay back EES CAPEX (capital 
expenditures) and ESS OPEX. The depreciation of the ESSs is assumed negligible and not added to 
the ESS cost term. 

2.5. Load Balancing Constraints 

The SOCP convex relaxation has been used in the proposed multi-temporal AC-OPF model.  
Equations (7) and (8) are the nodal active and reactive power balance. 𝑃௡௚(𝑡) + 𝑃௡ோாௌ(𝑡) − 𝑃௡ோாௌ௖(𝑡)+𝑃௡஼ு௉(𝑡) − 𝑃௡஼ு௉௖(𝑡) − 𝑃𝐷௡(𝑡) + 𝑃௡௉௅ௌ(𝑡) − 𝑃௡௖(𝑡)+𝑃௡ௗ(𝑡)− ෍ 𝑅௠௡ ∙ 𝐼௠௡ଶ௠ఢఏ೙ = ෍ 𝑃௠௡௠ఢఏ೙ (𝑡) (7) 

 𝑄௡௚(𝑡) + 𝑄௡ோாௌ(𝑡) − 𝑄௡ோாௌ௖(𝑡) + 𝑄௡஼ு௉(𝑡) − 𝑄௡஼ு௉௖(𝑡) − 𝑄𝐷௡(𝑡) − ෍ 𝑋௠௡ ∙ 𝐼௠௡ଶ௠ఢఏ೙ = ෍ 𝑄௠௡௠ఢఏ೙   (8) 

where (𝑃௡ோாௌ(𝑡); 𝑄௡ோாௌ(𝑡)) and (𝑃௡஼ு௉(𝑡); 𝑄௡஼ு௉(𝑡)) define the expected RES and CHP production in 
terms of active and reactive powers, 𝑃𝐷௡(𝑡) and 𝑄𝐷௡(𝑡) are the active and reactive power delivered 
to the load connected to the n-th node, 𝐼௠௡(𝑡), 𝑃௠௡(𝑡), and 𝑄௠௡(𝑡) are respectively the current, the 
active and the reactive power flowing in the branch from the m-th bus to the n-th one, 𝑅௠௡ and 𝑋௠௡ 
are the resistance and reactance of the mn-th branch. 𝑃௡௖(𝑡)  and 𝑃௡ௗ(𝑡)  are the charging and 
discharging power of the storage at time t. 𝑃௡௚(𝑡) and 𝑄௡௚(𝑡) are the active and reactive power 
provided by the upstream connections (slack bus of the network). The values of 𝑃௡௚(𝑡) and 𝑄௡௚(𝑡) 
are zero except for the first node. 

2.6. Network Constraints 

The current magnitude quadratic term can be defined as the function of the corresponding active 
and reactive power quadratic terms (Equations (9)–(11)). 𝐼௠௡ଶ ≥ 𝑃௠௡ଶ + 𝑄௠௡ଶ𝑉௠ଶ  (9) 

 𝑃௠௡ଶ (𝑡) + 𝑄௠௡ଶ (𝑡) = 𝑆௟ଶ(𝑡)  (10)  𝑖௠௡(𝑡) ∙ 𝑣௠ (𝑡) = 𝑆௟ଶ(𝑡)  (11) 

Equation (9) is relaxed ultimately by relaxing the magnitude of currents within each branch and 
using a conic formation on the limitation of exchanged active power. For linearization purposes, the 
quadratic terms of voltage and current magnitude have been replaced with the linear ones as in (12). 𝐼௠௡ଶ = 𝑖௠௡; 𝑉௠ଶ = 𝑣௠  (12) 

The new variables ( 𝑖௠௡ ,  𝑣௠ ) successfully formulate the SOCP problem according to the 
following constraint, 
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𝑉௠௜௡ଶ ≤ 𝜐௠(𝑡) ≤ 𝑉௠௔௫ଶ  (13) 

The Equation (13) provides the voltage limits of each bus. 
Bus 1 is modelled as a swing bus with fixed complex voltage 𝑉𝑚(𝑡). 

2.7. Constraints for RES and Controllable Generator 

Equations (14) and (15) impose the limits to the active and reactive power curtailment associated 
with RES and CHP generators. In Equation (14), 𝑃௡௠௜௡ ோாௌ௖/஼ு௉௖ represents the lower bound of the 
active power curtailment of RES and CHP generators. In this study, the lower bound value of 
curtailment has been chosen as 0, which means the generators curtail all of their capacity. The upper 
bound, 𝑃௡௠௔௫ோாௌ௖/஼ு௉௖ , has been considered the capacity of the generators based on the expected 
values of each time step. 𝑃௡௠௜௡ ோாௌ௖/஼ு௉௖ ≤ 𝑃௡ோாௌ௖/஼ு௉௖(𝑡) ≤ 𝑃௡௠௔௫ோாௌ௖/஼ு௉௖ (14)  𝑄௡௠௜௡ ோாௌ௖/஼ு௉௖ ≤ 𝑄௡ோாௌ௖/஼ு௉௖(𝑡) ≤ 𝑄௡௠௔௫ோாௌ௖/஼ு௉௖  (15) 

Furthermore, the constraints about storages may be formulated as in (16)–(20). 𝑆𝑂𝐶௡(𝑡) = 𝑆𝑂𝐶௡(𝑡 − 1) + ቆ𝑃௡௖(𝑡) ∙ ɳ௖ − 𝑃௡ௗ(𝑡)ɳௗ ቇ ∙ ∆𝑡 (16) 

 0 ≤ 𝑃௡௖(𝑡) ≤ 𝛼௡௖ ∙ 𝑃௡௖,௠௔௫(𝑡)  (17)  0 ≤ 𝑃௡ௗ(𝑡) ≤ 𝛼௡ௗ ∙ 𝑃௡ௗ,௠௔௫(𝑡)  (18)  𝑆𝑂𝐶௡,௠௜௡ ≤ 𝑆𝑂𝐶௡(𝑡) ≤ 𝑆𝑂𝐶௡,௠௔௫  (19)  𝛼௡௖ (𝑡) + 𝛼௡ௗ(𝑡) ≤ 1  (20) 

where 𝛼௡௖ (𝑡) ϵ [0 or 1] and 𝛼௡ௗ(𝑡) ϵ [0 or 1]. 
The state of charge (SoC) of ESSs is calculated by considering the initial SoC and the charging 

and discharging efficiencies ɳ௖ and ɳௗ (Equation (16)). To restrict the maximum charging and the 
depth of discharging and for avoiding the simultaneous charging and discharging, the binary 
variables 𝛼௡௖  and 𝛼௡ௗ , of which only one can be different from zero, have been considered in 
Equations (17)–(20). Finally, Equation (21) is added to force the SoC to be equal at the beginning and 
the end of the considered time horizon T. 𝑆𝑂𝐶௡,଴ = 𝑆𝑂𝐶௡,் (21) 

The multiplication of binary and integer variables during the estimation of the charging and 
discharging power of the storage unit generates a quadratic term. A decomposition technique has 
been used to linearize the relevant constraints by rewriting constraints in the form of (22) as in (23) 
and (24) to avoid the bilinear terms. 𝑥 <=  𝑦 ∙  𝑧 ∙  𝑐 (22)  𝑥 <=  𝑦 ∙  𝑧௠௔௫  ∙  𝑐௠௔௫  (23)  𝑥 <=  𝑧 ∙  𝑐  (24)  𝑥  and 𝑐  are continuous, 𝑦  binary, 𝑧  integer. The continuous and integer variables are 
respectively variable in ሾ0, 𝑥𝑚𝑎𝑥], ሾ0, 𝑐𝑚𝑎𝑥] and [0, 𝑧𝑚𝑎𝑥]. 
3. Uncertainty Management 

Uncertainties are mostly involved in decision-making problems. The uncertainty from electric 
loads, wind, and solar power generation typically influence distribution planning in general and 
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storage allocation in particular. Several factors determine the evolution of each uncertainty. For 
example, the consumers’ activities, energy savings and electricity providers’ rate policies influence 
the electric load; the radiation of the sun and the velocity of air impact on the power output of PV 
and wind [34]. 

A static robust optimization is used to consider the uncertainty in the optimal planning model. 
To define the uncertainty set, an interval uncertainty model has been adopted with the flexibility to 
regulate the robustness, called budget of uncertainty (Γ௜). Static robust optimization devising seeks 
for optimal solutions that optimize the objective function and encounter the problem requirements 
for every possible revealing of the uncertainty in constraint coefficients. Hence, the variables are 
independent of the uncertain parameters. 

For a worst-case analysis, when considering the uncertainty, the following problem (25)–(27) is 
dealt with: 𝑚𝑖𝑛 𝑐 ∙ 𝑥 (25) 

Subject to 

෍ 𝑎௜௝𝑥௝ + 𝑚𝑎𝑥 ෍ 𝑎పఫ෦௝∈௃೔ 𝜉௜௝𝑥௝ ≤ 𝑏௝௡
௝ୀଵ   (26) 

 𝑙 ≤ 𝑥 ≤ 𝑢  (27) 

In the above optimization problem, Equations (25) and (26) represent the objective function and 
inequality constraint, respectively. The uncertainty bound of the uncertain parameter 𝑥, that must 
assume values between lower l and upper u bounds, as formulated by the Equation (27). 𝑏௝ is the 
value of the right-hand side of i-th constraint. 

For the i-th constraint, the auxiliary problem can be formulated as follows: 𝑚𝑎𝑥 ෍ 𝑎పఫ෦௝ఢ௃೔ 𝜉௜௝ห𝑥௝ห (28) 

Subject to ෍ 𝜉௜௝௝ఢ௃೔ ≤ Γ௜  (29) 

 0 ≤ 𝜉௜௝ ≤ 1  (30) 

To make the model tractable, that means to convert the inner maximization problem to a 
minimization problem, the dual of the above problem (28)–(30) needs to be formulated as follows: 𝑚𝑖𝑛 𝑧௜ Γ௜ + ෍ 𝑝௜௝௝ఢ௃೔  (31) 

Subject to 𝑧௜ + 𝑝௜௝ ≥ 𝑎పఫ෦ 𝑦௜𝑉௜, 𝑗𝜖𝐽௜ (32)  ห𝑥௝ห ≤ 𝑦௝  (33)  𝑧௜, 𝑝௜௝, 𝑦௝  ≥ 0  (34) 

where 𝑧௜, 𝑝௜௝ are the dual decision variables for constraints of the auxiliary problem. 
Incorporating model (31)–(34) into the original problem (25)–(27), the robust linear counterpart 

is formulated as: min 𝑐 ∙ 𝑥 (35) 

Subject to 
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෍ 𝑎௜௝𝑥௝௡
௝ୀଵ + 𝑧௜Γ௜ + ෍ 𝑝௜௝௝ఢ௃೔ ≤ 𝑏௜ (36) 

𝑙௝ ≤ 𝑥௝ ≤ 𝑢௝ (37) 𝑧௜ + 𝑝௜௝ ≥ 𝑎పఫ෦ 𝑦௝, 𝑉௜, 𝑗𝜖𝐽௜ (38) −𝑦௝ ≤ 𝑥௝ ≤ 𝑦௝ (39) 𝑧௜,  𝑝௜௝, 𝑦௝  ≥ 0 (40) 

4. Robust Counterpart 

Assume that all the decision variables should be considered before the revealing of the 
uncertainty from solar power, wind generation, and electric loads. In the active power balance (7), 
uncertainties 𝑃௡ோாௌ(𝑡)  and 𝑃𝐷௡(𝑡)  are modeled as symmetric and bounded variables 𝑃௡௣௩(𝑡)෫ , 𝑃௡௪(𝑡)෫  and 𝑃𝐷௡(𝑡)෫ . It should be mentioned here that 𝑃௡ோாௌ(𝑡)  consists of the solar and wind 
generations. The uncertainty takes values as in the following Equations (41)–(43). 𝑃௡௣௩(𝑡)෫ = 𝑃௡௣௩(𝑡) + ∆𝑃௡௣௩(𝑡)    𝑃௣௩௟௕෢ ≤ ∆𝑃௣௩(𝑡) ≤෫ 𝑃௣௩௨௕෢  (41) 

 𝑃௡௪ప௡ௗ(𝑡)෫ = 𝑃௡௪ప௡ௗ(𝑡) + ∆𝑃௡௪ప௡ௗ(𝑡)    𝑃௪ప௡ௗ௟௕෣ ≤ ∆𝑃௪ప௡ௗ(𝑡) ≤෫ 𝑃௪ప௡ௗ௨௕෣   (42) 

 𝑃𝐷௡(𝑡)෫ = 𝑃𝐷௡(𝑡) + ∆𝑃𝐷௡(𝑡)  ෫ 𝑃஽௟௕෢ ≤ ∆𝑃஽(𝑡) ≤ 𝑃஽௨௕෢   (43) 

In the robust model, the objective function (1) is identical to the deterministic model. The only 
constraint that is affected by uncertainty is the electric power balance equation. The electric power in 
the network should be met when the worst case of uncertainties occurs. For the power balance 
equation, the worst case would occur at the maximum increase of the electric loads and the maximum 
decrease in solar (PV) and wind power generation. Therefore, the robust formulation becomes as in 
(44)–(47). 

𝑚𝑖𝑛 𝐶௧௢௧ = 𝑚𝑖𝑛 ൝෍ൣ𝐶௡ோாௌ௖ + 𝐶௡஼ு௉௖ + 𝐶௡௉௅ௌ + 𝐶௡஼஺௉ா௑_ாௌௌ൧ே
௡ୀଵ ൡ (44) 

Subject to  𝑃௡௚(𝑡) + 𝑃௡ோாௌ(𝑡) − 𝑃௡ோாௌ௖(𝑡)+𝑃௡஼ு௉(𝑡) − 𝑃௡஼ு௉௖(𝑡) − 𝑃𝐷௡(𝑡) + 𝑃௡௉௅ௌ(𝑡)− 𝑃௡௖(𝑡)+𝑃௡ௗ(𝑡) +𝑚𝑎𝑥൛𝑃஽௨௕(𝑡) ∗ 𝜉஽௨௕(𝑡) + 𝑃஽௟௕(𝑡) ∗ 𝜉஽௟௕(𝑡)− 𝑃௣௩௨௕(𝑡) ∗ 𝜉௣௩௨௕(𝑡) − 𝑃௣௩௟௕(𝑡) ∗ 𝜉௣௩௟௕ (𝑡) − 𝑃௪௜௡ௗ௨௕ (𝑡) ∗ 𝜉௪௜௡ௗ௨௕ (𝑡)− 𝑃௪௜௡ௗ௟௕ (𝑡) ∗ 𝜉௪௜௡ௗ௟௕ (𝑡)ൟ − ෍ 𝑅௠௡ ∙ 𝐼௠௡ଶ௠ఢఏ೙ =  ෍ 𝑃௠௡௠ఢఏ೙ (𝑡)  (45) 

 𝜉஽௨௕(𝑡) + 𝜉஽௟௕(𝑡) + 𝜉௣௩௨௕(𝑡) + 𝜉௣௩௟௕ (𝑡) + 𝜉௪௜௡ௗ௨௕ (𝑡) + 𝜉௪௜௡ௗ௟௕ (𝑡) ≤ 𝛤ଵ(𝑡)  (46)  𝜉஽௨௕(𝑡), 𝜉஽௟௕(𝑡), 𝜉௣௩௨௕(𝑡), 𝜉௣௩௟௕ (𝑡), 𝜉௪௜௡ௗ௨௕ (𝑡), 𝜉௪௜௡ௗ௟௕ (𝑡) ≤ 1  (47) 

where 𝜉஽௨௕(𝑡), 𝜉஽௟௕(𝑡), 𝜉௣௩௨௕(𝑡), 𝜉௣௩௟௕ (𝑡), 𝜉௪௜௡ௗ௨௕ (𝑡), 𝜉௪௜௡ௗ௟௕ (𝑡) are the scaled deviations from the random electric 
loads, solar, and wind power generation, respectively. 𝛤ଵ(𝑡) is the budget of the uncertainty of 
uncertain parameters at time t that lies between 0 to 1, where 0 being the deterministic case and 1 
defined the most robust case. 

To make tractable the above problem, the following subproblem in Equations (48)–(50) need to 
be formulated into the corresponding dual problem by introducing dual variables 𝜆ଵ(𝑡), Π஽ା(𝑡) , Π஽ି(𝑡), Π௣௩ା (𝑡), Π௣௩ି(𝑡), Π௪௜௡ௗା (𝑡), Π௪௜௡ௗି (𝑡) for constraints (49) and (50). 

The subproblem can be formulated as in (48). 
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𝑚𝑎𝑥൛𝑃஽௨௕(𝑡) ∗ 𝜉஽௨௕(𝑡) + 𝑃஽௟௕(𝑡) ∗ 𝜉஽௟௕(𝑡) − 𝑃௣௩௨௕(𝑡) ∗ 𝜉௣௩௨௕(𝑡) − 𝑃௣௩௟௕(𝑡) ∗ 𝜉௣௩௟௕ (𝑡)− 𝑃௪௜௡ௗ௨௕ (𝑡) ∗ 𝜉௪௜௡ௗ௨௕ (𝑡) − 𝑃௪௜௡ௗ௟௕ (𝑡) ∗ 𝜉௪௜௡ௗ௟௕ (𝑡)ൟ (48) 

Subject to 𝜉஽௨௕(𝑡) + 𝜉஽௟௕(𝑡) + 𝜉௣௩௨௕(𝑡) + 𝜉௣௩௟௕ (𝑡) + 𝜉௪௜௡ௗ௨௕ (𝑡) + 𝜉௪௜௡ௗ௟௕ (𝑡) ≤ Γଵ(𝑡)  (49)  𝜉஽௨௕(𝑡), 𝜉஽௟௕(𝑡), 𝜉௣௩௨௕(𝑡), 𝜉௣௩௟௕ (𝑡), 𝜉௪௜௡ௗ௨௕ (𝑡), 𝜉௪௜௡ௗ௟௕ (𝑡) ≤ 1  (50) 

The robust counterpart after applying the duality theory is formulated as in (51)–(55). 𝑚𝑖𝑛 𝜆ଵ(𝑡)𝛤ଵ(𝑡) + Π஽ା(𝑡)+ Π஽ି(𝑡) + Π௣௩ା (𝑡) + Π௣௩ି(𝑡) + Π௪௜௡ௗା (𝑡) + Π௪௜௡ௗି (𝑡)   (51) 

Subject to  𝜆ଵ(𝑡) + Π஽ା(𝑡) ≥ 𝑃஽௨௕෢ (𝑡), 𝜆ଵ(𝑡) + Π஽ି(𝑡) ≥ 𝑃஽௟௕෢ (𝑡)  (52)  𝜆ଵ(𝑡) + Π௣௩ା (𝑡) ≥ −𝑃௣௩௨௕෢ (𝑡), 𝜆ଵ(𝑡) + Π௣௩ି(𝑡) ≥ −𝑃௣௩௟௕෢ (𝑡)  (53)  𝜆ଵ(𝑡) + Π௪௜௡ௗା (𝑡) ≥ −𝑃௪ప௡ௗ௨௕෣ (𝑡), 𝜆ଵ(𝑡) + Π௪௜௡ௗି (𝑡) ≥ −𝑃௪ప௡ௗ௟௕෣ (𝑡)  (54)  𝜆ଵ(𝑡), Π஽±(𝑡), Π௣௩± (𝑡), Π௪௜௡ௗ± (𝑡) ≥ 0  (55) 

Finally, the tractable robust model can be formulated as the following (56) and (57). 

min 𝐶௧௢௧ = min ൝෍ൣ𝐶௡ோாௌ௖ + 𝐶௡஼ு௉௖ + 𝐶௡஽ோ + 𝐶௡஼஺௉ா௑ಶೄೄ൧ே
௡ୀଵ ൡ (56) 

Subject to 𝑃௡௚(𝑡) + 𝑃௡ோாௌ(𝑡) − 𝑃௡ோாௌ௖(𝑡)+𝑃௡஼ு௉(𝑡) − 𝑃௡஼ு௉௖(𝑡) − 𝑃𝐷௡(𝑡) + 𝑃௡௉௅ௌ(𝑡) −𝑃௡௖(𝑡)+𝑃௡ௗ(𝑡) + 𝜆ଵ(𝑡)𝛤ଵ(𝑡) + 𝛱஽ା(𝑡)+ Π஽ି(𝑡) + Π௣௩ା (𝑡) + Π௣௩ି(𝑡) + Π௪௜௡ௗା (𝑡) +Π௪௜௡ௗି (𝑡) − ∑ 𝑅௠௡ ∙ 𝐼௠௡ଶ௠ఢఏ೙ =  ∑ 𝑃௠௡௠ఢఏ೙ (𝑡)  (57) 

Moreover, the constraints (8)–(21) and (52)–(55) form the tractable problem. 
The new model does not contain any uncertainty and is formulated as a mixed-integer second-

order conic programming (MISOCP) problem that can be solved efficiently using CPLEX that uses a 
branch and cut algorithm to find the integer feasible solution. 

5. Case Study 

The procedure was applied to a test distribution network derived from the ATLANTIDE project 
[0]. The MV network, shown in Figure 1, representative of the industrial ambit, was constituted by 
100 nodes, subdivided in seven feeders supplied by a primary substation equipped with a 25 MVA 
high voltage/medium voltage (HV/MV) transformer. The total demand was about 30 MVA (372 
GWh/year) and the total installed DG capacity was 34 MW (27.2 GWh/year), as a mix of wind, PV 
and biomass CHP generators. 
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Figure 1. Test network (representative network derived from ATLANTIDE project [32]). 

The mathematical formulation of the RO for an AC-OPF based energy storage planning tool was 
programmed in General Algebraic Modeling System (GAMS) (GAMS Software GmbH , Frechen, 
Germany) and solved using CPLEX 25.1.1 on a 2.30 GHz personal computer with 4 GB RAM. In this 
experimental study, the worst case was considered when the load was high (𝜉஽,௧ = 1) and wind and 
PV generation was low (𝜉௣௩,௧, 𝜉௪,௧ = −1). 

For the sake of a comprehensive view, in the following, the results obtained by the application 
of the described optimization to the network of Figure 1 in 12 typical days, differentiated between 
working days, Saturdays, and holidays (Sundays included), and between seasons, have been 
reported. The time horizon of 24 h of each typical day has been considered with a time step of 1 h. 
Three scenarios have been considered: the certain one (solved by the deterministic OPF) and two 
uncertain scenarios with different values of risk ( 𝛤 = 0.5  and 𝛤 = 1 ), both solved with RO. 
Furthermore, for highlighting the advantages provided by the storage systems the case of 
deterministic optimization (certain) without storage has been added to the previously described 
cases. 

All the buses of the test network were assumed candidates for storage placement. The available 
ESS were considered of 1.0 MW/2 h storage capacity. The efficiencies for charging and discharging 
were considered 90% each, which gives an overall roundtrip efficiency of 0.81. The initial state of 
charge (SoC) has been considered 25% of its capacity. 

In these typical days, some under-voltage conditions occur in the most distant nodes from the 
HV/MV transformer and, thus, for solving these issues, it is necessary to resort to the load peak 
shaving. Furthermore, some lines suffer for overloading depending on the non-coincidence of load 
demand and DG production. ESSs prove to be useful for reducing the curtailment of the demand and 
production as detailed in the next subsections. 

5.1. Generation and Load Profiles 

The generation and load profiles were simulated according to the ATLANTIDE load and 
generation daily curves, that provide for different kinds of customers (i.e., industrial, residential, 
commercial, and agricultural) and for several technologies of DG (i.e., wind turbine, PV, and CHP 
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biomass-based) the hourly consumption/production for each typical day. An amount of 22 PV 
systems was assigned to 20 nodes. The size of these systems is between 49–1048 kW. Node 8 had the 
biggest PV system, whereas the lowest one was connected to node 78. Node 83 comprised two wind 
generators and two CHP plants. Figure 1 depicts the nominal power of the PV, wind, and CHP of 
each node.  

The load profiles indicated a peak load of 18.69 MW during the spring working day and 18.14 
MW during the summer working day with an average load of 13.79 MW and 13.38 MW, respectively. 
As an example, the demand and production profiles and their balance at the HV/MV interface, during 
the spring working day, are shown in Figure 2.  

 
Figure 2. Load-production profiles of the whole network for the Spring working typical day. 

5.2. Storage Placement 

The optimization results of storage position for each typical day for the three considered cases 
have been enumerated in Table 1. The ESS optimal positions may change from one typical day to 
another even for the same case, but the results can be summarized by considering a given solution 
valid for all the twelve typical days. In the following, it has been assumed that the placement in one 
bus or a close one on two different typical days can be considered the same placement. For instance, 
the bus 83 and the bus 84 in the deterministic case, that are the solutions for the TD8, and the TD5 
respectively, can be considered as a unique optimal position around the bus 83. 

On the contrary, if two busses, even close, appeared in the solution of the same day they were 
both considered necessary and two ESSs had to be placed on that nodes (e.g., the busses 83 and 85 in 
the results of all the cases for the TD12 or the busses 83 and 84 in the results of the intermediate and 
robust cases for the TD5). By applying these rules, the total number of ESSs that had to be placed in 
the three cases are reported in the last row Table 1. It is worthy of mentioning that the results were 
substantially incremental: the intermediate case included the location of the deterministic case, and 
the robust case (no risk) included, in turn, the intermediate one. 
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Table 1 Storage placement for each typical day for the three considered cases. 

Typical days Deterministic case Intermediate case Robust case 
TD1 (Winter working day) 10, 32 10, 32, 77 10, 32, 48, 77 

TD2 (Winter Saturday)  - - - 
TD3 (Winter holiday) - - - 

TD4 (Spring working day) 10 10, 34 10, 34 
TD5 (Spring Saturday) 84 83, 84 83, 84 
TD6 (Spring holiday) 84 84 84 

TD7 (Summer working day) - - - 
TD8 (Summer Saturday) 83 12, 83 10, 32, 83 
TD9 (Summer holiday) - - - 

TD10 (Autumn working day) 12 12, 27 12, 27, 69 
TD11 (Autumn Saturday) 84 84 69, 84 
TD12 (Autumn holiday) 83, 85 83, 85 83, 85 

Total number of ESS 4 5 6 

To analyze the impact of renewables and load uncertainty on the investment of the energy 
storage in the distribution network, one of the worst-cases of RES (PV, wind or biomass based) and 
combination of loads were considered. The worst-case scenario considered in this work was when 
the loads had upper bound values, and the renewables had lower bound values. Three cases were 
considered by varying the loads and renewables uncertainty bounds. In the first case, the budget of 
uncertainty was zero (𝛤 = 0), i.e., the profiles of load and renewable generations were assumed 
following the forecasted values. In the second case, the value of budget of uncertainty for both load 
and renewables considered 0.5 (𝛤 = 0.5) that is between the zero (deterministic) and 1 (robust or 
worst case). In the third case (𝛤 = 1), the considered worst-case scenario was evaluated. In this case, 
the uncertainty sets of loads and renewables were considered broader to consider the possible 
extreme coordinates of the uncertainty set.  

The following figures compare the results of the studied cases (i.e., no control, deterministic OPF 
no storage, deterministic OPF with storage, intermediate and robust). These results are related to the 
most critical typical day, the winter working day (TD1). For the sake of clarity, the figures refer only 
to the feeder F1 that is the longest feeder of the test network depicted in Figure 1 (i.e., the last bus is 
about 14.2 km far from the primary substation). Figure 3 shows the voltage profiles occurring at 9:00 
am of the winter working typical day, because, among other time intervals, this one was proved that 
experiments the greatest load curtailment; Figure 4 shows the load curtailed during this typical day, 
in Figure 5 the balances of DG production and curtailed demand, and, finally, Figure 6 the ESS 
charging/discharging optimal profiles of one of the ESS optimal positioned in the feeder F1 (bus 10 
of Figure 1). As it is evident by the results, all the optimizations allow to solve the undervoltage 
conditions occurring in the long feeder F1 (Figure 3); the more conservative the optimization (i.e., by 
moving from certain to uncertain, intermediate and robust, optimization) the smaller the demand 
curtailed (Figure 4); in the feeder F1 no generation curtailment results from the optimizations, thus 
the balance of production and demand (curtailed) is closer to the original one (no control) in the 
robust case (Figure 5). It is worth noticing that the voltage value at the sending end (the MV busbar 
of the primary substation) was lower in the no control case than the other cases because the 
implemented model of the HV/MV transformer is very simple and strongly suffers for the high 
demand, not curtailed in the control case. In future works, the transformer model will be improved. 
These results, together with the ESS operation, are discussed more in detail in the next subsections 
for each optimization case. 
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Figure 3. Voltage profiles of feeder F1 for no control, no storage (certain deterministic optimal power 
flow (OPF) without storage) and deterministic (certain deterministic OPF with storage), intermediate 
and robust cases at 9:00 am of the winter working day. 

 
Figure 4. Load curtailments experimented by the feeder F1 for the no storage (certain deterministic 
OPF without storage), deterministic (certain deterministic OPF with storage), intermediate and robust 
cases on the winter working day. 
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Figure 5. Balance of distributed generation (DG) production and curtailed demand of the feeder F1 
for the no control, no storage (certain deterministic OPF without storage), deterministic (certain 
deterministic OPF with storage), intermediate and robust cases on the winter working day. 

 
Figure 6. Charging/discharging profiles of the energy storage system (ESS) optimally positioned in 
bus 10 of the feeder F1 for the deterministic, intermediate and robust cases on the winter working day 
and balances of powers (DG, loads, and ESS) in the same cases. The no control case has been added 
for comparison. 
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5.3. Deterministic Case (with and without Storage) 

Due to the absence of uncertainty, in this case, the load and renewables profiles will remain the 
same as the predicted values. It was witnessed that during the deterministic case with storage, at least 
four storages need to cover their requirements. The ESS optimal positions can change from one 
typical day to another, but, by summarizing the results in the 12 typical days (Table 1), they were 
located two in the two lateral branches that start from the node 10 (feeder F1, positions are 10r 12 and 
32). The third and fourth ESS had to be located around the node 83 (feeder F5, positions are two 
among 83, 84 and 85). It is essential to observe that node 83 is the node that had the highest number 
of renewables and CHP connected; thus, it is noticeable to consider that as a privileged position for 
storages. 

The highest load curtailment was experienced during the typical day of winter working day 
(TD1) with the amount of 51.77 MWh/day for the case without storage and 30.46 MWh/day for the 
case with storage. 

By focusing on the feeder F1, as it is evident from Figure 3, the nodes of this feeder had under-
voltage issues in the no control case, and any optimization forces to resort load shedding (Figure 4). 
By comparing these two certain cases, is it worth noticing that if the ESSs are not available for the 
optimization (deterministic OPF no storage) much more demand had to be curtailed (i.e., 41.62 
MWh/day of the no storage case vs. 20.97 MWh/day in the case with storage). 

The daily operation of the ESS was optimized as well as the optimal position. For instance, 
during the winter working day, the daily operation profile of the ESS located around bus 10 is shown 
in Figure 6, together with the balances of demand and production curves, with and without ESS. At 
the beginning of the day, the ESS started to charge, keeping the final balance of demand, DG 
production (minimal in the first hours of the day), and charging power for ESS so low to do not 
negatively impact the network operation. At around 7:00 am, when the morning peak starts, the 
storage discharges for reducing the power demand and keeping the voltage profile within the limit 
(Figure 3). 

5.4. Intermediate Case 

In this case, a narrow uncertainty bound is considered. The budget of uncertainty for the 
uncertain parameters has been considered as 𝛤 = 0.5. The optimization algorithm will look for a 
solution inside the specified uncertainty bound. From Table 1, by considering the simulation results 
of the twelve typical days, and assuming the most conservative hypotheses (i.e., the final result is the 
union of the results obtained for each typical day), the intermeate case suggests at least five storage 
systems to be installed: two in the feeder F1 and two in the feeder F5, as in the deterministic case, 
plus one ESS in the feeder F4. The positions of the two storages in the feeder F1 and the two in the 
feeder F5 are more or less the same of the deterministic case (F1 possible locations are the busses 10 
or 12 for one lateral and the busses 27, 32, or 34 for the other lateral, and two positions among the bus 
83, 84 or 85 for the feeder F5). In the feeder F4, the added storage system has to be installed around 
the node 77. 

The load shedding, in this case, is more reduced and for the critical TD1 is equal to 15.89 
MWh/day (about 25% less than the deterministic case), as shown in Figure 4. 

Furthermore, it can be observed in Figure 6 that the ESS located around bus 10 in the feeder F1 
has a similar trend of the same ESS in the deterministic case: it charges and discharges mostly in the 
same hours for solving local contingencies. In particular, it charges when the load demand is low (at 
the first hours of the day), and finally, at the end of the day for recovering their initial SoC; on the 
contrary, it discharges in correspondence of the peaks of demand (7:00–21:00). 

5.5. Robust Case 

The third case can be considered the worst-case analysis. In this case, the budget of uncertainty 
for uncertain parameters is equal to 1 (𝛤 = 1). This budget of uncertainty allows the algorithm to 
consider the extreme points of the uncertainty set. Compared to the previous cases, the robust case 
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provides six storage systems to be installed in the network. The locations of storage for feeder F1, F4 
and F5 are like the deterministic and intermediate cases. However, the robust case suggests one more 
ESS in the feeder F2 (bus 48). In Figure 6, the operation profile of the ESS located around bus 10, 
resulting from the optimization for the feeder F1 is shown with the demand and production daily 
curves. The behavior of the ESS is as the one in the other cases: the contribution to reducing the peaks 
at the cost of a slight increase in demand when they charge. This increase does not alter the network 
operation and does not produce any technical constraint violation, but it allows a further reduction 
of load shedding (Figure 4). For the feeder 1 in the critical TD1, the demand is curtailed of 11.10 
MWh/day (−30% than the intermediate case). 

5.6. Economic Analysis 

In order to analyze the economic feasibility of the investments in storage systems, the 
comparison between all the cases mentioned above, included the no storage one, has been considered. 
Table 2 summarizes the yearly operational costs (operational expenditures—OPEX) for the four 
considered cases, the amount of load shedding and generation curtailment used for solving the 
contingencies, the CAPEX for the ESS installation referred to one year only (among the ten years of 
the ESS life duration), and in the last column, the total yearly cost is calculated as the summation of 
CAPEX and the OPEX. In the no storage case, the yearly operational cost, of about 1480 k€, consists 
of penalty cost for load shedding that accounts for 762.90 k€/year, and penalty cost of CHP 
curtailment worth 717.46 k€/year. The peak shaving drastically decreases by using the ESS even in 
the deterministic case (the quantity is about halved), and then it is significantly further reduced in 
the uncertain scenarios. The same behavior can be observed for the generation curtailment of CHP. 
In the uncertain cases, compared with the base case without storages, the resort to load shedding is 
much reduced (−44.8% in the deterministic case becomes −60.5% in the intermediate case and −73.9% 
in the robust one) as well as the generation curtailment (−22.8%, −43.9% and −66.3% in the 
deterministic, intermediate and robust case respectively). The quantities related to the generation 
curtailment in Table 2 for these four cases are referred only to the curtailment of CHPs. 

Consequently, a substantial reduction of the annual operational costs can be observed with the 
ESS inclusion in the deterministic case and much more in the uncertain cases (−34.2%, −52.4%, and 
−70.4%, in the deterministic, intermediate and robust case respectively). It is worth noticing that, in 
the deterministic and uncertain cases, apart from the operational costs, an additional cost factor has 
to be considered: the CAPEX for the ESS installation, split in ten years (the CAPEX of one 1.0 MW/2 
h ESS is assumed the same for each year). This negatively impacts on the final cost, much stronger 
with the increment of budget or uncertainty, due to the growth of the investment costs for the 
increasing number of storages. However, the reduction of OPEX not only covers such increase but, 
the final costs of all the cases that use the storage systems for relieving the contingencies are smaller 
than the case without them (no storage case). In particular, the percentage of total cost reduction is 
smaller than the one calculated by considering the OPEX only (i.e., −7.2%, −18.6% and −29.9% for 
deterministic, intermediate and robust cases, respectively), but the results prove the effectiveness of 
the optimization. In fact, these results demonstrate that not only the ESS helps to reduce the 
operational cost, for relieving even the worst-case and reducing even more the resort to load 
shedding and to the generation curtailment, but also that, with the assumed hypotheses, the ESS 
CAPEX can be amortized during the ten years of their life duration. 

Table 2. Daily operational cost of the test network and ESS CAPEX. 

Cases OPEX 
[k€/year] 

Load 
shedding 

[MWh/year] 

Generation 
curtailment 
[MWh/year] 

CAPEX 
[k€/year] 

Total cost  
CAPEX+OPEX 

[k€/year] 
No storage 1480.36 6602.12 7502.38 0 1480.36 

Deterministic (𝛤 = 0)  974.47 3644.95 5791.67 400 1374.47 
Intermediate (𝛤 = 0.5)  704.64 2605.34 4208.2 500 1204.64 

Robust (𝛤 = 1)  437.80 1721.07 2525.22 600 1037.80 
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6. Conclusions 

This paper establishes the use of a SOCP convex relaxation of the power flow equations for 
optimal placement of energy systems in an MV distribution network. The algorithm proposed in this 
paper can be used to analyze the economic viability in comparison to investment and operational 
costs. The application of robust optimization and having the flexibility to modulate the budget of 
uncertainty helps to find a balance among the factors of economic efficiency and conservatism. The 
use of this kind of flexibility also assisted in considering additional scenarios other than the worst-
case scenarios that most robust optimization problems account for. By considering the worst-case 
scenario only, such problems do not provide an optimal solution. Rather, they offer only conservative 
solutions that could be impractical. However, the analytical reformulation technique helped to find 
the robust equivalent of the original problem that was solved with less computational encumbrance 
using CPLEX solver. 

As planning includes a limited financial budget and resources, this study affords a 
comprehensive approach, which is a consideration of different situations (budget of uncertainty). 
Furthermore, the use of this innovative algorithm leads to understanding of the benefits of grid-
connected storage devices in distribution systems and the consideration of uncertainties into the 
planning phase. 

In future works, the implementation of the HV/MV transformer model will be improved. 
Moreover, the reactive power provision from storage will be considered in the future model. A term 
that takes into account the depreciation of the ESSs due to their use will be included. 
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Appendix A 

Nomenclature 

𝒄𝑬, 𝒄𝑷 
Specific costs of energy storage in terms of energy and rated power, 
respectively 𝑐ாே Energy price in the wholesale market 𝐶௡஼஺௉ா௑_ாௌௌ Storage investment cost (CAPEX, capital expenditures) at node n 𝐶௡஼ு௉௖ 
Cost of curtailing combined heat and power (CHP) power generation at 
node n 𝐶௡௉௅ௌ Cost of peak load shaving at node n 𝐶௡ோாௌ௖ Cost of renewable energy curtailment at node n 

F Fuel cost for biomass CHP plant 𝐼௠௡(𝑡) Current flows in the branch from m-th to the n-th bus at the time interval t 𝐾ௌ Capital recovery factor 𝑃𝐷௡(𝑡), 𝑄𝐷௡(𝑡) 
Active and reactive power demand of the loads at node n during the time 
interval t, respectively 𝑃௠௡(𝑡), 𝑄௠௡(𝑡) Active and reactive power flows in the branch from m-th to the n-th bus at 
the time interval t, respectively 𝑃௡௖(𝑡), 𝑃௡ௗ(𝑡) 
Charging and discharging power of storage at node n during the time 
interval t, respectively 𝑃௡௖,௠௔௫(𝑡), 𝑃௡ௗ,௠௔௫(𝑡) 
Maximum and minimum limits of charging and discharging power of 
storage at node n during the time interval t, respectively 
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𝑃௡஼ு௉(𝑡), 𝑄௡஼ு௉(𝑡) 
Expected active and reactive power production of CHP at node n during 
the time interval t, respectively 𝑃௡௚(𝑡), 𝑄௡௚(𝑡) 
Active and reactive power provided by the upstream connections at node 
n during the time interval t, respectively 𝑃௡௉௅ௌ(𝑡) Power related to the peak load shaving at node n during the time interval t 𝑃௡ோாௌ௖(𝑡) 
Amount of renewable power curtailment at node n during the time 
interval t 𝑃௡ோாௌ(𝑡), 𝑄௡ோாௌ(𝑡) 
Expected active and reactive power production of renewables at node n 
during the time interval t, respectively 𝑃௡௠௔௫ோாௌ௖/஼ு௉௖ 
Upper bound of active power curtailment of renewables and CHP at node 
n  𝑃௡௠௜௡ ோாௌ௖/஼ு௉௖ 
Lower bound of active power curtailment of renewables and CHP at node 
n 𝑃௡௣௩(𝑡)෫ , 𝑃௡௪ప௡ௗ(𝑡)෫ , 𝑃𝐷௡(𝑡) 
Bounded variables of PV, wind and power demand of loads at node n 
during time interval t, respectively ∆𝑃௡௣௩(𝑡)෫ , ∆𝑃௡௪ప௡ௗ(𝑡)෫ , ∆𝑃𝐷௡(𝑡)  ෫  
Deviation from expected power value of PV, wind and power demand of 
loads at node n during time interval t, respectively 𝑄௡௠௜௡ ோாௌ௖/஼ு௉௖ 
Lower bound of reactive power curtailment of renewables and CHP at 
node n 𝑄௡௠௔௫ ோாௌ௖/஼ு௉௖ 
Upper bound of reactive power curtailment of renewables and CHP at 
node n 𝑅௠௡ Resistance of the mn-th branch  𝑆௟(𝑡) Thermal capacity of the line at time interval t 𝑆𝑂𝐶௡(𝑡) State of the charge of storage unit at node n during the time interval t 𝑆𝐶௡ The storage investment cost 𝑉௠௔௫, 𝑉௠௜௡ Maximum and minimum voltage limits, respectively   𝑋௠௡ Reactance of the mn-th branch  𝛼௡௖ (𝑡), 𝛼௡ௗ(𝑡) 
Binary variables for charging and discharging of storage at node n during 
the time interval t, respectively 𝛱஽ା(𝑡)𝛱஽ି (𝑡), 𝛱௣௩ା (𝑡), 𝛱௣௩ି(𝑡) Dual variables of load and PV at the time interval t 𝛱௪௜௡ௗା (𝑡), 𝛱௪௜௡ௗି (𝑡) Dual variables of wind at the time interval t ɳ௖, ɳௗ Charging and discharging efficiency of storage, respectively 𝜉஽௨௕(𝑡), 𝜉஽௟௕(𝑡), 𝜉௣௩௨௕(𝑡), 𝜉௣௩௟௕ (𝑡) Scaled deviations from the random electric loads and PV at the time 
interval t 𝜉௪௜௡ௗ௨௕ (𝑡), 𝜉௪௜௡ௗ௟௕ (𝑡) 
Scaled deviations from the random wind power generation at the time 
interval t 𝛤௜ The budget of uncertainty of the uncertain parameter i  
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