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ABSTRACT 

DNA methylation alterations are frequent early events in cancer. A global loss of DNA methylation 

and a focal hypermethylation of CpG islands (CGIs), mostly located at gene promoter regions, occur 

in cancer cells. Cancer DNA methylation changes present several features making them potential 

biomarkers for different applications, such as cancer risk definition, early tumour detection, tumours 

stratification, prognosis, prediction of therapy response and monitoring of disease evolution including 

early detection of tumour recurrence. Methylation alterations can be also trace in cell-free circulating 

tumour DNA, allowing their detection in non-invasive matrices such as urine, stool, serum or plasma.  

Although several studies have been focused on the identification of methylation-based biomarkers, 

very few of them have been introduced in clinical practice. Therefore, biomarkers of proven clinical 

utility that can support or even replace the current diagnostic methods of many cancers consisting in 

invasive procedures, such as tumour biopsy, are still lacking. 

DNA methylation alterations are associated with changes in gene expression patterns but the 

relationship between these two mechanisms is still not clear and needs to be elucidated. In fact, while 

promoter hypermethylation of some genes, defined as tumour suppressor genes, is associated to gene 

downregulation, the majority of genes targeted for DNA methylation in cancer are genes expressed 

at background or very low levels in the normal tissues from which tumours originate. In this last case, 

some studies have not found a decrease in gene expression levels, while others have detected a further 

gene downregulation. Moreover, while hypermethylation of promoter-associated CGIs is usually 

associated with gene downregulation, hypermethylation of CGIs located at gene bodies have been 

either negatively or positively associated with gene expression.  

Moreover, since DNA methylation is a reversible epigenetic change, it represents a potential cancer 

therapeutic target. In fact, methylation status can be edited and reverted to a DNA methylation pattern 

characteristic of normal cells, possibly restoring a normal cell phenotype.  

This thesis project aims to identify new potential methylation-based biomarkers in different cancers, 

to investigate the association between methylation and gene expression and to test the application of 

CRISPR-dCas9 tool for targeted-methylation editing.  

A genome-wide approach for the selection of the most informative biomarkers have been employed 

in all the tumours analysed, including two solid cancers, colorectal cancer (CRC) and biliary tract 

cancer (BTC) and one blood cancer, chronic lymphocytic leukaemia (CLL). Potential methylation 

biomarkers have been identified in all the cancers analysed and validated in publicly available 

datasets.  

In colorectal cancer, the potential utility of two selected methylation alterations for CRC detection 

through non-invasive methods has been demonstrated.  



In chronic lymphocytic leukemia, methylation of a CGI located in the gene body of SHANK1 has 

been proposed as a biomarker for prediction of the disease years prior diagnosis, CLL diagnosis and 

prognosis.  

Finally, specific-BTC methylation alterations showing high specificity and sensitivity have been 

identified in the BTC study.  

The analysis of different types of cancer has allowed to discover that methylation alterations of CGIs 

associated with protocadherin (PCDH) gene cluster are frequent common events in different solid 

tumours but not in CLL.  

Gene expression analyses have confirmed a negative correlation between hypermethylation and gene 

expression, also for the SHANK1-associated CGIs located in the gene body. Moreover, our results 

showed that normally low-expressed genes that are hypermethylated in cancer are further 

downregulated. 

Finally, preliminary results of CRISPR-dCas9 tool confirmed its utility for targeted methylation 

editing and its possible use as a cancer therapeutic strategy. 
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1. INTRODUCTION 

1.1 DNA methylation 

DNA methylation is a covalent modification of cytosines consisting in the addition of a methyl group 

to the fifth carbon atom of the pyrimidine ring leading to 5-methylcytosine (5mC). This modification 

predominantly occurs in the context of CpG dinucleotides defined as CpG sites. CpG density shows 

a bimodal distribution within the genome: high CpG density regions, termed as CpG islands (CGIs), 

usually overlap transcription start sites (TSSs), while the rest of the genome shows low CpG density.  

DNA methylation is a reversible process regulated by several proteins that write and erase DNA 

methylation patterns. Two DNA methyltransferases (DNMTs), DNMT3A and DNMT3B, are 

responsible for de novo DNA methylation, while DNMT1 needs a hemimethylated DNA and copies 

methylation patterns of the parental strand onto the newly synthetized strand during DNA replication. 

In the absence of a functional DNA methylation maintenance system, passive de-methylation during 

replication occurs. Active DNA de-methylation, consisting in the removal of methyl groups, is 

mediated by enzymes belonging to Ten-eleven translocation (TET) family. These enzymes oxidize 

5mC to 5-hydroximethylcitosine (5hmC) and then 5hmC to 5-formylcytosine and 5-carboxylcytosine 

(Ito et al., 2011). 

DNA methylation patterns of a new organism are established during development. In fact, after 

embryo implantation, DNA methylation patterns from gametes are erased and de novo methylation 

occurs at almost all CpG sites in the genome except for promoter-associated CGIs. Seventy-five 

percent of promoters are within CGIs (Bestor et al., 2015). These CGIs are somehow protected from 

DNA methylation, probably by the presence at these sites of the transcription machinery, H3K4 

methyltransferases and MLL proteins (Smith and Meissner, 2013). The established bimodal DNA 

methylation pattern is maintained throughout all the subsequent cell divisions by DNMT1. During 

organogenesis, some genes become methylated in particular cell types or at particular developmental 

stages while others are de-methylated. The establishment of these patterns is finely regulated by 

proteins able to recruit DNMT and TET enzymes and are maintained for the whole organism life. 

Moreover, a stochastic process slowly alters the basal methylation pattern and the rate of methylation 

changes increases in function of age (Maegawa et al., 2010).  

1.2 DNA methylation and gene expression 

Epigenetic modifications, including DNA methylation, regulate gene expression profiles in different 

cell types and tissues. 

Depending on the context where DNA methylation occurs, it affects gene expression in different 

ways. Methylation of intergenic and repetitive regions of the genome ensures repression of 

transposable elements that can have deleterious effects if activated. On the other hand, CGIs, 
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especially those associated with promoters of housekeeping genes, are normally not methylated. 

Unmethylated CGIs allow DNA accessibility and favor transcription factors binding, thus promoting 

gene expression.  

CGIs methylation has been linked to stable silencing of gene expression. Some emblematic examples 

are genes located on the inactivate X-chromosome (Xi), imprinted genes and genes expressed in 

germinal cells that must be repressed in somatic cells. In the ‘80s, promoter-centric studies have 

investigated the correlation between methylation and gene expression, finding that promoter 

hypermethylation is associated to a decreased gene expression (Challen et al., 2012). These results 

contributed to the definition of the dogma associating CGIs hypermethylation with gene repression. 

However, the development of technologies to study genome-wide methylation patterns, have 

demonstrated that the relationship between methylation and gene expression is more complex. In fact, 

it can be expected that if methylation was linked to gene repression, promoter-associated CGIs would 

have to be methylated in a tissue specific manner. On the contrary, promoter-associated CGIs are 

rarely methylated and although decreased expression of some genes is associated with DNA 

methylation, the timing of CGIs methylation in respect to gene repression is not clear (Jones, 2012). 

The first theories suggested that DNA methylation directly induces gene silencing (Holliday and 

Pugh, 1975; Riggs, 1975). Recent studies have questioned these theories demonstrating that a 

transient reduction of gene expression induces the activation of silencing pathways involving firstly 

histone modifications and DNA methylation only in a second step (Oyer et al., 2009). Therefore, 

DNA methylation seems unnecessary to induce gene repression, but important to stabilize and 

maintain a transcriptional inactive state. The function of DNA methylation as a “lock” for gene 

repression, was already highlighted for genes located on Xi. In fact, Lock et al. showed that Hprt 

gene methylation occurs only after X-chromosome inactivation (Lock et al., 1987). The transcription 

factor Oct3/4 is also silenced before being methylated during differentiation and hypermethylation 

seems to have a role in its stable repression (Feldman et al., 2006). 

This “locking” model has been put into discussion by the finding that Dnmt3A is fundamental for 

hematopoietic stem cell (HSC) differentiation suggesting that it is involved in the epigenetic silencing 

of HSC regulatory genes (Challen et al., 2012). 

However, the finding that the majority of genes targeted by DNA methylation in cancer cells are 

genes already repressed by Polycomb complex, adds support to the idea that methylation occurs after 

gene inactivation (Schlesinger et al., 2007; Gal-Yam et al., 2008). 

Moreover, it has been demonstrated that cells expressing a catalytically inactive form of DNMT, 

DNMT3L, require the formation of a nucleosome, which is normally not present at active TSS, to 

recruit DNMT3A and de novo methylate DNA (Ooi et al., 2007). These nucleosomes flanking TSS 



 3 

must not contain histone marks associated with active transcription such as H3K4me2 or H3K4me3 

to allow DNA methylation.  

Gene bodies are CpG-poor regions but are usually methylated in a tissue-specific fashion. It has been 

demonstrated that methylation of these intragenic CGIs does not block transcript elongation, but it is 

rather positively associated with gene expression. In fact, nucleosomes bearing H3K36me3 mark, 

associated with transcript elongation, recruit DNMTs promoting methylation of intragenic CGIs 

(Hahn et al., 2011). The role of intragenic methylation is still not clear, but it appears to have a role 

in several molecular processes such as alternative splicing (Shukla et al., 2011), expression of non-

coding RNA (Saito et al., 2006; Lujambio et al., 2007) and transposable elements (Saied et al., 2012), 

regulation of intragenic alternative promoters (Maunakea et al., 2010) and intragenic enhancer 

activation (Schmidl et al., 2009). 

In contrast to methylation of promoter-associated CGIs, which is linked to a decrease in gene 

expression, methylation of intragenic CGIs can be either be positively and negatively associated with 

gene expression. 

Therefore, the correlation between methylation and gene expression changes is more complex than 

initially thought and the role of methylation in the regulation of gene expression must still be 

elucidated. 

1.3 DNA methylation changes in cancer 

Cancer cells undergo a series of early epigenetic alterations, including a dramatic change in DNA 

methylation patterns. A global loss of DNA methylation (hypomethylation) occurs and promoter-

associated CGIs, which are usually unmethylated, are targeted for de novo methylation (focal 

hypermethylation) (Figure 1).  

 

Figure 1. Changes in DNA methylation patterns in cancer 

Figure from (Reddington et al., 2014) 
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1.3.1 Global hypomethylation 

A cancer methylome is characterized by a wide hypomethylation, affecting intergenic regions 

including repetitive and transposable elements, gene deserts, introns and CpG-poor promoters. Loss 

of DNA methylation may be linked to re-activation of retrotransposons, repeats and oncogenes. 

Activation of repeats and retrotransposon may lead to chromosomal rearrangements and thus to 

genomic instability, one of the tumour hallmarks (Jones and Baylin, 2007).  

DNA hypomethylation is not restricted to retrotransposons. In fact, whole genome bisulfite 

sequencing technologies have revealed that it is actually concentrated in genomic blocks larger from 

28kb to 10Mb (Hansen et al., 2011; Berman et al., 2012; Hon et al., 2012). In normal embryonic stem 

(ES) and differentiated cells, these large genomic domains, termed as partially methylated domains, 

are heavily methylated (about 80% methylation) across different tissue types. In cancer, these 

genomic blocks lose about 20-40% of methylation, leading to hypomethylated domains(Hansen et 

al., 2011; Berman et al., 2012; Bert et al., 2013), usually overlapping with lamina-associated domains 

at nuclear periphery (Berman et al., 2012; Timp and Feinberg, 2013). 

Although the exact mechanism by which DNA methylation is lost in cancer cells has not been fully 

elucidated, it can be consequent to deregulated activation of TETs or partial loss of function of 

DNMTs.  

1.3.2 Focal hypermethylation  

Aberrant methylation of CGIs within gene promoters is the other feature of a cancer methylome. 

Two models explain DNA hypermethylation in cancer: according to the classical models, a tumour 

can originate in any cells of the organ and de novo methylation occurs as a result of cancer 

transformation; while, according to the alternative model, these methylation aberrations, originating 

during the process of aging, are already present at some levels in the founding cells that will give rise 

to tumours and are selected and clonally expanded during transformation (Nejman et al., 2014).  This 

last model agrees with the “cancer stem cells (CSCs) model” suggesting that the epigenetic changes 

occurring in normal stem or progenitor cells are the earliest event in tumorigenesis, preceding cancer 

mutations (Feinberg et al., 2006). DNA hypermethylation and repression of genes involved in the 

regulation of stem cells self-renewal capacity, such as p16 and APC, have been observed in different 

cancers (Jones and Baylin, 2007). Silencing of these genes may cause the acquisition of an infinite 

renewal capacity of the affected cells. These immortal cells, selected and expanded, undergo further 

genetic mutations contributing to tumour development (Jones and Baylin, 2007). These CSCs, which 

show similar self-renewal and multipotency features of adult stem cells, are responsible for tumour 

initiation and growth in contrast to the bulk of tumour cells with a differentiated phenotype (Visvader, 

2011).  
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The promoter-centric studies of the ‘80s have led to the discovery that promoters of many tumour-

suppressor genes (TSGs) are hypermethylated in cancer contributing to the theory that DNA 

methylation is responsible for gene silencing and can act as a driver for neoplastic transformation 

(Herman and Baylin, 2003).  Several genes implied in apoptosis, cell cycle regulation, cell adhesion, 

DNA repair and angiogenesis are in fact hypermethylated and downregulated in many hereditary 

cancer syndromes as well as in sporadic cancer. In hereditary cancer syndromes, these genes are 

mutated predisposing to cancer in specific tissues. DNA methylation acts as a “second hit” 

(Knudson’s hypothesis) for the complete inactivation of the affected genes (Grady et al., 2000). In 

sporadic cancer, these genes show tissue-specific hypermethylation and phenocopy the equivalent 

genetic mutations. Some emblematic examples are MLH1 hypermethylation in colorectal cancer 

(Herman et al., 1998) or RB1 in retinoblastomas (Ohtani-Fujita et al., 1997). In other tumours, such 

as breast cancer, this correlation is less clear. In fact, although BRCA1 mutated individuals develop 

estrogen receptor negative (ER-) tumours, BRCA1 hypermethylation has been observed in both ER+ 

and ER- tumours (Turner et al., 2007). 

Moreover, treatment of cells with a demethylating agent, 5-azacytidine (5-AZA), caused gene 

reactivation, supporting the hypothesis that methylation causes gene silencing (Baylin and Jones, 

2016). However, these studies did not examine the temporal sequence of events leading to gene 

silencing. In fact, although 5-AZA treatment is also able to cause re-activation of genes in the inactive 

X chromosome, it is know that silencing of genes in Xi precedes their methylation (Lock et al., 1987). 

TSGs that are expressed before cancer transformation and become hypermethylated and repressed in 

cancer are defined as epigenetic drivers (Kalari and Pfeifer, 2010; Baylin and Jones, 2011). However, 

their repression may not be consequent to hypermethylation but rather DNA methylation may follow 

gene downregulation by other means.  

The majority of hypermethylated genes in cancer are normally repressed and marked by Polycomb 

complex (Ohm et al., 2007; Schlesinger et al., 2007; Widschwendter et al., 2007). These genes are 

repressed from embryogenesis by trimethylation on lysine 27 on histone H3 (H3K27me3) and their 

epigenetic silencing is maintained by a histone-lysine methyltransferase, called Enhancer of Zeste 

homolog 2 (EZH2), constituting the Polycomb repressive complex 2 (PRC2). In normal cells, the 

removal of the complex and of this histone mark allows the expression of these genes during 

differentiation to the mature cell type. In fact, genes targeted by PRC are usually transcription factors 

involved in lineage commitment (Bracken et al., 2006). On the other hand, in cancer-prone progenitor 

cells, the recruitment of DNMTs leads to de novo methylation of these sites (Viré et al., 2006).  This 

tumour “epigenetic switching” allows a stable repression of these genes and leads to a permanent 

proliferative state of these cells unable to differentiate (Gal-Yam et al., 2008). It has been 
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hypothesized that hypermethylation of PRC-targets maintains cancer cells in a stem-cell-like 

aggressive state (Widschwendter et al., 2007). However, cancer hypermethylator phenotypes are 

usually associated with a better prognosis. Therefore, a stable gene silencing by hypermethylation 

may be a mechanism of inhibition against tumour progression (Sproul and Meehan, 2013). It is 

possible that hypermethylation may have different roles in different cancers and subtypes as well as 

different stages of tumour development, initially promoting tumour growth and later preventing 

metastasis (Sproul and Meehan, 2013).    

Since many genes hypermethylated in cancer are frequently repressed prior methylation, it is not 

surprising if the majority of cancer studies has found low correlation between promoter 

hypermethylation and gene expression. A recent meta-analysis of a large dataset of 672 matched 

cancerous and healthy methylomes, gene expression, and copy number profiles across 3 types of 

tissues from The Cancer Genome Atlas (TCGA), showed that cancer-promoter hypermethylation was 

not linked to a decreased expression of the affected genes (Moarii et al., 2015). Gene expression 

analysis of RUNX3, a gene frequently hypermethylated in gastric cancer, revealed that is never 

expressed in normal gastrointestinal epithelial cells supporting the hypothesis that genes aberrantly 

hypermethylated in cancer are fully repressed in the normal cells where tumours originate (Levanon 

et al., 2011). 

It has also been suggested that genes targeted by hypermethylation in cancer are not fully repressed 

in the normal cells but expressed at low levels (Berman et al., 2012). A colon cancer study found that 

only 7% of genes downregulated compared to adjacent normal tissues were also hypermethylated in 

CpG island methylation phenotype (CIMP) negative tumours and a proportion of these genes was 

also downregulated in CIMP+ colorectal cancer (CRC) samples not showing DNA hypermethylation 

(Hinoue et al., 2012). However, the majority of gene expression studies have been performed using 

gene expression microarray and the background levels of hybridization to probes do not to allow to 

capture small changes in gene expression (Sproul and Meehan, 2013).  

In fact, a colon cancer study conducted in our laboratory has shown that a transcriptome analysis by 

gene expression arrays of CRC and normal tissues did not show any dysregulation of genes whose 

promoter-associated CGIs were hypermethylated in CRC. On the other hand, the employment of a 

more sensitive method, such as qRT-PCR, revealed a significant downregulation of the tested genes 

in CRC samples compared to normal samples (Fadda et al., 2018).  

Moreover, another recent study has shown that methylation is significantly associated with gene 

downregulation of a subset of genes enriched in common cancer pathways in CRC (Klett et al., 2018). 

Environmental factors, such as local tissue inflammation and oxidative stress, may also contribute to 

the establishment of tumour methylation pattern (Niwa and Ushijima, 2010; O’Hagan et al., 2011).  
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Finally, genetic mutations of genes involved in DNA methylation process, such as TET mutations in 

myeloid malignancies (Abdel-Wahab et al., 2009) and DNMT3A mutation in acute myeloid 

leukemia, contribute to some methylation alterations occurring later in cancer (Shlush et al., 2014). 

1.4 Common cancer pathways affected by DNA methylation  

DNA methylation aberrations cause the disruption of many important signaling pathways in cancer. 

The main pathways affected by DNA methylation in cancer are: DNA repair and genomic stability, 

RB1/CDK4 cell cycle regulation, WNT/β-catenin, TGF-β, cellular differentiation, induction of 

apoptosis and cell growth pathways.  

In several types of cancer, control of cell cycle regulation is lost due to hypermethylation and 

downregulation of cyclin-dependent kinase inhibitor 2A (CDKN2A), encoding for a CDK inhibitor 

protein (p16INK4A) (Morsczeck et al., 2018). p16 protein regulates the transition of the cell cycle from 

G1 to S phase by inhibiting RB1 phosphorylation mediated by cyclin-dependent kinases CDK4 and 

CDK6. Lack of p16 expression by deletion or promoter hypermethylation of CDKN2A p16 allows 

the cell to bypass the G1/S checkpoint. 

Another signaling pathway commonly dysregulated in cancer, most notably in colorectal cancer, is 

WNT/β-catenin pathway. DNA promoter hypermethylation and silencing of genes encoding for one 

class of WNT inhibitors, secreted frizzled-related proteins (SFRPs) (Surana et al., 2014) or APC gene 

(Liang et al., 2017) represent two common mechanisms to constitutively activate WNT signaling in 

cancer.  

DNA repair and genomic stability mechanisms are loss in several cancers. In sporadic colorectal 

cancer, hypermethylation of MLH1, a DNA mismatch repair gene, is very frequent and increases 

genome susceptibility to mutations and microsatellite instability (Poynter et al., 2008). In ovarian and 

breast cancers, BRCA1 inactivation by hypermethylation lead to impaired DNA repaired by 

homologous recombination and consequent genomic instability (Catteau et al., 1999). MGMT gene 

encoding for O6-methylguanine methyltransferase has been found hypermethylated and 

downregulated in several cancers, most prominently in gliomas. MGMT silencing leads to a 

diminished efficiency of O6-alkylguanine repair (Poynter et al., 2008). 

Hypermethylation of proapoptotic genes, such as death-associated protein kinase (DAPK) and 

caspase 8 (CASP8) genes has been reported in many tumours (Hervouet et al., 2013). 

Methylation of the RASSF1A gene encoding for one member of Ras association domain family 

proteins can be detected in almost all cancers including pre-neoplastic lesions. These proteins 

positively regulate Hippo growth control pathways (Richter et al., 2009).  

The most frequently methylated genes in cancer are homeobox gene family members. These genes 

encode for transcriptional factors important during development and cell and organ differentiation. 
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These genes are targeted by PRC1 and are lowly expressed in adult tissues. In cancer, methylation of 

these genes ensures a permanent silencing of PRC target genes maintaining cells in a undifferentiated 

state (Rodrigues et al., 2016).     

Many genes encoding for ion channel and transporters, aquaporins, membrane receptors and cell 

adhesion molecules have been found hypermethylated in cancer (Nunna et al., 2014; Lastraioli et al., 

2015; Khatami et al., 2017; Dajani et al., 2018; Xie et al., 2018).  

A gene enrichment analysis of 74 CGIs aberrantly methylated in CRC and adenomas in our study, 

identified genes encoding for solute transporters, G-protein coupled receptors, protocadherins, 

integrins, confirming that the pathways most affected in cancer are involved in the crosstalk between 

tumour cells and surrounding environment (Fadda et al., 2018). 

1.5 DNA methylation: a promising cancer biomarker 

After the discovery of DNA methylation aberrations in cancer, a multitude of studies have started to 

consider DNA methylation-based biomarkers for several applications such as: cancer risk 

stratification, diagnosis, prognosis, prediction of therapy response and monitoring of disease. 

A biomarker is any biological characteristics that can be objectively measured as an indicator of a 

normal biological process, a pathogenic process or a response to an exposure or an intervention 

(Naylor, 2003).  

In fact, cancer-specific DNA methylation changes present several features making them promising 

useful biomarkers. Firstly, these methylation alterations are early and frequent events in 

cancerogenesis, some of them even present in precancerous lesions, making them potential 

biomarkers for early cancer diagnosis. Moreover, they can be also found in cell-free circulating 

tumour DNA (ctDNA) in various body fluids making possible their detection trough non-invasive 

methods, usually termed as liquid biopsies. Finally, DNA methylation is a stable epigenetic mark and 

a multitude of well-established techniques can be used for its detection. In fact, it can be detected 

even in Guthrie neonatal blood spots, formalin-fixed paraffin-embedded (FFPE) samples and 

microscopic preparations (Mikeska and Craig, 2014).  

A clinically significant difference in DNA methylation patterns must be present between two groups 

of interest to consider a DNA methylation alteration as a useful biomarker. The ideal biomarker 

should have 100% specificity and 100% sensitivity. Specificity describes the proportion of 

individuals without the disease having a negative test results, while sensitivity describes the 

proportions of patients having a positive test result (Mikeska and Craig, 2014). 

Although, an immense number of studies suggesting DNA methylation-based candidate biomarkers 

have been published, few are commercially available and have been included in clinical guidelines 
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and only two (Cologuard and Epi proColon) have been approved by the Food and Drug 

Administration (FDA) to be introduced in clinical practice for CRC screening (Koch et al., 2018). 

1.5.1 Risk stratification 

Mutational inactivation of some genes can predispose to a variety of cancer. These genes have been 

defined as hereditary cancer genes, among which RB1, MLH1, BRCA1 and APC genes are some 

emblematic examples. It has been found that these same genes undergo methylation in the 

corresponding sporadic form of cancer. 

Methylation of one allele of these genes can occur in a mosaic form in the normal somatic cells of 

one or more tissues, an event defined as constitutional methylation (Mikeska et al., 2012).  

One example is represented by constitutional methylation of MLH1 gene, a situation predisposing to 

colorectal cancer. In fact, cases of early-onset colorectal cancer, had one of the alleles methylated in 

normal tissues and loss of the normal allele in the tumour (Gazzoli et al., 2002).  

Constitutional methylation can be detected in peripheral blood leukocytes. In fact, BRCA1 

methylation has been found in blood samples of more than 30% of women with BRCA1-like cancer 

and only in a small percentage of other breast cancer-type patients and controls (Wong et al., 2011). 

Moreover, methylation alterations have been detected in pre-diagnostic blood samples more than 10 

years before diagnosis of mature B-cell neoplasms (Wong Doo et al., 2016; Georgiadis et al., 2017). 

Therefore, a population screening through non-invasive methods analyzing peripheral blood samples, 

may allow to predict patients at risk of early-onset cancer forms. Consequently, monitoring of these 

individuals and specific interventions could be applied to prevent tumour development in these 

subjects. 

1.5.2 Early cancer detection 

The development of screening tests for early cancer diagnosis is a major goal of cancer research. In 

fact, many types of cancer are diagnosed in advanced stages when therapeutic interventions or 

surgical removal of the tumour are no longer an option and patient’s outcomes are often poor. DNA 

methylation represents a promising biomarker for early cancer diagnosis since it occurs in the first 

stages of the cancerogenesis and can be detected even in precancerous lesions. 

Moreover, since DNA methylation can be detected in several body fluids, such as blood, urine, 

sputum and stool samples, it represents a new non-invasive screening method that may potentially 

support or even replace invasive diagnostic methods. In fact, the gold standard for cancer diagnosis 

is tissue biopsy, a highly invasive method that cannot always be applied because of the anatomical 

location of the tumours or the high risk of post-biopsy infection.   

1.5.2.1 Colorectal cancer: an emblematic example 
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The gold-standard diagnostic method for colorectal cancer is colonoscopy that allows the detection 

and the following removal of the precursor benign lesions of the tumour, i.e. adenomas or polyps. 

However, this method is highly invasive, costly and has scarce compliance (Taylor et al., 2011). Less-

invasive screening methods include fecal occult blood test (FOBT) and fecal immunochemical test 

(FIT). Although these tests offer possible indications for CRC, their specificity and sensitivity are 

still limited (Morikawa et al., 2005). For this reason, screening tests based on the analysis of 

molecular biomarkers in stool and plasma samples have been developed. Currently, 

carcinoembryonic antigen (CEA) and CA19-9 are the two biomarkers used in clinical practice for 

colorectal cancer diagnosis but present scarce accuracy (Tham et al., 2014).  

Three DNA-methylation based blood tests are commercially available for colorectal cancer detection: 

Epi proColon (Epigenomics), ColoVantage (Quest Diagnostics) and RealTime mS9 (Abbott) (Payne, 

2010). All these three tests are based on SEPT9 methylation analysis but only Epi proColon has been 

recently approved by FDA for the detection of colorectal cancer (Mikeska et al., 2012).  

SEPT9 promoter hypermethylation detection in plasma samples has shown improved specificity and 

sensitivity compared to the available FOBT and FIT (Molnár et al., 2015). 

However, the effects of demographic characteristics and pathological features on SEPT9 methylation 

need to be still evaluated. In fact, positive results have been found in patients with other cancers and 

in controls. Finally, the power of SEPT9 methylation-based test on detecting adenomas and early 

stage CRCs is limited (Wang et al., 2018). 

Commercial tests based on the detection of methylation biomarkers in stool samples have been also 

developed. In fact, since colonocytes are constantly shed from the tumour into the lumen and passed 

into the stools, these samples represent a good source for detecting CRC-specific biomarkers. The 

first DNA methylation-based stool test commercially available was ColoSure (LabCorp), evaluating 

VIM methylation. This test showed a specificity between 82 and 100% and a sensitivity of 33-81% 

and 15-45% for CRC and adenomas respectively (Ned et al., 2011; Amiot et al., 2014).  

Multi-biomarkers panels represent more reliable biomarkers to capture tumour heterogeneity. 

FDA has approved Cologuard (Exact Science) for colorectal cancer detection. This kit detects 

hypermethylation of NDRG4 and BMP3 genes, KRAS mutations, beta actin and includes a 

hemoglobin immunoassay. A large study determined that this test has a sensitivity for adenomas 

(42%) higher than FIT, and a specificity  of 87% (Imperiale et al., 2014). 

Our research group has recently identified 74 early methylation alterations shared in both CRC and 

adenomas samples (Fadda et al., 2018). To explore the possible use of these biomarkers for cancer 

detection through non-invasive methods, three selected CGIs, associated with GRIA4, SLC8A1 and 

SYN3 genes, have been selected to detect their methylation levels in DNA extracted from stool 
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samples collected at the time of tumour surgical resection in CRC patients. 87.5% of analysed patients 

showed more than 1% of methylation for at least one of the three biomarkers. Therefore, our panel 

guaranteed an overall sensitivity of 87.5%, even higher of other multi-biomarker panels, such as one 

of three selected markers (AGTR1, WNT2, SLIT2) that reached a sensitivity of 78%, based on the 

criteria that at least one of marker was methylated (Carmona et al., 2013).  

1.5.3 Prognosis and prediction of therapy response 

Prognostic biomarkers provide information about patients’ overall survival before and after tumour 

resection. Methylation alterations have often shown correlation with patients’ survival and have been 

proposed as prognostic biomarkers. Moreover, patients’ stratification based on molecular markers is 

important to define cancer therapy strategies. In fact, select patients who can positively respond to a 

specific cancer treatment may increase treatment efficacy, diminish toxicity and consequently 

increase patients’ overall survival. Finally, provide the treatment only to patients who can benefit 

from a specific therapy would allow a reduction of such treatment’s costs.    

Although many candidate methylation-based biomarkers for cancer prognosis and prediction of 

response have been proposed very few have been implemented into clinics. One of these tests, Predict 

MDx Brain Cancer (MDxHealth), based on evaluation of MGMT methylation, allows prediction of 

response to alkylating agents in glioblastoma patients. In fact, patients with promoter 

hypermethylation and inactivation of MGMT, show increase survival when treated with 

temozolomide (Hegi et al., 2005).   

1.5.4 Monitoring of patients 

After surgical removal of the tumour and/or during cancer treatments, patients should be monitored 

to assess surgery outcome, predict tumour recurrence and check response to therapy. Classification 

of patients at risk of recurrence would allow to intensify routine monitoring and specific biomarkers 

can allow to detect patients experiencing a relapse. Biomarkers for early treatment response would 

allow an immediate adjustment of treatment regimens.  

Marker investigations at multiple time points can provide information for patient management. Since 

serial sampling of the tumour is not feasible because of the invasiveness of the procedure, analysis of 

ctDNA in different body fluids would allow patients’ monitoring through a non-invasive procedure. 

Changes in DNA methylation patterns represent useful biomarkers for these purposes. ctDNA present 

the same genetic and methylation alterations of the solid tumours and thus can be distinguished from 

circulating DNA from healthy cells. Furthermore, since ctDNA in the blood has a half-life of about 

2 hours (Diehl et al., 2005), serum and plasma can provide a real-time measure of the tumour status. 

The levels of ctDNA in plasma depends on the location, size and vascularity of the tumours. 

The persistence of ctDNA after surgical removal of the tumour, reflects residual tumour tissue in the 
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body and is linked to prognosis (Diehl et al., 2005). A list of tumour-specific methylated genes has 

shown to decrease after surgery. Some example include: CDKN2A in plasma samples of 

hepatocarcinoma patients (Wong et al., 2003), APC in serum samples of esophageal cancer patients 

(Hoffmann et al., 2009), RARb2, MSH2 and ESR1B genes in plasma samples of breast cancer patients  

(Liggett et al., 2011) and RUNX3 in serum of gastric cancer patients (Sakakura et al., 2009). 

Methylation changes including a decrease or an increase in methylation of some genes in serum or 

plasma samples has been shown to be indicator of therapy response. Similarly, methylation detection 

of specific biomarkers may allow traceability of minimal residual disease and prediction of 

recurrence. One commercially available test for early CRC recurrence based on methylation analysis 

of BCAT1 and IKZF1genes is Colvera (Clinical Genomics) with sensitivity and specificity of 73.1% 

and 89.3%, respectively (Murray et al., 2017). 

Our laboratory has also assessed methylation levels of the three biomarkers selected for detection in 

in ctDNA isolated from plasma samples of CRC patients. One group of patients were receiving post 

tumour resection adjuvant therapy and showed no radiological evidence of disease (NED), and 

another group of patients was still bearing a lesion. Median methylation of GRIA4 and SLC8A1 was 

significantly higher in metastatic patients compared to NED patients confirming the high specificity 

of these two markers (Fadda et al., 2018). Patients still bearing a lesion were divided according to 

CEA levels (threshold 5 ng/ml) into CEA-high and CEA-low. GRIA4 and SLC8A1 showed 

significantly higher methylation levels in CEA-high patients compared to NED patients. Moreover, 

NED patients with high levels of CEA did not show methylation for the tested markers, suggesting 

that methylation alterations displayed a higher negative predictive value than CEA (Fadda et al., 

2018). 

Another study has recently shown that a multi-marker panel including EYA4, GRIA4, ITGA4, 

MAP3K14-AS1 and MSC can be used to monitor tumour burden in liquid biopsy in CRC patients 

under different therapy regimens (Barault et al., 2018). 

1.5.5 Topographical biomarkers 

In some cancers, anatomical location of the tumour can influence treatment strategies, degree of 

resection and prognosis. For example, tumours in the proximal colon (right side) and distal colon (left 

side) display different molecular alterations and histology. These differences affect both therapeutic 

choice and prognosis. In fact, left-sided CRC patients are treated with adjuvant chemotherapies and 

targeted therapies and usually have better prognosis; while right-sided CRC patients show low 

response rates to conventional chemotherapies and are treated with immunotherapy (Baran et al., 

2018).   
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In brain tumours, the identification of location-specific alterations may provide potential biomarkers 

predictive of tumour behavior.  

Several studies have identified different gene expression and methylation profiles in brain tumours 

having different localizations (Wong et al., 2005; Sharma et al., 2007; Palm et al., 2009; 

Tchoghandjian et al., 2009; Lambert et al., 2013; Bergthold et al., 2015; Zakrzewski et al., 2015; 

Jeyapalan et al., 2016; Sexton-Oates et al., 2018). 

A methylome analysis of pilocytic astrocytoma (PA) samples conducted in our laboratory has 

confirmed that different methylation patterns characterized tumours from two different localizations 

(supratentorial and infratentorial localization) (Antonelli et al., 2018). Moreover, two genes, IRX2 

and TOX2, whose associated CGIs were hypermethylated in supratentorial PAs compared to 

infratentorial PAs, showed also a decreased expression in supratentorial PAs. However, while 

expression levels of IRX2 were in line with those observed in normal brain (i.e. higher expression in 

infratentorial localization), TOX2 was normally more expressed in supratentorial brain region. These 

results suggested that IRX2 lower expression in supratentorial PAs is probably more a reflection of 

the brain region gene expression pattern where the tumour originates while TOX2 decreased 

expression in supratentorial tumours may be related to tumour development (Antonelli et al., 2018).  

Other studies had already suggested that different methylation and gene expression profiles among 

tumours from different brain regions may be related to the specific brain site where the tumour arises 

(Sharma et al., 2007). Therefore, IRX2 may have been targeted by DNA methylation in supratentorial 

tumours because of its low expression in this brain location and it may be a potential topographical 

biomarker. This hypothesis is supported by the discovery of methylation alterations that may be 

potential markers of cell lineages in other cancers. Sproul et al. (Sproul et al., 2011) have identified 

several genes showing a significant association between methylation and gene expression in different 

breast cancer cell lines. However, the majority of these genes were already repressed in normal cells 

of the same lineages (Sproul et al., 2011). In another study, the analysis of data derived from more 

than one thousand tumours arising in seven different human tissues confirmed that hypermethylation 

of genes repressed in the normal tissues of tumour origin is a common event in different cancers 

(Sproul et al., 2012).  

In conclusion, in many cases, aberrant methylation observed in cancer is a marker of cell lineage 

rather than tumour development. 

1.5.6 Rules to select good methylation-based biomarkers 

Despite an increasing number of cancer studies is focused on identifying methylation-based 

biomarkers, only few have been introduced into clinical practice.  
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Before clinical implementation, a biomarker needs to fulfil a series of parameters. In fact, a biomarker 

identified in a single study, defined as potential biomarker, needs to be validated with a different 

method and replicated in an independent cohort. Subsequently, after a systematic review and meta-

analysis of multiple studies, they can enter into clinical trials as candidate clinical biomarkers and, if 

they have proven a clinical benefit, are approved and become proven clinical biomarkers (Mikeska 

and Craig, 2014). 

Very few potential biomarkers pass all these steps from initial discovery to clinical implementation. 

The reasons include lack of validation and/or replication, lack of clinical utility, lack of consensus for 

an appropriate methodology for DNA methylation detection and lack of clinical relevance of the 

genomic location of DNA methylation (Koch et al., 2018). 

Definition of the region where DNA methylation occurs is very important. In cancer-biomarker 

discovery studies, genomic regions, usually CGIs, showing a statistically significant difference 

between two groups of interest, for example between tumour and control samples, are selected. In the 

majority of these studies, only few CpG sites covering these regions are analysed. In fact, methylation 

analysis of all single CpG sites is rarely suitable and the CpG dinucleotides analysed are considered 

representative of the methylation status of the entire region. Furthermore, definition of a baseline to 

consider a sample positive for methylation of the interrogated sites needs to be defined. In fact, apart 

from some promoter CGIs, the majority of CGIs are methylated at background levels also in healthy 

individuals. Therefore, a good methylation-based biomarker should be unmethylated or methylated 

at very low levels in normal samples and highly methylated in tumours (Mikeska et al., 2012). 

Another important criterion that a good biomarker must fulfil is cell-type specificity. A study has 

detected methylation of many potential cancer methylation-based biomarkers in normal peripheral 

blood mononuclear cells of healthy individuals (Kristensen et al., 2012), highlighting the importance 

of verify biomarker cell-type specificity. 

The optimal number of CpG sites to interrogate in the methylation assay should be critically 

evaluated. In fact, while in some cases methylation interrogation of one CpG site may be sufficient 

to discriminate with high power tumour and control samples, in other cases multiple CpG sites must 

be analysed. Technical limitations, such as PCR primer design, sometimes contribute to the definition 

of the region to analyze (Mikeska et al., 2012).  

It has also been suggested that the genomic context of a potential methylation-based biomarker is 

important for its clinical value (Koch et al., 2018). The simplest case is hypermethylation of a 

promoter-associated CGI linked to gene downregulation. However, some studies have shown that 

methylation alterations occurring outside promoters may have a clinical value (Hu et al., 2014; Kang 

et al., 2015). Moreover, since DNA methylation targets genes that are already repressed or expressed 
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at very low levels in tissues where tumour occurs, this alteration is not always associated to a 

measurable change in gene expression levels. 

A systematic procedure for methylation-based biomarker development has been proposed (Bock, 

2009). This multi-step approach involves the use of genome-wide DNA methylation analysis method 

for the initial discovery phase in order to maximize genomic coverage. Several methods allow a 

global analysis of DNA methylation such as Illumina arrays, of which last version (Infinium 

MethylationEPIC BeadChip) allows to analyze more than 850 000 CpG sites, and whole-genome 

bisulfite sequencing (WGBS). The analysis of such massive amount of data consists in the application 

of computational methods with the final aim to select a small number of DNA methylation alterations 

that show high predictive power for the disease condition of interest and thus may represent potential 

biomarkers. The performance of these candidate biomarkers needs to be validated in a second 

independent cohort using targeted assays. This step involves the selection of the most informative 

CpG sites representative of the entire region methylation pattern. In fact, methylation pattern of 

adjacent CpG sites is highly correlated. Several robust and cost-efficient methods for a targeted 

methylation analysis of selected regions exist, such as Pyrosequencing, MethyLight, quantitative 

methylation specific PCR (qMSP) and clonal bisulfite sequencing (Bock, 2009).  

Moreover, the deposition of a large amount of molecular and clinical data of different cancers publicly 

available allows validation of the potential biomarkers identified in larger datasets in an easy and 

cost-free way (Koch et al., 2018). The main databases are The Cancer Genome Atlas (TCGA) 

(https://portal.gdc.cancer.gov) and International Cancer Genome Consortium (ICGC) 

(https://icgc.org). Moreover, raw and elaborated data of thousands of published studies are available 

in the Gene Expression Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/gds).  

After this validation step, employment of statistical classifier models and performance prediction 

models allows the selection of the most promising candidates for confirmation in additional 

independent validation cohorts. Finally, if these biomarkers are validated in several cohorts, a 

prospective study can be conducted to prove the clinical utility of these biomarkers (Bock, 2009). 

1.6 DNA methylation as a potential therapeutic target: editing DNA methylation 

DNA methylation is a reversible epigenetic modification. Therefore, aberrant methylation alterations 

observed in cancer may represent potential therapeutic targets. Several DNMT inhibitors (DNMTi) 

have been developed for this purpose. Two DNMTi, 5-azacytidine (5-Aza-CR, Vidaza) and 5-aza-2'-

deoxycytidine (5-Aza-CdR, decitabine, Dacogen), have been approved by FDA for treatment 

of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients (Christman, 2002; 

Issa et al., 2005). A new epigenetic inhibitor, S110 (AzapG), has shown promising results for 

treatment of both MDS and AML as well as for some solid cancers (Chuang et al., 2010). 
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Although these drugs have shown clinical efficacy, their mechanisms of action are still not clear. 

Studies on patients treated with these drugs have shown global gene-specific demethylation and 

demethylation of repetitive elements such as Alu and long interspersed nucleotide elements (LINEs) 

(Yang et al., 2006). Long-term effects after interruption of treatment on specific genes and repetitive 

elements were different. In fact, repetitive elements are quickly re-methylated after some days, while 

demethylation of some genes can persist even over several weeks (Yang et al., 2006; Kantarjian et 

al., 2007). 

DNMTi have global genome effects and do not allow a targeted methylation of the locus of interest. 

Epigenome editing represent a promising approach for a personalized cancer therapy since it allows 

a specific methylation/demethylation of the target of interest (Vojta et al., 2016).  

A tool for epigenome editing requires a DNA-binding targeting domain and a functional domain. The 

first tools employed zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases 

(TALENs) as DNA-binding targeting domains (Li et al., 2007; Bernstein et al., 2015). These two 

have been exceeded by CRISPR-Cas9 system that can be modified to be employed for genome and 

epigenome editing with the possibility of multiple guide RNAs (gRNAs) designed for the targets of 

interest and insensitivity to CpG methylation in contrast to TALEs (Perez-Pinera et al., 2013). In this 

system, a modified version of a bacterial adaptive immune system, Clustered regularly interspaced 

palindromic repeats (CRISPR), has been adapted to target the Cas9 nuclease to the genomic site of 

interest through the design of sequence-specific guide RNAs (Mali et al., 2013). The first twenty 

nucleotides at 5’ end of the gRNAs ensures the binding of the gRNAs to the complementary target 

sequence only if is followed by a protospacer-adjacent motif (PAM) (Mojica et al., 2009). A 

catalytically inactive form of Cas9 (dCas9) was generated to bring effector proteins to the site of 

interest without cutting the DNA molecules. The functional domain is the catalytic domain of a 

DNMT for targeted methylation or TET functional domain for targeted demethylation (Figure 2). The 

most used DNMT domain is that of DNMT3A, which is a de novo DNMT that has shown enzymatic 

activity also in transfected cells. DNMT3A domain combined with DNMT3L can increase DNMT3A 

enzymatic activity (Chen et al., 2005).  
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Figure 2. Schematic representation of the modified CRISPR-Cas9 system for methylation editing 

 Figure adapted from (Liu et al., 2016) 

Several variants of this system have been developed and have shown encouraging results for DNA 

methylation editing (Amabile et al., 2016; Choudhury et al., 2016; Liu et al., 2016; McDonald et al., 

2016; Xu et al., 2016; Lei et al., 2017; Saunderson et al., 2017; Kang et al., 2019). Vojta et al. (2016) 

realized a system in which dCas9 is fused with DNMT3A catalytic domain though a flexible Gly4Ser 

linker. They demonstrated a targeted methylation of a genomic region of about 35 bp and of a wider 

region using multiple gRNAs (Vojta et al., 2016). Liu et al. (2016) were able to edit DNA methylation 

both in vitro and in vivo using dCas9 fused with Tet1 or Dnmt3a (Liu et al., 2016). Efficient targeted 

DNA methylation was also obtained in both human cells and in mouse embryos by fusing dCas9 with 

an engineered prokaryotic DNA methyltransferase MQ (Lei et al., 2017). Amabile et al. (2016) have 

developed a system for targeted gene repression by fusing engineered transcriptional repressors 

(ETRs) with the Kruppel associated box containing zinc-finger proteins (KRAB-ZFPs) and 

DNMT3A. They demonstrated that gene silencing was highly specific and only due to DNA 

demethylation (Amabile et al., 2016). Long-term targeted DNA methylation and silencing of multiple 

genes in in primary breast cells isolated from healthy human tissue were obtained by transiently 

transfecting a fusion plasmid containing the catalytic domain of Dnmt3a and C-terminal domain of 

Dnmt3l (3A3L) coupled to a dCas9 (Saunderson et al., 2017; Stepper et al., 2017).  

1.7 Technologies to identify methylation alterations 

1.7.1 PCR-based methods 

DNA methylation alterations have been initially discovered using a candidate-gene approach. 

The most diffuse methods for detecting DNA methylation at single loci are PCR-based methods using 

bisulfite-converted DNA as template. Bisulfite conversion allows to maintain DNA methylation 

information that would be otherwise lost during PCR amplification. In fact, DNA polymerase is not 
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able to distinguish methylated cytosines from unmethylated ones and guanines would be incorporated 

in the newly synthetized DNA filament in both situations. Treatment with bisulfite sodium 

deaminates unmethylated cytosines to uracils, while methylated cytosines remain unaffected. At this 

point, the sense and antisense DNA strands are no longer complementary and PCR primers are 

designed for one strand. During subsequent PCR cycles, uracils are replaced by thymines. Several 

commercial kits have been developed to perform DNA bisulfite conversion and conversion rates are 

usually higher that 99% depending on DNA quality (Warnecke et al., 2002).   

Two strategies can be used for PCR primer designing of bisulfite-converted DNA: primers can be 

designed on DNA sequence without CpG sites to allow a PCR amplification independent from 

methylation status (methylation-independent PCR or MIP) or specific primers for methylated and 

unmethylated sequences can be designed to perform a methylation-specific PCR (MSP). 

MIP methods have usually a bias towards unmethylated sequences because of the difference in GC 

content after bisulfite conversion. Inclusion of few CpG sites in primer sequences and optimization 

of annealing temperatures may overcome the PCR-bias for unmethylated sequences (Wojdacz and 

Lotte Hansen, 2006; Shen et al., 2007). 

To obtain information of methylation status at the level of single CpG site, PCR products are 

traditionally sequenced. Sequencing PCR clones instead of directly sequencing amplified DNA has 

the advantage to provide information on individual molecules and to calculate the ratio of methylated 

to unmethylated molecules. Unfortunately, this method is too time-consuming to be introduced in 

clinical practice. Another approach, digital bisulfite genomic sequencing, requires the use of multiple 

PCR reactions and drastic sample dilution to minimize the occurrence of more than two PCR template 

molecules in each reaction well(Weisenberger et al., 2008).  

Traditional Sanger sequencing can be replaced by pyrosequencing based on the detection of 

pyrophosphate. In fact, when a pyrophosphate is released after the incorporation of a nucleotide in 

the DNA strand, is converted to ATP by an ATP sulfurylase. ATP is used by an enzyme called 

luciferase to oxidase luciferin causing the emission of light. The addition of one nucleotide at time 

allows a sequential base calling and thus provide information at single CpG site level (Colella et al., 

2003). 

Instead of sequencing PCR products, they can be digested by specific restriction enzymes allowing 

to discriminate between methylated and unmethylated sequences, an approach called combined 

bisulfite restriction analysis (COBRA) (Sadri and Hornsby, 1996). However, only specific sequences 

are recognized by restriction enzymes and therefore not all CpG sites can be analysed. Moreover, 

incomplete conversion of unmethylated cytosines may lead to the formation of heteroduplex between 
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strands containing the restriction sites and site without them compromising the accurate quantification 

of methylation using this method.  

In another method, methylation-sensitive single-nucleotide primer extension (MS-SnuPE), PCR 

products are isolated from an agarose gel and subsequently hybridized with a primer terminating 

immediately 5’ of the CpG site of interest (Gonzalgo and Jones, 1997). This primer is then extended 

by DNA polymerase that uses radioactive labelled dCTP or dTTP. The relative of amount of the two 

nucleotides is quantified with phosphor-imaging analysis. However, this method is quite laborious 

and requires the use of radioactive. Variants of this method not requiring radioactive labelled 

nucleotides have been developed including a microarray-based version (Wu et al., 2008). 

Different melting properties of methylated and unmethylated sequences can be exploited in a 

methylation-sensitive melting curve analysis (Worm et al., 2001). By performing MIP in presence of 

a fluorescent dye that intercalates double strand DNA, it is possible to monitor the emitted 

fluorescence when temperature is increased. The major transition in fluorescence can be observed as 

peak in a melting curve. In case of a population of fully methylated and unmethylated molecules, two 

peaks would be generated. However, some molecules can present an heterogenous pattern of 

methylation and melting pattern can be difficult to interpret. High-resolution version of this technique 

(MS-HRM) allows to detect subtle differences within the amplicon with a moderate high-throughput.  

MALDI-TOFF mass spectrometry can be also used for DNA methylation analysis after base specific 

cleavage or primer extension (van den Boom and Ehrich, 2009). Base specific cleavage determines 

the generation of cleavage products analysed by mass spectrometry. In primer extension, the use of 

four different types of terminators determines the termination of the primer-extension reaction on 

different nucleotides with the production of different signals analysed by mass spectrometry. 

In another method, HeavyMethyl, oligonucleotide blockers are used to discriminate between 

methylated and unmethylated sequences. MIP primers are designed to anneal next to a CpG-rich 

region for which oligonucleotide blockers are designed to hybridize only if the sequence is not 

methylated. When the sequence is methylated, the oligonucleotide blockers leave free the DNA 

sequence allowing MIP primers to hybridize. The binding of a fluorescent probe complementary to 

the CpG-rich region allows the emission of a signal proportional to the amount of the amplicon. False-

positive rate of this method is extremely low since oligonucleotide blockers ensures the selective 

amplification of the methylated sequences at each cycle of the reaction (Cottrell et al., 2004). On the 

other hand, the use of MSP primers may cause false priming events because of the annealing of 

primers in unmethylated sequences despite the mismatches. Higher annealing temperature, the use of 

negative controls and a limited number of amplification cycles may help to avoid false priming. 

Moreover, in traditional MSP, a second set of primers specific for the corresponding unmethylated 
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sequence is designed. Gel electrophoresis of the PCR products generated with MSP primers and 

primers for unmethylated sequence allows an approximative estimate of the amount of the relative 

methylation levels with a high cost-effective method. (Kristensen et al., 2009).  

Several quantitative variants of traditional MSP have been developed.  

In MethyLight, a fluorescent probe allows to monitor the amplification in real-time (Eads et al., 

2000). Amplification is detected when the probe hybridizes eliminating any signal from unspecific 

primer hybridization (Figure 3A). Moreover, inclusion of multiple non-CpG sites within the probe 

sequence prevents false positives due to incomplete bisulfite conversion. Detection of methylation 

alteration of ctDNA requires the use of ultra-sensitive techniques. In fact, ctDNA concentrations are 

extremely low and it usually represent less than 0.01% of total cfDNA (Schwarzenbach et al., 2008). 

For this reason, a compartmentalized version of MethyLight, digital MethyLight (dMethyLight) has 

been developed. In this method, the sample is diluted and distributed over a large number of wells in 

order to obtain one or no template molecules in each well and making possible an absolute 

quantification of the methylated locus of interest. Sensitivity and reproducibility depend on the 

number of reaction wells (Weisenberger et al., 2008). In Droplet digital MethyLight (ddMethyLight), 

the sample is distributed into thousands to millions of droplets through a microfluidic system allowing 

sensitivity even 25-fold higher than conventional MethyLight (Yu et al., 2015). Each single droplet 

would be positive or negative for methylation of the target.  

Another ultra-sensitive method, Beads, Emulsion, Amplification, Magnetics digital PCR (BEAMing) 

combines emulsion PCR with magnetic beads and flow cytometry with a sensitivity of 0.01% (Li et 

al., 2009). 

In another version of quantitative MSP, the probe is substituted by an intercalating dye such as SYBR 

Green. Although this method avoids the problem of a complicated probe designing, does not allow 

to avoid possible false positive events due to primer dimers formation (Chan et al., 2004). Sensitive 

melting analysis after real-time MSP (smart-MSP) exploits HRM technology for the detection of false 

positive results (Kristensen et al., 2008) (Figure 3B). 

The use of probes and intercalating dyes can be avoided in Methylation-specific fluorescent amplicon 

generation (MS-FLAG). In this method, MSP primers present a 5’ tail with a fluorophore and a 

quencher separated by a recognition site for an endonuclease. When the polymerase has synthesized 

the new DNA strand, the endonuclease recognizes the cutting site and the fluorophore is released 

giving a fluorescent signal (Figure 3C). Since primers can be differentially labeled, multiplexing MS-

FLAG is also possible (Bonanno et al., 2007). 
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Figure 3. Three different quantitative MSP methods. (A) MethyLight, (B) Smart-MSP, (C) MS-FLAG. 

Figure from (Kristensen et al., 2009) 

1.7.2 Genome-wide methods 

The advent of high-throughput technologies has completely revolutionized genomic and epigenomic 

studies allowing a broad genomic coverage of the methylation landscape. These methods are based 

on next generation sequencing (NGS) or genome-wide hybridization. NGS technologies allow to 

perform bisulfite sequencing at genome-wide level (whole-genome bisulfite sequencing or WGBS) 

with a single-base resolution. In this method, following genomic DNA shearing, DNA fragment ends 

are repaired by adding an adenine to the 3’ end. Sequencing adapters are ligated to the DNA fragments 

that are then size selected and purified by gel electrophoresis. Library preparation involves bisulfite 

conversion of the selected DNA fragment and PCR amplification using primers designed on 

sequencing adapter. At this point, the library is ready for cluster generation and sequencing (Urich et 

al., 2015). The greatest limitations of this method are the high cost and the significant technical 

expertise needed to analyze the large amount of data produced. However, since only a fraction of the 

genome can be differentially methylated between cancer and normal tissues, sequencing of the 5-mC-

enriched fraction of the genome allows to reduce costs and increase the sequencing coverage. In this 

sequencing variant, reduced representation bisulfite sequencing (RRBS), enrichment of CpG-rich 

region is performed by treating DNA fragments with an enzyme, MspI, that recognizes CCGG sites 

and cut independently of DNA methylation status. The rest of the protocol is identical to classical 

WGBS (Meissner et al., 2005). Several commercial kits are available to perform this enrichment step 

using bait sequences. A costumed version of these kits allows to enrich only regions of interest 

allowing a targeted bisulfite sequencing (Chatterjee et al., 2012). 

Illumina Infinium BeadChips represent a cost-effective, easy-to-use, popular alternative to WBGS.  



 22 

This technology was first introduced with HumanMethylation27K (HM27) BeadChip in 2008 and 

led to the realization of the first large epigenome-wide association studies. These arrays interrogated 

over 25000 CpG predominantly within the proximal promoter regions of about 14000 consensus 

coding sequence (CCDS) genes and well-described cancer genes (Bibikova et al., 2009). 

Subsequently, HumanMethylation450K (HM450) BeadChips, allowing the analysis of more than 

450000 CpG sites, replaced HM27K arrays. The new genomic content of this array includes: CpG 

islands, shores and shelves, the 5′UTR, 3′UTR and bodies of RefSeq genes, FANTOM4 promoters, 

the MHC region and some enhancer regions (Bibikova et al., 2011). The use of these arrays has 

allowed the generation of a large amount of global methylation data of several cancers produced by 

ICGC, the International Human Epigenome Consortium (IHEC) and TCGA. However, WGBS data 

have highlighted the importance of methylation in regulatory regions such as enhancers that were not 

covered in 450K arrays. For this reason, Illumina released HumanMethylationEPIC (EPIC) 

BeadChips arrays containing more than 850000 probes targeting 90% of the sites interrogated by 

HM450 arrays and 350000 CpGs at regions identified as potential enhancers by FANTOM5 (Lizio 

et al., 2015) and the ENCODE project (Siggens and Ekwall, 2014). 

In Illumina Infinium assays, bisulfite-converted DNA is amplified on whole-genome level and PCR 

products are fragmented using restriction enzymes. Finally, purified DNA fragments are hybridized 

onto the chips. In HM450 and EPIC arrays, two types of probes, Infinium I and Infinium II probes, 

are designed to hybridize a 50-bp sequence downstream the targeted CpG site. DNA methylation 

measurement with Infinium I probes is carried out by two beads: one, the unmethylated (U) bead 

measures the unmethylated signal and the other one, methylated (M) bead, measures the methylated 

signal (Figure 4). The hybridization of unmethylated fragment to the U-bead allows the single base 

extension and incorporation of a labelled ddNTP matching the nucleotide preceding the cytosine of 

the target CpG site. In case of hybridization of a methylated fragment to this bead, the mismatch at 

3’ inhibits single base extension. Signal detection produced by the hybridization of a methylated 

fragment on the M bead works on the same way. Both bead types incorporate the same type of labelled 

ddNTP and therefore will be detected in the same color channel. In Infinium II probes, methylated 

and unmethylated signals are measured by the same bead (Figure 4). In fact, the probe is designed to 

bind DNA sequence immediately next to the interrogated CpG site that become the site for single 

base extension. If this site is methylated, a ddNTP labelled G nucleotide will be incorporated and the 

signal will be detected in the green channel, while if the site is unmethylated, a ddNTP labelled A 

will be incorporated and the signal will be detected in the red channel. The other cytosines of the CpG 

sites within the probe are replaced by R degenerated bases to hybridize both to C and T bases (Pidsley 

et al., 2016). 
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After extension, the arrays are fluorescently stained, scanned and the signal intensities are measured 

to generate beta values. Beta value (β) is a measure of the degree of methylation at one CpG locus 

and it is calculated using the formula: β =intensity of the methylated signal/ (intensity of the 

unmethylated signal + intensity of the methylated signal + 100). β-values range from 0, a completely 

unmethylated CpG site, to 1, representing a fully methylated CpG site (Pidsley et al., 2016). 

 

Figure 4. Infinium methylation probe design 

Figure adapted from (Pidsley et al., 2016) 

1.7.2.1 Analysis methods for methylation Infinium array data 

The bioinformatic pipeline for processing and analysis of Infinium array methylation data consists in 

several steps summarized in Figure 5 (Wilhelm-Benartzi et al., 2013).   

Several packages for a comprehensive analysis of methylation data have been developed, including 

methylumi, minfi, wateRmelon, ChAMP and RnBeads (Morris and Beck, 2015). 
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Figure 5. Pipeline for DNA methylation array data analysis 

Figure from (Wilhelm-Benartzi et al., 2013) 

- Quality control 

Infinium methylation arrays contain different control probes to evaluate the quality of the experiment. 

Sample independent-controls include control probes to monitor efficiency of staining, extension, 

target removal and overall hybridization performance. Sample-dependent controls include probes to 

evaluate efficiency of bisulfite conversion and hybridization. Control probe intensity values of poor-

performing samples usually deviate from intensity values of the other samples. A comparison of beta 

value density plots can identify poor-performing samples based on a large deviation from beta values 

distribution of the rest of the samples (Figure 6). Methylation data of poor-quality samples may be 

inaccurate, therefore these should be excluded from the analysis (Wright et al., 2016).  

 

Figure 6. Beta values density plot by experimental groups (cases and controls) 

Figure adapted from (Wright et al., 2016) 

Similarly, probes that do not meet certain criteria: intensity levels near or at background intensity, 

probes that fail to measure DNA methylation in a proportion of samples (e.g. 25% of samples), probes 

with a mean detection p-value higher than a certain threshold (e.g. 0.05) and probes overlapping with 

single nucleotide polymorphisms (SNPs) should be filter out (Wilhelm-Benartzi et al., 2013; Wright 

et al., 2016).  

- Background correction 

Background correction allows to remove nonspecific signal from total signal to obtain true intensity 

values. Several methods for background corrections, implemented in the different packages, are 

available (Wilhelm-Benartzi et al., 2013; Wright et al., 2016). 

- Normalization 
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Two types of normalization exist: a within-array normalization, correcting for technical dye-based 

biases and a between-array normalization to remove technical artifacts between samples in different 

arrays (Wilhelm-Benartzi et al., 2013).  

- Type I and type II probes scaling 

The last two versions of Infinium methylation arrays, HM450 and EPIC arrays, used two different 

types of probes: Infinium type I and Infinium type II probes. Type I probes interrogate more CpG 

sites mapping on CpG islands than type II probes (Bibikova et al., 2011) leading to a biased detection 

of differentially methylated regions enriched for type I probes. Moreover, beta values obtained from 

type II probe has a smaller range and measures of methylation display a larger variance between 

replicates (Dedeurwaerder et al., 2011) (Figure 7).   

 

Figure 7. Beta values density plots by probe type 

Figure adapted from (Wright et al., 2016) 

Different correction methods to rescale the difference between the two types of probes are available. 

Peak-based correction method implemented in IMA was the first proposed method. In this approach, 

type II data are rescaled based one type I data assuming a bimodal shape of methylation density 

profiles (Dedeurwaerder et al., 2011). However, this method requires two distinct peaks for the 

methylation density.  

Subset-quantile within-array normalization (SWAN), implemented in minfi, determines an average 

quantile distribution using a subset of probes considered as biologically similar based on the number 

of CpG sites within the sequence of the probe and performed a simultaneous normalization of type I 

and type II probes (Maksimovic et al., 2012).  
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In another method, probes are divided into different subgroup on the basis of genomic location of 

CpG sites. Type I reference quantiles are used for type II signals normalization (Touleimat and Tost, 

2012).  

In a “data driven” normalization approach, implemented in wateRmelon package, known methylation 

patterns were used to derive three metrics to test different schemes of correction and normalization 

(Pidsley et al., 2013).  

Another normalization approach implemented in wateRmelon package, Beta MIxture Quantile 

dilation (BMIQ), adjusts beta values of type II probes into a statistical distribution characteristic of 

type1 probes using a three-state beta-mixture model to assign probes to methylation states and then 

transformation probabilities of methylation state membership  into quantiles (Teschendorff et al., 

2013). 

- Adjustment for batch effects 

A rational study design is fundamental to reduce batch effects. Surrogate variable analysis (SVA) and 

independent surrogate variable analysis (ISVA) are two statistical models that can be used when 

source of batch effects is unknown (Leek and Storey, 2007; Teschendorff et al., 2011). SVA estimates 

the sources of batch effects from the array data that are used as covariate in the statistical model (Leek 

and Storey, 2007). ISVA identifies features correlating with the phenotype of interest in the presence 

of potential confounders, which are modelled as statistically independent surrogate variables 

(Teschendorff et al., 2011).  

- Downstream analyses 

Two different measures of methylation are commonly used: beta values and M-values. M-value is 

calculated as M= log2 
Max (M,0)

Max (U,0)
 (Du et al., 2010). M-values can be also transformed in beta values and 

vice versa using this formula M= log2 


1-
 (Du et al., 2010).  

One common methylation analysis consists in the calculation of a differential methylation, termed as 

delta beta (or ), between cases and controls. A genomic region with a delta beta between cases and 

controls higher than 0.2 is usually considered a differentially methylated region (DMR). High 

correlation between neighbor CpG sites exists and decreases as pairwise distance increases. The 

identification of a differentially methylated regions is considered as a robust finding when this 

regional difference is detected across several probes (Wright et al., 2016).  

Differential methylation patterns between cases and controls can simply reflect cell heterogeneity 

differences between samples. Peripheral blood samples, which are often used as samples for 

differential methylation analysis, contain different cell types that have characteristic methylation 

patterns. Therefore, if a sample has an abnormal cell-type proportion, the identified DNA methylation 
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change can simply reflect a different cell-type composition. Statistical correction methods can be 

used to estimate cell-type proportion based on methylation patterns identified in purified blood cell 

lines and used as covariates in a differential methylation analysis (Houseman et al., 2012). A new 

reference-free approach for cell mixture adjustment has been developed (Houseman et al., 2014) 

Functional enrichment analyses are usually used to interpret methylation data from a biological and 

clinical point of view. However, the association of a differentially methylated region to a particular 

gene is a simplistic and potentially wrong view. In fact, it is difficult to identify which genes are 

affected by a specific DNA methylation change. A new approach consists in a regulatory enrichment 

analysis that evaluate enrichment of DMR in functional regulatory regions (Wright et al., 2016). 

Multiple testing multiple testing correction is necessary to reduce the likelihood of false positives by 

adjusting statistical confidence measures by the number of tests performed. Several correction 

methods are available such as Bonferroni correction and adjustment of the false discovery rate (FDR) 

(Wilhelm-Benartzi et al., 2013). 

- Clustering analysis  

Clustering analysis is usually performed using DNA methylation data to identify different subgroups 

of samples. Samples belonging to a specific subgroup may be enriched for a specific clinical or 

molecular characteristic. Clustering include non-hierarchical and hierarchical methods. Non-

hierarchical methods, such as K-means, require the specification of the number of classes. On the 

other hand, hierarchical methods build a binary tree by including similar samples or probes in one 

tree based on a measure of similarity. Recursive partitioning mixture model (RPMM) uses a beta-

mixture model to divide samples into different subgroups and provides an estimate for the number of 

clusters (Houseman et al., 2008). 
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2. AIMS 

Cancer represents the second cause of death worldwide (World Health Organization, 2018). Effective 

cancer prevention strategies, global screening programs and methods for early cancer diagnosis are 

still lacking. A great effort for the identification of new biomarkers for early detection of cancer, 

prediction of disease outcome and therapy response has been done in the last decades. In fact, all 

these factors have the power to reduce cancer mortality.   

Global epigenetic changes, including changes in DNA methylation pattern, represent one of the 

cancer hallmarks. DNA methylation alterations occur early during tumour formation and can be 

detected in cell free circulating DNA from different biological matrices.  

The first aim of this thesis was to identify methylation alterations that may be potential biomarkers 

for prediction of cancer occurrence, early diagnosis, prognosis and monitoring of disease course. 

In particular, we evaluated DNA methylation status of two selected methylation alterations, 

previously identified in colorectal cancer by our research group (Fadda et al., 2018), in tumour and 

matched-normal tissues of CRC patients and we investigated whether these methylation alterations 

can be detected in stool samples of CRC patients. Moreover, we performed a comprehensive 

methylation analysis of one blood cancer, chronic lymphocytic leukemia, and one solid tumour, 

biliary tract cancer.  

DNA methylation changes are closely associated to gene expression changes. Although promoter 

DNA hypermethylation is usually associated to gene downregulation, gene-body hypermethylation 

can be either positively and negatively associated to gene expression. Moreover, the temporal 

succession of events leading to gene expression and methylation aberrations is not clear and many 

evidences suggest that DNA methylation targets genes that are already repressed or lowly expressed 

in normal tissues where the tumour arises.  

The second aim of this thesis was to investigate the relationship between methylation and gene 

expression. We performed a differential gene expression analysis between tumour and normal 

samples of selected genes whose associated-CGIs were aberrantly methylated in tumours. 

Many cancer studies have found that methylation alterations affect common pathways and gene 

families across different types of cancer. In this thesis, we investigated the methylation status of CGIs 

associated to clustered PCDH genes in both solid cancers (pilocytic astrocytoma, colorectal cancer, 

gastric cancer and biliary tract cancer) and blood cancer (chronic lymphocytic leukemia). 

Finally, since DNA methylation is a reversible epigenetic modification, it represents a possible 

therapeutic target. A modification of CRISPR-Cas9 system represents a cutting-edge method to edit 

DNA methylation and restore normal methylation pattern in cancer cells. The final aim of this thesis 
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was to employ this sophisticated system to selectively de-methylated a target of interest in a colorectal 

cancer cell line.  

3. MATERIALS AND METHODS 

3.1 Exploratory datasets 

Different types of cancers have been analysed in this thesis (Figure 8) 

 

Figure 8. Exploratory datasets 

3.1.1 Samples and data collection 

3.1.1.1 Colorectal cancer (CRC)  

Discovery set for biomarker selection and PCDH study 

Methylation data were obtained from a previous genome-wide methylation study of 18 primary CRCs 

and four matched peritumoural samples, 21 colorectal adenomas and three matched-normal intestinal 

mucosa samples, performed by our research group (Fadda et al., 2018). Patients’ clinical information 

including tumour location, CIMP status, microsatellite instability (MSI) status, KRAS mutational 

status and Dukes staging classification were previously collected (Fadda et al., 2018). 

Discovery set for targeted methylation and gene and protein expression analyses 

Tumour and matched-normal fresh-frozen (FF) tissue samples of 10 CRC patients were collected 

from the Department of General Surgery of the University of Cagliari (Italy). Normal samples were 

taken at a distance >10 cm from the neoplastic tissue. After molecular analyses, tissue samples have 

been analysed by a histopathologist. Frozen section slides underwent standard hematoxylin and eosin 

(H&E) staining.  Microscope images were acquired of each individual slide.  

Stool samples from the same patients were collected intraoperatively during tumour resection and 

immediately frozen at -80°C until being processed.  

Patients clinical data are reported in Table 1. 
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Sample ID 
Tumour 

location 

Stage at 

diagnosis 

Mucinous 

histology 

Lymphovascular 

invasion 
Grade 

Ulcerative 

neoplasia 

CRC_2 Left colon I NO NO G2 NO 

CRC_3 Right colon III NO YES G2 YES 

CRC_8 Rectum IV YES YES G2 NO 

CRC_12 Right colon 0 NO YES G1 NO 

CRC_14 Rectum III YES YES G3 NO 

CRC_19 Right colon II YES YES G2 YES 

CRC_21 
Transversal 

colon  
II NO YES G2 NO 

CRC_29 Right colon II NO YES G2 NA 

CRC_33 Right colon IV NO YES G2 NA 

CRC_34 Rectum III NO YES G2 YES 

Table 1. Clinical characteristics of CRC patients 

3.1.1.2 Chronic lymphocytic leukemia (CLL)  

Discovery set for genome-wide methylation analysis and PCDH study 

Blood samples of 18 CLL patients (10 men and eight women, mean age at diagnosis: 65.3±12.3) and 

six normal controls (mean age: 51.3±20.2) were collected from the Hematology Department of the 

Businco Oncology Hospital in Cagliari (Italy). 

Clinical and immunophenotypic characteristics of CLL samples are reported in Table 2. 

Sample ID 
CD5+  

(%) 

CD5+/ 

CD19+ (%) 

CD23+ 

(%) 

CD38+ 

 (%) 

IGHV 

mutational 

Status 

Lymphocyte 

count/mm3 

304012 007 93.30 71.50 72.10 42 Positive 5050 

304012 030 98.60 92 92 2.6 Negative 32380 

304012 048 94.1 78.70 75.40 15 Negative 9580 

304012 088 98.2 91 91.4 4.7 Negative 45330 

304012 092 88.7 64.8 63.7 10 Positive 21830 

304012 112 34 6 70.3 14 Negative 5270 

304012 114 
Negative/ 

weak 
NA 65 16 Negative 24360 
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304012 188 97 87 88 9 Positive 5410 

304012 193 56 NA NA NA Negative 58880 

304012 196 68 54 76 NA Negative 9060 

304012 475* 97.9 94.60 
Partially 

expressed 
Weak Positive 94100 

Table 2. Clinical and immunophenotypic characteristics of CLL patients 

Notes: For 7/18 patients clinical and immunophenotypic data were not available. 

* this patient was firstly diagnosed as Follicular lymphoma 

Discovery set for gene expression analysis 

Blood samples of 27 CLL cases and 16 normal controls were collected from Italian hospitals in 

Novara, Florence, Perugia and Cagliari. 

Prospective set 

The prospective set included 438 incident mature B-cell neoplasms (MBCN), among which 82 were 

CLL and small lymphocytic lymphoma (SLL) cases, and 438 normal controls (individually matched 

to cases at 1:1 ratio based on age at enrollment, gender, ethnicity and DNA source) from the 

Melbourne Collaborative Cohort Study (Wong Doo et al., 2016). Peripheral blood samples were 

collected prior to any cancer diagnosis with a mean time between collection and diagnosis of 10.6 

years (range 0.2-20 years) for the entire MBCN cohort and 9.5 years (range 0.6-17.8 years) for the 

CLL subset cohort (Wong Doo et al., 2016). Methylation data of this cohort constitutes our 

prospective set. 

3.1.1.3 Biliary tract cancer (BTC) 

Discovery set for genome-wide methylation analysis and PCDH study 

Formalin-fixed paraffin-embedded (FFPE) tissue samples from 50 BTCs (25 men and 25 women, 

mean age at diagnosis: 70.4±10.9) and 10 matched-normal controls were obtained from the 

Department of Oncology, University of Cagliari (Italy) and the Scientific Institute Romagnolo for the 

Study and Treatment of Tumours (IRST) Srl – IRCCS, Meldola, FC (Italy). Clinical characteristics 

of these patients are reported in Table 3. 

 

Sample ID Tumour 

location 

Stage at 

diagnosis 

Grade 

06 26142-1 Intrahepatic II G2 

06-31850-1 Intrahepatic III G2 

06-7929-1 Intrahepatic III G3 

06B1315-2 Intrahepatic IV G2 

07-21-665-6 Intrahepatic III G3 

07B5152 Intrahepatic IV G2 

08-4421-1 Intrahepatic III G3 
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08-5028-2 Intrahepatic III G3 

09_26274_1 Intrahepatic II G1 

09-7104-1 Intrahepatic IV G3 

10_20382_8 Intrahepatic II G3 

10_4472_2 Extrahepatic III G2 

10-14035-3 Extrahepatic III G2 

10-26765-1 Gallbladder IV G2 

10-5669-3 Intrahepatic IV G3 

1014532-14 Intrahepatic III G2 

11-11445-5 Extrahepatic IV G2 

11-12043-1 Intrahepatic IV G3 

11-1668-1 Extrahepatic IV G3 

11-24627-1 Gallbladder IV G3 

11-28627-1 Extrahepatic IV G3 

11B3614 Intrahepatic IV G2 

12_16875_6 Intrahepatic III G2 

12_20714_1 Intrahepatic IV G3 

12B1108-B Intrahepatic II G2 

12B5263 Intrahepatic IV G3 

12B9086 Intrahepatic IV G2 

13_161_1 Intrahepatic IV G3 

13_24812_1 Intrahepatic II G2 

13_3421_1 Extrahepatic I G3 

13-2544-5 Extrahepatic III G2 

BTC_011GP_T Gallbladder IV G2 

BTC_022GP_T Extrahepatic II G2 

BTC_023GP_T Gallbladder III G2 

BTC_027GP_T Gallbladder IV G2 

BTC-006-BM_T Gallbladder III G3 

BTC-009-FAM_T Gallbladder III G2 

BTC-017-LL_T Gallbladder III G2 

BTC-019-MM_T Gallbladder III G3 

BTC-028-

DMGC_T 

Gallbladder III G1 

BTC-030-GV_T Gallbladder IV G3 

BTC-032-MA_T Gallbladder II G3 

BTC-036-PM_T Gallbladder III G2 

BTC-038-PL_T Gallbladder IV G2 

BTC-039-RS_T Gallbladder III G1 

BTC-041-PG_T Gallbladder I G1 

BTC-042-RR_T Gallbladder III G3 

BTC-043-SA_T Gallbladder II G3 

BTC-047-ZL_T Gallbladder IV G3 

BTC-049-ZA_T Gallbladder I G2 

Table 3. Clinical characteristics of BTC patients 
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3.1.1.4 Gastric cancer (GC)  

Discovery set for PCDH study 

Paired tumour and normal FF tissue samples of 22 gastric cancer patients were collected from the 

Candiolo Cancer Institute-FPO, IRCCS, University of Turin (Italy). Tumour localization included: 

gastroesophageal junction, antrum/pylorus, fundus, body, body/fundus, antrum.  GC samples were 

classified into three molecular subtypes: microsatellite instable (MSI), chromosomal instable (CIN) 

or genomic stable (GS). A further classification included Epstein–Barr virus (EBV) positivity.  

3.1.1.5 Pilocytic astrocytoma (PA)  

Discovery set for PCDH study 

Methylation data were obtained from a genome-wide methylation analysis of 20 pediatric PA samples 

and four normal brain controls previously performed by using IlluminaMethylation27 BeadChips 

(27K) in our laboratory (Antonelli et al., 2018).  

3.1.2 Experimental assays 

3.1.2.1 Nucleic acids extraction and quantification 

DNA was extracted from tissues using DNeasy Blood & Tissue Kit (Qiagen) for FF samples and by 

QIAamp DNA FFPE Tissue kit (Qiagen) for FFPE samples. 

DNA from stool samples were extracted using QIAamp Fast DNA Stool Mini Kit (Qiagen). 

DNA was isolated from peripheral blood lymphocytes using the DNA extraction 500 arrow® Kit 

(DiaSorin Ireland Ltd). 

DNA samples were quantified by spectrophotometric reading (NanoDrop Products, Thermo 

Scientific) and by fluorometric reading (Quant-iT™ PicoGreen® dsDNA Assay Kit) and their quality 

was evaluated by electrophoresis in a 0.8% agarose gel.  

RNA extraction from CRC and matched-normal tissue samples, peripheral blood mononuclear cells 

(PBMCs) of CLL and normal controls, was performed by RNeasy Mini Kit (Qiagen). 

RNA samples were quantified using NanoPhotometer (NanoPhotometer™Pearl). 

3.1.2.2 DNA bisulfite conversion 

DNA samples were bisulfite converted using EZ DNA Methylation Gold Kit (Zymo Research). 

3.1.2.3 Targeted methylation assay  

3.1.2.3.1 MethyLight 

Methylation of two selected biomarkers, GRIA4 and VIPR2, was assessed by MethyLight (Eads et 

al., 2000) in 10 CRC and matched-normal tissue samples and in 10 stool samples from the same 

patients. The reference repetitive element Alu was used in a methylation-independent control reaction 

to normalize the amount of DNA input. Primers and probes were designed using Beacon Designer™ 

(Premier Biosoft) and their sequences are reported in Table 4. Each probe was labelled with the 6-
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Carboxyfluorescein (6-FAM) fluorophore at the 5′ end. A primer-probe mix containing 300 nM of 

each primer and 100 nM of the probe was prepared. Each assay was performed in triplicate using: 15 

l of TaqMan Genotyping Master mix (Applied Biosystems), 4.5 l of primer-probe mix, 5 l of 

bisulfite-converted DNA (10 ng/l) and 5.5 l of RNase-free water. A fully-methylated DNA 

(Human Methylated & Non-Methylated (WGA) DNA Set; Zymo Reasearch) was used as a positive 

control for the reaction. The experiment was conducted on a DNA Engine Opticon 2 Real-Time 

Cycler (Bio-Rad) using the following thermal conditions: initial PCR activation step at 95 °C for 10 

minutes (min), followed by 50 cycles of denaturation step at 95 °C for 15 seconds (sec) and 

annealing/extension step at 60 °C for 60 sec.  

Biomarker Forward primer (5’-3’) Reverse primer (5-3’) Probe (5’-3’) 

GRIA4 GGGTTGGTGTAGGTTTGTT 
CTCCCCCCTTACTTTCTCAC

ATACACACAA 
AACGCCGCGACCGCCACAC 

VIPR2 
TCGGTTTCGAGTAGAGAGA

ATTGG 

AAACAAATACAAACGACC

GCAAAA 

CCCTTCCGAACGCACACCT

AACCC 

Alu 
GGTTAGGTATAGTGGTTTA

TATTTGTAATTTTAGAT 

ATTAACTAAACTAATCTTA

AACTCCTAACCTCA 
CCTACCTTAACCTCCC 

Table 4. Primers and probe sequences for methyLight assay 

3.1.2.3.2 Droplet digital PCR 

GRIA4 and VIPR2 methylation was also evaluated by droplet digital PCR (ddPCR) in the 10 stool 

samples from CRC patients.  

ddPCR reactions containing 2 × ddPCR Supermix for probes (Bio-Rad), forward and reverse primer 

(900 nM), probe (250 nM) and 2 to 5 µl bisulfite-converted DNA in a final volume of 20 μl were 

partitioned into ~20,000 oil-emulsified droplets per well and replicated in three wells using a Bio-

Rad QX200 droplet generator. The droplets were transferred into 96-well plates and PCR was 

performed using the following conditions: 10 minutes at 95 °C, 40 cycles of 30 seconds at 95 °C 

followed by 60 seconds at 60 °C, then 5 minutes at 4 °C, 5 minutes at 95 °C. Plates were subsequently 

read on a Bio-Rad QX200 droplet reader.  

3.1.2.4 Gene expression assay (qRT-PCR) 

RNA samples were retro-transcribed using the High Capacity Kit (Applied Biosystems). The 

obtained cDNA samples were used for gene expression analyses of selected genes by qRT-PCR 

conducted on a DNA Engine Opticon 2 Real-Time Cycler (Bio-Rad), using iQ™ SYBR® Green 

Supermix (Bio-Rad). qRT-PCR conditions were: primary denaturation at 95°C for 2 min followed by 

50 cycles of denaturation at 95°C for 15 sec and annealing/extension at 60°C for 1 min. After the 

amplification cycles, melting curves are produced by increasing the temperature from 65°C to 95°C 

holding each temperature for 5 sec and reading fluorescence every 0.5°C. 



 35 

CRC gene expression assay 

Gene expression levels of four selected genes, GRIA4, VIPR2, SLC6A3 and SPOCK1, were evaluated 

in CRC and matched-normal samples. TFRC was used as reference gene. 

CLL gene expression assay 

SHANK1 gene expression analysis was performed in CLL and normal control samples. ACTB was 

used as reference gene. A subset of these samples was also re-analysed using GUSB as reference 

gene. 

Primer sequences used for the two gene expression studies can be found in Table 5. 

 Gene Forward primer (5’-3’) Reverse primer (5-3’) 

CRC  

gene 

expression 

assay 

GRIA4 TCATGTGGACAACATTGAGACA ATCATAGAGTCCAAAAATGGCAAA 

VIPR2 GTCTCTTGCAACAGGAAGCA TCTCAGGATGAAGGACAGGAA 

SLC6A3 CCATACTGAAAGGTGTGGGCT AGAAGAGATAGTGCAGCGCC 

SPOCK1 AGGTAAAATGCAGCCCTCACA TTCCCCTTCTTTTGCCTGGG 

TFRC GGCACAGCTCTCCTATTGAAAC CAAAGTCTCCAGCACTCCAACT 

CLL  

gene 

expression 

assay 

SHANK1 AGACCATCAGTGCAAGCGAA GGGATCGAAGCTCGACTCAG 

ACTB AAATCTGGCACCACACCTTC AGCACAGCCTGGATAGCAAC 

GUSB CACCTAGAATCTGCTGGCTACT AGAGTTGCTCACAAAGGTCACA 

Table 5. Primers sequences for qRT-PCR assay 

3.1.2.5 Protein expression assay (western blot) 

The protein expression levels of long canonical and short GluR4 isoforms, VIPR2, SPOCK1, and 

SLC6A3 were evaluated by western blot in CRC and matched-normal samples. Proteins extraction 

from tissue was performed Membrane Protein Extraction Kit (Mem-PERTM Plus, ThermoFisher 

Scientific). Protein extracts were electrophoretically separated on a 10% SDS-polyacrylamide gel at 

100V for 90 min and transferred onto 0.45µm nitrocellulose membrane. The membrane was blocked 

in 5% milk overnight at 4ºC and then incubated with primary antibody GluR4 (0.5µg/ml, PA5-18931, 

ThermoFisher Scientific), SPOCK1 (1µg/ml, MA5-24039, ThermoFisher Scientific), VIPR2 

(0.5µg/ml, AB2266, Millipore) and SLC6A3 (1µg/ml, SAB2502027, Sigma-Aldrich) for 2h. After 

three washes with Tris-buffered saline containing Tween-20, the membrane was incubated with 

horseradish peroxidase-labeled secondary antibody (Jackson ImmunoResearch) for 1 h at room 

temperature and washed again with Tris-buffered saline containing Tween-20 for three times. Each 

assay was performed in duplicate. Final detection was performed with ECL Chemiluminescent 

Western blotting reagents (Bio-Rad). An antibody against NaK ATPase (1:40000, Ab76020, Abcam) 

was used for gel-loading control.  

3.1.2.6 Genome-wide methylation assay (Infinium assay) 
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The quality of DNA extracted from FFPE samples was evaluated prior to bisulfite conversion using 

Infinium HD FFPE QC Assay (Illumina). DNA samples that passed this quality control step were 

bisulfite converted and subjected to a DNA restoration process using Infinium FFPE DNA Restore 

Kit (Illumina). This kit repairs degraded FFPE DNA in preparation for the whole-genome 

amplification step in the Infinium assay. 

Bisulfite converted DNA samples were processed according to the Illumina Infinium® HD 

Methylation protocol (Illumina) and the Illumina HiScan was used to scan and record high-resolution 

images of the emitted fluoresce. 

CLL and normal control samples were analysed by Illumina Infinium HumanMethylation450 

BeadChips (450K), which allows the interrogation of more than 450 000 CpG sites.  

BTC and GC samples along with their relative normal samples were analysed by Illumina Infinium 

HumanMethylationEPIC BeadChips (EPIC) interrogating over 850 000 CpG sites.  

3.1.2.7 sgRNA design and cloning 

Three sgRNAs for GRIA4 target region including eight CpG loci have been designed using an online 

tool (http://crispr.mit.edu). sgRNAs consist in a 20-bp sequence that targets the region of interest and 

a 3-bp sequence which is the PAM sequence to recruit Cas9 (Table 6). 

GRIA4 guide RNAs Sequence (5’-3’) 

sgRNA3 AGCGTCTAGTGGCTGCTCGCAGG 

sgRNA 5 AGGGAGTGCGCGCTCGAGGAGGG 

sgRNA 19 CCGGGCTGGTGCAGGCTTGCTGG 

Table 6. gRNAs sequences  

Notes: in bold PAM sequences 

Two DNA fragments (one containing the first gRNA sequence, gRNA scaffold, U6 promoter and the 

second gRNA sequence and the other one containing gRNA scaffold, U6 promoter and the third 

gRNA sequence) were designed, synthetized and cloned separately into two pU57 vectors by Gene 

Universal (Gene Universal Inc.). The two DNA fragments were then subcloned into a lentiGuide-

Puro plasmid (Addgene plasmid #52963, a gift from Feng Zhang) (Sanjana et al., 2014). In particular, 

plasmids obtained from Gene Universal were digested with BsmBI and XbaI enzymes (New England 

Biolabs) and lentiGuide-Puro plasmid was digested with BsmBI enzyme (New England Biolabs). 

The digestion fragments were separated by gel electrophoresis and DNA fragments of interest were 

extracted from the agarose gel using NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel). 

Ligation reaction was performed using T4 DNA ligase (Takara Biotechnology). A lentiGuide-Puro 

plasmid with sgRNAs sequences cloned between U6 promoter and gRNA scaffold sequences in the 

original plasmid were obtained (Figure 9). 
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Figure 9.  LentiGuide-Puro plasmid with sgRNAs 

3.1.2.8 Cell culture 

HCT116 colorectal cancer cell lines and HEK293T cell line were originally obtained from the 

American Type Culture Collection (ATCC). Both cell lines were cultured in Dulbecco's modified 

eagle medium (DMEM, ThermoFisher Scientific) supplemented with 10% fetal bovine serum (FBS, 

ThermoFisher Scientific) and 5 ml L-Glutamine (100X stock). Cells were incubated at 37 °C in a 

humidified 5% CO2 environment. 

3.1.2.9 Plasmid for editing DNA methylation 

A previously generated Lenti-dCas9-Tet1 plasmid was available for targeted de-methylation. This 

plasmid contains dCas9 domain, HumanTet1 catalytic domain (CD) and enhanced green fluorescent 

protein (eGFP)-encoding gene under control of EF1 promoter (Figure 10). 
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Figure 10.  Lenti-dCas9-Tet1 plasmid 

3.1.2.10 Lentivirus production and purification 

Lentiviruses were produced by transfecting 80% confluent HEK293T cells, plated in a 10-cm dish, 

with a three-plasmids system. A lentiviral plasmid mix containing the lentiviral vector plasmid (Lenti-

dCas9-Tet1 or lentiGuide-Puro with sgRNAs plasmid) and the lentiviral packaging vectors (pVSVg 

and psPAX2) in a 1:1:0.5 ratio was prepared in 2 ml Opti-MEM (Invitrogen Life Technologies). 

Lentiviral plasmid mix was combined to a reagent mix containing 2 ml of Opti-MEM and 100 l of 

Lipofectamine 2000 (ThermoFisher Scientific) and incubated at room temperature for 5 min. After 

aspiration of old media, 6 ml of fresh media and 4 ml transfection mix was added to HEK293T cells. 

Cells were incubated at 37°C in a 5% CO2 humidified atmosphere. Transfection media was replaced 

with fresh DMEM media after 24h. Viral supernatants were collected 48h and 72h after transfection. 

Lentiviral particles were concentrated using 100KDa Amicon Ultra-15 centrifugal filter devices 

(Millipore Corporation). 

3.1.2.11 Viral infection of cells 

The experimental plan is summarized in Figure 11. 

HCT116 cells were infected with lentiviral particles expressing Lenti-dCas9-Tet1. pUltra-Chili-Luc 

was used as positive control. 1 ml transduction medium (120 μl virus + 10 μl Polybrene (stock 400 

μg/ml) + 870 μl medium) was added to each well of cells seeded in a 6-well plate. The plate was 

centrifuged 600 xg for 1h at room temperature and then incubated at 37°C in a 5% CO2 humidified 

atmosphere. After 24h, transduction medium was replaced with fresh medium. Cells were transferred 

to two T75 flasks two days after transfection. GFP-positive cells (cells efficiently transduced and 

consequently expressing GFP) were visible under the microscope 48h after transduction. After 

additional 96h, 80% confluent cells were harvested for FACS sorting of GFP-positive cells.  FACS 

sorting was performed at ACRF Flow and Laser Scanning Cytometry Facility (SAMHRI, Adelaide). 

GFP-positive sorted cells were plated on T75 flask and incubated at 37°C in a 5% CO2 humidified 

atmosphere. After few days, GFP-positive sorted cells were plated on a 6-well plate and transduced 

with lentiviral particles expressing lentiGuide-Puro with sgRNAs or lentiGuide-Puro alone. 

Transduced cells were harvested for DNA extraction after 24h and 48h post transduction. Puromycin 

selection was performed after 48h by adding 1 μg/ml Puromycin (1 mg/ml stock) to the cells. The 

following day, cells were harvested for DNA extraction. 
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Figure 11. Schematic representation of the experimental plan. Number inside the circles indicate days. 

3.1.2.12 5-AZA treatment 

HCT116 cells were treated with 1 μM 5-aza-cytidine (AZA) (Sigma-Aldrich) and were harvested for 

DNA extraction after 72h.  

3.1.2.13 DNA samples preparation and pyrosequencing 

DNA was extracted from cell pellets using DNeasy Blood & Tissue Kit (Qiagen) and quantified by 

spectrophotometric reading (NanoDrop Products Thermo Scientific). DNA samples were bisulfite 

converted using EZ DNA Methylation Gold Kit (Zymo Research). GRIA4 methylation levels of 

untreated and treated HCT116 cells were assessed by pyrosequencing. Primers are reported in Table 

7. Bisulfite PCR was performed in a 25 μl reaction volume containing: 12.5 μl 2X GoTaq Master 

Mix (Promega), 1 μl forward primer (5 μM) and 1 μl reverse primer (5 μM), 2 μl bisulfite converted 

DNA (40 ng/μl) and 8.5 μl RNase-free water. Each PCR reaction included a fully methylated 

bisulfite-converted DNA (Human Methylated & Non-Methylated (WGA) DNA Set; Zymo 

Reasearch) as positive control and unmethylated bisulfite-converted DNA (Human Methylated & 

Non-Methylated (WGA) DNA Set; Zymo Reasearch), unmethylated unconverted DNA (Human 

Methylated & Non-Methylated (WGA) DNA Set; Zymo Reasearch) as negative controls and a no 

template control (NTC). The thermocycling program was set as follow: 2 min denaturation at 95°C 

followed by 45 cycles of 95°C for 45 sec, 62°C for 45 sec, 72°C for 45 sec and a final extension of 5 

min at 72°C. PCR products were checked on a 2% gel before sending to AGFR Facility (Australia) 

for pyrosequencing. 

 

 

 

Table 7. Primers and probes for pyrosequencing 

3.1.3 Data analyses 

3.1.3.1 Biomarkers selection 

A restricted number of biomarkers was selected for targeted methylation and gene expression 

analyses from the panel of 74 CGIs altered in CRC and adenomas by following the steps summarized 

in Figure 12. Firstly, CGIs for which mean beta value was higher than 0.25 in peritumoural and 

normal samples were filtered out. Secondly, only CGIs with a beta value higher than 0.45 in at least 

Gene Primer/probe Sequence (5’-3’) 

GRIA4 

Forward GGGTTGGTGTAGGTTTGTT 

Reverse [btn]CTCCCCCCTTACTTTCTCACATACACACAA 

Sequence GTGTAGGTTTGTTGGG 
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75% of tumours and a beta value higher than 0.25 in not more than 25% of peritumoural and normal 

samples were selected. ROC curves using methylation data of the selected biomarkers were 

performed by R “ROCR” package using methylation data from our discovery dataset and methylation 

data from TCGA-COAD validation dataset. CGIs with an AUC higher than 0.95 in both datasets 

were selected obtaining 24 CGIs. Finally, additional filtering criteria including feasibility of the assay, 

functional evidences and literature information about these biomarkers led to the selection of four 

biomarkers for targeted methylation and gene expression analyses.  

 

Figure 12. Biomarkers selection pipeline 

3.1.3.2 Genome-wide methylation data analysis 

Raw DNA methylation data (.idat files) were analysed using a Bioconductor software package, 

RnBeads (Assenov et al., 2014), installed in R environment. RnBeads allows to analyze both 

methylation array data and sequencing data. The analysis is divided into several modules (Figure 13): 

quality control, preprocessing, tracks and tables, exploratory analysis and differential methylation.  
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Figure 13. RnBeads workflow and modules  

Figure from (Müller et al., 2016) 

Two types of analysis can be performed: a “Vanilla” analysis, consisting in the specification of some 

parameters and execution of all analysis modules and a “Tailored” analysis to perform each module 

individually. A “Vanilla” analysis was performed with the specification of the type of data to analyze 

and the location of methylation data, sample annotation file and final output directory. Input files are 

IDAT intensity files generated by IlluminaHiScan and a sample annotation file including sample 

identifiers, sample position in the arrays and phenotypic information. Set options included: removal 

of probes on sex chromosomes, background subtraction and normalization algorithms, specification 

of the column with sample identifiers and of the column name to be used for group definition in the 

differential methylation analysis.  

 Quality control 

Quality control is performed using control probes present in the array and several quality control plots 

are generated. Moreover, an analysis of values of SNP-based probes can be performed to help in the 

identification of sample mix-ups. 

Preprocessing 

Preprocessing includes a series of filtering and normalization steps. Firstly, probes and samples that 

can bias the normalization procedure are removed. This step includes the removal of SNP-enriched 

probes as well probes and samples with high fraction of unreliable measures using the Greedycut 

algorithm. Background subtraction was performed using the methylumi package (Triche et al., 2013). 

Type I and type II scaling was performed using the SWAN normalization method (Maksimovic et 

al., 2012). In BTC study data, beta values normalization was also carried out using BMIQ method 

(Teschendorff et al., 2013). RnBeads generates a beta values density plot to estimate the effects of 

the applied normalization procedure. 
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Tracks and Tables 

Methylation data are exported in tables of the specified file (.csv) format.  

Exploratory analysis 

Exploratory analysis includes principal component analysis (PCA) and multidimensional scaling 

(MDS), clustering analyses and evaluation of batch effects. 

Differential methylation analysis 

Differential methylation analysis between tumours and normal controls was conducted both on CpG 

site level and on genomic region (tailing, genes, promoters and CpG Islands) level. p-values were 

computed for each CpG site using linear models employed in the limma package (Smyth, 2004) and 

adjusted for multiple testing using the false discovery rate (FDR) method. p-values of all CpG sites 

associated with a genomic region were combined using a generalization of Fisher's method 

(Makambi, 2003) and corrected using FDR.  

Following analyses were focused on differentially methylated CGIs.  

Combined rank scores were generated combining p-values, absolute and relative effect sizes into a 

single score. These scores are inversely correlated to the degree of differential methylation and are 

used to generate a list of top-ranked differentially methylated CGIs.  

Additional analyses in CLL study 

An additional methylome analysis was performed using absolute lymphocyte count data as a 

covariate in the limma analysis of differential DNA methylation. Moreover, Houseman method 

(Houseman et al., 2012) was applied to estimate cell-type contributions of whole-blood samples by 

using methylation profiles of a sorted blood cell types as reference (Reinius et al., 2012). 

Additional analyses in BTC study 

Type I and type II scaling was repeated using BMIQ normalization method implemented in R 

“watermelon” package.  

Intensity information were extracted from IDAT files using R function “readIDAT”.  Mean intensity 

values were used to generate density plots in R environment. 

A second methylome analysis was performed on a restricted dataset including 17 BTCs and nine 

normal controls.  

Data analysis workflow consisted in: methylation data preparation, CGIs annotation, data 

exploration, data validation and selection of BTC-specific methylation alterations. All the analyses 

were carried using custom R scripts. Figure 14 summarized the steps performed by each script. ROC 

curves using methylation data of the selected biomarkers were performed by R “ROCR” package 

Gene annotation 
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The selected CGIs were annotated to nearest genes and to the nearest transcript using R annotation 

package FDb.InfiniumMethylation.hg19 (Triche, 2014). 
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Figure 14. Summary of the steps performed in each script 

3.1.3.3 Targeted DNA methylation (MethyLight) data analysis 

3.1.3.3.1 MethyLight data analysis 

A comparison between CRC and their matched-normal samples have been performed. CRC samples 

were considered as hypermethylated if delta Ct (mean Ct normal – mean Ct tumour) > 2 and as 

hypomethylated if delta Ct (mean Ct normal – mean Ct tumour) < -2. 

3.1.3.3.2 ddPCR data analysis 

Data were analysed using the QuantaSoft 1.7.4 software (Bio-Rad). The droplet counts (positive or 

negative) from all replicated wells were combined to yield a ‘merged’ well. Concentration values 

(number of copies/l) and Poisson confidence intervals were computed for each “merged” well.  

3.1.3.4 Gene expression (qRT-PCR) data analysis 

Cycle threshold (Ct) data were analysed using the ΔΔCT method (Schmittgen and Livak, 2008). The 

statistical difference between average ΔCt of the sample-groups of interest was calculated by unpaired 

t-test. 

3.1.3.5 Protein expression (western blot) data analysis 

Western blot signals were quantified using ImageJ program. The intensity of each band was 

normalized respect to that of NaK ATPase. Statistical differences between tumour and normal 

samples were calculated using a Welch’s t-test.  

3.1.3.6 Pyrosequencing analysis 

GRIA4 average methylation percentage was calculated by averaging methylation percentages of the 

eight CpG site analysed.  
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3.1.3.7 PCDH cluster methylation analysis 

The methylation status of clustered PCDHs was evaluated in solid cancers (CRC, BTC, GC and PA) 

and in one blood cancer (CLL).  

PCDH-associated differentially methylated CGIs (Δβ values ≥ 0.2 or ≤ − 0.2 and an adjusted p-value 

< 0.05) were selected in methylation data from CRC, BTC, GC and CLL studies. Hypermethylation 

was defined as Δβ values ≥ 0.2 and adjusted p-value < 0.05, while hypomethylation was defined as 

Δβ values ≤ -0.2 and adjusted p-value < 0.05. The nominal threshold (p-values < 0.05) was used in 

the differential methylation analysis between adenomas and normal samples since methylation 

analysis results were less robust (Fadda et al., 2018). Unsupervised hierarchical clustering (UHC) 

analysis was carried out using the mean methylation values of each altered CGI for each sample. 

These methylation values were visualized in a heatmap generated by a Bioconductor package 

“ComplexHeatmap” (Gu et al., 2016).  

27K methylation data of the PA study were analysed as follow: differentially methylated probes (Δβ 

values ≥ 0.2 or ≤ − 0.2, i.e. 20% differential methylation level) annotated in PCDH gene clusters with 

a p-value threshold < 0.001 were selected. Hypermethylation was defined as Δβ values ≥ 0.2 and p-

value threshold < 0.001, while hypomethylation was defined as Δβ values ≤ -0.2 and p-value 

threshold < 0.001. 

To investigate whether PCDH-associated altered CGIs were associated with CTCF binding sites, 

CTCF genomic coordinates were downloaded from ENCODE database 

(https://www.encodeproject.org/). These two genomic regions were considered associated if their 

distance was lower than 1000 bp. 

3.2 Validation datasets 

Processed methylation data from different databases were used to validate the methylation alterations 

identified in our experimental datasets (Figure 15). 
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Figure 15. Validation datasets 

TCGA validation datasets 

Processed Illumina 450K methylation data of colon adenocarcinoma (TCGA-COAD) and rectal 

adenocarcinoma (TCGA-READ), cholangiocarcinoma (TCGA-CHOL), stomach adenocarcinoma 

(TCGA-STAD) and low-grade glioma (TCGA-LGG) were downloaded using the Bioconductor 

package “TCGAbiolinks” (Colaprico et al., 2016) . 

GEO portal validation datasets 

Methylation data from a PA study (Lambert et al., 2013) were retrieved from the NCBI GEO Portal 

under the accession number GSE44684.  

ICGC validation dataset 

Methylation data from a CLL study (Kulis et al., 2012) were retrieved from ICGC Data Portal (DCC 

Data Release 27, DCC Project Code: CLLE-ES). 
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4. RESULTS 

4.1 DNA methylation as a promising biomarker 

Targeted methylation and genome-wide methylation analyses were conducted using experimental 

datasets of three different types of cancer: CRC, CLL and BTC. Methylation alterations that can be 

represent potential tumour biomarkers have been identified in all cancer analysed and have been 

validated in different TCGA datasets. 

4.1.1 Colorectal cancer  

4.1.1.1 Biomarkers selection 

A restricted number of CGIs were selected from a panel of 74 CGIs previously identified by our 

research group as aberrantly methylated in both CRCs and adenomas (Fadda et al., 2018). All the 

identified methylation alterations were successfully validated in TCGA-COAD dataset (Fadda et al., 

2018).  For 36 CGIs, which fulfilled our selection criteria (explained in Materials and Methods), area 

under the ROC curve (AUC) was calculated using methylation data of our discovery set and 

methylation data from TCGA-COAD validation set. Twenty-four CGIs showed an AUC higher than 

0.95 in both datasets (Table 8).   

CGI Gene Δβ 

Discovery set 

AUC 

Discovery set 

Δβ 

Validation set 

AUC 

Validation set 

chr2:182321761-182323029 ITGA4 0.37 1.00 0.35 0.96 

chr4:156129168-156130209 NPY2R 0.27 1.00 0.3 0.97 

chr4:157997166-157997686 GLRB 0.30 1.00 0.36 0.97 

chr4:107956555-107957453 DKK2 0.32 0.97 0.33 0.97 

chr5:136834016-136835146 SPOCK1 0.29 1.00 0.33 0.98 

chr5:140864527-140864748 PCDHGA4 0.35 1.00 0.38 0.97 

chr5:1444678-1446648 SLC6A3 0.26 1.00 0.29 0.98 

chr5:178016558-178017670 COL23A1 0.29 0.98 0.32 0.96 

chr5:159399004-159399928 ADRA1B 0.25 0.97 0.31 0.97 

chr6:159589636-159591319 FNDC1 0.33 1.00 0.33 0.97 

chr6:73330942-73333109 KCNQ5 0.36 1.00 0.33 0.96 

chr7:28448716-28450028 CREB5 0.27 1.00 0.27 0.96 

chr7:158936507-158938492 VIPR2 0.33 0.96 0.35 0.96 

chr8:97505747-97507607 SDC2 0.29 1.00 0.36 0.96 

chr8:75896528-75897116 CRISPLD1 0.21 0.96 0.27 0.97 

chr10:15761423-15762101 ITGA8 0.30 0.96 0.35 0.97 

chr11:105481126-105481422 GRIA4 0.40 1.00 0.41 0.96 

chr11:133938850-133939681 JAM3 0.30 1.00 0.29 0.97 

chr12:117798076-117799448 NOS1 0.25 0.97 0.27 0.96 

chr13:110958891-110960590 COL4A1 0.33 0.96 0.37 0.98 

chr16:23846941-23848102 PRKCB 0.25 0.98 0.34 0.97 
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chr19:48918115-48918340 GRIN2D 0.33 1.00 0.38 0.96 

chr21:28337856-28340237 ADAMTS5 0.29 1.00 0.31 0.99 

chr22:33453892-33454505 SYN3 0.28 0.97 0.32 0.97 

Table 8. Selected CpG islands showing an AUC > 0.95 in our discovery set and in TCGA-COAD validation set 

Based on the feasibility of the assay, functional evidences and literature information, two CGIs were 

selected among the 24 CGIs for a targeted methylation analysis. These two CGIs (chr11:105481126-

105481422 and chr7:158936507-158938492), hypermethylated in CRC compared to normal controls, 

respectively map on promoter regions of GRIA4 and VIPR2 genes (Figure 16). VIPR2 was selected 

for its functional role and the involvement of vasoactive intestinal peptide receptors in cancer (Moody 

et al., 2016), while GRIA4 was chosen because our and other previous studies have detected 

methylation of this marker both in CRC tissues but also in CRC stool and plasma samples (Barault et 

al., 2018; Fadda et al., 2018). 

 

Figure 16. CGIs position relative to GRIA4 (A) and VIPR2 (B) genes and their methylation levels in our discovery set 

and in TCGA-COAD validation dataset 

Notes: VIPR2-associated CGI is enclosed in an orange box 

4.1.1.2 Targeted methylation analyses 
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GRIA4 and VIPR2 methylation analyses were performed in DNA extracted from tumour and 

matched-normal tissue samples of 10 CRC patients by MethyLight. Methylation levels of tumour 

samples were compared to methylation levels of their respective normal samples. 

GRIA4 resulted hypermethylated in 6/10 tumour samples, while VIPR2 was hypermethylated in 7/10 

tumour samples. Some tumour samples showed GRIA4 (2/10 samples) or VIPR2 (2/10 samples) 

methylation levels similar to their respective normal samples, while for other tumour and matched-

normal samples, methylation of GRIA4 (2/10 samples) and VIPR2 (1/10 sample) was not detected 

(Table 9).  

To investigate the possible causes of these methylation differences among the analysed samples, we 

performed a histopathological examination of the tissue specimens. Low content of tumour cells was 

observed in histologic slides from tumour samples with undetectable methylation or methylation 

levels similar to the respective normal samples. On the other hand, histologic slides from tumour 

samples with high methylation levels showed a high content of tumour cells.  

To explore the possible usability of these markers for CRC early detection through non-invasive 

methods, GRIA4 and VIPR2 methylation was also evaluated in stool samples from the same 10 

patients by MethyLight. 

GRIA4 methylation was detected in 4/10 samples, while VIPR2 methylation was detected in 7/10 

samples (Table 9).  

Since MethyLight might not be enough sensitive for the detection of low targets such as methylated 

DNA from stool samples, the same samples were analysed using a much more sensitive technique as 

ddPCR. This method allowed to detect methylation of both GRIA4 and VIPR2 in 9/10 samples (Table 

9). Higher levels of VIPR2 methylated DNA were observed in ulcerating tumours compared to non-

ulcerating tumours.   

 

 GRIA4 VIPR2 

Tumour 

tissue sample 

Stool 

sample 

MethyLight 

Stool 

sample 

ddPCR 

Tumour 

tissue sample 

Stool 

sample 

MethyLight 

Stool 

sample 

ddPCR 

CRC_2 Hypermethylated Methylated Methylated Hypermethylated Methylated Methylated 

CRC_3 Hypermethylated Methylated Methylated Hypermethylated Methylated Methylated 

CRC_8 
Undetectable 

methylation 

Undetectable 

methylation 
Methylated 

Undetectable 

methylation 
Methylated Methylated 

CRC_12 
Undetectable 

methylation 

Undetectable 

methylation 
Methylated Hypermethylated 

Undetectable 

methylation 
Methylated 
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CRC_14 
Not differentially 

methylated 

Undetectable 

methylation 
Methylated Hypermethylated Methylated Methylated 

CRC_19 Hypermethylated Methylated Methylated 
Not differentially 

methylated 
Methylated Methylated 

CRC_21 Hypermethylated 
Undetectable 

methylation 

Undetectable 

methylation 
Hypermethylated 

Undetectable 

methylation 

Undetectable 

methylation 

CRC_29 
Not differentially 

methylated 
Methylated Methylated Hypermethylated Methylated Methylated 

CRC_33 Hypermethylated 
Undetectable 

methylation 
Methylated Hypermethylated Methylated Methylated 

CRC_34 Hypermethylated 
Undetectable 

methylation 
Methylated 

Not differentially 

methylated 

Undetectable 

methylation 
Methylated 

Table 9. GRIA4 and VIPR2 methylation analyses results 

4.1.2 Chronic lymphocytic leukemia  

4.1.2.1 Genome-wide methylation analysis 

A genome-wide methylation analysis on 18 CLL cases and six normal controls was conducted using 

450K arrays. CLL methylome resulted characterized by a widespread hypomethylation and a focal 

hypermethylation of regulatory regions, especially CGIs (Figure 17).  
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Figure 17. Average beta values distribution of CLL and normal control samples at different region levels (tiling, 

promoters, genes and CpG Islands). Red dots represent statistically significant differentially methylated CpG loci 

(automatically selected rank cutoff) 

Differential methylation analysis did not reveal any CGIs significantly hypermethylated after p-value 

correction in CLL samples compared to normal controls, probably due to the fact that methylation 

assay was carried out on DNA isolated from whole blood samples, characterized by high cellular 

heterogeneity. Sample cellular heterogeneity was explored by estimating the relative contributions of 

each principal immune components of whole blood (B cells, granulocytes, monocytes, NK cells, and 

T cells subsets) using Houseman method (Houseman et al., 2012). Granulocytes contributed for most 

of the relative cell type composition in whole blood control samples. 

A second differential methylation analysis was performed using absolute lymphocyte count data as a 

covariate in the limma model. In fact, absolute lymphocytic counts, obviously higher in CLL samples 

than in normal controls, might represent potential confounding factors that should be taken into 

consideration when computing the site-specific p-values. There was no substantial difference in the 

order of differentially methylated CGIs in the 100-top ranked lists generated in the two differential 

methylation analyses suggesting that the identified methylation differences were not due to a different 

number of circulating lymphocytes between CLL cases and controls (Table 10).
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DIFFERENTIAL METHYLATION ANALYSIS BEFORE COVARIATE ADJUSTMENT DIFFERENTIAL METHYLATION ANALYSIS AFTER COVARIATE ADJUSTMENT 

CpG Islands 

Mean 

β 

CLL 

Mean 

 β 

CTRL 

Mean  

Δβ 

Comb. 

P-value 

Comb. 

P-value 

adj.  

Distance Gene Symbol CpG Islands 

Mean 

β 

CLL 

Mean 

 β 

CTRL 

Mean  

Δβ 

Comb. 

P-value 

Comb. 

P-value 

adj. 

Distance 
Gene 

Symbol 

chr19:51198144-

51198460 
0.41 0.11 0.30 0.0013 0.2518 0 SHANK1 

chr19:51198144-

51198460 
0.41 0.12 0.29 0.0023 0.2641 0 SHANK1 

chr9:116860474-

116860695 
0.35 0.06 0.29 0.0016 0.2746 0 KIF12 

chr9:116860474-

116860695 
0.35 0.06 0.29 0.0024 0.2641 0 KIF12 

chr4:5894072-

5895116 
0.45 0.16 0.29 0.0016 0.2746 0 CRMP1 

chr4:5894072-

5895116 
0.43 0.15 0.28 0.0025 0.2671 0 CRMP1 

chr2:200524002-

200524204 
0.38 0.10 0.28 0.0012 0.2518 101054 FTCDNL1 

chr2:200524002-

200524204 
0.35 0.09 0.25 0.0014 0.2435 101054 FTCDNL1 

chr12:127210779-

127211651 
0.43 0.15 0.27 0.0044 0.2933 3595 LINC00944 

chr9:23850911-

23851522 
0.29 0.04 0.25 0.0018 0.2599 24847 ELAVL2 

chr11:125774293-

125774584 
0.35 0.10 0.24 0.0017 0.2803 0 DDX25 

chr11:125774293-

125774584 
0.33 0.09 0.24 0.0021 0.2641 0 DDX25 

chr9:23850911-

23851522 
0.29 0.05 0.24 0.0019 0.2803 24847 ELAVL2 

chr19:52452317-

52452543 
0.39 0.15 0.24 0.0056 0.2811 3305 ZNF613 

chr20:13975769-

13976287 
0.34 0.10 0.24 0.0057 0.3057 0 SEL1L2 

chr8:35092680-

35093559 
0.38 0.16 0.22 0.0052 0.2786 0 UNC5D 

chr19:52452317-

52452543 
0.39 0.15 0.23 0.0064 0.3057 3305 ZNF613 

chr19:30865684-

30866490 
0.29 0.07 0.22 0.0012 0.2425 0 ZNF536 

chr8:35092680-

35093559 
0.40 0.17 0.23 0.0030 0.2834 0 UNC5D 

chr8:120220389-

120221222 
0.32 0.10 0.22 0.0019 0.2605 0 MAL2 

chr19:30865684-

30866490 
0.31 0.08 0.23 0.0015 0.2746 0 ZNF536 

chr9:90589210-

90589807 
0.27 0.05 0.22 0.0001 0.1000 0 CDK20 

chr8:120220389-

120221222 
0.33 0.11 0.23 0.0012 0.2518 0 MAL2 

chr19:54485304-

54486322 
0.47 0.25 0.22 0.0015 0.2477 0 CACNG8 

chr3:170303533-

170303768 
0.37 0.14 0.23 0.0063 0.3057 0 SLC7A14 

chr8:24770909-

24772547 
0.30 0.09 0.22 0.0008 0.2062 0 NEFM 

chr9:90589210-

90589807 
0.29 0.06 0.23 0.0002 0.1151 0 CDK20 

chr11:134201785-

134202407 
0.24 0.03 0.21 0.0006 0.1869 0 GLB1L2 

chr8:24770909-

24772547 
0.32 0.10 0.23 0.0007 0.2184 0 NEFM 

chr13:24121204-

24121465 
0.34 0.13 0.21 0.0006 0.1777 23043 TNFRSF19 

chr19:54485304-

54486322 
0.48 0.26 0.23 0.0011 0.2505 0 CACNG8 

chr14:38724255-

38725537 
0.32 0.11 0.21 0.0031 0.2684 0 CLEC14A 

chr13:24121204-

24121465 
0.36 0.14 0.22 0.0009 0.2379 23043 TNFRSF19 

chr5:16179065-

16180420 
0.30 0.09 0.21 0.0049 0.2754 0 MARCH11 
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chr14:38724255-

38725537 
0.34 0.12 0.22 0.0024 0.2803 0 CLEC14A 

chr6:1378446-

1379318 
0.24 0.04 0.20 0.0036 0.2706 10750 FOXF2 

chr11:134201785-

134202407 
0.25 0.04 0.22 0.0007 0.2161 0 GLB1L2 

chr5:174151479-

174152364 
0.32 0.12 0.20 0.0024 0.2641 0 MSX2 

chr5:174151479-

174152364 
0.34 0.12 0.21 0.0024 0.2803 0 MSX2 

chr1:61508643-

61509282 
0.27 0.07 0.20 0.0005 0.1721 33663 NFIA 

chr5:72746990-

72747587 
0.31 0.10 0.21 0.0008 0.2318 46662 BTF3 

chr1:65991002-

65991811 
0.30 0.10 0.20 0.0059 0.2811 0 LEPR 

chr1:61508643-

61509282 
0.30 0.08 0.21 0.0006 0.2161 33663 NFIA 

chr19:5827755-

5828405 
0.22 0.02 0.20 0.0001 0.1000 0 NRTN 

chr11:30038523-

30038823 
0.33 0.12 0.21 0.0021 0.2803 0 KCNA4 

chr11:30038523-

30038823 
0.31 0.12 0.20 0.0037 0.2706 0 KCNA4 

chr5:16179065-

16180420 
0.30 0.09 0.21 0.0040 0.2933 0 MARCH11 

chr4:164252955-

164253471 
0.27 0.07 0.19 0.0056 0.2811 0 NPY1R 

chr7:32467435-

32467948 
0.34 0.14 0.21 0.0036 0.2927 28561 LOC100130673 

chr5:72746990-

72747587 
0.28 0.08 0.19 0.0009 0.2062 46662 BTF3 

chr14:85997469-

85998637 
0.28 0.08 0.21 0.0020 0.2803 0 FLRT2 

chr2:176993480-

176995557 
0.25 0.06 0.19 0.0014 0.2435 0 HOXD8 

chr19:5827755-

5828405 
0.23 0.03 0.20 0.0001 0.1151 0 NRTN 

chr14:85997469-

85998637 
0.26 0.07 0.19 0.0018 0.2599 0 FLRT2 

chr2:176993480-

176995557 
0.26 0.06 0.20 0.0013 0.2518 0 HOXD8 

chr11:132952539-

132953307 
0.28 0.09 0.19 0.0010 0.2247 0 OPCML 

chr20:11871375-

11872207 
0.26 0.06 0.20 0.0050 0.3018 0 BTBD3 

chr9:79630969-

79631749 
0.31 0.12 0.19 0.0024 0.2641 2821 FOXB2 

chr1:65991002-

65991811 
0.31 0.11 0.20 0.0065 0.3057 0 LEPR 

chr17:15686219-

15686474 
0.31 0.13 0.19 0.0031 0.2684 3689 MEIS3P1 

chr6:1378446-

1379318 
0.24 0.04 0.20 0.0039 0.2933 10750 FOXF2 

chr15:100880958-

100882438 
0.23 0.05 0.18 0.0002 0.1178 0 ADAMTS17 

chr2:119606039-

119606313 
0.32 0.12 0.20 0.0029 0.2834 279 EN1 

chr2:119606039-

119606313 
0.29 0.11 0.18 0.0032 0.2687 279 EN1 

chr11:132952539-

132953307 
0.31 0.11 0.20 0.0019 0.2803 0 OPCML 

chr9:98273679-

98273908 
0.25 0.07 0.18 0.0020 0.2635 0 PTCH1 

chr9:79630969-

79631749 
0.32 0.13 0.20 0.0023 0.2803 2821 FOXB2 

chr8:106330519-

106332120 
0.25 0.07 0.18 0.0014 0.2435 0 ZFPM2 

chr8:106330519-

106332120 
0.27 0.08 0.20 0.0013 0.2518 0 ZFPM2 

chr5:175223610-

175224679 
0.24 0.06 0.18 0.0028 0.2684 0 CPLX2 

chr15:28753440-

28753940 
0.31 0.11 0.19 0.0026 0.2803 10816 GOLGA8G 

chr4:7940564-

7941853 
0.28 0.11 0.18 0.0012 0.2421 0 AFAP1 

chr15:100880958-

100882438 
0.24 0.05 0.19 0.0002 0.1464 0 ADAMTS17 

chr10:100992157-

100992687 
0.26 0.08 0.18 0.0007 0.1917 0 HPSE2 
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chr4:4873263-

4873613 
0.28 0.09 0.19 0.0008 0.2318 7602 MSX1 

chr4:128544032-

128544903 
0.27 0.09 0.18 0.0046 0.2718 9183 INTU 

chr17:15686219-

15686474 
0.32 0.13 0.19 0.0027 0.2805 3689 MEIS3P1 

chr4:118006539-

118006859 
0.22 0.05 0.17 0.0020 0.2641 0 TRAM1L1 

chr2:130737206-

130737718 
0.26 0.07 0.19 0.0053 0.3057 0 RAB6C-AS1 

chr1:236227683-

236228817 
0.24 0.06 0.17 0.0050 0.2754 0 NID1 

chr9:98273679-

98273908 
0.27 0.08 0.19 0.0029 0.2834 0 PTCH1 

chr20:55500348-

55501102 
0.25 0.07 0.17 0.0035 0.2706 242706 BMP7 

chr10:100992157-

100992687 
0.26 0.08 0.19 0.0009 0.2379 0 HPSE2 

chr4:4873263-

4873613 
0.26 0.09 0.17 0.0011 0.2347 7602 MSX1 

chr4:7940564-

7941853 
0.30 0.11 0.18 0.0011 0.2505 0 AFAP1 

chr4:55092962-

55093242 
0.21 0.04 0.17 0.0047 0.2727 0 PDGFRA 

chr4:128544032-

128544903 
0.28 0.10 0.18 0.0043 0.2933 9183 INTU 

chr19:54483022-

54483572 
0.21 0.04 0.17 0.0013 0.2432 0 CACNG8 

chr20:55500348-

55501102 
0.27 0.08 0.18 0.0037 0.2933 242706 BMP7 

chr2:183902403-

183903625 
0.23 0.06 0.17 0.0005 0.1681 0 NCKAP1 

chr5:175223610-

175224679 
0.25 0.07 0.18 0.0033 0.2861 0 CPLX2 

chr19:54393040-

54393300 
0.26 0.09 0.17 0.0052 0.2786 0 PRKCG 

chr2:183902403-

183903625 
0.25 0.07 0.18 0.0003 0.1548 0 NCKAP1 

chr5:87437096-

87437505 
0.23 0.06 0.17 0.0014 0.2432 53517 TMEM161B 

chr5:87437096-

87437505 
0.26 0.08 0.18 0.0024 0.2803 53517 TMEM161B 

chr19:31839636-

31843049 
0.24 0.07 0.17 0.0022 0.2641 0 TSHZ3 

chr1:236227683-

236228817 
0.25 0.07 0.18 0.0042 0.2933 0 NID1 

chr1:152487979-

152488270 
0.25 0.08 0.17 0.0059 0.2811 0 CRCT1 

chr4:164252955-

164253471 
0.26 0.08 0.18 0.0044 0.2933 0 NPY1R 

chr18:55094826-

55096310 
0.27 0.10 0.17 0.0052 0.2786 6606 ONECUT2 

chr11:12398966-

12399863 
0.27 0.09 0.17 0.0018 0.2803 0 PARVA 

chr11:12398966-

12399863 
0.25 0.08 0.17 0.0014 0.2435 0 PARVA 

chr6:19837505-

19839314 
0.28 0.11 0.17 0.0025 0.2803 0 ID4 

chr6:19837505-

19839314 
0.26 0.10 0.16 0.0030 0.2684 0 ID4 

chr4:55092962-

55093242 
0.22 0.05 0.17 0.0063 0.3057 0 PDGFRA 

chr9:1042418-

1042973 
0.25 0.09 0.16 0.0028 0.2684 7372 DMRT2 

chr19:54483022-

54483572 
0.21 0.04 0.17 0.0016 0.2746 0 CACNG8 

chr2:223161532-

223161919 
0.20 0.04 0.16 0.0015 0.2435 0 PAX3 

chr18:55094826-

55096310 
0.29 0.11 0.17 0.0062 0.3057 6606 ONECUT2 

chr16:54962423-

54967805 
0.25 0.09 0.16 0.0031 0.2684 0 CRNDE 

chr19:31839636-

31843049 
0.25 0.08 0.17 0.0022 0.2803 0 TSHZ3 

chr1:94702691-

94703344 
0.23 0.07 0.16 0.0031 0.2684 0 ARHGAP29 

chr4:118006539-

118006859 
0.23 0.05 0.17 0.0024 0.2803 0 TRAM1L1 chr2:45511-46559 0.24 0.08 0.16 0.0023 0.2641 0 FAM110C 
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chr9:1042418-

1042973 
0.27 0.10 0.17 0.0031 0.2834 7372 DMRT2 

chr7:27203916-

27206462 
0.23 0.07 0.16 0.0046 0.2718 0 

HOXA10-

HOXA9 

chr18:75611919-

75612142 
0.20 0.03 0.17 0.0002 0.1151 629822 GALR1 

chr8:41165853-

41167140 
0.24 0.08 0.16 0.0043 0.2718 0 SFRP1 

chr2:45511-46559 0.26 0.09 0.17 0.0012 0.2518 0 FAM110C 
chr1:50489418-

50489846 
0.24 0.08 0.16 0.0042 0.2718 0 AGBL4 

chr8:41165853-

41167140 
0.26 0.09 0.17 0.0037 0.2933 0 SFRP1 

chr20:48098513-

48099560 
0.30 0.14 0.15 0.0052 0.2786 0 KCNB1 

chr16:54962423-

54967805 
0.27 0.10 0.17 0.0029 0.2834 0 CRNDE 

chr7:20817456-

20818227 
0.24 0.08 0.15 0.0028 0.2684 3666 SP8 

chr3:45187027-

45187946 
0.23 0.06 0.17 0.0060 0.3057 0 CDCP1 

chr4:147576110-

147576762 
0.21 0.06 0.15 0.0067 0.2848 12486 POU4F2 

chr15:26327496-

26327896 
0.22 0.05 0.17 0.0002 0.1464 29228 LINC02346 

chr18:75611919-

75612142 
0.18 0.03 0.15 0.0002 0.1158 629822 GALR1 

chr7:27212417-

27214396 
0.26 0.09 0.17 0.0030 0.2834 0 

HOXA10-

HOXA9 

chr3:145878431-

145879287 
0.22 0.06 0.15 0.0039 0.2718 0 PLOD2 

chr7:27203916-

27206462 
0.25 0.08 0.17 0.0039 0.2933 0 

HOXA10-

HOXA9 

chr13:53419898-

53422872 
0.26 0.11 0.15 0.0044 0.2718 0 PCDH8 

chr1:91183241-

91184540 
0.24 0.07 0.17 0.0058 0.3057 446 BARHL2 

chr20:590223-

591222 
0.25 0.10 0.15 0.0046 0.2718 0 TCF15 

chr20:4228533-

4230496 
0.31 0.15 0.16 0.0027 0.2805 0 ADRA1D 

chr4:85503547-

85504893 
0.19 0.04 0.15 0.0036 0.2706 0 CDS1 

chr2:223161532-

223161919 
0.22 0.05 0.16 0.0016 0.2746 0 PAX3 

chr12:59313560-

59314452 
0.20 0.05 0.15 0.0026 0.2671 0 LRIG3 

chr1:94702691-

94703344 
0.24 0.08 0.16 0.0034 0.2861 0 ARHGAP29 

chr2:177052958-

177054350 
0.24 0.09 0.15 0.0060 0.2811 0 HAGLR 

chr5:35617856-

35618339 
0.20 0.04 0.16 0.0003 0.1536 0 SPEF2 

chr5:35617856-

35618339 
0.19 0.04 0.15 0.0005 0.1655 0 SPEF2 

chr12:59313560-

59314452 
0.22 0.06 0.16 0.0031 0.2834 0 LRIG3 

chr18:73167403-

73167920 
0.27 0.12 0.15 0.0057 0.2811 27813 SMIM21 

chr1:50489418-

50489846 
0.25 0.09 0.16 0.0049 0.2994 0 AGBL4 

chr19:51227662-

51228883 
0.22 0.07 0.15 0.0014 0.2432 0 CLEC11A 

chr19:51227662-

51228883 
0.24 0.08 0.16 0.0017 0.2803 0 CLEC11A 

chr7:27212417-

27214396 
0.23 0.08 0.15 0.0038 0.2706 0 

HOXA10-

HOXA9 

chr3:145878431-

145879287 
0.23 0.07 0.16 0.0038 0.2933 0 PLOD2 

chr1:48937305-

48937683 
0.20 0.05 0.15 0.0018 0.2599 0 SPATA6 

chr2:177052958-

177054350 
0.26 0.10 0.16 0.0038 0.2933 0 HAGLR 

chr3:39851026-

39851820 
0.18 0.03 0.15 0.0014 0.2435 0 MYRIP 

chr19:54409967-

54410200 
0.20 0.04 0.16 0.0046 0.2933 0 PRKCG 

chr20:4228533-

4230496 
0.30 0.15 0.15 0.0054 0.2801 0 ADRA1D 
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chr18:73167403-

73167920 
0.28 0.13 0.16 0.0055 0.3057 27813 SMIM21 

chr15:96873409-

96877721 
0.28 0.13 0.15 0.0053 0.2786 0 NR2F2 

chr2:132121264-

132121762 
0.20 0.04 0.16 0.0034 0.2861 0 RAB6D 

chr10:118927022-

118928132 
0.23 0.08 0.15 0.0042 0.2718 0 MIR3663 

chr4:85503547-

85504893 
0.20 0.04 0.16 0.0027 0.2805 0 CDS1 

chr6:80656745-

80657593 
0.19 0.04 0.15 0.0004 0.1400 0 ELOVL4 

chr20:590223-

591222 
0.26 0.11 0.16 0.0045 0.2933 0 TCF15 

chr12:88973461-

88974666 
0.21 0.07 0.15 0.0053 0.2786 0 KITLG 

chr7:20817456-

20818227 
0.26 0.10 0.16 0.0036 0.2899 3666 SP8 

chr7:28995306-

28998541 
0.25 0.10 0.15 0.0026 0.2672 0 TRIL 

chr10:47008085-

47008410 
0.22 0.07 0.16 0.0033 0.2861 3345 ANXA8 

chr2:132121264-

132121762 
0.19 0.04 0.15 0.0046 0.2718 0 RAB6D 

chr8:24812947-

24814299 
0.24 0.08 0.16 0.0038 0.2933 0 NEFL 

chr16:31580560-

31581023 
0.19 0.04 0.15 0.0051 0.2764 0 YBX3P1 

chr10:8091375-

8098329 
0.22 0.07 0.16 0.0018 0.2803 0 GATA3-AS1 

chr14:85999533-

86000478 
0.22 0.08 0.15 0.0044 0.2718 0 FLRT2 

chr7:28995306-

28998541 
0.27 0.11 0.16 0.0025 0.2803 0 TRIL 

chr10:47008085-

47008410 
0.20 0.06 0.15 0.0031 0.2684 3345 ANXA8 

chr12:88973461-

88974666 
0.24 0.08 0.16 0.0056 0.3057 0 KITLG 

chr12:20521617-

20523122 
0.23 0.09 0.15 0.0039 0.2718 0 PDE3A 

chr3:39851026-

39851820 
0.19 0.04 0.16 0.0015 0.2746 0 MYRIP 

chr2:211089414-

211090176 
0.20 0.05 0.15 0.0027 0.2684 0 ACADL 

chr12:20521617-

20523122 
0.26 0.10 0.16 0.0042 0.2933 0 PDE3A 

chr1:65775019-

65775746 
0.19 0.05 0.15 0.0036 0.2706 0 DNAJC6 

chr10:118927022-

118928132 
0.25 0.09 0.15 0.0048 0.2994 0 MIR3663 

chr8:72468561-

72469561 
0.23 0.08 0.15 0.0066 0.2848 194093 EYA1 

chr2:211089414-

211090176 
0.22 0.06 0.15 0.0022 0.2803 0 ACADL 

chr7:79081566-

79081879 
0.24 0.09 0.15 0.0067 0.2848 0 MAGI2 

chr13:53419898-

53422872 
0.27 0.11 0.15 0.0045 0.2933 0 PCDH8 

chr6:39692744-

39692966 
0.18 0.04 0.15 0.0043 0.2718 0 KIF6 

chr20:8112885-

8113592 
0.21 0.05 0.15 0.0016 0.2803 0 PLCB1 

chr10:8091375-

8098329 
0.21 0.06 0.14 0.0021 0.2641 0 GATA3-AS1 

chr6:80656745-

80657593 
0.20 0.04 0.15 0.0004 0.1652 0 ELOVL4 

chr20:8112885-

8113592 
0.19 0.05 0.14 0.0017 0.2594 0 PLCB1 

chr8:72468561-

72469561 
0.24 0.09 0.15 0.0051 0.3044 194093 EYA1 

chr8:24812947-

24814299 
0.21 0.07 0.14 0.0044 0.2718 0 NEFL 

chr8:12990091-

12990914 
0.20 0.05 0.15 0.0039 0.2933 0 DLC1 

chr22:17083385-

17083628 
0.18 0.04 0.14 0.0047 0.2727 0 TPTEP1 

chr7:79081566-

79081879 
0.26 0.11 0.15 0.0065 0.3057 0 MAGI2 

chr6:125283125-

125284389 
0.20 0.06 0.14 0.0056 0.2811 0 

RNF217-

AS1 
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chr1:27961560-

27961810 
0.15 0.37 -0.22 

3.52E-

06 
0.015163 0 FGR 

chr5:139040820-

139041028 
0.13 0.36 -0.22 

4.37E-

06 
0.010331 0 CXXC5 

chr5:139040820-

139041028 
0.15 0.40 -0.25 

4.52E-

06 
0.016705 0 CXXC5 

chr1:27961560-

27961810 
0.14 0.36 -0.22 

2.66E-

06 
0.009826 0 FGR 

chr11:47399789-

47400006 
0.16 0.41 -0.25 

3.26E-

06 
0.015163 0 SLC39A13 

chr11:47399789-

47400006 
0.13 0.36 -0.23 

1.59E-

06 
0.008215 0 SLC39A13 

Table 10. 100-top ranked differentially methylated CpG islands in CLL discovery set
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4.1.2.2 SHANK1-associated CGI methylation in different datasets 

A CGI (chr19:51198144-51198460, referred to hg19) located in the gene body of SHANK1 showed 

the highest differential methylation value (Δβ = 0.29) between CLL and control samples (Table 10).  

A statistically significant positive correlation (r = 0.78, p-value = 0.0045) (Figure 18A) between 

SHANK1 methylation percentage and absolute lymphocyte count data was observed. Moreover, CLL 

samples with high lymphocyte counts, showed high CD19+ B-cells contributions and higher 

SHANK1 methylation values, compared to samples with low CD19+ B-cells contributions (Table 11). 

Correlation analysis confirmed a strong positive correlation (r = 0.91, p-value < 0.0001) between 

CD19+ B-cells contribution and SHANK1 methylation (Figure 18B). 

 

Figure 18. Correlation analysis between methylation percentage and absolute lymphocyte count. SHANK1 methylation 

levels (%) are plotted against absolute lymphocyte count values (A); Correlation analysis between methylation percentage 

and CD19+ B-cells. SHANK1 methylation levels (%) are plotted against CD19+ cells contribution values (B) 
 

CD14+ 

monocytes 

CD19+  

B cells 

CD4+ 

T cells 

CD56+ 

nk cells 

CD8+ 

t cells 

Granulocytes Lymphocyte 

count/mm3 

SHANK1 

methylation 

value (%) 

304012_002 0,104 0,609 -0,010 0,001 0,000 0,245 NA 59 

304012_007 0,076 0,114 -0,001 0,011 0,000 0,797 5050 23 

304012_030 0,061 0,556 0,000 0,040 0,000 0,355 32380 51 

304012_048 0,074 0,693 0,000 0,049 0,000 0,122 9580 57 

304032_083 0,084 0,837 0,038 0,000 0,000 0,002 NA 75 

304012_088 0,062 0,621 -0,008 0,050 0,000 0,289 45330 63 

304012_092 0,099 0,562 0,000 0,146 0,000 0,154 21830 32 

304032_100 0,061 0,506 0,000 0,150 0,000 0,323 NA 59 

304032_104 0,019 0,323 0,002 0,323 0,000 0,313 NA 31 

304012_112 0,073 0,314 0,000 0,056 0,000 0,627 5270 27 

304012_114 0,057 0,594 0,000 0,092 -0,001 0,291 24360 36 

304032_132 0,000 0,000 -0,016 0,000 0,000 0,988 NA 6 

304032_134 0,070 0,185 0,000 0,049 0,000 0,720 NA 12 

304012_188 0,089 0,318 0,000 0,104 0,000 0,484 5410 16 

304012_193 0,047 0,890 -0,028 0,000 -0,006 0,015 58880 69 

304012_196 0,090 0,342 0,000 0,099 0,000 0,549 9060 44 

304012_198 0,065 0,042 0,096 0,157 0,000 0,672 NA 10 

A B 
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304012_475 0,068 0,821 0,000 0,001 0,000 0,000 94100 69 

Table 11. Comparison between estimated relative leucocyte contributions, lymphocyte count and SHANK1 methylation 

values in CLL samples 

SHANK1-associated CGI methylation alteration was successfully validated in a publicly available 

dataset including 139 CLLs (≥95% neoplastic cells) and 20 normal samples (normal B-cells from 

peripheral blood including total B cells and various subtypes of B-cells) (Kulis et al., 2012). This 

CGIs showed a statistically significant differential methylation (Δβ = 0.26, p-value = 8.66e-12, 

adjusted p-value = 2.43e-10) between CLL and normal controls (Table 12). Moreover, the same CGI 

resulted hypermethylated (false discovery rate <0.05) in a subgroup of 59 CLL with a low or absent 

IGHV mutational load (U-CLLs) compared to 6 naïve B cells (CD5+NBC/NBC) (Kulis et al., 2012) 

(Table 12). 

To investigate whether this methylation alterations may be a potential biomarker to predict the risk 

of developing CLL or other MBCN diseases, a cohort of 438 MBCN cases, including 82 CLL/SLL, 

and matched-normal controls was analysed. A statistically significant gain of methylation in the 

SHANK1-associated CGI was detected both in the prospective set including 82 CLL and SLL (Δβ = 

0.047, p = 0.00863, adjusted p-value = 0,0921) and in the larger dataset of 438 MBCN cases, 

including the 82 CLL/SLL (Δβ = 0.03, p-value < 10-7, adjusted p-value = 7.47e-05) between cases 

and controls (Table 12, Figure 19). 

 Mean ΔΒ p-value 
Adjusted 

p-value 

18 CLLs vs 6 normal controls 
(experimental dataset) 

0.29 0.0023 0.2641 

139 CLLs vs 20 normal controls 
(validation dataset) 

(Kulis et al., 2012) 

0.26 8.66e-12 2.43e-10 

59 u-CLLs vs 6 CD5+NBC/NBC 

(validation dataset) 

(Kulis et al., 2012) 

0.38  FDR<0.05 

(Kulis et al., 

2012) 

82 CLL/SLLs yr before diagnosis        

vs matched-normal controls 

(experimental predictive dataset) 

0.047 0.00863 0.0921 

438 MBCN cases yr before diagnosis  

vs matched-normal controls 

(experimental predictive dataset) 

0.03 4.97e-07 7.47e-05 

Table 12.  SHANK1 differential methylation data in the datasets analysed 

Notes: adj: adjusted; CLL: chronic lymphocytic leukemia; NBC: naïve B cells; SLL: small lymphocytic lymphoma; yr: 

years; MBCN: mature B-cell neoplasms 
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Figure 19. SHANK1 methylation values in 438 MBCN cases/controls (A) and in the 82 CLL/SLL cases and controls (B) 

 

4.1.3 Biliary tract cancer 

4.1.3.1 Genome-wide methylation analysis 

A genome-wide methylation analysis of 50 BTCs and 10 matched-normal samples was conducted by 

EPIC arrays. CpG methylation values were normalized using SWAN method (Maksimovic et al., 

2012). An unusual density distribution of beta-values was observed, particularly evident after SWAN 

normalization indicating a non-optimal adjustment (Figure 20).  
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Figure 20. Density plot of the beta values distribution before and after correction (SWAN) 

For this reason, methylation raw data were normalized using another normalization method (BMIQ). 

Both SWAN and BMIQ normalization algorithms performed a within-array normalization but, while 

BMIQ directly uses the type I probes as a reference in order to normalize beta values for type II 

probes to the distributions of type I probes belonging the same estimated state (methylated, 

hemimethylated and unmethylated), SWAN modifies both type I probe and type II probe values. 

For samples with well-defined peaks in the unmethylated and methylated states, the tail ends of the 

BMIQ type2 probes distribution better matched those of the type1 distribution indicating an improved 

normalization using BMIQ than SWAN method (Figure 21). 
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Figure 21. Density plot of beta value distribution before normalization and after SWAN and BMIQ normalization for 

one sample (A), Density plots of beta value distribution for Type I and Type II probes before and after SWAN (B) and 

BMIQ (C) correction. 

As expected, for samples with an aberrant distribution of raw (not normalized) beta values, 

normalization methods do not work, and these samples should be removed from the analyses (Figure 

22). 

 

Figure 22. Density plot of beta value distribution before normalization and after SWAN and BMIQ normalization 

Density plots of the average intensity values for each bead type revealed that, as expected, samples 

with abnormal beta values distribution showed also abnormal average intensity values distribution 

compared to samples with a normal beta value distribution (Figure 23).  

 

Figure 23. Example of probe intensity value distribution in two samples 

Based on the two analysed parameters (beta values distribution before and after normalization and 

intensity values distribution), 26 good-quality samples were selected for the following analyses. This 

restricted dataset included 17 BTCs and nine normal control samples. 

RnBeads pipeline analysis was repeated for this restricted dataset using BMIQ normalization method. 

The influence of this normalization of beta values distribution can be observed in Figure 24.  
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Figure 24. Beta values distribution before and after correction (BMIQ) 

Differential methylation analysis revealed that, as expected, the number of differentially methylated 

CGIs identified analyzing this restricted dataset was higher than that identified using the total dataset 

including also low-quality samples (Figure 25).  

 

Figure 25. Average beta values distribution of BTC and normal control samples at CpG Island level in the first (A) and 

in the second (B) methylation analysis. Red dots represent statistically significant differentially methylated CpG islands 

(automatically selected rank cutoff) 

648 CGIs were identified as differentially methylated (|| > 0.20, combined p-value < 0.05) between 

BTC and normal control samples (Figure 26). After p-value correction, no statistically significant 

differentially methylated CGIs were detected, probably for the reduced sample size analysed. 
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Figure 26. Average CGI beta values distribution in normal and tumour samples of our exploratory dataset. Red dots 

indicate statistically significant differentially methylated CGIs (A); Volcano plot distribution of CGIs delta betas of our 

exploratory dataset. Red dots indicate hypermethylated CGIs ( > 0.2) and green dots represent hypomethylated CGIs 

(  < -0.2) (B)  

Heatmaps were generated using CGI methylation values (Figure 27A) and somatic change values 

(calculated as the difference between CGI methylation value of a sample and the average CGI 

methylation value of normal samples) of each sample (Figure 27B). Unsupervised hierarchical 

clustering analysis (UHC) showed two main sample clusters, including a first restricted cluster of the 

most hypermethylated tumour samples and a second cluster further divided into a cluster of tumours 

showing intermediate methylation values and a cluster including normal and three tumour samples 

with low methylation values (Figure 27). No association was observed between methylation values 

and tumour location or grade. Tumour samples of lower stages (I and II) were predominantly in the 

same cluster of normal samples compared to tumour samples of higher stages (III and IV) that were 

in the cluster including only tumours (p-value 3.11e-03, calculated using contingency table 2x2). 

 

Figure 27. BTC discovery set unsupervised hierarchical clustering analysis based on the average CGI β values (A) or 

somatic changes (B) for each of the aberrantly methylated CGI.  

A B 

A B 
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CGIs showing  values higher than 0.20 in normal samples were filtered out obtaining 171 

differentially methylated CGIs. 

4.1.3.2 Methylation alterations validation 

To validate and increase the robustness of the identified methylation alterations, methylation data 

from TCGA-CHOL dataset (including 36 tumour samples and nine normal samples) were analysed. 

Differential methylation analysis revealed 2203 differentially methylated CGIs ((|| > 0.20, adjusted 

combined p-value < 0.05) (Figure 28). This dataset showed a higher number of both hypermethylated 

and hypomethylated CGIs compared to our exploratory dataset. 

 

Figure 28. Average CGI beta values distribution in normal and tumour samples of TCGA-CHOL validation dataset. Red 

dots indicate statistically significant differentially methylated CGIs (A); Volcano plot distribution of CGIs delta betas of 

TCGA_CHOL validation dataset. Red dots indicate hypermethylated CGIs ( > 0.2) and green dots represent 

hypomethylated CGIs (  < -0.2) (B)  

Heatmaps were generated using CGI methylation values (Figure 29A) and somatic change values 

(Figure 29B) of each sample. UHC showed a clusterization of the samples similar to that observed 

for in our discovery dataset, with only one tumour sample clusterizing in the sample subgroup. No 

association with clinical data was observed. 

 

A B 

A 
A B 
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Figure 29. TCGA-CHOL validation set unsupervised hierarchical clustering analysis based on the average CGI β values 

(A) or somatic changes (B) for each of the aberrantly methylated CGI. 

CGIs showing  values higher than 0.20 in normal samples were filtered out obtaining 998 

differentially methylated CGIs. 

Methylation alterations of 125 CGIs identified in our discovery dataset were validated in TCGA-

CHOL dataset. 

4.1.3.3 Tumours clustering 

To identify tumour subgroups and explore possible correlation with clinical data, recursively 

partitioned mixture modeling (RPMM) was employed. In our discovery dataset, RPMM resulted in 

five clusters (Figure 30). Tumours of low grade and stage were mainly in the clusters of tumours with 

the lowest methylation values (rRLL), however no significant correlation was observed between 

tumour clusters and clinical data. 

 

Figure 30. RPMM of validated CGIs in our discovery set 

In TCGA-CHOL, RPMM resulted in seven classed of tumour samples (Figure 31). No correlation 

with clinical data was observed. 
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Figure 31. RPMM of validated CGIs in TCGA-CHOL discovery dataset 

4.1.3.4 Selection of BTC-specific CGIs 

To select only BTC-specific alterations, CGIs differentially methylated (|| > 0.20) in TCGA-

COAD and TCGA-STAD datasets were filtered out, leading to the identification of 30 CGIs 

specifically altered in BTC. Heatmaps generated with methylation values of these 30 CGIs for each 

sample of our dataset (Figure 32A) and TCGA-CHOL (Figure 32B) showed the same clusterization 

of the samples observed with the differentially methylated CGIs identified in our discovery dataset 

(Figure 27) and in TCGA-CHOL dataset (Figure 29). 
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Figure 32. Discovery set (A) and TCGA-CHOL set (B) unsupervised hierarchical clustering analysis based on the average 

CGI β values for the 30 BTC-specific altered CGIs  

Specificity and sensitivity of these 30 BTC-specific biomarkers were evaluated by generating ROC 

curves. In our exploratory dataset, 11 CGIs showed an AUC equal or higher than 0.90 (Figure 33), 

while 21 CGIs had an AUC > 0.90 in TCGA-CHOL dataset. Seven CGIs had an AUC higher than 

0.90 in both datasets (Table 13). 

 

Figure 33. ROC curves for the 11 CGIs showing an AUC = or > 0.90 in our discovery dataset 

A B 
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CGI Δβ 

Discovery set 

AUC 

Discovery set 

Δβ 

Validation set 

AUC 

Validation set 

CGI 1 0.22 

 

 

0.92 

 

0.31 

 

0.93 

 

CGI 2 0.21 

 

0.90 

 

0.41 

 

1.00 

 

CGI 3 0.25 

 

0.93 

 

0.38 

 

0.94 

 

CGI 4 0.21 

 

0.93 

 

0.24 

 

0.97 

 

CGI 5 0.27 

 

0.92 

 

0.41 

 

0.95 

 

CGI 6 0.22 

 

0.92 

 

0.29 

 

0.93 

 

CGI 7 0.25 

 

0.90 

 

0.38 1.00 

Table 13. CGIs showing an AUC = or > 0.90 in our discovery set and in TCGA-CHOL validation set 

4.1.3.5 BTC-specific altered CGIs in the excluded samples 

To explore the possibility to rescue methylation data from the 33 excluded tumour samples, UHC 

was carried out using CGI methylation values for the 30 BTC-specific altered CGI, revealing a 

clusterization of these samples similar to that of good-quality selected tumour samples (Figure 34). 

 

Figure 34. Excluded samples (A) and good-quality selected samples (B) unsupervised hierarchical clustering analysis 

based on the average CGI β values for the 30 BTC-specific altered CGIs 

Principal component analysis (PCA) was performed in order to investigate whether some excluded 

tumour samples clusterized in a cluster along with good-quality samples and may be rescued and 

B A 
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integrated in the methylation analysis. However, PCA did not reveal a clear separation between 

excluded samples and good-quality samples making difficult to select possible samples to rescue 

(Figure 35). 

 

Figure 35. PCA of bad and good-quality samples 

4.2 DNA methylation alterations are linked to gene expression changes 

Gene expression analysis of selected genes whose associated CGIs were hypermethylated in tumors 

were performed in order to explore the association between methylation and gene expression. 

4.2.1 Colorectal cancer  

4.2.1.1 mRNA expression analysis 

To verify whether hypermethylation of CGIs in the promoter regions of GRIA4 and VIPR2 was 

associated to a change in gene expression levels of these genes, a gene expression analysis on the 10 

CRC and matched-normal samples analysed by MethyLight, was conducted by qRT-PCR. This 

sample cohort included the same samples analysed for DNA methylation status. 
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Gene expression results revealed a statistically significant downregulation of these genes in tumour 

samples compared to matched-normal controls (Figure 36A and D). 

 

Figure 36. Differential gene expression analyses of GRIA4 (A), GRIA4 long canonical (B) and short (C) alternative 

transcripts, VIPR2 (D), SPOCK1 (E) and SLC6A3 (F) genes between CRC and normal-matched control samples. Box 

plots show fold change values  

*** indicates p-value < 0.0001 

Since DNA methylation alterations can also affect the expression of alternative transcripts, gene 

expression analysis of the two main alternative transcripts of GRIA4 gene, respectively encoding for 

the long canonical protein isoform and for a shorter isoform of Glutamate receptor 4 (GluR4) (Figure 

37), was performed. A statistically significant reduction of both GRIA4 alternative transcripts 

expression levels was observed in CRC samples compared to matched normal controls (Figure 36B 

and C). 
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Figure 37. GRIA4 alternative transcripts and primers position for the gene expression assays (long canonical and short 

alternative transcripts are shown in orange; blue arrows indicate primers for estimating gene expression levels of all 

transcripts, green arrows indicate primers for the long and short transcripts) (A); GluR4 protein isoforms and protein 

domains (green dash indicates the immunogen) 

Moreover, gene expression analyses of SPOCK1 and SLC6A3 genes were performed in the same 

sample cohort. CGIs associated to these two genes have been found hypermethylated in CRC and 

were selected among the biomarkers showing an AUC > 0.95 both in our discovery dataset and in 

TCGA-COAD dataset. These genes resulted statistically significantly downregulated in tumour 

samples compared to matched-normal samples (Figure 36E and F). 

4.2.1.1.1 Gene expression changes validation 

To validate our finding, RNAseq data from TCGA-COAD dataset were explored. This analysis 

confirmed the statistically significant lower expression levels of GRIA4 and VIPR2 in CRC samples 

than in normal ones. In disagreement with our experimental data, SLC6A3 resulted more expressed 

in CRC samples, while SPOCK1 showed similar expression levels in both CRC and matched-normal 

samples (Figure 38).  However, even if SLC6A3 showed statistically significant higher levels in CRC 

samples of this dataset, tumour expression values largely overlap with normal expression values. 



 73 

 

Figure 38. Differential gene expression analyses of GRIA4 (A), VIPR2 (B), SPOCK1 (C) and SLC6A3 (D) genes between 

CRC and normal control samples from TCGA-COAD dataset. Box plots show log2(normalized count +1)  

4.2.1.2 Protein expression analysis 

To evaluate whether the identified gene expression alterations are translated in protein expression 

changes, western blot analyses of GluR4, VIPR2, SPOCK1 and SLC6A3 were performed in the 10 

paired samples analysed by qRT-PCR.  

The long GluR4 canonical isoform, SPOCK1 and SLC6A3 showed statistically significant lower 

protein levels in CRC samples, following the same pattern of the mRNA expression levels (Fig. 39). 

The short GluR4 and VIPR2 did not show statistically significant differences of expression between 

CRC and matched-normal samples, although a trend towards downregulation in CRC can be observed 

(Figure 39).  
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Figure 39. GluR4 long, GluR4 short, VIPR2, SPOCK1, SLC6A3 and NaK ATPase immunoblots of CRC and their 

matched-normal samples (A); Protein expression levels in tumour and matched-normal controls. Box plots show 

normalized protein levels 

* indicates p-value < 0.05 ** indicates p-value < 0.001, *** indicates p-value < 0.0001 

A comparison between transcript expression levels and their respective protein isoform expression 

levels revealed that GRIA4 long transcript was statistically significantly more expressed than the short 

one in both tumour and normal samples (Figure 40). This result was not reflected at protein level 

where GluR4 long isoform was statistically significantly less expressed compared to the short isoform 

in both tumour and normal samples (Figure 40). 
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Figure 40. GRIA4 transcripts levels in tumour and normal samples (A), GluR4 isoforms levels in tumour and normal 

samples (B). GRIA4 short transcript expression level are shown relative to GRIA4 long transcript expression level (A); 

GluR4 short isoform expression level are shown relative to GluR4 long isoform expression level (B) 

* indicates p-value < 0.05, *** indicates p-value < 0.0001 

4.2.2 Chronic lymphocytic leukemia 

4.2.2.1 SHANK1 gene expression analysis 

To investigate the impact of SHANK1-associated CGI hypermethylation on gene expression, a gene 

expression analysis was conducted on 27 CLL samples and 16 normal controls by qRT-PCR. 

Hypermethylation of the CGI located on the gene body of SHANK1 gene (Figure 41A) was associated 

to a statistically significant down-regulation of SHANK1 gene in CLL samples (Figure 41B). 

To exclude that the detected SHANK1 different expression levels could be related to a different 

expression of the reference gene ACTB in CLL whole blood samples, SHANK1 downregulation was 

also confirmed using GUSB as reference gene in a subgroup of samples (data not shown). 
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Figure 41. SHANK1 protein coding transcripts and associated CGIs (the identified hypermethylated CGI is enclosed in 

an orange box) (A); differential gene expression analysis of SHANK1 gene between CLL and normal control samples. 

Box plot shows fold change values  

*** indicates p-value < 0.0001 

4.2.2.1.1 Gene expression validation 

To validate our result in an independent cohort, RNA-seq data from a dataset (GEO accession 

number: GSE70830) including 10 CLL samples and five normal peripheral blood CD19+ B cells 

were analysed. In this dataset, SHANK1 gene did not show a statistically significant reduced 

expression in CLL samples compared to control ones.  Gene expression data of a large dataset 

(Ferreira et al., 2014) including 98 CLL and three subtypes of normal B cells (naïve, memory 

IgM/IgD, and memory IgG/IgA), were unsuitable for estimating SHANK1 gene expression levels 

since the majority of the samples have zero reads.  
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This was not surprising since SHANK1 resulted a gene weakly expressed in whole-blood in a whole-

transcript analysis (GTEx Portal data: median Transcripts Per Kilobase Million (TPM): 0.030, 

number of samples: 407). 

4.3 PCDH cluster region is aberrantly methylated region in solid cancers 

Methylation of CGIs associated to PCDH cluster was evaluated in different exploratory datasets 

including both solid cancers (PA, CRC, GC and BTC) and a blood cancer (CLL). PCDH-associated 

CGIs alterations were among the most significant alterations identified in all the solid tumours 

analysed. In CRC, the most altered CGI associated with PCDH gamma cluster (PCDHG@) was the 

fourth most hypermethylated CGI and the fifth most significantly altered CGI among a panel of 74 

CGI alterations previously identified in CRC (Fadda et al., 2018). In the other two gastrointestinal 

tumours analysed, the most altered CGIs associated with PCDHG@ were among the statistically 

significant hypermethylated CGIs: 122/522 and 40/48, considering the Δβ, and 28/522 and 13/48, 

considering the p-value, in GC and BTC respectively. On the other hand, no CGI resulted 

hypermethylated in PA, but a PCDH-associated region resulted one of the most hypomethylated 

regions (12/208) identified in PA. 

4.3.1 PCDH-associated CGI alterations in colorectal cancer 

Results from a previous study conducted in our laboratory have shown that PCDH-associated CGIs 

were some of the most prominent alterations shared between CRC and adenomas (Fadda et al., 2018). 

For this reason, an analysis of the methylation status of the PCDH-associated CGIs was conducted 

using methylation data of the same sample cohort analysed in our previous study. Four CGIs, 

associated with PCDHG@, whose three mapped one promoter regions (Table 14, Figure 42A), 

showed a statistically significant hypermethylation in CRC compared to normal controls (Table 14, 

Figure 42B). Three of these CGIs were also hypermethylated in adenomas but this hypermethylation 

was more pronounced in CRC, except for one CGI that resulted hypermethylated only in adenomas 

(chr5:140750050-140750264, CpG 16).  

Since DNA methylation and CCTC binding factor (CTCF) play a fundamental role in PCDH 

promoter choice and transcription regulation, the association between the identified altered CGIs and 

CTCF binding sites was investigated. Three out of the four altered CGIs resulted associated with 

CTCF binding sites (Table 14, Fig. 38A).



 78 

 

UCSC CGI UCSC CGI name CTCF binding site 
Δβ value  

(CRC-Control) 

Δβ value  

(CRA-Control) 
Genes within region 

Gene promoter-associated 

CGI 

chr5:140750050-

140750264 
CpG 16 

chr5:140748521-

140750945 
0.157* 0.200 

PCDHGA1, PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, PCDHGB1, 

PCDHGB2, PCDHGB3 

PCDHGB3 

 

chr5:140855386-

140856620 

 

CpG 95 

 

chr5:140854218-

140856648 

 

0.200* 

 

0.105 

PCDHGA1, PCDHGA10, PCDHGA11, 

PCDHGA12, PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGA8, PCDHGA9, 

PCDHGB1, PCDHGB2, PCDHGB3, 

PCDHGB4, PCDHGB5, PCDHGB6, 

PCDHGB7, PCDHGC3 

PCDHGC3 

 

chr5:140857864-

140858065 

 

CpG 19 

 

chr5:140856882-

140859319 

 

0.310 

 

0.259 

PCDHGA1, PCDHGA10, PCDHGA11, 

PCDHGA12, PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGA8, PCDHGA9, 

PCDHGB1, PCDHGB2, PCDHGB3, 

PCDHGB4, PCDHGB5, PCDHGB6, 

PCDHGB7, PCDHGC3 

--- 

chr5:140864527-

140864748 

 

CpG 22 

 

--- 

 

0.435 

 

0.277 

PCDHGA1, PCDHGA10, PCDHGA11, 

PCDHGA12, PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGA8, PCDHGA9, 

PCDHGB1, PCDHGB2, PCDHGB3, 

PCDHGB4, PCDHGB5, PCDHGB6, 

PCDHGB7, PCDHGC3, PCDHGC4 

PCDHGC4 

chr5:140892914-

140893189 

 

CpG 20 

chr5:140890901-

140893291  

0.302 

 

0.200 
--- --- 

chr5:140891594-

140893806 

Table 14. Altered CGIs in colorectal cancer (CRC) and colorectal adenoma (CRA) 

* nominal threshold (p-value<0.05).
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Figure 42. Genomic organization of PCDHG@, including the localization of exons, CGIs (annotated with the UCSC 

CGI names) and CTCF binding sites (A); β values, resulting from the average of our discovery samples set of each probe 

mapping to the altered CGIs (B); β values, resulting from the average of TCGA-COAD and TCGA-READ validation 

sample sets of each probe mapping to the altered CGIs (C) 

CGI methylation values of the altered CGIs were visualized in a heatmap and UHC showed two main 

clusters: one including all, expect one (293T), CRC samples and 12 adenomas, and the other including 

normal samples, nine adenomas and one CRC sample. No association was observed between 

methylation values and clinical data (Figure 43). 
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Figure 43. Colorectal cancer discovery set unsupervised hierarchical clustering analysis based on the average CGI β 

values for the five altered PCDH-associated CGIs 

All the identified CGI alterations were successfully validated using methylation data from TCGA-

COAD and TCGA-READ datasets (Figure 42C). One CGI (chr5:140855386-140856620, CpG 95) 

resulted hypermethylated only in COAD samples, with the exception of the most telomeric part of 

the CGI (cg04453180, cg07445963) showing hypermethylation also in READ samples (Figure 42C).  

4.3.2 PCDH-associated CGI alterations in chronic lymphocytic leukemia 

To investigate whether PCDH-associated CGI alterations may also be present in blood cancer, 

methylation data of our CLL discovery set and CLLE-ES validation set were explored.  

No significant methylation alterations in CGI associated with PCDH clusters were detected (Table 

15)
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UCSC CGI UCSC CGI 

name 

CTCF 

binding site 

Discovery set 

Δβ value 

(CLL-Control) 

Validation set 

Δβ value 

(CLL-Control) 

Genes within region 

chr5:140174573-

140174888 
CpG 28 

chr5:140173111-

140175577 
0.158 0.189 PCDHA1, PCDHA2 

chr5:140173795-

140176243 

chr5:140762401-

140762768 
CpG 28 

chr5:140761029-

140763470 
0.163 0.135 

PCDHGA1, PCDHGA2, 

PCDHGA3, PCDHGA4, 

PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGB1, 

PCDHGB2, PCDHGB3 

chr5:140180844-

140181082 
CpG 21 

chr5:140179374-

140181807 
0.165 0.182 

PCDHA1, PCDHA2, 

PCDHA3 chr5:140180022-

140182456 

chr5:140186792-

140187268 
CpG 40 

chr5:140185348-

140187798 
0.160 0.135 

PCDHA1, PCDHA2, 

PCDHA3, PCDHA4 chr5:140186021-

140188437 

Table 15. PCDH-associated CGIs in CLL discovery and validation datasets 

4.3.3 PCDH-associated CGI alterations in biliary tract cancer 

To explore whether PCDH-associated CGI alterations are frequent events in other gastrointestinal 

tumours, data from our first methylome analysis of 50 BTCs and 10 matched-normal controls were 

analysed. This study did not reveal any CGI differentially methylated between BTC and matched-

normal samples according to our selection criteria. However, two CGIs (chr5:140787447-140788044, 

CpG 45 and chr5:140797162-140797701, CpG 41), mapping on promoter regions and associated 

with CTCF binding sites (Table 16, Figure 44A), showed statistically significant differential 

methylation levels between BTC and matched-normal control samples (Table 16, Figure 44B). 

Moreover, a statistically significant difference among BTC tumours from different localization was 

observed (Table 16, Figure 44B). In fact, extrahepatic/gallbladder tumours showed higher differential 

methylation values relative to matched-normal controls than intrahepatic tumours. 
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UCSC CGI 
UCSC 

CGI name 
CTCF binding site 

Δβ value 

(BTC-

Control) 

Δβ value 

(Intrahepatic 

BTC-

Control) 

Δβ value 

(Extrahepatic 

BTC-

Control) 

Δβ value 

(Gallbladder 

BTC-

Control) 

Δβ value 

(Extrahepatic

/Gallbladder 

BTC-

Control) 

Genes within region 

Gene 

promoter-

associated 

CGI 

chr5:140787447-

140788044 
CpG 45 

chr5:140786247-

140788714 
0.175 0.104 0.212 0.235 0.229 

PCDHGA1, PCDHGA2, 

PCDHGA3, PCDHGA4, 

PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGA8, 

PCDHGA9, PCDHGB1, 

PCDHGB2, PCDHGB3, 

PCDHGB4, PCDHGB5, 

PCDHGB6 

PCDHGB6 

chr5:140797162-

140797701 
CpG 41 

chr5:140795962-

140798360 
0.130 0.108 0.200 0.215 0.209 

PCDHGA1, PCDHGA10, 

PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, 

PCDHGA6, PCDHGA7, 

PCDHGA8, PCDHGA9, 

PCDHGB1, PCDHGB2, 

PCDHGB3, PCDHGB4, 

PCDHGB5, PCDHGB6, 

PCDHGB7 

PCDHGB7 

Table 16. Altered CGIs in biliary tract cancer (BTC)  

Note: CGI: CpG island; BTC: biliary tract cancer 
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Figure 44. Genomic organization of PCDHG@, including the localization of exons, CGIs (annotated with the UCSC 

CGI names) and CTCF binding sites (A); β values, resulting from the average of our discovery samples set of each probe 

mapping to the altered CGIs (B); β values, resulting from the average of TCGA-CHOL validation sample sets of each 

probe mapping to the altered CGIs (C) 

 

UHC reflected this difference among tumour localizations since most of gallbladder (85%) and 

extrahepatic (87.5%) tumours were in a distinct cluster respect to normal samples, while intrahepatic 

tumours were distributed almost equally between the two main clusters (Figure 45).
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Figure 45. Biliary tract cancer discovery set unsupervised hierarchical clustering analysis based on the average CGI β 

values for the two altered PCDH-associated CGIs 

Methylation alterations of these two PCDH-associated CGIs were confirmed in TCGA-CHOL 

validation dataset where differential methylation levels were even more pronounced (Figure 46C). 

However, this dataset included mostly intrahepatic tumours and also the 10 normal samples were 

mostly collected form intrahepatic tissues (8/10) showing average methylation values of 0.078 (CpG 

45), while normal samples from our discovery set included nine gallbladders and one extrahepatic 

tissue. 

Data obtained from the second methylome analysis of the restricted data were explored in order to 

verify a possible detection of additional altered PCDH-associated CGIs. This analysis indeed allowed 

the identification of additional 11 PCDH-associated CGIs hypermethylated in our BTC discovery set 

and validated in TCGA-CHOL dataset (Table 17). Moreover, the two CGIs previously identified 

(chr5:140787447-140788044, CpG 45 and chr5:140797162-140797701, CpG 41) showed higher Δβ 

values in this restricted dataset. TCGA-CHOL results showed higher Δβ values also for these CGIs 

(Table 17). 

UCSC CGI 

UCSC 

CGI 

name 

CTCF 

binding site 

Discovery set 

Δβ value 

(BTC-Control) 

Validation set 

Δβ value 

(BTC-Control) 

Genes within region 

chr5:140214068-

140214464 
CpG 35 

chr5:140212561-

140214991 
0.211 0.310 

PCDHA1, PCDHA2, 

PCDHA3, PCDHA4, 

PCDHA5, PCDHA6, 

PCDHA7 

chr5:140221007-

140221381 
CpG 31 

chr5:140219505-

140221977, 
0.208 0.256 

PCDHA1, PCDHA2, 

PCDHA3, PCDHA4, 
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chr5:140220141-

140222571 

PCDHA5, PCDHA6, 

PCDHA7, PCDHA8 

chr5:140235737-

140236033 
CpG 23 

chr5:140234229-

140236690, 

0.252 0.258 

PCDHA1, PCDHA10, 

PCDHA2, PCDHA3, 

PCDHA4, PCDHA5, 

PCDHA6, PCDHA7, 

PCDHA8, PCDHA9 

chr5:140234845-

140237272 

chr5:140620864-

140621698 
CpG 76 - 0.244 0.323 PCDHB19P 

chr5:140711797-

140712542 
CpG 71 - 0.229 0.283 PCDHGA1 

chr5:140734720-

140735028 
CpG 27 

chr5:140733354-

140735959 
0.203 0.318 

PCDHGA1, PCDHGA2, 

PCDHGA3, PCDHGA4, 

PCDHGB1 

chr5:140741174-

140741738 
CpG 65 - 0.254 0.384 

PCDHGA1, PCDHGA2, 

PCDHGA3, PCDHGA4, 

PCDHGB1, PCDHGB2 

chr5:140750050-

140750264 
CpG 16 

chr5:140748521-

140750945 
0.268 0.3229 

PCDHGA1, PCDHGA2, 

PCDHGA3, PCDHGA4, 

PCDHGA5, PCDHGB1, 

PCDHGB2, PCDHGB3 

chr5:140767196-

140767695 
CpG 35 

chr5:140765966-

140768414 
0.211 0.268 

PCDHGA1, PCDHGA2, 

PCDHGA3, PCDHGA4, 

PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGB1, 

PCDHGB2, PCDHGB3, 

PCDHGB4 

chr5:140777442-

140777938 
CpG 36 

chr5:140776215-

140778639, 

0.253 0.315 

PCDHGA1, PCDHGA2, 

PCDHGA3, PCDHGA4, 

PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGA8, 

PCDHGB1, PCDHGB2, 

PCDHGB3, PCDHGB4, 

PCDHGB5 

chr5:140777214-

140779496 

chr5:140787447-

140788044 
CpG 45 

chr5:140786247-

140788714 
0.277 0.383 

PCDHGA1, PCDHGA2, 

PCDHGA3, PCDHGA4, 

PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGA8, 

PCDHGA9, PCDHGB1, 

PCDHGB2, PCDHGB3, 

PCDHGB4, PCDHGB5, 

PCDHGB6 

chr5:140797162-

140797701 
CpG 41 

chr5:140795962-

140798360 
0.219 0.300 

PCDHGA1, 

PCDHGA10, 

PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, 

PCDHGA6, PCDHGA7, 

PCDHGA8, PCDHGA9, 

PCDHGB1, PCDHGB2, 

PCDHGB3, PCDHGB4, 

PCDHGB5, PCDHGB6, 

PCDHGB7 

chr5:140800760-

140801072 
CpG 29 

chr5:140799360-

140801740 
0.261 0.323 

PCDHGA1, 

PCDHGA10, 

PCDHGA11, 

PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, 

PCDHGA6, PCDHGA7, 

PCDHGA8, PCDHGA9, 

PCDHGB1, PCDHGB2, 

PCDHGB3, PCDHGB4, 
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Table 17. Altered CGIs in the restricted BTC dataset and TCGA-CHOL dataset 

UHC analysis using methylation data for the altered PCDH-associated CGIs showed a clusterization 

similar to that obtained with the BTC-specific altered CGIs (Figure 46). 

 

Figure 46. Unsupervised hierarchical clustering analysis based on the average CGI β values for the 13 PCDH-associated 

CGIs altered in our restricted discovery dataset 

 

4.3.4 PCDH-associated CGI alterations in gastric cancer 

Methylation status of PCDH-associated CGIs was also investigated in 22 gastric tumours and their 

matched-normal samples revealing four statistically significantly hypermethylated CGIs, mapping on 

promoter regions and of which three were associated with CTCF binding sites, (Table 18, Figure 

47A, B). Lower differential methylation values were observed in body/fundus tumour samples 

compared to their respective normal samples (CpG 28 = 0.119, CpG45 = 0.106, CpG 95 = 0.067 and 

CpG 22 = 0.130).

PCDHGB5, PCDHGB6, 

PCDHGB7 
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UCSC CGI UCSC CGI name CTCF binding site 
Δβ value  

(GC-Control) 
Genes within region Gene promoter-associated CGI 

chr5:140762401-

140762768 
CpG 28 

chr5:140761029-

140763470 
0.241 

PCDHGA1, PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGB1, PCDHGB2, 

PCDHGB3 

PCDHGA7 

chr5:140787447-

140788044 
CpG 45 

chr5:140786247-

140788714 
0.210 

PCDHGA1, PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGA8, PCDHGA9, 

PCDHGB1, PCDHGB2, PCDHGB3, 

PCDHGB4, PCDHGB5, PCDHGB6 

PCDHGB6 

chr5:140855386-

140856620 
CpG 95 

chr5:140854218-

140856648 
0.212 

PCDHGA1, PCDHGA10, PCDHGA11, 

PCDHGA12, PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGA8, PCDHGA9, 

PCDHGB1, PCDHGB2, PCDHGB3, 

PCDHGB4, PCDHGB5, PCDHGB6, 

PCDHGB7, PCDHGC3 

PCDHGC3 

chr5:140864527-

140864748 
CpG 22 --- 

0.243 

 

PCDHGA1, PCDHGA10, PCDHGA11, 

PCDHGA12, PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, PCDHGA6, 

PCDHGA7, PCDHGA8, PCDHGA9, 

PCDHGB1, PCDHGB2, PCDHGB3, 

PCDHGB4, PCDHGB5, PCDHGB6, 

PCDHGB7, PCDHGC3, PCDHGC4 

PCDHGC4 

Table 18. Altered CGIs in gastric cancer 



 88 

 

Figure 47. Genomic organization of PCDHG@, including the localization of exons, CGIs (annotated with the UCSC 

CGI names) and CTCF binding sites (A); β values, resulting from the average of our discovery samples set of each probe 

mapping to the altered CGIs (B); β values, resulting from the average of TCGA-STAD validation sample sets of each 

probe mapping to the altered CGIs (C) 

UHC analysis revealed three clusters of tumours: one (N = 7) characterized by high methylation 

values in all the altered CGIs, a second group clustering (N = 5) along with normal samples and a 

third group (N = 10) showing intermediate methylation values compared to the other groups (Figure 

48). Moreover, a statistically significant enrichment (p-value= 2.0E− 02) of MSI tumours (8/9) were 

observed in the group showing high methylation values (Figure 48).  
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Figure 48. Gastric cancer discovery set unsupervised hierarchical clustering analysis based on the average CGI β values 

for the four altered PCDH-associated CGIs 

The identified methylation alterations were successfully validated in TCGA-STAD dataset (Figure 

47C). UHC analysis of this validation samples set with available molecular subtype categorization 

(N = 248), revealed two clusters of tumours characterized by different methylation levels for these 

altered CGIs and confirmed that MSI tumours clusterized mainly (47/49) in the group of tumours 

with higher methylation values (p-value = 1.3E− 10) (Figure 49). Moreover, the subgroup of tumours 

displaying high β values in all CGIs (within the dashed box) mainly included MSI samples (16/24).  

A statistically significant higher frequency tumours (22/25) positive for Epstein-Barr virus (EBV) 

infection clustered was observed in the cluster of highly methylated tumours (p-value = 1.4E− 04) 

(Figure 49). 
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Figure 49. TCGA-STAD validation set unsupervised hierarchical clustering analysis based on the average CGI β values 

for the four altered PCDH-associated CGIs 

4.3.5 PCDH-associated CGI alterations in pilocytic astrocytoma 

Methylation data obtained from the analysis of a completely different type of solid cancer, pilocytic 

astrocytoma revealed DNA hypomethylation (Δβ value = − 0.285) of a flanking CGI region 

(chr5:140871064-140872335, CpG 122) mapping on PCDHGC5 promoter and associated with the 

PCDHG cluster and two CTCF binding sites (Table 19, Figure 50A, B).  

Data analysis of a validation dataset (GSE44684) confirmed hypomethylation of this region that was 

extended in the flanking CGI (chr5:140871064-140872335, CpG 122) that could not be investigated 

in our discovery dataset for the lack of epigenome coverage using Illumina 27K arrays (Figure 50C). 

UCSC CGI 

UCSC 

CGI 

name 

CTCF binding 

site 

Relation 

to 

UCSC 

CGI 

Δβ value 

(PA-

Control) 

Genes within region 

Gene 

promoter-

associated 

N-shelf 

chr5:140871064-

140872335 
CpG 122 

chr5:140870147-

140872480 

N-shelf -0.285 

PCDHGA1, PCDHGA10, 

PCDHGA11, PCDHGA12, 

PCDHGA2, PCDHGA3, 

PCDHGA4, PCDHGA5, 

PCDHGA6, PCDHGA7, 

PCDHGA8, PCDHGA9, 

PCDHGB1, PCDHGB2, 

PCDHGB3, PCDHGB4, 

PCDHGB5, PCDHGB6, 

PCDHGB7, PCDHGC3, 

PCDHGC4, PCDHGC5 

PCDHGC5 
chr5:140871308-

140873492 

Table 19. Altered CGIs in pilocytic astrocytoma 
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Figure 50. Genomic organization of PCDHG@, including the localization of exons, CGIs (annotated with the UCSC 

CGI names) and CTCF binding sites (A); β values, resulting from the average of our discovery samples set of each probe 

mapping to the altered N-shelf (B); β values, resulting from the average of pilocytic astrocytoma validation sample set of 

each probe mapping to the altered N-shelf and flanking CGI (C) 

4.4 Editing DNA methylation: DNA methylation alterations as possible therapeutic targets 

The potentiality of methylation alterations as therapeutic targets was explored by editing methylation 

status of a selected CGI, GRIA4-associated CGI, in HCT116, a 2D-colon cancer cell line. This CGI 

is hypermethylated in human colorectal cancer tissues and it is also known to be highly methylated 

in this cell line (ENCODE/HAIB data). Targeted de-methylation of the most hypermethylated region 

of GRIA4-associated CGI, including eight CpG sites, was carried out by the CRISPR-dCas9 system, 

using a plasmid for the expression of the catalytic domain of Tet1 demethylase and a plasmid 

expressing sgRNAs for targeting the region of interest.  

Pyrosequencing analysis revealed an almost 15% reduction of the targeted region in HCT116 cells 

using this system (Figure 51). As expected, the eight CpG sites analysed showed similar methylation 

levels (Table 20).  A reduction in methylation levels was observed already at 24h after sgRNA 

plasmid transduction and was still observed after 72h. This methylation decrease was similar to that 

observed by treating HCT116 cells with 5-AZA (Figure 51). However, de-methylation seemed to be 

independent of the presence of sgRNAs, suggesting that de-methylation was not specific for the 

region of interest (Figure 51). 
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 CpG 1 CpG 2 CpG 3 CpG 4 CpG 5 CpG 6 CpG 7 CpG 8 

DMSO 99 90 93 88 84 98 87 87 

5-AZA 79 76 83 77 73 83 77 75 

CRISPR-dCas9 

(24h) 

77 74 80 75 70 80 73 74 

Table 20. Pyrosequencing results for the 8 CpG sites analysed in HCT116 cells 

 

 

Figure 51. Pyrosequencing results. Bar plots show HCT116 methylation levels (%) 
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5. DISCUSSION 

Epigenetic dysregulation is one of the tumour hallmarks. DNA methylation alterations, one of the 

several epigenetic aberrations in cancer, are early events in tumorigenesis and might represent 

powerful biomarkers for prediction of cancer risk, early diagnosis, prognosis, prediction of therapy 

response and tumor relapse.  

DNA methylation changes have been associated with changes in gene expression. However, the 

relationship between these two events is not yet clear and needs to be elucidated.  

Moreover, since DNA methylation is a reversible epigenetic modification, different strategies can be 

employed to edit DNA methylation in tumours in order to restore methylation patterns of normal 

cells, possibly reverting the tumour phenotype. 

In this project thesis, the roles of DNA methylation as tumour biomarker, functional mechanism and 

therapeutic target have been explored. 

In the last decades, several cancer DNA methylation-based biomarkers have been identified and 

some, such as MGMT and SEPT9, respectively for therapy response prediction in glioblastoma 

multiform and colorectal cancer detection, have been introduced in clinical practice. 

However, even in cancers such as CRC for which a multitude of biomarkers have been proposed, 

specific-cancer biomarkers able to recognize the disease in the early phases are still lacking.  

In this thesis work, methylation analyses of colorectal cancer, chronic lymphocytic leukemia and 

biliary tract cancer have been performed to identify potential tumour biomarkers. 

Methylation data obtained in our laboratory from a previous study constitute the basis for the current 

CRC study.  Two CGIs, mapping on promoter regions of GRIA4 and VIPR2 genes, have been selected 

from a panel of 74 CGIs altered in both CRC and adenomas previously identified in our laboratory 

(Fadda et al., 2018). These two CGIs showed high specificity and sensitivity in both our discovery 

set and TCGA-COAD validation set. Targeted-methylation analysis confirmed hypermethylation of 

these two CGIs in tumour tissues compared to matched-normal tissues. In cases where DNA 

methylation differences between tumour and matched-normal samples have not been detected, the 

histopathological analysis of the tissue specimens has revealed a low content of tumour cells 

confirming the high specificity of our biomarkers for tumour tissues.  

The possible use of these biomarkers as non-invasive tools for CRC detection was explored by 

analyzing stool samples from the same CRC patients collected intraoperatively from the bowel 

resection specimens. Some samples were positive for DNA methylation of these biomarkers in the 

analysis conducted by MethyLight. However, the use of a more sensitive method, ddPCR, allowed to 

detect methylation in all, except one, samples for both biomarkers. It has been shown that ddPCR is 

able to overcome the technical challenges (i.e. poor DNA quality, presence of contaminating DNA 
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and PCR inhibitors) responsible for a reduced performance of MethyLight for the detection of low 

copies of methylated DNA in such samples (Yu et al., 2015). This method resulted 25-fold more 

sensitive than conventional MethyLight (Yu et al., 2015).  

Interestingly, patients with ulcerative neoplasia showed more copies of methylated VIPR2-associated 

CGI, possibly related to the increased shedding of tumour cells from the ulcerated tumours. 

Overall, our results reinforce the potential of GRIA4-associated CGI as non-invasive biomarker for 

CRC (Barault et al., 2018; Fadda et al., 2018) and proposed for the first time VIPR2-associated CGI 

as an additional CRC biomarker.  

Further studies are needed to select the most powerful biomarkers and define a multi-biomarker panel 

for a non-invasive early detection of CRC. In fact multi-biomarkers panels have shown to improve 

diagnostic accuracy (Carmona et al., 2013; Imperiale et al., 2014; Barault et al., 2018; Fadda et al., 

2018; Freitas et al., 2018). The future aim of this project is to test this panel in a larger dataset 

including stool samples from patients who have already received a diagnosis of CRC in a first step 

and samples from FOBT screening in a second phase.   

In the CLL study, a methylome analysis of CLL and normal-control samples have been carried out 

to identify methylation patterns characteristics of CLL. Our results confirmed a global 

hypomethylation in CLL (Kulis et al., 2012) and identified several CGIs differentially methylated 

between CLL and controls. Although three CGIs resulted statistically significant hypomethylated in 

CLL, we focused our attention on hypermethylation events. In fact, in order to propose a biomarker, 

it must be taken into account that it is easier to define cut-off values to consider a sample as 

hypermethylated compared to a normal methylation condition.  

A CGI, located in the gene body of SHANK1, was the most hypermethylated CGI in CLL, although 

its statistical significance did not resist correction for multiple testing, probably for the small sample 

size of our discovery set.  

Although we are aware of the importance of significance threshold for epigenome-wide studies 

(EWAS) (Saffari et al., 2018), it is important to consider the cell heterogeneity of the samples 

analysed. Our previous work has already shown that statistically significant methylation alterations 

detected in CRC samples did not reach statistical significance after multiple testing correction in 

heterogenous samples such as adenomas. In fact, while many tumors cells harbor the epimutations in 

CRC tissues, adenomas include a mixture of cells with and without methylation alterations. 

However, the validation of SHANK1-associated CGI hypermethylation in a larger CLL cohort 

including CLL samples with ≥95% neoplastic cells and normal control B cells samples, confirmed 

that this methylation alterations occurs in neoplastic cells (Kulis et al., 2012). The detection of this 

methylation alteration in whole blood samples, such as those of our discovery set, reinforces its 
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potential use of SHANK1-associated CGI as a diagnostic biomarker to be introduced in clinical 

practice without performing an expensive method such as cell sorting.  

Moreover, a statistically significant differential methylation between U-CLL and normal naïve B cells 

was detected in the validation dataset (Kulis et al., 2012) suggesting that SHANK1-associated CGI 

hypermethylation might be correlated to a worst patient prognosis. In fact, CLL patients with a high 

level of IGHV mutation (M-CLL) have a favorable prognosis, while U-CLL patients have generally 

poor outcomes. Also in our discovery set, IGHV-mutated samples had an average methylation value 

of 35.0%, while IGHV-unmutated samples showed an average methylation value of 49.6 %. 

Moreover, the exclusion of an outlier (69.0% methylation), an IGHV-mutated sample firstly 

diagnosed as follicular lymphoma, determines a drop of the average methylation level to 23.7%. 

Interestingly, methylation levels of SHANK1-associated CGIs positively correlated with the sample 

lymphocyte count and with CD19+ B-cells contributions. The increased lymphocyte count at 

diagnosis in a CLL patient is mainly due (> 80%) to the proliferation of neoplastic cells. In fact, in 

patients with an absolute lymphocyte count of at least 5 x 109/L, monoclonal B-cells represented more 

than 86% of B-cells in contrast to polyclonal B-cells representing only a small fraction (Shanafelt et 

al., 2009). This suggests that SHANK1-associated CGI methylation might be a biomarker of tumour 

aggressiveness in CLL. 

Furthermore, the identification of a statistically significant gain of methylation (differential 

methylation of 3%) of this CGI in peripheral blood collected many years prior to MBCN diagnosis 

compared to peripheral blood samples of matched controls, suggested that this methylation alteration 

might be a marker also for other MBCNs although methylation data at diagnosis are needed to 

confirm this hypothesis. 

Interestingly, an even more pronounced gain of methylation (differential methylation of 4.7%) was 

observed by analyzing CLL/SLL cases within the prospective MBCN cohort.  

Methylation levels of this marker are in line or even higher than those of other methylation markers 

identified in studies analyzing pre-diagnostic blood samples years prior to diagnosis of B-cell 

neoplasm (Wong Doo et al., 2016; Georgiadis et al., 2017)  

Nevertheless, since cases methylation values overlap with control methylation values, this 

methylation alteration cannot represent a predictive biomarker at individual level. However, 210/438 

(48%) MBCN samples showed a differential methylation greater than the average Δβ (0.03), ranging 

from 0.031 to 0.36, and 38/82 (46%) CLL/ SLL samples showed a differential methylation greater 

than the average Δβ (0.047), ranging from 0.06 to 0.33. It would be interesting to perform an analysis 

of the SHANK1-associated CGI methylation status prior diagnosis, at diagnosis and during follow-up 

to confirm its role as a CLL cancer risk biomarker. 
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The BTC study consisted in a methylome analysis of a cohort of BTC and their matched-normal 

samples, even larger than the TCGA-CHOL cohort, with the aim of identifying methylation 

alterations in this rare, highly malignant tumour. In fact, very few studies have been focused on the 

identification of biomarkers for BTC that, due to its silent course in the first stages of the disease, is 

currently diagnosed in the late stages when the therapeutic solutions are limited, and the prognosis is 

poor.  

The total number of differentially methylated CGIs identified in this study were markedly lower than 

that observed by analyzing other gastrointestinal tumors such as colorectal cancer and gastric cancer, 

probably for the use of DNA extracted from FFPE samples rather than from FF samples as in the 

other studies. In fact, an abnormal beta value distribution was observed for many of the analysed 

samples that were therefore excluded from the analysis. The methylome analysis conducted on a 

restricted dataset of good-quality samples allowed the detection of a higher number of differentially 

methylated CGIs between tumour and matched-normal controls. Although our analysis did not detect 

any CGIs statistically significantly methylated after multiple testing correction, probably for the 

reduced sample size, the detected methylation alterations were successfully validated in TCGA-

CHOL dataset.  

The analysis of TCGA-CHOL dataset revealed a higher number of both hypermethylated but 

especially hypomethylated CGIs compared to our discovery set. This might be due to a better quality 

of the DNA samples in the validation set or to the fact that this TCGA-CHOL set mainly included 

intrahepatic samples in contrast to our dataset including all the tumor localizations. However, our 

analyses did not reveal any difference between tumors from different location as observed for other 

molecular markers in other studies (Sohal et al., 2016) but this might be related to the small sample 

size or to the fact that our selected differentially methylated CGIs are independent from tumour 

localization as already observed for methylation alterations detected in our CRC study. 

UHC analysis showed a sample distribution into two main clusters: one cluster of tumours displaying 

high methylation values and a second cluster, furtherly branched into two additional clusters, 

respectively including tumors with intermediate methylation values and a cluster of normal and three 

BTCs with low methylation values. A similar clusterization was observed in TCGA-CHOL dataset. 

A statistically significant enrichment of low-stage tumours (I and II) was observed in the cluster of 

tumours including also normal-matched samples compared to the other clusters in our dataset. This 

was not observed in TCGA-CHOL dataset including mostly stage I tumours.  

RPMM tumours clusterization identified different tumour clusters in both our discovery set and 

TCGA-CHOL validation set. However, no correlation with the considered clinical information was 

observed. Further information including therapy response, viral infection, genetic mutations might be 
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interesting to be collected in order to investigate the correlation with tumour classification and 

provide molecular markers for patients’ stratification. In fact, in the study conducted by the TCGA 

consortium, an association between methylation profiles and genetic mutations was observed 

(Farshidfar et al., 2017). An association between methylation profiles and genetic mutations was also 

observed in a large study including nearly 500 BTCs from 10 countries (Jusakul et al., 2017). 

Moreover, the authors of this study have found that a cluster of tumours displaying hypermethylation 

of CpG islands was enriched in fluke-positive tumours, while another cluster of tumours showing 

hypermethylation of CpG shores was enriched in fluke-negative tumours (Jusakul et al., 2017). 

The specificity of these methylation alterations for BTC was tested by analyzing methylation data 

from TCGA-COAD and TCGA-STAD datasets. 30 CGIs were identified as specifically methylated 

in BTC and not in the other two gastrointestinal tumours analysed. UHC analysis performed using 

methylation data of these 30 CGIs showed samples clusterization similar to that obtained using 

methylation data including also CGIs not specifically altered in BTC. 

Among these 30 CGIs, seven showed high specificity and sensitivity values in both our discovery set 

and TGCA-CHOL.  

The identified BTC-specific methylation alterations might be potential biomarkers for an early 

diagnosis of BTC through non-invasive methods. In fact, BTC diagnosis is currently carried out by 

the histopathological analysis of tissue biopsy, a highly-invasive procedure. Very few studies have 

been focused on the identification of non-invasive biomarkers for BTC early diagnosis. A study has 

identified two serum methylation-based biomarkers, OPCML and HOXD9 that might be allow to 

distinguish the diagnosis of BTC from the diagnosis of other biliary diseases (Wasenang et al., 2019). 

However, these biomarkers are not specific for BTC since they have been found hypermethylated in 

other cancers (Wasenang et al., 2019). To our knowledge, our study is the first study that has 

identified potential specific methylation-based biomarkers for BTC. Of course, other studies are 

needed to validate the identified biomarkers in a large independent BTC cohort and the test the 

presence of these biomarkers in non-invasive matrices such as serum and plasma and potentially in 

stool samples since bile is released into the intestine.  

The association between selected methylation alterations identified in the CRC and CLL studies and 

gene expression of the associated genes was investigated. Gene expression analyses results showed a 

negative correlation between methylation and gene expression. 

A statistically significant downregulation of GRIA long, SLC6A3 and SPOCK1 both at mRNA and 

protein level was observed in CRC samples compared to matched-normal controls. VIPR2 and GRIA4 

short showed a statistically significant downregulation in CRC samples only at mRNA levels, while 

although, VIPR2 and GluR4 short protein levels did not show statistically significant differences 
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between tumour and matched-normal samples, probably for the high variance among the samples, a 

trend towards lower levels in CRC samples was evident. The identified hypermethylated CGIs 

mapped on promoter regions confirming the association between promoter hypermethylation and 

gene downregulation described in a multitude of studies and considered as a mechanism for gene 

transcriptional inactivation in cancer  (Baylin, 2005; Jones, 2012). Moreover, the current and other 

studies (Antonelli et al., 2018; Fadda et al., 2018) conducted by our research groups also confirmed 

that methylation in cancer targets genes that are barely expressed in the respective normal tissue 

where tumour arises (Sproul et al., 2011; Moarii et al., 2015). This is in agreement with the concept 

of “epigenetic switching” guaranteeing a stable and permanent repression of these genes and 

important for cell proliferation (Gal-Yam et al., 2008; Loi and Zavattari, 2019). It has been 

hypothesized that hypermethylation of PRC-targets maintains cancer cells in a stem-cell-like 

aggressive state (Widschwendter et al., 2007).  In addition, our results showed that although these 

genes are already expressed at very low levels in normal tissues, promoter hypermethylation in cancer 

is associated to a further reduction of their expression levels that can be observed only by means of a 

targeted gene expression analysis using methods such as qRT-PCR. In fact, the background levels of 

hybridization to probes in gene expression microarray do not allow to detect small gene expression 

changes of low-expressed genes (Sproul and Meehan, 2013; Fadda et al., 2018). 

qRT-PCR results confirmed GRIA4 reduced expression in CRC (Fadda et al., 2018), also validated 

in TCGA-COAD RNA-seq data. GRIA4 gene encodes for the Glutamate Ionotropic Receptor AMPA 

Type Subunit 4 (GluR4) of the AMPA tetrameric receptor complex, a cationic ion channel, mainly 

expressed in glutamatergic synapses. Different GRIA4 transcript variants and two protein isoforms, a 

long canonical isoform of 902 amino acids and a short isoform of 433 amino acids including only the 

extracellular protein domain, have been described.  

The transcript variant encoding for the canonical isoform resulted higher expressed than the short 

transcript in both tumour and matched-normal samples. However, an opposite situation was observed 

at protein level, where the short isoform resulted more expressed than the canonical isoform. This 

might be related to the lifetime of each isoform. In fact, although the degradation mechanism of 

GluR4 is not well elucidated, it has been previously reported that caspases cleave GluR4 at the C-

terminal domain contributing to selective proteolysis (Chan et al., 1999). This process might increase 

the susceptibility of GluR4 long isoform to degradation but would not affect the short one that lacks 

the C-terminal region. Another hypothesis is the post-transcriptional regulation mediated by 

microRNAs (miRNAs). In fact, using TargetScan (http://www.targetscan.org/vert_72/) bioinformatic 

tool, four miRNAs, miR-506-3p, miR-124-3p.1, miR-124-3p.2 and miR-137, highly conserved 

among vertebrates, with the strictest matching site types and high preferentially conserved targeting 
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scores, have been identified to target the long GRIA4 transcript variant. These interactions were also 

reported by miRanda (http://www.microrna.org/microrna/home.do) and DIANA micro-T 

(http://diana.imis.athena-innovation.gr/DianaTools/). In contrast, no miRNAs interactions were 

predicted for the short transcript using the same parameters, suggesting a specific transcript regulation 

and possibly explaining the higher expression of the short protein isoform. 

VIPR2 downregulation was also validated in TCGA-COAD RNA-seq data. This gene belongs to a 

class of genes encoding for vasoactive intestinal peptide receptors (VIPRs). VIPRs, members of the 

G-protein-coupled receptors (GPCRs) superfamily, comprise VPAC1 and VPAC2, showing a similar 

affinity for the vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating 

polypeptide (PACAP) and PAC1 with a high affinity for PACAP and a low affinity for VIP (Dickson 

and Finlayson, 2009). VIP is usually secreted by nerve endings and immune cells in the 

gastrointestinal tract and is involved in gut motility acting as a vasoregulatory hormone, whereas 

PACAP has hypophysiotropic effect on pituitary hormone secretion (Sherwood et al., 2000; Vaudry 

et al., 2000; Waschek, 2013). VIPRs expression have been detected in a variety of tumors. In 

particular, VPAC1 receptors are expressed in malignant epithelial neoplasms, while expression of 

VPAC2 receptors has mainly been found in some leiomyomas and gastrointestinal stromal tumors 

(Oka et al., 1998; Reubi et al., 2000; Fernández-Martínez et al., 2012; Liu et al., 2014). On the other 

hand, our results showed that VIPR2 expression can be also detected in colorectal cancer. However, 

we did not detect a statistically significant downregulation of VIPR2 at protein level, probably for 

the large variability among the samples.  

A study has found that expression of VPAC1 in CRC tissues is negatively correlated with the 

differentiation of colon cancer suggesting that it is associated with the malignancy of the tumour. 

Moreover, the results of this study have shown higher levels of VPAC1 in blood vessels surrounding 

colon cancer and in tumor-associated macrophages (TAMs) than in normal colon mucosa (Liu et al., 

2014). Our results, although obtained from the analysis of a restricted number of samples, did not 

show an association between VIPR2 expression and tumour grade.  

Gene expression analysis of SPOCK1, encoding for a Ca2+-binding matricellular glycoprotein, 

showed a statistically significant average reduced expression in CRC studies compared to matched-

normal samples, that was also observable by the paired comparison between CRC to its respective 

normal tissue in most cases. This reduced expression was also observable at protein level. These 

results are in contrast with other studies that detected a higher expression of this gene in CRC (Zhang 

et al., 2017) and in other tumour types (Miao et al., 2013; Wang et al., 2016).  On the other hand, 

TCGA-COAD RNA-seq data showed a similar SPOCK1 expression between CRC and normal 

control tissue samples. The paired comparison between tumours and their normal-matched samples 
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of our discovery set has also shown a higher expression in matched-normal samples for few cases, 

indicating that SPOCK1 expression is highly variable. A gene expression analysis conducted by 

microarray, showed that SPOCK1 was upregulated in the normal mucosa adjacent to CRC tissue 

(minimum distance of 10 cm) compared to colon mucosa from healthy donors but its expression was 

similar to that of the tumour (Sanz-Pamplona et al., 2014). Protein-protein network analysis showed 

that SPOCK is a protein secreted by adjacent mucosa and interact with a receptor in tumor (Sanz-

Pamplona et al., 2014). Therefore, further studies to clarify these discordant results are needed. 

SLC6A3, a gene encoding for the dopamine transporter was downregulated in our dataset but it 

showed a higher expression in normal samples in TCGA-COAD RNA-seq data. However, an 

overlapping of gene expression values of tumour and normal samples can be observed in TCGA-

COAD dataset. The discrepancy with our results might be related to the low expression of this gene 

in colon (GTEx data: about 0.8 TPM) and to even reduced expression in tumours that might be not 

detected by techniques such as whole exome / whole transcriptome NGS / microarrays. Therefore, 

this result should be validated in a larger sample cohort by ultra-sensitive methods such as ddPCR.  

In CLL study, gene expression analysis of SHANK1 showed a statistically significant downregulation 

in our CLL cohort. SHANK1 is one of the three members of the SHANK (SH3 And Multiple Ankyrin 

Repeat Domains) gene family. SHANK proteins (SHANK1, SHANK2 and SHANK3) act as scaffold 

proteins and have a fundamental role in the formation, development and function of neuronal 

synapses. A study investigating the association between SHANK genes methylation and their 

expression revealed that, although all these genes present several methylated CpG sites, only 

SHANK3 was highly methylated in tissues where its expression was low or absent, suggesting that 

methylation might regulate tissue-specific SHANK3 expression. In contrast, our study identified an 

association between methylation and expression for SHANK1. 

SHANK1 downregulation in CLL was not validated in RNA-seq data, possibly, also in this case, 

related to the very low expression of this gene in whole-blood and to the consequent inability to detect 

its downregulation by this method. Interestingly, the identified hypermethylated CGI is located in the 

gene body of SHANK1 gene confirming a possible negative association between gene body 

methylation and gene expression previously reported in CLL (Kulis et al., 2012). The identified 

altered CGI is located downstream of the main transcript but upstream of a short alternative transcript 

possibly regulating its expression. In fact, methylation of intragenic CGIs has been negatively 

correlated to expression of alternative transcripts and positively associated with expression of the 

main transcripts (Kulis et al., 2012). A study to quantify each SHANK1 transcript expression should 

be conducted to elucidate this hypothesis. 

 



 101 

From the methylome analyses of our discovery sets emerged that frequent methylation alterations can 

be observed in PCDH cluster in cancer, confirming that the epigenetic dysregulation of 

protocadherins observed in different human diseases, including cancer (Waha et al., 2005; Novak et 

al., 2008; Dallosso et al., 2012; Wang et al., 2015; El Hajj et al., 2017). 

In particular, our results showed PCDH methylation alterations in gastrointestinal tumors and gliomas 

but not in blood cancer (CLL). 

The absence of PCDH-associated CGIs methylation alterations in CLL suggested that they are not 

targeted by methylation during tumorigenesis in haematological neoplasms in contrast to solid 

tumours. A possible explanation might be related to the normal function of PCDH in cell-cell 

adhesion (Murata et al., 2004; Shan et al., 2016) that is not essential in blood cancer in contrast to its 

importance in tumour mass formation. Studies of other types of hematological neoplasms are needed 

to confirm this hypothesis, including a study of multiple myeloma to investigate if, in this type of 

tumour affecting plasma cells originating in the blood marrow, there is a different methylation pattern. 

Moreover, our results showed that in tissues where PCDH are normally low expressed, PCDH-

associated CGIs are hypermethylated in tumors, confirming that methylation in tumors targets genes 

lowly expressed in the respective normal tissue where tumour arises (Sproul et al., 2011; Moarii et 

al., 2015; Fadda et al., 2018).   

On the other hand, hypomethylation of a CGI flanking region mapping to PCDHG was observed in 

gliomas. Since PCDH are essential during neuronal development and their knockdown or deficiency 

leads to loss of different neuronal cell types, synapse decrease or dendritic arborization decline 

(Lefebvre et al., 2008; Garrett et al., 2012; Chen and Maniatis, 2013), their hypomethylation in tumors 

could be associated to an increased expression of PCDH suggesting that tumour cells can revert to 

the conditions required during development.  

However, it is also possible that tumour methylation status mirrors the cell of origin pattern clonally 

expanded (Sharma et al., 2007; Sproul et al., 2011, 2012; Antonelli et al., 2018). It is important to 

consider the cellular heterogeneity of the tumour that contains both cells sharing the same genetic 

and epigenetic alterations that are acquired by the early precursors cells clonally expanded but also 

sub-clones of cells that harbor different genetic and epigenetic modifications that are acquired during 

or after the clonal expansion of these cells (Mazor et al., 2016).   

Many altered PCDH-associated CGIs resulted associated to CTCF binding sites. CTCF are involved 

in PCDH transcription through the formation of DNA loops (Guo et al., 2012, 2015) and it has been 

found that methylation regulated CTCF binding to DNA (Golan-Mashiach et al., 2012). Therefore, it 

is plausible that the identified methylation alterations identified in our project, may avoid or modify 

CTCF binding to DNA, dysregulating PCDH transcription.   
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PCDHs in CRC are the most highly hypermethylated among the gastrointestinal tumours analysed. 

These methylation alterations can also be frequently detected in adenomas independently of the 

disease grade, suggesting that they are early events in tumorigenesis. 

Interestingly, some CGI alterations were common in the different gastrointestinal cancers, while 

others were specific for each cancer-type. Nevertheless, the majority of these alterations are 

concentrated in the PCDHG cluster.  

A correlation between hypermethylation and tumour location was also observed for some CGIs. For 

examples, CpG 95 was hypermethylated in colon cancer samples but not in rectal cancer samples; 

gastric cancer altered CGIs showed lower Δβ by comparing paired samples localized in body/fundus 

than samples from other localizations; higher β values were observed in BTCs from 

gallbladder/extrahepatic localization than intrahepatic tumours. 

Thus, our study identified common methylation alterations that may provide broad-spectrum 

biomarkers as well as methylation alterations associated with tumour location that may be potential 

tissue-specific tumours biomarkers. 

Correlation with other clinical information were observed analyzing gastric cancer methylation data. 

A correlation between MSI status and hypermethylation was observed, confirming previous reports 

(Ottini et al., 2006; Loh et al., 2014). Moreover, TCGA-STAD methylation data for the altered 

PCDH-associated CGIs showed that EBV-positive samples displayed high methylation levels as 

already observed in the TCGA study where EBV-positive samples were also CIMP positive (Cancer 

Genome Atlas Research Network, 2014). 

The final aim of this thesis project was to test CRISPR-dCas9 system for specific epigenetic editing. 

This tool might represent a possible cancer therapeutic strategy and may provide a tool for the study 

of the functional effects of methylation alterations.   

In this preliminary study, dCas9-Tet1 tool was employed to specifically de-methylate a restricted 

genetic region of GRIA4-associated CGI in HCT116 colon cancer cell lines. Preliminary results 

showed a decreased in methylation levels of the target region similar to that obtained by 5-AZA, a 

potent DNMT inhibitor, that persisted after 72h. However, this de-methylation was independent of 

the presence of sgRNAs suggesting that it was not specific for the target of interest. A possible 

explanation could be the high constitutive expression of dCas9-Tet1 that may be prevented by 

employing an inducible system. Future experiments will be carried out by using such a system and 

methylation of multiple gene regions will be tested to verify the specificity of this system. Moreover, 

the possible use of this system in a better translation model such as 3D cultures will be tested. Finally, 

dCas9-DNMT tool will be applied to induce methylation of specific targets in cell lines generated 
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from healthy donors to identify driver methylation changes that may lead to the acquisition of 

tumorigenic features. 

6. CONCLUSIONS 

In conclusion, this thesis work confirmed that methylation alterations are frequent and early events 

in cancer. In particular, it has allowed the identification of potential biomarkers for colorectal cancer, 

chronic lymphocytic leukemia and biliary tract cancer and the discovery that methylation alterations 

in PCDH cluster are frequent events in gastrointestinal tumours (colorectal cancer, gastric cancer and 

biliary tract cancer) and gliomas suggesting their possible importance in solid cancers and providing 

additional tumour biomarkers. Moreover, it explored and confirmed the association between 

hypermethylation and downregulation, supporting the idea that methylation may represent a 

functional mechanism to inactivate specific genes in cancer in a defined program. This work also 

highlights that genes targeted by methylation in cancer are lowly expressed in the tissue of origin but 

their hypermethylation is associated to a further downregulation of these genes suggesting its possible 

role in inducing their permanent silencing, as in agreement with the so-called “epigenetic switching”. 

In fact, as mentioned, epigenetic modifications, characteristic of stem cells, occur very early in 

tumour cells, which therefore undergo an undifferentiation towards progenitor cells. Finally, the 

possible use of methylation as a cancer therapeutic target was investigated by employing CRISPR-

dCas9 tool to edit DNA methylation patterns in tumour cells, suggesting that this approach represents 

an innovative and powerful system that can revolutionize cancer therapeutic strategies. 
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