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Abstract

Focal dystonia is a movement disorder characterized by involuntary muscle
contractions that determine abnormal postures. The traditional hypothesis
that the pathophysiology of focal dystonia entails a single structural
dysfunction (i.e. basal ganglia) has recently come under scrutiny. The
proposed network disorder model implies that focal dystonias arise from
aberrant communication between various brain areas. Based on findings
from animal studies, the role of the cerebellum has attracted increased
interest in the last few years. Moreover, it has been increasingly reported
that focal dystonias also include nonmotor disturbances, including sensory
processing abnormalities, which have begun to attract attention. Current
evidence from neurophysiological and neuroimaging investigations
suggests that cerebellar involvement in the network and mechanisms
underlying sensory abnormalities may have a role in determining the clinical
heterogeneity of focal dystonias.
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Introduction

Dystonia is a disorder characterized by excessive and sus-
tained muscle contractions that cause abnormal postures and
involuntary movements that can be twisting, repetitive, or
tremulous. It is often initiated or worsened by voluntary action
and is associated with an overflow of muscle activity'~.

Idiopathic adult-onset dystonia, the most common form of
dystonia, has variable clinical expression, though it often has
a focal onset such as blepharospasm (BSP), oromandibular
dystonia, cervical dystonia (CD), laryngeal dystonia, or arm
dystonia'~~. In adulthood, the lower limb has rarely been
observed as a site of dystonia’.

The demographic and clinical characteristics of adult-onset
focal dystonias are now well established. Dystonias in the
craniocervical area are more common in women, whereas occu-
pational limb cramps are more common in men’. Adult-onset
dystonia has a limited tendency to spread to adjacent body
regions'—, which likely depends on the site and age of dys-
tonia onset and on genetic factors’®. Focal dystonias may be
associated with rest/postural tremor in the head or upper limbs”'’.

In addition to motor signs, patients with adult-onset dystonia may
also have a spectrum of nonmotor symptoms, including psychi-
atric manifestations (namely depression, anxiety, and obsessive
compulsive traits)'’, mild disturbances in executive functions'’,
and sensory symptoms'”’. In patients with BSP, sensory symp-
toms may include a burning, gritty sensation in the eye, dry
eye, and photophobia, which may develop months or years
before BSP onset. In patients with CD, dystonic move-
ments are often associated with neck pain that contributes
significantly to patient disability and a low quality of life. The
overall burden of nonmotor symptoms may vary in different
patients with focal dystonia'®. All types of focal dystonia can be
specifically relieved by sensory tricks, which are self-acquired
maneuvers that transiently improve focal dystonia in a
consistent proportion of patients'>'°.

In an early paper, Marsden et al.'” suggested that the basal gan-
glia play an important pathophysiological role in adult-onset
focal dystonia. Indeed, early lesional studies showed that struc-
tural lesions in the basal ganglia determine dystonia (and not
only focal forms) in contralateral body parts'”~’. Since basal
ganglia determine motor command in goal-directed motor
learning (i.e. facilitate the desired motor output and con-
comitantly inhibit unnecessary motor output), basal ganglia
dysfunction may conceivably determine abnormal motor com-
mand. Moreover, it was also observed that oscillatory activity
of the globus pallidus internus (GPi) at a frequency of <12 Hz
contributes to dystonic motor symptoms’'~* and that deep brain
stimulation (DBS) of the GPi improved dystonia~*".

Earlier neurophysiological studies demonstrated reduced inhi-
bition at the level of the primary motor cortex, brainstem,
and spinal cord'**’=, abnormal plasticity mechanisms in the
cortical motor areas, and abnormal sensory integration”".
Likewise, magnetic resonance imaging (MRI) studies showed
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gray matter volume differences in several cortical/subcortical
regions in patients with different focal dystonias. However, owing
to the wide array of connections between the basal ganglia and
several brain areas, these changes were generally interpreted
as consequences of a primary basal ganglia dysfunction.

The assertation that focal dystonia is exclusively the result of
basal ganglia dysfunction has recently been challenged by the
remarkable clinical heterogeneity of the motor and nonmotor
manifestations characterizing the different forms of adult-onset
focal dystonias, as well as by lesion studies demonstrating
that secondary focal dystonia is related to structural lesions in
various sites in the nervous system, such as the basal
ganglia, thalamus, and cerebellum®~". It has therefore been pro-
posed that dystonia may not be due to a lesion or an abnormal
function of only one structure, namely the basal ganglia, but
rather may be due to dysfunctional mechanisms in other brain
areas, either concomitantly with or secondary to altered basal
ganglia influence, that contribute to the pathophysiology of the
condition. This may be particularly true for CD. Animal mod-
els of reversible dystonia induced by means of muscimol
inactivation have suggested a dysfunction of a circuit includ-
ing mesencephalic reticular formation neurons, cerebellum,
tectum, and the basal ganglia, known to play a fundamental
role in control of eye, head, and coordinated eye and head
movements**~. The dysfunction, however, may not be pri-
mary in these regions but rather reflect an abnormal activity
originating in other structures providing feedback to the
network such as the cerebellum. In this vein of thought, the role
of the cerebellum in the pathophysiology of focal dystonias has
attracted great interest in the last decade*.

In this paper, we provide a comprehensive overview of the new
findings from recent neurophysiological and neuroimaging
investigations regarding the pathophysiology of adult-onset
dystonia and highlight the remaining knowledge gaps in
the understanding of this condition.

Recent evidence from neurophysiological
investigations

In recent years, neurophysiological investigations have
largely focused on the pathophysiological mechanisms link-
ing the hypothesized basal ganglia dysfunction to the activity
of distant sites and the mechanisms underlying sensory abnor-
malities in focal dystonias, specifically altered temporal
discrimination of sensory stimuli and pain (Table 1).

Using scalp EEG recordings in dystonia patients implanted with
DBS electrodes in the GPi and subthalamic nucleus, Miocinovic
et al.”’ demonstrated that chronic DBS reduces exaggerated
alpha oscillations and alpha band interhemispheric coherence
in the motor cortex, thus confirming that clinical improvement
with  GPi-DBS reflects DBS-induced direct suppression
of abnormal oscillatory activity in the motor cortex’**,

Sedov et al. recently recorded single unit neural responses and

local field potentials from the GPi in CD patients undergoing
DBS surgery. Firing rate and discharge pattern of the GPi
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Table 1. Recent neurophysiological abnormalities in focal dystonias.

Neural
structure

Cerebellum

Sensory system

Function

Eye blink
classical
conditioning

Feedforward adaptation

Somatosensory

temporal discrimination
threshold

Quantitative sensory
testing

Laser evoked potentials

Conditioned pain

Patients

CD with and without
tremor

CD with and without
tremor

CD

CD, upper limb dystonia,
generalized dystonia

CD, BSP
CD, BSP

Main findings

Altered only in patients with tremor

Altered only in patients with tremor

Increased values correlate with high-frequency
oscillations and paired somatosensory evoked
potentials inhibition

Reduced cold and hot detection threshold

Normal N2/P2 amplitude

Reduced conditioned pain modulation response as

modulation protocol

BSP, blepharospasm; CD, cervical dystonia

were asymmetric in patients with torticollis. Neuronal asym-
metry correlated with the degree of involuntary head turning.
Sedov et al. concluded that asymmetric pallidal activity results
in asymmetric feedback to the mesencephalic neural integra-
tor causing dysfunction in the network integrating eye and head
coordinated movement'*-".

Studies using animal models of dystonia, however, also
showed that cerebellar output alters basal ganglia activity and
determines dystonic postures’ . The observation that muta-
tions in THAPI and KMT2B genes, highly expressed in the
cerebellum, can induce generalized dystonia further supports
the cerebellum’s role in the pathophysiology of dystonia™*. In
humans, cerebellar involvement in dystonia pathophysi-
ology has recently been tested using eye blink classic
conditioning (EBCC) and motor learning paradigms involving
adaptation mechanisms. EBCC consists of a Pavlovian learning
protocol integrated at the level of Purkinje cells and deep cerebel-
lar nuclei. Some authors have shown that EBCC is impaired in
patients with idiopathic focal hand dystonia and CD*. Con-
versely, adaptation learning, which tests the predictive ability
to adjust motor execution after a perturbation, has been found
to be normal in patients with CD’%. The contrasting find-
ings obtained by these two neurophysiological tests tentatively
exclude a global cerebellar dysfunction in dystonic patients.
Since patients with dystonia, specifically those with CD, often
have concomitant tremor, some authors have investigated whether
the presence of tremor may be the clinical feature reflecting
cerebellar involvement. Hence, in studying CD patients with
and without tremor, Antelmi et al.”” observed that patients
with dystonic tremor showed a decreased number of condi-
tioned responses in the EBCC paradigm as compared to healthy
controls and dystonic patients without tremor. Similarly, when
investigating anticipatory movement control during a bimanual
task, Avanzino et al’® found that adaptation of anticipatory
adjustment was altered in patients with CD and tremor but
not in CD patients without tremor and healthy subjects. These

compared to patients with BSP and healthy subjects

observations therefore suggest that cerebellar dysfunction more
likely determines tremor than dystonia. Nonetheless, since most
neurophysiological investigations testing the cerebellar hypoth-
esis were conducted in patients with CD, further investigations
should also assess whether this conclusion also applies to
other types of focal dystonia.

Earlier studies tested the sensory system in dystonic patients
by assessing somatosensory-evoked potentials (SEPs), elec-
trical potentials generated in sensory pathways at peripheral,
spinal, subcortical, and cortical levels of the nervous system®.
In healthy subjects, the SEP amplitude obtained by stimu-
lating two adjacent nerves simultaneously is smaller than
that obtained by stimulating a single nerve due to inhibitory
mechanisms®~*. In dystonic patients with upper limb involve-
ment, some authors have reported impaired suppression of
SEPs at the spinal, brainstem, and cortical levels after mixed
stimulation of the median and ulnar nerves®‘’, thus imply-
ing reduced inhibition at multiple levels of the sensory system.
Supporting this hypothesis, several studies on patients with
various forms of focal dystonia have reported increased tem-
poral discrimination thresholds (STDTs), the interval needed
to discriminate two consecutively applied stimuli’*6%%,
Recently, Antelmi et al.”’ recorded the high-frequency potential
oscillations (HFOs) related to SEPs in order to understand
the mechanisms responsible for altered STDT in dystonia
and found that patients with CD had a reduced area of the
early component of HFOs and reduced paired SEP inhibition
that correlated with increased STDT values. Since HFOs are
generated by the activity of a population of 3b cortical inhibi-
tory interneurons that receive thalamo-cortical inputs’', the
authors concluded that impaired temporal discrimination in
dystonia arises from defective inhibitory mechanisms in the
primary somatosensory cortex.

As regards pain, there is some evidence from quantitative
sensory testing that the thermal detection threshold and pain
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sensitivity are abnormal in patients with dystonia™’*. Though an
earlier investigation’ showed, and a recent study confirmed®,
that nociceptive pathways are normal, as tested by laser-evoked
potentials in patients with CD, Tinazzi et al.”” recently investi-
gated whether pain arises from dysfunction of regulatory path-
ways of nociceptive transmission. To this aim, the authors
applied a protocol, termed the conditioned pain modulation
protocol, to test descending inhibitory control on nociceptive
neurotransmission. This protocol consists of delivering a pain-
ful conditioning stimulus alongside another experimentally
induced painful test stimulus. The ratio of the laser evoked N2/P2
potential amplitude during the application of the heterotopic
noxious conditioning stimulation, as compared to baseline,
reflects the physiological reduction of the perceived condi-
tioned stimulus. The authors found that patients with CD have
a reduced conditioned pain modulation response as compared
to patients with BSP and healthy subjects and concluded that
the endogenous inhibitory pain system is primarily defective
in CD. Although this abnormality was present regardless of the
presence of pain in these patients, it is likely that this alteration
makes patients with CD more susceptible to developing pain.
In addition, the evidence that this response is normal in patients
with BSP implies that the two types of focal dystonia may
differ in their pathophysiological mechanisms’.

Recent evidence from neuroimaging techniques
The introduction of functional neuroimaging investigations has
allowed investigators to view changes in the functional activity
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of various brain areas in dystonia (Table 2). Changes in the
blood oxygen level-dependent (BOLD) signal, measured
while patients perform a task (task-based fMRI) or during
resting conditions (resting state fMRI), allow the functional
activity and connectivity of different brain areas to be
evaluated’*””. Motor tasks such as hand movements, writing,
playing instruments, and blinking are the most common tasks
that have been used in dystonia. Sensory and motor task-related
fMRI studies first showed an abnormal activation of the pri-
mary sensory and motor cortices, secondary motor cortex,
basal ganglia, and the cerebellum that were consistent across
different dystonia phenotypes® . Changes were detected
while patients with dystonia performed tasks with and without
dystonia induced by the movement itself and also when the
tasks involved clinically unaffected body regions®*. Altered
sensory  processing and abnormal somatotopic  sensory
organization in the basal ganglia and sensory cortex were
also found, most consistently in the hand area of the primary
somatosensory cortex*-*?. Dysfunction was also detected during
motor preparation and motor imagery*.

In the last three years, task-related fMRI studies have aimed
to test the involvement of the cerebellum in focal dystonia and
to identify functional correlates of altered sensory processing.
In patients with CD, isometric head rotation in the direction of
dystonic head rotation was associated with an increased acti-
vation of the ipsilateral anterior cerebellum, whereas isomet-
ric head rotation in the opposite direction was associated with

Table 2. Recent neuroimaging abnormalities in focal dystonias.

MRI technique Function/analysis Patients Main findings
Task-related fMRI Head rotation CD Increased activation of the ipsilateral anterior cerebellum
and sensorimotor cortex depending on the direction of head
rotation
Hand force task CD Increased activity of the cerebellum and decreased
functional activity of the somatosensory cortex
Visuospatial task CD Reduced activation of the cerebellum associated with a
reduced connectivity of the cerebellum with basal ganglia
and the motor cortex, and a reduced activation of temporal,
premotor, and parietal associative areas
Transient finger pressure WC Decreased activation of the sensorimotor network
Visual looming stimuli CD Reduced superior collicular activation
Resting state fMRI Independent component analysis BSP Abnormalities in sensory—motor network, frontoparietal
network, salience network, default-mode network
Intraregional brain activities BSP Abnormalities in both intraregional and interregional
and interregional functional functional connectivities, abnormal functional connectivity
connectivities between the right caudate and left striatum and right
supplementary motor area
Graph theoretical analysis BSP, CD, Large-scale alteration of network architecture
WC, LD
Diffusion tensor MRl FA, MD BSP, CD, LD Structural alterations distinguish between focal dystonia

phenotypes

BSP, blepharospasm; CD, cervical dystonia; FA, fractional anisotropy; fMRI, functional magnetic resonance imaging; LD, laryngeal dystonia; MD, mean

diffusivity; WC, writer's cramp.
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increased sensorimotor cortex activity”’. In another study in
CD patients performing a hand force task, symptom sever-
ity was associated with increased activity of the cerebellum and
decreased functional activity of the somatosensory cortex”.
Using a visuospatial task, Filip er al.”' found a reduced activation
of the cerebellum associated with a reduced connectiv-
ity of the cerebellum with basal ganglia and the motor cortex,
and a reduced activation of temporal, premotor, and parietal
associative areas.

As regards sensory processing, temporal discrimination
deficits corresponded to disrupted superior collicular activity
during looming stimuli in patients with CD*”. In writer’s cramp,
the sensory processing of stimulation sequences (transient
finger pressure) before the execution of a motor task revealed
widespread decreased activation of the sensorimotor network,
suggesting defective sensory processing during motor planning in
these patients™.

In conclusion, recent evidence with fMRI has shown that the
cerebellum is involved in altered connectivity and has identi-
fied functional correlates of altered sensory processing. How-
ever, since dystonic symptoms often worsen or are triggered
by motor task execution, a relevant issue with task-related
fMRI findings is that they are unable to determine whether
functional abnormalities are causes or consequences of dys-
tonic motor disturbances. Similarly, the cerebellar involve-
ment in the abnormal connectivity can be either primary or
compensatory. Studies in unaffected carriers of dystonia-
related mutations and unaffected relatives of dystonic patients
may help clarify this important issue.

Using resting-state fMRI with independent component analy-
sis (ICA)"* in patients with BSP, Huang et al.'" observed
alterations in multiple neural networks including the
sensory—motor network (decreased connectivity involving the
bilateral primary sensorimotor cortex, supplementary motor
area, right premotor cortex, bilateral precuneus, and left supe-
rior parietal cortex), the right frontoparietal network (decreased
connections in the middle frontal gyrus, dorsal lateral prefron-
tal cortex, and inferior frontal gyrus), and the salience network
(increased connectivity in the left superior frontal gyrus and
middle frontal gyrus). Abnormalities in regions of the default
mode network and sensory integration network have been
reported in patients with BSP'’'. Further confirmation of an
abnormal functional connectivity between the right caudate
and left striatum and right supplementary motor area correlat-
ing with BSP severity comes from the study by Ni er al.'”.
In embouchure dystonia, changes in resting state connectiv-
ity were found in sensorimotor and auditory areas and in
the cerebellum'”. Abnormalities in both intraregional brain
activities and interregional functional connectivity were also
described in patients with CD'*. Functional changes extensively
involved both cortical and subcortical structures, and common
alterations of the two measures were identified bilaterally in
the postcentral gyrus as well as in the basal ganglia and tha-
lamus. Overall, the above-cited findings with resting-state
MRI have shown that in patients with focal dystonias altered
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connectivity in various brain networks is present independently
from the execution of specific sensorimotor tasks, related or not to
dystonia. Using both graph theoretical analysis’™***'*-'% and
ICA, Battistella er al.'” compared patients with task-specific
(eight spasmodic dysphonia and seven writer’s cramp patients)
and non-task-specific dystonia (nine CD and nine BSP patients)
and found that every patient exhibited unusually expanded
or minimized neural communities. In addition, patients
with task-specific dystonia had substantial connectivity altera-
tions in the primary sensorimotor and inferior cortices and abnor-
mally formed hubs in the insula and superior temporal cortex, as
compared to patients without task-specific dystonia'”. Results
from graft theory analysis, therefore, suggest a large-scale alter-
ation of network architecture in focal dystonia, with distin-
guishing features between task-specific and non-task-specific
dystonia.

Earlier diffusion tensor imaging (DTI)""''*-'"> studies showed
microstructural alterations in the fiber tracts connecting the
brainstem nuclei, basal ganglia, thalamus, cerebellum, motor
cortex, and sensory cortex, and in the white matter (WM) of
limbic, occipital, and prefrontal cortices in different forms of
focal dystonia’''*!"*_ In recent years, Berman et al.'” used DTI
in patients with BSP and CD to show that there are focal altera-
tions in various brain structures that are specific to the two forms
of focal dystonia (i.e. GPi, subthalamic, and red nuclei in BSP
versus the caudate nucleus and cerebellum in CD). Consistent
with the hypothesis that specific focal alterations may distinguish
between focal dystonia phenotypes, Bianchi et al.''® observed
that spasmodic dysphonia phenotypes may be distinguished
on the basis of focal structural abnormalities in the areas of
motor control of speech production and auditory—motor inte-
gration, whereas spasmodic dysphonia genotypes were asso-
ciated with structural changes in higher-order extra-Sylvian
regions and their connecting pathways. Similarly, differences
in structural integrity have been reported by Kirke er al.'' in
patients with spasmodic dysphonia, both with and without
tremor. Compared to patients with spasmodic dysphonia without
tremor, patients with spasmodic dysphonia and tremor
exhibited a greater extent of WM changes in the right
posterior limb of the internal capsule at the junction of the
corticospinal/corticopontine  tracts and superior thalamic
radiation'”.

Finally, Corp et al.’’ used an MRI technique termed “lesion net-
work mapping” from connectome data of a large cohort of
healthy subjects to test whether lesions causing CD belong
to a common brain network. However, the authors found that
patients with CD had heterogeneous lesion sites (basal gan-
glia, brainstem, and cerebellum) that all belonged to a single
functionally connected brain network.

Conclusion

For a long time, the pathophysiology of adult-onset focal
dystonia has been thought to involve, uniquely, a basal ganglia
disturbance. However, accumulating evidence in recent years
now points to the anatomical and functional involvement of
several brain regions. Recent findings have demonstrated an
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association between acquired focal dystonia and lesions in
various brain regions, including the cortex, the basal ganglia, tha-
lamus, brainstem, and cerebellum. Convincing evidence from
both neurophysiological and neuroimaging investigations sup-
ports the hypothesis that the cerebellum intervenes in the patho-
physiology of dystonia. However, although it is widely accepted
that abnormal cerebellar output may determine tremor in
dystonia, it is still unclear whether the cerebellum is the pri-
mary node where aberrant communication arises. Moreover,
it is also unclear whether the cerebellum plays a substantial
role in all forms of focal dystonia or only in CD.

The neurophysiological reports of impaired sensory and motor
inhibition at multiple levels of the central nervous system (con-
tributing to altered tactile temporal discrimination as well as to
motor manifestations) may well reflect not only a direct basal
ganglia disturbance but also disturbances in the activity of basal
ganglia-thalamo-cortical and cerebello-thalamo-cortical  pro-
jections. Pain in CD patients, likely due to impaired descend-
ing regulatory mechanisms of nociceptive transmission, implies
an additional dysfunctional network in this form of focal dystonia.
In summary, recent neurophysiological and neuroimaging studies
demonstrate that focal dystonias involve disordered communica-
tion among several brain networks, in which basal ganglia and,
possibly, the cerebellum act as entraining structures. Although
different forms of focal dystonia all share alterations in neural
structures belonging to the basal ganglia-thalamo-sensorimotor
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cortical network, specific clinical dystonic features may
also emerge because of characteristic neural signatures in
specific networks.

Finally, increased attention is now directed towards the remark-
able clinical heterogeneity of motor manifestations and the
variable occurrence of sensory, psychiatric, and executive func-
tion disturbances. The heterogeneous clinical features together
with the neurophysiological and neuroimaging advances
support the trend towards “splitting” focal dystonias, insofar
as, taken to the extreme, each focal dystonia is unique to each
patient.
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