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Abstract: Land surface temperature (LST) is a key climate variable that has been studied mainly at
the urban scale and in the context of urban heat islands. By analyzing the connection between LST
and land cover, this study shows the potential of LST to analyze the relation between urbanization
and heating phenomena at the regional level. Land cover data, drawn from Copernicus, and LST,
retrieved from Landsat 8 satellite images, are analyzed through a methodology that couples GIS
and regression analysis. By looking at the Italian island of Sardinia as a case study, this research
shows that urbanization and the spatial dynamics of heating phenomena are closely connected,
and that intensively farmed areas behave quite similarly to urban areas, whereas forests are the
most effective land covers in mitigating LST, followed by areas covered with Mediterranean shrubs.
This leads to key policy recommendations that decision-makers could implement to mitigate LST
at the regional scale and that can, in principle, be exported to regions with similar climate and
land covers. The significance of this study can be summed up in its novel approach to analyzing
the relationship between LST and land covers that uses freely available spatial data and, therefore,
can easily be replicated in other regional contexts to derive appropriate policy recommendations.

Keywords: land surface temperature (LST); land cover; afforestation; green urban grids;
regression models

1. Introduction

Fast changes aimed at promoting social and economic development have characterized
international land cover dynamics in the last few decades [1,2]. Land cover features are related not
only to rapid urbanization, but also to processes of higher anthropization, such as the transformation
of forest areas into agricultural areas or transitions from woodlands and shrubs to new predominantly
homogeneous agrarian areas [3,4]. According to the report of the National Institute for Environmental
Protection [5], the artificial land cover in Italy increased by 0.21% in 2018, which equals 23,033 km2.
Moreover, the increase of artificial land cover is not connected to population increase. Indeed, from 2017
to 2018, the relationship between the land-take increase rate and population change rate takes a negative
value, that is −1.20 [5]. In the 2017–2018 period, the main land-cover changes concern transitions from
natural and semi-natural areas to urbanized zones, which increase by 700 hectares [5]. The increase
in urbanized areas leads to various problems, such as landscape fragmentation, urban heat islands
(UHI), and the reduction or loss of ecosystem services. In 2018, 39% of the Italian territory was found
to be characterized by high or very high landscape fragmentation [5]. In relation to UHI in the Italian
metropolitan cities, in 2018 the temperature difference between compact urbanized areas and rural
zones was higher than 2 ◦C [5]. In relation to the reduction of ecosystem services, during the 2012–2018
period, the potential loss of crop production due to increased urbanized areas was estimated at around
three million quintals of agricultural products that could have been supplied by the lost rural areas [5].
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Land cover changes, and, in particular, transitions from natural and semi-natural areas to
artificial land covers, affect regional and local temperatures [6]. In fact, although urban areas and their
surroundings receive the same amount of solar radiation, the local temperatures differ because different
surface materials have different heat capacity [7]. From this perspective, land surface temperature
(LST) is a significant parameter for investigating the effects of land covers on local temperatures.

Hofierka et al. [8] define LST as “the radiative skin temperature of the ground”, affected by solar
reflectance, thermal emissivity, and heat capacity. In other words, LST combines interactions between
land surface and atmosphere with ground–atmosphere energy fluxes. LST, measured through satellite
thermal infrared sensors [9], represents a key climate variable, and its study allows researchers to
analyze the behavior of the Earth’s environmental system [10].

Therefore, understanding how land cover changes affect climate represents a key element in
international debates [11] that highlight that land cover can significantly affect quality of life, that is
human health and safety, through its influence on LST [12,13]. The impacts on climate conditions
generated by land-cover change processes can be effectively analyzed by assessing the relations
between the spatial distribution of LST and that of land covers. The influence of land use/land cover
changes on LST variation has been studied by various authors [6,14–18]. Feizizadeh et al. [6] analyze
the relations between LST and land use/land cover in Maraqeh County (Iran), using a method based
on the application of the Surface Energy Balance Algorithm for Land (SEBAL) to Landsat Enhanced
Thematic Mapper (ETM+) imagery. Chaudhuri and Mishra [14] compare land use/land cover and LST
differences between India and Bangladesh by analyzing satellite images corresponding to different
time periods and by using intensity analysis. Tran et al. [15] focus on the relations between land
use/land cover and LST within the urban area of Hanoi by elaborating a three-step methodological
approach. In the first step, in relation to each land use/land cover type, normalized vegetation and
built-up indices are used to analyze the correlations between LST and vegetation, and man-made
features and cropland. The second step implements hot spot analysis and urban landscape analysis to
assess how land use/land cover changes affect UHI. In the third step, the authors apply non-metric
regression to evaluate future urban climate trends in relation to potential land use/land cover changes.
Jiang, Fu, and Weng [16] analyze how some biophysical parameters, such as LST, fractional vegetation
cover, normalized difference water index, impervious fractions evaporative fraction, and soil moisture,
change in relation to land use/land cover alteration in the case study of Indianapolis, USA, during
the 2001–2006 period. Kayet et al. [17] investigate the effects of land use/land cover changes on the
distribution of LST by using Landsat Thematic Mapper and ETM+ data concerning 1994, 2004 and
2014. Sahana, Ahmed, and Sajjad [18] investigate the relationships between land use/land cover change
and LST by implementing the split-window algorithm and spectral radiance model in relation to the
Sundarbans Biosphere Reserve in India.

Various studies concerning the influence of land use/land cover changes on LST variation have
been carried out in relation to Italian case studies [19–22]. Zullo et al. [19] study the relationship
between LST variations and the increase in urbanized areas from 2001 to 2011 in the Po Valley through
different urban growth spatial patterns. Guha et al. [20] investigate the relationship between the
estimated LST and two indexes, that is the normalized difference vegetation index (NDVI) and the
normalized difference built-up index (NDBI) in the cities of Florence and Naples by using Landsat
8 data. Stroppiana, Antoninetti, and Brivio [21] focus on the relationship between spatio-temporal LST
variation and land cover, topography, and potential solar radiation in four southern Italian regions,
Basilicata, Campania, Molise, and Apulia. Scarano and Sobrino [22] focus on the relationship between
LST variation and landscape composition and urban morphology in the city of Bari.Many of these
researchers focus on urban areas, while the regional dimension is somewhat neglected in studies that
analyze the correlation between land use/land cover changes and LST. Therefore, although various
authors have studied the relations between land use/land cover and LST, further analysis may provide
more accurate parameters in order to understand this complex relationship [23] at a wider scale.
Moreover, a mere understanding of this relation is not sufficient to deal with the problem of climate
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change, while new policies and strategies should be included within spatial planning at the regional
and local levels. The research proposed in this study demonstrates various innovative aspects. The first
point concerns the choice to focus on a regional scale that, as mentioned above, has not received
enough attention within the literature, where the urban dimension takes a privileged role in studies
concerning the relationship between LST variation and land use/land cover. Secondly, this study takes
a step forward compared to previous studies in that it not only attempts to identify the relationships
between LST patterns and land use/land cover, but also provides strategies, policies implications,
and recommendations concerning the governance of land cover changes aimed at mitigating LST
increase at a regional level. The third and final innovative point concerns the choice of the Sardinia
region as a case study, since the influence of LST variation on land use/land cover change has not been
investigated in this specific context.

In this study, the connections between anthropization and natural conditions and the spatial
taxonomy of LST are analyzed in order to assess whether, and to what extent, land covers and their
transitions affect the spatial layout of heating phenomena at the regional level. The distribution of land
cover characteristics is based on the spatial units retrieved from Copernicus [24]. These spatial units,
classified according to the CORINE (Coordination of Information on the Environment) Land Cover
(CLC) framework of the European Environment Agency (EEA) [25] and aggregated according to the
LEAC (Land and Ecosystem Accounting) classification [26], are taken as the spatial basis to explain
LST distribution.

The methodological approach applied in this study, which is based on a cross-sectional spatial
inferential analysis, provides results that can be used in two ways. On the one hand, the differential
impacts of different land cover types on LST are characterized with reference to the LEAC classification,
and the most critical land covers related to heating phenomena are identified. On the other hand,
a number of planning policies concerning land cover changes are defined, with the ultimate aim of
decreasing LST.

The Sardinian region is taken as the spatial context to implement the correlation analyses described
above because its climate homogeneity and self-containment allow for a pretty straightforward
identification of the regional boundaries. The correlation between the spatial distribution of LST
and land cover reveals that urbanization and the spatial dynamics of heating phenomena are closely
connected. The discussion implied by the outcomes can be easily exported to assess the analyzed
relationships with reference to other regional contexts. The comparison of analogies and differences
are quite effective and useful in identifying stylized facts and policy implications. Therefore, this study
answers the following research questions:

1. What are the land covers that mainly influence the LST spatial distribution in the Sardinian
case study?

2. What policies and strategies might be helpful in mitigating LST at the regional scale?

The study is structured into six sections. The first section identifies the wider context and the debates
to which the study is contributing. The second section describes the study area, data, and methodology
used in this study. The third section presents the results that are discussed in the fourth section, where
the main findings are interpreted and compared with findings from similar studies. The fifth section
provides recommendations in terms of strategies and policies, and finally, the sixth section proposes
concluding remarks and future directions of the research.

2. Materials and Methods

2.1. Study Area

With a size of 24,000 km2 and approximately 1850 km of coastline, Sardinia is one of the major
Mediterranean islands (Figure 1). The island, which from an administrative point of view is an Italian
autonomous region populated by around 1.6 million inhabitants (as of December 31, 2018: [27]), is taken
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as the spatial context for this study because its climate homogeneity and self-containment allow for
a pretty straightforward identification of the regional boundaries.
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Figure 1. Case study: Sardinia within the Mediterranean Sea basin. Basemaps: Esri “Imagery” and
Esri “Light Canvas”.

Its climate is typically Mediterranean: winters are mild and moderately rainy, while summers are
quite hot and dry [28]. The landscape is rugged, with only a couple of major plains, mostly dedicated
to agriculture, and a series of minor coastal valleys where coastal urbanization is increasingly taking
over agricultural and farming uses. Hills characterize Sardinian landscapes, and some scattered
groups of mountains, such as Limbara, Sette Fratelli, and Gennargentu (comprising Punta La Marmora,
the highest Sardinian peak at 1834 m), stand out [29].

A large part of the island is covered by scrubs or herbaceous vegetation associations [30].
Agriculture and pasture are also significant, especially in the plains and hills [28], while artificial land,
according to the latest report issued by the National Institute for Environmental Protection [5] (p. 48),
amounts to 3.76% of the region; this is approximately half of the national average (7.64%).

2.2. Data

Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) images are freely
available from the US Geological Survey website [31], where data can be searched and retrieved based
on spatial and temporal criteria. For spatial criteria, a bounding box having minimum latitude 38.8,
maximum latitude 41.4, minimum longitude 8, maximum longitude 10 was selected; for temporal
criteria, the spring interval spanning from 15 April 2019 to 31 May 2019 was chosen. Springtime
in Mediterranean areas, with vegetation in full swing, allows for better capturing of the differences
between artificial and vegetated areas as regards surface temperature; however, early spring images
are likely to be undesirable because of high cloud cover. For this reason, early spring days (i.e., the end
of March and the beginning of April) were taken out. June is problematic, because the Mediterranean
climate implies high temperatures and the early start of summer, with annual crops such as wheat
or forage being yielded and pastures starting to dry up. This means that soils are left bare or partly
bare, and this in turn makes it impossible to fully appreciate how vegetation affects LST. The five
selected multi-band images are listed in Table 1, and their footprint is shown in Figure 2, which shows
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the spatial layout of the two overlapping scenes taken on 16 May and 23 May 2019 (192 and 193,
respectively, represented as yellow-dashed rectangles) to which the Landsat images (i.e., the colorful
squares within the yellow-dashed rectangles) belong. The cell size of the thermal bands (10 and 11),
for each image, was 30 meters.

Table 1. Landsat 8 Operational Land Imager-Thermal Infrared Sensor (OLI-TIRS) images selected for
this study.

Image Code Date Scene

LC08_L1TP_193031_20190523_20190604_01_T2 23 May 2019 193
LC08_L1TP_193032_20190523_20190604_01_T1 23 May 2019 193
LC08_L1TP_193033_20190523_20190604_01_T1 23 May 2019 193
LC08_L1TP_192032_20190516_20190521_01_T2 16 May 2019 192
LC08_L1TP_192033_20190516_20190521_01_T1 16 May 2019 192
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Figure 2. Footprints of the selected Landsat 8 OLI-TIRS images (https://earthexplorer.usgs.gov/).

2018 land cover data, classed following the CORINE third-level nomenclature [32], were retrieved
from the Land Monitoring Service [33] of the European Union’s Copernicus Earth Observation Program.
CLC is an EU program that has been providing consistent information about land covers across Europe
over time since 1990. Datasets, which are derived from the photointerpretation of satellite images,
are provided in both raster and vector formats, and their minimum mapping unit (MMU) is 25 hectares.

Finally, a Digital Terrain Model (DTM) is available for Sardinia from the regional geoportal [34].
It was produced by the regional office for cartography and spatial datasets in 2011, and its cell size
equals 10 meters.

2.3. Methodology

The methodological approach of this study develops as follows. First, LST was extracted and
mapped following the procedure described in the Section 2.3.1. Secondly, land covers and elevation
data were processed (Section 2.3.2) with the aim of building a spatial dataset that brought together
the three layers (Section 2.3.3) and fed a multiple regression analysis, implemented to estimate the
relationships between different land covers and LST (Section 2.3.4). A graphical summary of the
methodology adopted in this study is provided in Figure 3.

https://earthexplorer.usgs.gov/
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2.3.1. LST Extraction and Mapping at the Regional Scale

A QGIS plugin implemented by Ndossi and Avdan [35] was used in this study. The plugin has
been employed to extract LST from Landsat images in various studies, mainly at the city level, to assess
the significance of urban trees in mitigating temperatures [36], to investigate UHI phenomena [37], or to
estimate the impact of urban land-use change on LST [38]. For each image listed in Table 1, a five-step
process was therefore performed through the plugin; the process is fully explained in Appendix A and
can be summarized as follows.

In the first step, the top-of-atmosphere spectral radiance was calculated for each pixel [39];
subsequently, the top-of-atmosphere spectral radiance was converted into the top-of-atmosphere
brightness temperature [39]. Next, the NDVI was calculated using Landsat 8’s bands 4 and 5 images
as inputs [40]; NDVI makes it possible to calculate, in the fourth step, Land Surface Emissivity
(LSE) through various algorithms. Among those implemented in the plugin, Zhang, Wang, and Li’s
algorithm [41], which builds upon van de Griend and Owe’s findings concerning the correlation
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between LSE and NDVI [42], was chosen here because it was reported to yield the best results [35] for
LST retrieval. Finally, in the fifth step, LST was calculated using the so-called “Planck function” [43],
which has been reported to be “easier to use in comparison to the other algorithms as it does not
require atmospheric variables” [35] (p. 28).

Through these steps, five LST raster maps (one for each Landsat image listed in Table 1 and each
having resolution 30 meters) were obtained. The five LST images were then merged, so as to obtain
a single LST image for the whole region (in the case of overlapping pixels, the maximum LST value,
consistently corresponding to pixels belonging to scene 193 produced on 23 May was retained), which
was next resampled to a 300-m cell size so as to lower the resolution, hence reducing computational
efforts in the subsequent steps.

2.3.2. Land Covers and Elevation

From the European 2018 CLC vector dataset, polygons concerning Sardinia were first extracted
and next reclassified based on the LEAC classification defined by the EEA [26] (p. 98) and used for land
cover accounts. Table 2 shows the LEAC-related macroclasses as groups of the 44 third-level classes of
the CLC dataset. The reclassification provided a LEAC-based spatial taxonomy which was afterwards
used to assess the relationships between LST and land covers.

Table 2. CORINE land cover classes and groups.

LEAC Groups CORINE Land Cover Classes 1

URB Artificial (urbanized) areas 1.*
APC Arable and permanent crops 2.1.* 2.2.* 2.4.1
MCP Mosaic crops and pastures 2.3.* 2.4.2 2.4.3 2.4.4
FSW Forests, shrubs, and woodlands 3.1.* 3.2.4

HNGS Heathland, natural grasslands, and sclerophyllous vegetation 3.2.1 3.2.2 3.2.3
OPSP Open spaces with sparse or absent vegetation 3.3.*
WAT Water bodies and wetlands 4.* 5.* (except 523-sea)

The asterisk (*) marks any sub-classes of a given class, or any sub-sub-classes of a given sub-class. (CORINE:
Coordination of Information on the Environment).

Next, the resulting layer was converted into a raster map with a cell size of 300 meters (where the
grid was the same as that of the resampled LST). Each cell was assigned a value corresponding to the
prevailing land cover group.

As for elevation, the regional DTM was resampled so as to obtain a new raster file with the
same cell size (300 meters) and grid as the LST and LC group raster images. As for the resampling
technique, linear interpolation, appropriate for continuous data [44] as elevation, was used to derive
the cell’s altitude.

2.3.3. Input Table for the Regression

A vector layer (shapefile) was created. Polygons in this shapefile spatially coincide with pixels
belonging to the three raster maps derived as per the previous subsubsections; hence, every polygon is
a 300 m by 300 m square in the projected reference system EPSG 32632 [45].

Each polygon was then assigned the following attributes: the LST value of the corresponding cell,
its prevailing land cover group, and its altitude. Furthermore, the latitude of the polygon’s centroid
(in the reference system EPSG 32632) was added, since the temperature is expected to be dependent on
the latitude.

Finally, a field taking the value 1 (pixels pertaining to scene 193, i.e., the western one; see Figure 2)
or 0 (pixels only pertaining to scene 192, i.e., the eastern one; see Figure 2) was added. The pixels
featuring in both scenes were regarded as belonging to scene 193, which was consistent with the fact
that the maximum LST value, steadily corresponding to scene 193, was retained when merging the five
LST images.
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2.3.4. Land Covers and LST

The polygons described in the previous subsubsection were identified as the spatial units for
estimating a multiple linear regression which takes the following form:

LST = β0 + β1URB + β2APC + β3MCP + β4FSW + β5HNGS + β6OPSP + β7ALTIT + β8LATD + β9W (1)

where:

• explanatory variables from URB through to OPSP, which represent the LEAC groups,
are dichotomous variables; each variable can take either of the two values, 1 or 0, according
to whether the area size of a LEAC group in a cell takes the largest value with respect to the
area sizes of the other groups; therefore, if in a cell the URB group shows the largest area size,
the variable URB equals 1, otherwise it equals 0; if in a cell the APC group shows the largest area
size, the variable APC equals 1, otherwise it equals 0, and so on; each coefficient estimated by
regression (1), βi, i = 1, . . . , 6, identifies the change in LST related to a cell in case it shows the
largest area size identified by the variable associated to the coefficient βi (i.e., URB, APC, etc.)
with respect to the basic condition that the largest area size of the cell is identified by the variable
WAT (Wetlands and water bodies); the coefficients estimated by regression (1), βi, i = 1, . . . , 6,
define a taxonomy of the zone types based on the quantitative contribution to LST expressed by
the values of βi, i = 1, . . . , 6;

• ALTIT is the altitude in meters related to the polygon, calculated as described in Section 2.3.2.;
• LATD is the latitude in meters of the polygon’s centroid, as per Section 2.3.3.;
• W (standing for “West”) is a dichotomous variable which can take either of the two values, 1 or 0,

as described in Section 2.3.3.

The results from the multiple linear regression were used to identify the quantitative effects of
different land covers on LST and their ordinal ranking; for each LEAC group, the rank depended on
the value of the coefficients βi, i = 1, . . . , 6, of regression (1).

As in many articles regarding spatial phenomena featured by multiple variables, a multiple linear
regression was used since no priors were available as regards the relations between the covariates
representing the determinants of the phenomenon at stake (see, for example, [46–49]).

That being so, the surface, whose equation was unknown, representing an n-dimensional
phenomenon, e.g., a spatial phenomenon, as a functional relation between n variables, was approximated,
point by point, by the point neighborhood identified by the tangential hyperplane. The neighborhood
shared by the surface, whose equation was unknown, and by the tangential hyperplane, whose
equation was known, was identified by the linear relation between the covariates, as a locally identified
approximation of the unknown general relation between the factors. A multiple linear regression such
as (1) provided the estimates of the coefficients of the linear equation, which demonstrated the trace of
a tangential hyperplane over a nine-dimensional unknown surface which represented the functional
relation between LST and its covariates [50,51].

The variables ALTIT and LATD were used to control the impacts of the altitude and latitude of
a cell on the LST; as a consequence, if the estimates of the coefficient β7 and β8 were significant with
reference to their p-values, this would entail that the altitude and latitude generate effects on the LST,
whose expected signs are negative, since it is expected that the higher the altitude and the greater the
latitude, the lower the LST, everything else being equal. Finally, the variable W was used to control
the impact of the date of the satellite images, which should show a systematic difference between
23 May 2019 and 16 May 2019, since 23 May was a clear sunny day whereas 16 May was partly cloudy.
That being so, the cells whose LSTs were extracted on 23 May, belonging to scene 193 and hence located
on the western side of the island, should show higher LSTs than the others, everything being equal,
and the expected sign of W should be positive.
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A standard significance test based on p-values was implemented as regards the coefficients of the
regressions, to detect whether they are significantly different from zero. If p-values were lower than
5%, then the explanatory variables’ effects on LST could confidently be considered important.

3. Results

The outcomes of the methodological approach discussed in the second section are presented
as follows. In the first subsection, the spatial layout of the LST taxonomy is described; in the next
subsection, the estimates of regression model (1) are reported and the effects of different LEAC
macroclasses on LST are presented, which define an ordered scale whose lowest level is represented by
water bodies and wetlands and upper level by urbanized land.

3.1. LST Spatial Taxonomy Results

Some outputs of the LST extraction process described in Section 2.3.1. are shown in Figure 4,
which clearly shows that some parts of the island were covered by clouds when the Landsat images
where produced—this locally affected both NDVI and LST values. Hence, such pixels (25,099 out
of 266,818) were subsequently removed, and Figure 5 shows the spatial distribution of LST minus
the cloudy cells, of LEAC groups (obtained as per Section 2.3.2), and of elevation (obtained as per
Section 2.3.2) that were used to develop the matrix that fed the regression described in Section 2.3.3.
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3.2. Regression Results

The estimates of the regression identify the impacts of the land cover macroclasses of the LEAC
on the LST. The estimates of the coefficients of the Boolean covariates define the differential effects of
each variable on LST change with respect to “Water bodies and wetlands”, whose effect on LST is the
lowest among the LEAC macroclasses.

Table 3 shows the results of the regression model.

Table 3. Regression results.

Explanatory Variable Coefficient Standard Deviation t-Statistic p-Value Mean of the
Explanatory Variable

URB 8.918 0.0531 167.991 0.000 0.032
APC 8.515 0.0460 185.274 0.000 0.269
MCP 7.413 0.0465 159.529 0.000 0.228
FSW 4.786 0.0476 100.556 0.000 0.150

HNGS 6.272 0.0463 135.428 0.000 0.293
OPSP 7.349 0.0602 122.113 0.000 0.017
ALTIT −0.00638 −0.0000218 −292.404 0.000 317.248
LATD −0.0000157 −0.0000000781 −200.735 0.000 4,438,355.893

W 4.311 0.0242 178.260 0.000 0.951

Dependent variable: LST: Mean: 302.230 K; Standard deviation: 3.801; Adjusted R-squared: 0.571.

The estimates of the coefficients of the altitude and latitude variables are significant in terms of
p-value hypothesis testing, and they show the expected sign. As a consequence, it can be stated that
the higher the altitude, or the larger the latitude, the lower the LST. On average, an increase of 100 m in
altitude will imply a decrease of 0.64 K in temperature, whereas an increase of 10 km in latitude will
entail a decrease of 0.16 K in temperature. Moreover, the coefficient of the dichotomous variable W is
significant and it shows the expected sign as well, which implies that, on average, a cell whose LST
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was related to the satellite images taken on 23 May is 4.3 K higher than the LST of a cell whose LST
was related to the satellite images taken on 16 May.

Therefore, the estimates of the three control variables’ coefficients are significant and show the
expected sign, and, that being so, it is pretty straightforward to identify the implications concerning
the differential effects on LST derived from the six LEAC macroclasses on the basis of the estimated
coefficients of the six dichotomous variables from URB through OPSP.

The estimated coefficients of the six dichotomous variables are significant with respect to the
standard test based on p-values described at the end of Section 2. The estimates of the coefficients
entail the following implications, which all assume the condition “everything else being equal”.

First, the highest effect on LST is shown by URB. The estimated coefficient implies that, on average,
urbanized (artificialized) cells present an LST higher by: 8.9 K than WAT cells (water bodies and
wetlands); 0.4 K than APC cells (arable and permanent crops); 1.5 K than MCP cells (mosaic crops and
pastures) and OPSP (open spaces with sparse or absent vegetation); 2.6 K than HNGS cells (heathland,
natural grasslands, and sclerophyllous vegetation); 4.1 K than FSW (forests, shrubs, and woodlands).

Secondly, intensive farming (APC) generates impacts on LST similar to urbanization, even though
it is not characterized by the soil-sealing phenomenon.

Thirdly, extensive farming and pastures (MCP), and bare land or poorly vegetated soils (OPSP)
are correlated to lower LST, and their impacts on LST are similar to each other.

Fourthly, the two LEAC non-agricultural vegetated macroclasses are the most effective as regards
mitigation of the land surface heating phenomenon. Forests, shrubs, and woodlands (FSW) show the
largest positive impact on LST mitigation.

4. Discussion

The ordered scale of the effects of the LEAC macroclasses on LST derived from the estimates of
the regression model shows a number of aspects consistent with the findings reported in the current
literature. The most relevant impact on increases in LST is represented by urbanized land, whose
differential effect on LST with respect to water bodies and wetlands is about 9 K. There are several reasons
explaining this outcome. Sealed soils either limit or prevent air circulation and the impact of downwind
cooling [52]. In heavily urbanized areas, the thermal comfort of vegetated areas is almost completely
missing [53,54]. Artificial surfaces make evapotranspiration almost impossible, and, as a result, LST and
air temperature are comparatively higher than in non-artificial surfaces [55]. In addition, the surface
materials used in urban areas have higher radiant temperatures [23]. The increasingly frequent
heat-wave and heat-island phenomena would be mitigated by the canopies of woodland trees and
shrubs, which are rare or absent in urbanized areas [56]. Moreover, a recent study proposed by
Fonseka et al. [7] highlights two important findings. Firstly, the increase in urban areas often entails
a population increase and therefore higher values of LST are affected by higher heat discharge due to
human activities. Secondly, in their study area (Colombo Metropolitan Area, Sri Lanka) bare lands
show high LST values because in these areas new developments are taking place.

In relation to intensive farming, the outcomes of the regression model show that the impact on
LST increase generated by intensive farming areas is only slightly lower than that of urbanized land,
that is, about 8.5 K higher than that of the water bodies and wetlands LEAC macroclass. Indeed,
the areas belonging to the APC macroclass reveal conditions that are very similar to those of the URB
macroclass. Even though the soil is not sealed, arable land and permanent crops generate negative
effects on downwind cooling and air circulation which make LST comparatively higher than those of
the other LEAC macroclasses except artificial land. Even the thermal comfort and evapotranspiration
provided by areas characterized by intensive agriculture are very low with respect to that of the
other LEAC macroclasses, with the exception of the URB macroclass, since in artificial areas trees
are almost-totally absent and soils are generally covered by dense low-growing vegetation [57,58].
In general, transitions from natural areas to intensive farming modify some important variables in
terms of local climate, such as surface roughness of vegetation, leaf conductance, and soil moisture.
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Moreover, arable and permanent crops need constant irrigation that entails, on the one hand, higher
physical evaporation and transpiration and, on the other hand, a lower sensible heat flux that cools the
land surface. The consequent moisture flux in the atmosphere produces latent heat that influences
convection and precipitation by enhancing the moist static energy in the convective boundary layer [59].

HNGS shows lower LST compared to other macroclasses due to the presence of vegetation that
reduces the amount of stored heat in the soil through transpiration [60]. In fact, vegetation affects the
microclimate through shading that prevents incoming solar radiation reaching the land surface through
evapotranspiration and by affecting air movement and heat exchange [53]. However, as pointed out by
Zhou et al. [61], the effect of vegetation on LST is largely influenced by seasons. The results of their
study show that, although the share of the tree canopy is responsible for 69% of the total variation of
LST during summer, variables concerning tree canopies are not good predictors of LST during spring
and winter. During winter, this different behavior is strongly influenced by leaf fall, which reduces the
evapotranspiration of canopy trees with a consequent lower LST regulation.

The results of this study reveal that forests, shrubs, and woodlands show the larger positive
impact on LST mitigation. According to a study carried out by Walawender et al. [62] in relation to
Krakow, forests and waters show low values of LST. However, their behavior changes during the year.
In March, before the period of growth between germination and flowering, waters show considerably
lower values of LST compared to forests. In May, when the vegetative period is just beginning in
Poland, the LST values of forests are slightly lower than the values of waters. In June and August,
at the end of the vegetative period, forests and waters take the same values. This different behavior is
caused by evapotranspiration that is superior at the peak of the vegetative period when air temperature
goes up. The same study shows that the LST of arable land, pastures, and permanent crops is affected
by seasons. At the beginning of the vegetative period, the LST of arable land is slightly higher than
the mean values. Before the vegetative period, the LST values of permanent crops and grassland are
higher than the mean values. This temperature variation can be explained through the state in which
arable land is kept after the planting period, that is not covered by any vegetation. In April–May,
during the early vegetative season, arable land shows the same thermal properties as bare soil, and its
LST values are higher than areas covered with vegetation.

On the other hand, pastures are perennial; therefore, the early vegetative period is characterized
by a closed canopy different from the bare soil that characterizes arable land in the same vegetative
period. Moreover, the capacity of regenerating living biomass is strongly connected with precipitations
that limit a constant forage production during the vegetation period [63].

It must be noted that lowering LST in rural areas has relevant implications in terms of mitigation
of water shortages and of the entailed negative economic impacts and social problems [64]. As per
Sruthi and Aslam [65], LST and NDVI are strictly negatively correlated in agricultural areas, which
implies that the higher the LST the lower the vegetation density. This outcome is particularly important
with regards to periods of drought, characterized by productivity decline determined by poor rains and
soil humidity [65]. In turn, the decline in productivity can possibly generate significant consequences
in terms of economic and social unrest [66,67]. This is an outstanding issue with reference to Sardinia,
where agricultural area comprises about one half of the regional land (11,500 km2) and employment in
agriculture is about 7.5% of total employment (41,000 people) [68].

Finally, two main limitations of this study should be taken into account. First, validation would be
needed and, indeed, is missing, as regards the LST spatial layout. The theoretical LST data implemented
into model (1) should be compared to direct LST observations in order to justify their use to define
and develop spatial planning policies aimed at decreasing LST and at mitigating its negative impacts
on urban and rural areas. A clear-cut and straightforward validation methodology is described and
applied by Nguyen et al. in a recent article concerning Hanoi [1]. Secondly, at present, the Sardinian
municipalities and the regional administration seem very far from understanding the potential of
policies geared towards decreasing LST, such as urban green and blue grids, green roofs and facades,
and afforestation. As a consequence, public commitment and investment are quite low, and the lack of
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planning experiments is likely to make it very difficult to ensure that these kinds of measures would be
implemented into planning practice in the short run. Under this perspective, two important reference
points are the approaches adopted in the London Green Grid experiment [69] and in the afforestation
of farms located in the Northern Uplands of Vietnam [70].

5. Urban Planning and Policy Implications

A number of policy recommendations are implied by the outcomes of this study.
First, high LSTs in the consolidated fabric of cities, towns, and small villages, which may possibly

develop into heat islands and waves, can be mitigated through the implementation of widespread urban
microscale operations, such as the planting of trees, the increase in the endowment of urban green zones
through the plantation of new areas and/or the enlargement of existing ones [53]. Other microscale
measures consist of the realization of green facades and walls, and green and blue urban grids. There
are several examples of these planning policies implemented in different urban contexts. A pioneer
and outstanding primer is the London Green Grid [69]. This document is based on a predicted increase
of 3 ◦C by 2050 in the London metropolitan area, which will generate negative impacts on several
determinants of the metropolitan quality of life, such as public health, drinking water production,
dryness, vegetated areas, and insects and vermin infestation. The urban planning concepts of the
primer were implemented into the plans for the East London Green Grid, which entails a system of
green and blue infrastructures that generate a metropolitan landscape characterized by the integration
of the built environment, where people live and work, featured by almost-sealed-soil areas, public
transport hubs, and the Green Belt, which includes London and the Thames [71].

The microscale planning measures aimed at decreasing LST in urbanized contexts are based on
the provision of ecosystem services regulating LST, which entail important benefits in terms of urban
and metropolitan quality of life [72]. The implementation of these measures implies the integration
of different kinds of planning policies, in order to induce virtuous behaviors on behalf of the local
communities, organized groups of residents, building enterprises, and public administrations. A central
issue is that the value of urban land is strictly related to its permitted building volume, whether it is
residential or devoted to services or infrastructure. That being so, the development of urban land uses
consisting in the plantation of new green areas and/or the enlargement of existing ones, which imply
that these areas would decrease their value substantially by losing their building potential, should
be implemented through the integration of appropriate planning measures. On the one hand, it is
necessary to enact a regulatory system whose rules should state that new settlements, and, perhaps,
existing ones, have to be endowed with a certain amount of vegetated areas, either by devoting part of
the facades and roofs to greenery, or by binding more-or-less large areas to be part of blue or green
grids, such as in the case of East London [73,74]. On the other hand, a system of financial incentives
should be put in place so as to make buildings endowed with green facades and roofs, as well as the
realization of green and blue grids in the existing urban neighborhoods and in the new developments,
attractive in terms of private investment [75,76]. Incentives may include the reduction of impact fees,
cuts to value-added tax and to tax on property value, public funding granted to developers to improve
the quality of urban landscapes through the realization of adequate green and blue infrastructure,
and so on [77,78]. Finally, public commitment to the increase in the urban endowment of blue and
green grids and infrastructure should be identified clearly through the implementation of public
planning policies, for example through compulsory purchase orders concerning municipal areas where
urban greening plans, such as the East London Green Grid, are to be implemented [79,80].

Secondly, as regards non-artificial land, the most effective LEAC macroclasses in lowering LST
are forests, shrubs, and woodlands (FSW) and heathland, grasslands, and sclerophyllous vegetation
(HNGS),whereas the impacts of intensive and extensive agriculture-related land covers (APC and
MCP), and of open spaces (OPSP) are very close to the negative impact of urbanized land. A pretty
straightforward implication is that the LEAC macroclasses characterized by the lowest degree of
anthropization, such as FSW and HNGS, should be targeted by public policies in order to implement
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the mitigation of the land surface heating phenomenon. Policy measures should aim at supporting
stepwise transitions from APC, MCP, and OPSP to HNGS and FSW.

Afforestation is the main road to identify the implications of the regression model results as
regards lowering LST in rural areas [81]. A detailed discussion on land use transition from agriculture
to forests, proposed in a study on socio-economic drivers of farm afforestation decision-making [82],
argues that a relevant obstacle is represented by the non-monetary benefits of farming [83], which
is connected to the flexibility of activities related to agriculture [84] and to the fact that farmers are
quite reluctant to give up their traditional and long-lasting expertise, the conservation of which is
much more important to them than the potential increase in income from afforestation [82]. Moreover,
for afforestation, a distinction should be made between high-rent intensive arable land (ARA) and
low-rent mosaic farmland and pastures (MCP) [85]. Transitions from agriculture to forests are not likely
to take place in cases of ARA, whereas they are more likely in cases of MCP, since the comparatively
high rents of forest farming are a relevant incentive towards land cover change [85]. Moreover,
ARA and MCP, with the addition of OPSP, show similar shares of the total regional land cover, that is
27% and 25%, respectively, as reported in the last column of Table 3, and their spatial layout is
characterized by a nearly homogeneous distribution across the regional territory. Policy measures
aiming at implementing a decrease in LST should be based on targeting both ARA and MCP, as follows.
A system of afforestation incentives should be implemented, targeting rural areas on the basis of
agricultural rent, with the aim of encouraging low-rent farmers to turn into forest farmers. It is highly
likely that these incentives are effective in cases of rural areas classified as either MCP or OPSP, whereas
high-rent farming, which mainly takes place in ARA, should be less interested in implementing land
cover changes [86]. From this perspective, regional and local planning authorities should carefully
assess whether, and to what extent, it is worth extending afforestation across high-rent agricultural
land, since, on the one hand, the public financial effort may be overwhelming, and, on the other
hand, a weakened agriculture may cause a dramatic decline in the environmental and socio-economic
conditions of rural societies [87]. A fundamental role has to be played by national, regional, and local
administrations in order to identify the optimal size of afforestation-related land cover transitions and
of public investment in terms of financial feasibility [88]. Public commitment to decrease LST in rural
areas is very important as regards the effectiveness of planning policies, and it should be visible to the
local communities through, for instance, the direct purchase of private rural land, such as low-rent
croplands or abandoned, poorly vegetated open spaces, in order to develop afforestation processes [89].

6. Conclusions

The methodological approach defined and implemented in this study as regards the Sardinian
region provides estimates of the quantitative size of the impact of public policies concerning urban and
rural contexts. The outcomes of the regression model not only entail that public planning policies aimed
at decreasing LST and mitigating its negative effects on quality of life should build on the implementation
of green facades and roofs and blue and green urban grids and infrastructure in urbanized areas, and on
afforestation processes in rural zones, but also give quantitative estimates related to the size of the
impact on LST generated by the implementation of such policies. This information is very important
in order to motivate public financial efforts towards the LST issue in budgetary terms. Moreover,
the methodology defined and implemented in this study can be easily exported to other national and
European regional contexts, since worldwide and free satellite images the enable the identification of
the spatial distribution of LST are available, and the CORINE land-cover-based LEAC taxonomy is
available for all European countries.

As regards the outcomes of this study, there are two main directions for future research in the field
of spatial planning policies to decrease LST and mitigate the connected problems, which consist of
heat waves and heat islands, and quality of life in rural and urban areas. On the one hand, a network
of direct, on-site observations would be of fundamental importance as regards the validation of
the spatial layout of LST, which would make feasible the experimental implementation of planning
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policies aimed at generating impacts on LST. No planning experiment could be developed in the
absence of a validated baseline dataset related to LST. On the other hand, tests and pilot projects
involving municipal administrations would be very useful to test the effectiveness of policies such
as the afforestation or urban blue and green grids. Researchers in the field of sustainability-oriented
planning and local public administrations should therefore lobby local, national, and international
funding agencies so as to secure enough funds to implement experimental programs concerning
decreasing LST, including pilot actions and local tests.
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Appendix A

In this appendix, the process whereby the five LST maps were retrieved from the five selected
Landsat images, summarized in Section 2.3.1, is presented in full. The process comprised five steps
as follows.

In the first step, the top-of-atmosphere spectral radiance was calculated for each pixel using
thermal Landsat 8’s band 10 pixel values as input, using equation (A1) [39]:

TOA = (ML · Qcal) + AL (A1)

where:

• TOA is the top-of-atmosphere spectral radiance (W/(m2
· sr · µm));

• ML is the band-specific multiplicative rescaling factor (retrievable from the image’s metadata,
provided by USGS as a plain text file together with the image, as “RADIANCE_MULT_BAND_10”);

• Qcal is the band 10 image pixel values (i.e., digital numbers), quantized and calibrated;
• AL is the band-specific additive rescaling factor (retrievable from the image’s metadata, provided

by USGS as plain text file together with the image, as “RADIANCE_ADD_BAND_10”).

In the second step, the top-of-atmosphere spectral radiance was converted into the
top-of-atmosphere brightness temperature as per equation (A2) [39]:

BT =
K2

ln
( K1

TOA + 1
) (A2)

where:

• BT is the top-of-atmosphere brightness temperature (K);
• TOA is the top-of-atmosphere spectral radiance;
• K1 and K2 are two specific thermal conversion constants (retrievable from the image’s metadata,

provided by USGS as a plain text file together with the image, as “K1_CONSTANT_BAND_10”and
“K2_CONSTANT_BAND_10”, respectively).
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In the third step, the normalized difference vegetation index was calculated using Landsat 8’s
bands 4 and 5 images as inputs, through equation (A3) [40]:

NDVI =
NIR−Red
NIR + Red

(A3)

where:

• NDVI is the normalized difference vegetation index;
• NIR is the near-infrared band. For Landsat 8 images, this is band 5;
• Red is the visible red band. For Landsat 8 images, this is band 4.

Once the NDVI was known, in the fourth step, Land Surface Emissivity (LSE) was calculated using
various algorithms. Among those implemented in the plugin, Zhang, Wang, and Li’s algorithm [41] was
chosen here because it was reported to yield the best results [35] as per LST retrieval. This algorithm,
which builds upon van de Griend and Owe’s findings concerning the correlation between LSE and
NDVI [42], can be summarized in Table A1.

Table A1. Relation between Land Surface Emissivity (LSE) and the normalized difference vegetation
index (NDVI). Source: [35].

NDVI LSE

NDVI < −0.185 0.995
−0.185 ≤ NDVI < 0.157 0.985
0.157 ≤ NDVI ≤ 0.727 1.009 + 0.047 · ln(NDVI)

NDVI > 0.727 0.990

Finally, in the fifth step, LST was calculated using the so-called “Planck function”, which is
reported to be “easier to use in comparison to the other algorithms as it does not require atmospheric
variables” [35] (p. 28). Among the algorithms implemented in the plugin, equation (A4) [43] was
therefore chosen:

LST =
BT

1 +
(
λ ·BT

α

)
· ln(LSE)

(A4)

where:

• LST is land surface temperature (K);
• BT is top-of-atmosphere brightness temperature (K);
• LSE is land surface emissivity;
• λ is wavelength of the emitted radiance (m) = 1.0895·10−5 m for Landsat 8 TIRS [90];
• α = h·c/σ (where h is Planck’s constant, c is the velocity of light, and σ is Boltzmann’s constant) =

1.438·10−2 mK [91].
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