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Abstract: Poly(glycerol-sebacate) (PGS) and poly(epsilon caprolactone) (PCL) have been widely
investigated for biomedical applications in combination with the electrospinning process.
Among others, one advantage of this blend is its suitability to be processed with benign solvents for
electrospinning. In this work, the suitability of PGS/PCL polymers for the fabrication of composite
fibers incorporating bioactive glass (BG) particles was investigated. Composite electrospun fibers
containing silicate or borosilicate glass particles (13-93 and 13-93BS, respectively) were obtained and
characterized. Neat PCL and PCL composite electrospun fibers were used as control to investigate
the possible effect of the presence of PGS and the influence of the bioactive glass particles. In fact,
with the addition of PGS an increase in the average fiber diameter was observed, while in all the
composite fibers, the presence of BG particles induced an increase in the fiber diameter distribution,
without changing significantly the average fiber diameter. Results confirmed that the blended fibers
are hydrophilic, while the addition of BG particles does not affect fiber wettability. Degradation
test and acellular bioactivity test highlight the release of the BG particles from all composite fibers,
relevant for all applications related to therapeutic ion release, i.e., wound healing. Because of weak
interface between the incorporated BG particles and the polymeric fibers, mechanical properties were
not improved in the composite fibers. Promising results were obtained from preliminary biological
tests for potential use of the developed mats for soft tissue engineering applications.
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1. Introduction

The fabrication of synthetic, biodegradable scaffolds able to mimic native features of extracellular
matrix (ECM) is a significant challenge for soft and hard tissue engineering (TE) [1]. Among the different
scaffold fabrication techniques, electrospinning (ES) has emerged as a promising approach for different
biomedical applications, since it provides a simple and versatile tool to produce interconnected
porous nano- and microfibrous structures from various synthetic and natural polymers [2,3].
Briefly, the principle of ES is based on the application of high-intensity electrical potential between two
electrodes of opposite polarity, a metallic needle containing the polymeric solution and a grounded
target. ES is strongly affected by different parameters, which have been extensively investigated in
the literature [2,4,5] and can be generally grouped in three main categories, namely solution features
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(e.g., concentration, viscosity, rheological properties, presence of particles in the suspension, etc.),
process parameters (e.g., applied voltage, flow rate, needle diameter, distance between tip of the
syringe and collector, type of collector and needle(s)), and external environmental conditions, such as
relative humidity and temperature.

Poly(glycerol-sebacate) (PGS), a biocompatible and biodegradable soft elastomer first introduced
by Wang and co-workers [6], has recently attracted much attention since its properties appeared to
be particularly interesting for regenerative medicine. PGS has been studied for a broad range of
applications including cardiovascular patches [7,8], heart valves [9], as well as for cartilage [10,11],
bone [12], corneal [13] and nerve [14,15] tissue engineering, for the retina [16,17] and tympanic
membrane healing [18,19]. Synthesis of PGS involves a two-step procedure: First, the PGS pre-polymer
(PGSp) is synthesized from pre-polycondensation of glycerol and sebacic acid, then the cross-linked
polymer can be obtained by additional vacuum heat treatment of the PGSp precursor. The mechanical
properties and degradation kinetics of PGS, which are relevant features for tissue engineering
applications, can be tailored during the synthesis process by altering the molar ratio of glycerol and
sebacic acid constituents, curing time and temperature. For example, Chen and co-workers studied the
effect of curing temperature on the mechanical properties of PGS patches for the myocardial tissue
healing [7]. It is also worth to mention that electrospinning of neat PGS represents a challenging task
because of the low solution viscosity caused by the low molecular weight and chain entanglement of
the polymer [6]. To increase its electrospinnability, PGS can be blended with other polymers, either
synthetic or natural [20].

In this context, poly(ε-caprolactone) (PCL), a semi-crystalline biocompatible, non-toxic,
and degradable polymer, which has been approved by the US Food and Drug Administration
(FDA) for certain biomedical applications [21,22], is suitable to be processed by ES. Generally, PCL
is used in the field of hard TE, where longer healing periods are required [23,24], because of its
relative stability in vivo and lower degradation rate compared to PGS [25,26]. Blending PCL and PGS
polymers allows the fabrication of electrospun fibrous scaffold with varying degradation behavior.
Furthermore, the presence of the more stable PCL can ensure a better structural support for cells at
the site of implantation, while faster degrading PGS provides the essential space for the new ECM
deposition. Elastic PCL/PGS fiber mats with different constituent ratios have been already successfully
tested as materials for heart valve regeneration [20,27,28]. Moreover, advanced electrospun PCL/PGS
mats with patterned topographical features as well as PCL/PGS scaffolds functionalized with vascular
endothelial growth factors have been developed for cardiac patch applications [29]. Furthermore,
Kalakonda and co-workers studied antibacterial properties of PCL/PGS fibrous scaffold coated with
silver for wound healing applications [30].

During the fabrication of PCL/PGS electrospun scaffolds, harsh solvents consisting of mixtures of
anhydrous chloroform, dichloromethane, or dimethyl carbonate with ethanol or methanol are mainly
used. It should be noted that an appropriate solvent selection plays a pivotal role for the obtainment of
smooth, bead-free fibers by electrospinning. Recently, the substitution of the toxic solvents mentioned
above with more environmental friendly benign solvents was attempted [31]. In this regard, acetic
acid (AA), according to guidelines established by the International Conference on Harmonization of
Technical Requirements for Registration of Pharmaceuticals for Human use (ICH), belongs to class 3
of solvents, which are considered less toxic and harmful for humans [32], and it could be considered
as benign solvent for electrospinning, according to the definition given in a previous report [33].
Vogt et al. first reported on the possibility to obtain PCL/PGS (1:1) fibrous mats using AA for cardiac
TE applications [8].

Recently, the scientific community has focused its attention on the use of bioactive glasses (BGs)
also for soft tissue engineering applications [34,35]. Indeed, previous researches on BGs have been
mainly oriented on the investigation of the osteogenic properties of these materials, important for the
bone regeneration. After the discovery of the ability of BGs to promote angiogenesis [36], ascribed
to the dissolution products arising from their contact with body fluids, more attention is being
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dedicated to applications related to wound healing [37–39]. Besides angiogenesis, the presence of
specific ions in the BG, i.e., boron, has positive effects on the wound healing process [40]. In this
context, the aim of the present research work was to fabricate electrospun PCL/PGS composite fibrous
structures incorporating silicate (composition 13-93) and borosilicate (labelled as 13-93BS) bioactive
glass particles as inorganic component. Acetic acid was utilized as benign solvent for electrospinning.
Biocompatibility of electrospun mats with seven different compositions was examined as well as cell
attachment and proliferation. The influence of fiber composition on the mechanical properties and
degradation characteristics was also assessed.

2. Materials and Methods

2.1. Solution Preparation

Electrospun fiber mats with seven different compositions, as reported in Table 1, were fabricated
starting from PCL (80 kDa, Sigma Aldrich, Munich, Germany) solutions. Glacial acetic acid (AA, VWR,
Darmstadt, Germany) was utilized as a solvent.

Table 1. Composition of poly(epsilon caprolactone) (PCL) and poly(epsilon caprolactone)/
poly(glycerol-sebacate)PCL/PGS polymeric solutions and parameters for electrospinning of PCL
and PCL/PGS fiber mats.

Sample
Name Label

Solution Concentration
[% w/v]/ Polymer-BG
Ratio PCL:PGS:BG

Applied
Voltage

[kV]

Distance
Tip-Target

[cm]

Needle
Diameter

Flow
Rate

[mL/h]

Temperature
[oC]

Relative
Humidity

[%]

PCL/PGSp S1 20/1:0.5:0 15 11 21G 0.4 24 ± 0.8 34 ± 12
PCL/PGSmxl S2 20/1:0.5:0 15 11 21G 0.4 24 ± 0.8 34 ± 12
PCL/PGSmxl/

13-93 S3 20/1:0.5:0.3 15 11 18G 0.4 24 ± 0.8 34 ± 12

PCL/PGSmxl/
13-93BS S4 20/1:0.5:0.3 15 11 18G 0.4 24 ± 0.8 34 ± 12

PCL S5 20/1:0:0 15 11 21G 0.4 24 ± 0.8 34 ± 12
PCL/13-93 S6 20/1:0:0.3 15 11 18G 0.4 24 ± 0.8 34 ± 12

PCL/13-93BS S7 20/1:0.5:0.3 15 11 18G 0.4 24 ± 0.8 34 ± 12

Synthesis of PGS polymer ((C13H22O5)n) was performed according to the protocol reported
by Wang et al. [2]. Briefly, in order to obtain PGS prepolymer (PGSp), 0.1 M sebacic acid (99%,
Sigma Aldrich, Munich, Germany) and 0.1 M polyol glycerol (BioXtra, 99%, Sigma Aldrich, Munich,
Germany) were mixed and subsequently heated at 120 ◦C under inert nitrogen atmosphere for 24 h.
Mildly cross-linked PGS polymer (PGSmxl) was further obtained from PGSp precursor by additional
treatment in an oven at 120 ◦C under vacuum (1.3–2.5 × 10−2 mTorr) for 24 h, as previously reported
by Vogt et al. [8].

Silicate and borosilicate BG (13-93 and 13-93BS, respectively) utilized in the present study to
fabricate composite electrospun mats were synthesized by the melt-quenching technique, according to
the procedure described by Schuhladen et al. [41]. Briefly, starting reagents (all from Sigma-Aldrich®,
Munich, Germany), were H3BO3, (CaHPO4)(2(H2O)), CaCO3, K2CO3, Na2CO3, MgO, and Belgian
quartz sand. Melting was carried out in a platinum crucible under the following conditions: 1100 ◦C
for 3 h (for BG 13-93BS) and 1360 ◦C for 3 h (for BG 13-93). Further, all compositions were cast and
annealed at 520 ◦C. To ensure homogeneity, melting was performed twice. The BGs were then crushed
using a Jaw Crusher (Retsch, Germany) and grounded to fine powder with average particle size of
5–20 µm, using a zirconia planetary ball mill (Retsch, Germany). The composition of both BGs is
reported in Table 2.

After the optimization process, solution preparation was carried out according to the following
procedure: a 20% w/v solution of PCL in acetic acid was prepared, stirred overnight at room temperature,
and sonicated for 30 min prior to the addition of PGS. PGSp or PGSmxl (50 wt.% respect to PCL amount)
were further added to the solution, stirred and sonicated for additional 30 min. BG powders, 13-93 or
13-93BS, were homogeneously dispersed (30 wt.% respect to PCL amount) in polymeric solution and
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stirred for 5 min. Electrospinning was performed immediately after solution preparation in order to
avoid possible alterations of bioactive glass particles in contact with the solvent.

Table 2. Composition in wt.% of the synthesized bioactive glasses (BGs) used for the composite fibers.

Bioactive Glass Denomination SiO2 B2O3 CaO K2O Na2O MgO P2O5

13-93 56.6 - 18.5 11.1 5.5 4.6 3.7

13-93BS 20 36.6 18.5 11.1 5.5 4.6 3.7

2.2. Electrospinning Process

Electrospun fiber mats were obtained using a commercially available setup (Starter Kit 40KV Web,
Linari Engineering srl, Valpiana (GR), Italy). The utilized parameters of the electrospinning process as
well as temperature and relative humidity are summarized in Table 1.

2.3. Characterization

2.3.1. Microstructure and Composition

Scanning electron microscopy (SEM) (FE-SEM-EDS, Auriga Base, Carl-Zeiss, Jena, Germany)
was conducted for examining the microstructure and morphology of the series of electrospun mats.
Prior to SEM analysis, the samples were sputtered with gold using a sputter coater (Q150T, Quorum
Technologies Ltd., Darmstadt, Germany). Magnification was varied in the range from 1000 to 45,000×.
The average fiber diameter was calculated using the Fiji 1.51 s analysis software (NIH, Bethesda,
MD, USA) [42]. The measurement of the diameter of 30 randomly chosen fibers was performed for
each sample.

FTIR spectroscopy analysis was carried out in attenuated total reflectance mode (ATR)
(IRAffinity-1S, Shimadzu, Japan). For the analysis, 40 spectral scans in absorbance mode were
averaged across the wavenumber range of 4000 to 400 cm−1 with a resolution of 4 cm−1.

2.3.2. Mechanical Characterization

Mechanical properties of a set of fiber mats were evaluated by uniaxial tensile strength test
(5960 Dual Column Tabletop Testing System, Instron®, Darmstadt, Germany). The measurements
were performed at a crosshead speed of 10 mm/min using a 100 N load cell. In order to avoid any
undesired stretching of fiber mats before the tensile test, specimens were cut into rectangular shape
(3 mm × 20 mm) and arranged into paper frames (20 mm × 20 mm) [43]. Average values and standard
deviations of Young’s modulus (E), ultimate tensile strength (UTS) and strain to failure (FS) were
determined based on five measurements for each composition.

2.3.3. Wettability

Measurements of static water contact angle on fibrous specimens were conducted by the sessile drop
method (DSA30, Krüss GmbH, Hamburg, Germany) in air. To this aim, drops of 3 µL deionized water
were placed onto the fiber mats. At least five measurements were performed for each composition
at room temperature. The data were collected and analyzed using the DSA software (DSA4 2.0,
Krüss GmbH, Hamburg, Germany).

2.3.4. In Vitro Acellular Bioactivity and Degradation Study

The acellular bioactivity of composite fiber mats was evaluated by immersion tests in simulated
body fluid (SBF) solution, prepared according to Kokubo’s protocol [44]. In addition, the in vitro
degradation study of electrospun fiber mats was carried out in phosphate buffered saline (PBS)
(VWR International GmbH, Darmstadt, Germany).
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Sample triplicates were immersed in 16 mL of either SBF or PBS solution at 37 ◦C, respectively.
Experiments were performed in a standard incubator (KS 4000 i Control, IKA®-Werke GmbH & Co. KG,
Staufen, Germany) with mild shaking (82 rpm). During the incubation stage, pH was monitored and
recorded at the following time points: 1 h, 2 h, 4 h, 1 day, 4, and 7 days. After 1 and 7 days, the samples
were removed from the solution, rinsed with ultra-pure water, dried, and investigated by SEM and
ATR-FTIR, to examine the changes in morphology and chemical composition. Falcon tubes containing
solutions of SBF or PBS without any samples were incubated for the entire period of the experiment to
ensure and control the solution stability overtime.

2.3.5. Cell Culture

A biological assay was performed using bone marrow-derived stromal cells, ST-2, (Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany). Before the
seeding step, ST-2 cells were cultured in RPMI 1640 medium (Thermo Fisher Scientific), supplemented
with 10% fetal bovine serum (Lonza) as well as 1% penicillin/streptomycin (Lonza), and incubated at
37 ◦C with 5% CO2. Briefly, prior to cell test, all samples were cut and fixed on a holder for 24-well
plates (CellCrownTM, Scaffdex, Sigma). Treatment under UV light was carried out for 1 h to disinfect
the specimens. ST-2 cells were drop seeded onto fixed fiber samples with a density of 2.5·105 cells/mL
in a droplet of 100 µL of RPMI media per sample and incubated for 15 min. Then, 1 mL of RPMI
medium was added to each well. Cell viability, proliferation, and morphology after 1 and 7 days were
evaluated according to the protocol reported by Liverani et al. [33].

After 1 and 7 days, cell proliferation and cytotoxicity were assessed using colorimetric
Cell Counting Kit-8 (CCK-8, Sigma Aldrich) assay based on tetrazolium salt WST-8
(2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium
salt). The reduction of WST-8 by cellular dehydrogenases to an orange formazan product was
measured in absorbance mode at 450 nm by the plate reader (PHOmo microplate reader, Autobio
Labtec Instruments Co. Ltd., Zhengzhou City, China).

Cell morphology and adhesion were investigated after 1 and 7 days after seeding. To this
aim, samples were observed by fluorescence microscopy (Axio Scope A1, Zeiss). Seeded samples
were stained with rhodamine phalloidin and DAPI (Thermo Fisher Scientific, Waltham, MA, USA),
according to the protocol reported previously by Liverani et al. [33]. Briefly, sample’s fixation was
carried out using a solution containing 1,4-piperazinediethanesulfonic acid buffer, ethylene glycol
tetra-acetic acid, polyethylene glycol, paraformaldehyde, PBS, and sodium hydroxide (Sigma Aldrich,
Munich, Germany). Then, the specimens were rinsed three times with PBS and immersed in a
permeabilization buffer containing Triton X-100, sucrose, and PBS (Sigma Aldrich, Munich, Germany).
Prior to characterization, fixed samples were stained using rhodamine phalloidin solution (8 µL/mL)
and DAPI solution (1 µL/mL).

2.3.6. Statistics

All experimental data are presented as average values ± standard deviation. One-way analysis of
variance (ANOVA, Origin) was used to determine the differences between groups with a probability
defined as (* p < 0.05).

3. Results and Discussion

3.1. Fiber Morphology

SEM micrographs of the series of as-spun porous samples are shown in Figure 1a–g. In the
present work, the selection of the key parameters for the electrospinning process, namely, the solution
concentration and applied voltage, was adapted from a previous study [43]. It was shown that
homogeneous, bead-free neat PCL fiber mats can be obtained using 20 w/v% solution of PCL in
acetic acid and 15 kV applied voltage. The latter parameters as well as tip-target distance and flow
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rate (Table 1) were maintained constant in order to better clarify the influence of the composition,
i.e., presence of PGSp or PGSmxl and BG particles on the mechanical and biological performances of
fiber mats.
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Figure 1. Scanning electron microscopy (SEM) micrographs of electrospun fiber mats and measured
fiber diameter distribution: (a,h) Neat PCL (S5); (b,i) PCL/PGSp (S1); (c,k) PCL/PGSmxl (S2);
(d,l) PCL/PGSmxl/13-93 (S3); (e,m) PCL/PGSmxl/13-93BS (S4); (f,n) PCL/13-93 (S6) and (g,p) PCL/13-93BS
(S7), respectively.
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The average fiber diameter of electrospun mats of different compositions is reported in
Table 3. It can be seen that the addition of PGS leads to an increase of the average fiber diameter.
This phenomenon can be ascribed to the increasing total amount of polymer content in the solution.
The value of the average fiber diameter for the neat PCL mats (0.9 ± 0.4 µm) falls within the range
of 0.11–3.85 µm reported in the literature [33,43,45]. Moreover, the measured values of average fiber
diameter for PCL/PGSp (1.5 ± 0.5 µm) and PCL/PGSmxl (1.5 ± 0.6 µm) are also in accordance with the
literature, where the fiber diameter of PCL/PGS blends was reported to vary in the range between
0.55 and 4.7 µm [20,28,46,47]. Such feature demonstrates that the use of benign solvents did not affect
the morphology of the electrospun composite fibers, whose average fiber diameter is comparable with
the one obtained with standard (e.g., chloroform or dichloromethane) solvents for ES.

Table 3. Average fiber diameter and mechanical properties of electrospun fiber mats.

Sample Name Sample
Label

Average Fiber
Diameter

[µm]

Young’s
Modulus

[MPa]

Ultimate Tensile
Strength (UTS)

[MPa]

Failure Strain
[%]

PCL S5 0.9 ± 0.4 2.4 ± 0.5 1.3 ± 0.2 447 ± 226

PCL/PGSp S1 1.5 ± 0.5 3.8 ± 0.8 1.0 ± 0.2 219 ± 112

PCL/PGSmxl S2 1.5 ± 0.6 4.4 ± 0.3 1.2 ± 0.2 200 ± 103

PCL/PGSmxl/13-93 S3 1.6 ± 0.7 4.5 ± 0.3 1.0 ± 0.1 117 ± 62

PCL/PGSmxl/13-93BS S4 1.7 ± 0.9 1.2 ± 0.4 0.6 ± 0.1 185 ± 106

PCL/13-93 S6 1.1 ± 0.7 2.2 ± 0.4 1.1 ± 0.2 228 ± 139

PCL/13-93BS S7 1.1 ± 0.7 0.5 ± 0.3 0.9 ± 0.2 115 ± 57

The amount of BG added in the present work to fabricate composite fiber mats was fixed at
30 wt.% and maintained constant for all composite blends, in particular for PCL/13-93, PCL/13-93BS,
PCL/PGSmxl/13-93, and PCL/PGSmxl/13-93BS. The incorporation of BG microparticles into the fibrous
scaffolds was confirmed by the SEM/EDX analysis shown in Figures 1d–g and 2.

The addition of BG particles did not alter significantly the average fiber diameter (Table 3).
However, the standard deviation in samples containing BG particles, i.e., PCL/13-93, PCL/13-93BS,
PCL/PGSmxl/13-93, and PCL/PGSmxl/13-93BS, was found to increase in BG containing fibers.
Moreover, the distribution of fiber diameter reported in Figure 1l–p shows that their maximum
and minimum values vary more noticeably in samples containing BG particles. This effect can be likely
caused by the increased suspension conductivity in presence of BG particles.
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Figure 2. SEM/EDX micrographs of composite fibers, confirming the presence of BG particles in
(a) PCL/PGSmxl/13-93 (S3), (b) PCL/PGSmxl/13-93BS (S4), (c) PCL/13-93 (S6), (d) PCL/13-93BS (S7)
samples. In all micrographs two insets related to the mapping of carbon and calcium are reported.

3.2. Chemical Characterization

FTIR analysis was performed in order to examine the chemical composition of prepared fiber
mats. Figure 3 illustrates the obtained spectra of neat PCL, PCL/PGSp, PCL/PGSmxl, and polymer/BG
fiber composites. No typical absorption bands of acetic acid were detected, confirming that the solvent
totally evaporated during the electrospinning process.

All spectra exhibit the characteristic PCL bands already reported in the literature [8,46,47]:
i.e., 2942 cm−1, 2865 cm−1, and 1366 cm−1, related to stretching of alkyl group (CH2); 1240 cm−1 and
1165 cm−1 peaks, attributed to symmetric and asymmetric C–O–C stretching, respectively; the peak
centered around 1722 cm−1, associated to carbonyl stretching (C=O); finally, the peak around 1294 cm−1,
due to the backbone C–O and C–C stretching. Several specific bands related to PGS and BG particles
overlap the main PCL bands and therefore are not easily detectable in Figure 3.

PGS related vibration bands, namely at 2929 cm−1, 2851 cm−1, and 1384 cm−1, attributed to
alkyl groups, the peak around 1734 cm−1, relative to carbonyl stretching (C=O), and C–O band
stretching vibration at 1165 cm−1 [8], overlap with the PCL absorption bands. Moreover, the broad
band between 3300 cm−1 and 2500 cm−1, corresponding to the stretch vibration of hydroxyl bond,
cannot be distinguished since the amount of PCL is prevalent respect to PGS. Only a slight shift to lower
the wavenumbers, typical for PGS, can be noticed when the spectra of PCL/PGS blends were analyzed.

A similar situation can be observed when considering samples containing BG particles (PCL/13-93,
PCL/13-93BS, PCL/PGSmxl/13-93, PCL/PGSmxl/13-93BS). Characteristic absorption bands of silicate
13-93 BG [41], namely Si–O–Si and Si–O stretching modes, located in the range 900–1100 cm−1, as well
as those ones of Si–O–Si bending mode at 470 cm−1, are relatively weak and cannot be detected.
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Borosilicate 13-93BS BG exhibits the same vibrations displayed by silicate glass 13-93 along with
additional peaks attributed to the B–O stretching mode of tetrahedral BO4 groups located around
700 cm−1 and in the range between 900–1100 cm−1; as well as B–O stretching bands of BO3 group
situated in 1150–1300 cm−1 and 1200–1500 cm−1 ranges [41].
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3.3. Wettability

Surface wettability or hydrophilicity of a biomaterial represents one of the key parameters which
affect cell behavior via protein adsorption, platelet adhesion/activation, blood coagulation, and cell
bacterial adhesion [48,49]. It has been reported that either strongly hydrophobic or hydrophilic surfaces
are not favorable for supporting cell attachment. Indeed, the optimal water contact angle which allows
effective cell adhesion is reported to be in the range between 40 and 70◦ [48,50].

In the present study, the wetting ability of as-spun fiber mats was evaluated by contact angle
measurements. Fiber mats containing only PCL as polymer component, i.e., PCL, PCL/13-93,
PCL/13-93BS, were found to exhibit hydrophobic behavior with contact angles of 100 ± 5◦, 100 ± 4◦,
and 101 ± 4◦, respectively. The estimated values lay in the range between 98 to 133◦ previously reported
in the literature for PCL electrospun mats [8,20,46], confirming that the presence of BG particles and
the related roughness of the composite mats do not affect their wettability.

On the contrary, blended fibers containing PGS, namely PCL/PGSp, PCL/PGSmxl,
PCL/PGSmxl/13-93, and PCL/PGSmxl/13-93BS showed highly hydrophilic behavior. The contact angle
was not detectable, since the water drop deposited on the surface of the samples rapidly penetrated and
spread through all the tested compositions. Thus, being strongly hydrophilic because of the hydroxyl
groups attached to its backbone, PGS strongly affects the wettability of PCL/PGS blend mats [20,46].

3.4. Degradation in PBS Solution

It is known that, when exposed to biological environments, biomaterials undergo degradation,
so that their initial physicochemical properties progressively change as function of time. In particular,
in case of polymers, degradation leads to polymer chain scissions. For instance, PCL and PGS,
which belong to aliphatic polyesters, are both subjected to hydrolytic degradation through the cleavage
of ester linkages, but with different rates. Total resorption of PGS in vivo has been observed within few
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weeks after implantation [26,51]. On the other hand, PCL, being semi-crystalline at room temperature,
is relatively stable in vivo and displays low resorption rate [25,52]. In addition, it has been found that
both crystallinity and molecular weight of PCL strongly affect its degradation rate [25,53]. In this
perspective, it is particularly interesting to study PCL/PGS blends, in order to obtain hybrid materials
that exhibit modulated or tunable degradation. To investigate degradation features, neat PCL, PCL/PGS,
and PCL/PGS/BG blends were subjected to in vitro immersion tests in PBS solution. Over the course
of the test, the change of pH of the medium was monitored, in order to track possible modifications
which could be related to BG ion release and PGS degradation. Measurements were performed after
1 h, 2 h, 4 h, 24 h, 96 h, and 168 h of incubation. The curves showing the corresponding pH changes are
plotted in Figure 4a,b.
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Figure 4. pH of medium during immersion test of samples up to (a) 5 h and (b) 168 h in phosphate
buffered saline (PBS) at 37 ◦C.

It can be observed that during the first 4 h, pH values of PBS solution in contact with PCL/PGSp

and PCL/PGSmxl mats drop more significantly, indicating acidification of the medium; on the contrary,
neat PCL samples led to only modest changes of pH. In addition, after 168 h of immersion, the pH
of the solutions containing PCL/PGSp and PCL/PGSmxl was found to be 7.2 ± 0.3 and 7.2 ± 0.2,
respectively. Acidification effect of PGS due to the leaching of non-reacted monomers has been
reported in the literature [54,55]. In order to remove residual monomers and oligomers, which can be
potentially harmful for cells, Jeffries et al. [54] washed the samples in a mixture of ethanol and water,
while Chen et al. [55] conditioned them prior to cell seeding in a culture medium for 6 days.

SEM micrographs of PCL/PGSp and PCL/PGSmxl after 1 and 7 days of immersion in PBS are
reported in Figure 5b,i and Figure 5c,k, respectively. They clearly indicate that fiber degradation takes
place already after 1 day of immersion. According to the literature, PGS degradation takes place via
surface erosion [26,56]. The occurrence of the latter phenomenon is manifested by the formation of the
porous structure and polymer leaching observed in samples, for example in Figure 5b,c.

Samples containing neat PCL (Figure 5a,h) did not exhibit, even after 7 days of immersion,
significant evidence of degradation confirming the results of the pH measurements. On the other
hand, Figure 4 shows that blends containing both PGS polymer and BG particles, PCL/PGSmxl/13-93
and PCL/PGSmxl/13-93BS, which in contact with PBS did not promote acidification of the medium.
In contrast, the pH increased after 4 h of immersion, reached a maximum value after 96 h and
slightly dropped after 168 h. This effect could be ascribed to the alkaline dissolution from the
BG, which compensates the acidification effect caused by PGS. This effect of ion release from BGs,
counteracting acidic degradation effect of polyesters, has been reported [57].

Additionally, in the samples containing only PCL and BGs, PCL/13-93 and PCL/13-93BS,
pH increased due to BG dissolution and alkaline ion release. Correspondingly, SEM micrographs
of PCL/PGSmxl/13-93, PCL/PGSmxl/13-93 BS, PCL/13-93, and PCL/13-93 BS evidenced huge pores,
indicating the dissolution of BG particles (Figure 5f,n,g,p).
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Figure 5. SEM images of electrospun fiber mats after immersion in PBS solution: (a,h) neat PCL (S5);
(b,i) PCL/PGSp (S1); (c,k) PCL/PGSmxl (S2); (d,l) PCL/PGSmxl/13-93 (S3); (e,m) PCL/PGSmxl/13-93BS
(S4); (f,n) PCL/13-93 (S6) and (g,p) PCL/13-93BS (S7), respectively.
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3.5. In Vitro Acellular Bioactivity

To assess the ability of the fabricated samples to form hydroxyapatite on their surface, which is a
marker of bioactivity, electrospun composite mats were immersed in the SBF solution [44]. Blended
fibrous mats were used as a control. Representative SEM micrographs of the composite mats
containing bioactive glass particles after soaking in SBF for 1 and 7 days are reported in Figure 6.
No biomineralization effect was observed. Indeed, after one day of immersion, BG particles were
already released from the fibers, as evidenced by the pores left on their surface, similarly to the
results shown previously using PBS. Considering the target on soft tissue engineering applications,
as for example wound healing, previous study [58] reported that the higher potential and role of
the BG in wound healing efficacy is represented by controlled delivery of ions, regardless their
mineralization capability.

Degradation of PGS via surface erosion can also be detected in Figure 6e,f when considering
PCL/PGSmxl/13-93 and PCL/PGSmxl/13-93BS systems, respectively.
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3.6. Mechanical Properties

It is known that to ensure structural integrity and provide an adequate support to cells, mechanical
properties of biodegradable fiber scaffolds should match those of the regenerating tissues. In the
present study, uniaxial tensile tests were carried out to evaluate the mechanical properties of the
as-spun fiber mats under external stress. Resulting stress–strain curves as well as averaged values of
Young’s modulus, ultimate tensile strength and failure strain are reported in Figure 7a,b and Table 3,
respectively. The stress–strain profiles of all tested fiber mats are consistent with the profiles typical of
elastomeric materials [8].

Nanomaterials 2020, 10, x FOR PEER REVIEW 13 of 18 

 

3.5. Mechanical Properties 

It is known that to ensure structural integrity and provide an adequate support to cells, 
mechanical properties of biodegradable fiber scaffolds should match those of the regenerating 
tissues. In the present study, uniaxial tensile tests were carried out to evaluate the mechanical 
properties of the as-spun fiber mats under external stress. Resulting stress–strain curves as well as 
averaged values of Young’s modulus, ultimate tensile strength and failure strain are reported in 
Figure 7a,b and Table 3, respectively. The stress–strain profiles of all tested fiber mats are consistent 
with the profiles typical of elastomeric materials [8].  

 
Figure 7. Representative stress–strain curves of as spun samples: (a) blended and composite fibers; 
(b) only blended fibers (without BG particles). Young’s Modulus values for all samples (Sample labels 
are reported in Table 1) (* p < 0.05). In Figure 7(c) sample labels are reported accordingly to Table 1. 

The obtained values of the Young’s modulus (E) for PCL specimens (2.4 ± 0.5 MPa) were found 
to be lower than previously published data [10,47]. On the other hand, values of E for PCL/PGS 
blends (3.8 ± 0.8 MPa and 4.4 ± 0.5 MPa for PCL/PGSp and PCL/PGSmxl, respectively) are close to 
values reported in the literature [28,47]. E of PCL/PGSp and PCL/PGSmxl blends significantly increased 
in comparison to that of neat PCL samples, as reported in Figure 7c, indicating an improvement of 
scaffolds stiffness (Figure 7b) with the introduction of PGS. Furthermore, as reported in Table 3, UTS 
of PGS/PCL samples was found to be comparable, while values of failure strain decreased when 
PCL/PGS blends were considered. Those results could be related to the higher average fiber diameter 
of all blended PCL/PGS samples, respect to the neat PCL. In fact, the mechanical properties of fiber 
scaffolds were observed to depend on fiber diameter and average fiber diameter distribution. As seen 
in Figure 7a, the mechanical properties of the samples containing BG particles were found to be lower 
than those of BG-free fibers. This feature can be ascribed to the increased inhomogeneity in the 
distribution of the average fiber diameter as well as to the presence of a weak interface between BG 
particles and polymer, as previously reported by Liverani et al. [43]. The weak interface can be 
observed in the SEM micrographs of the samples after the degradation and bioactivity test (Figures 
5 and 6), in fact from the signs left from the BG particles, it is possible to assume superficial and weak 
incorporation of the particles in the polymeric fibers. This reduction of mechanical properties is 
interestingly more visible in the fibers containing borosilicate glass particles. Therefore, the addition 
of BGs particles of different composition is meant to add functionalities related to ion release, but 
such different types of particles has also an effect on the resultant mechanical properties of the fibers. 

3.6. Cell Study 

The stromal cell line ST-2 was used to evaluate cell viability, proliferation, and adhesion to fiber 
mats. The results of WST-8 assay after 1 and 7 days of incubation are presented in Figure 8. It can be 
noticed that cell viability is significantly lower in all samples containing PGS, i.e., PCL/PGSp, 
PCL/PGSmxl and PCL/PGSmxl/13-93, and PCL/PGSmxl/13-93BS, as compared to neat PCL control. This 
outcome is in contrast to previous research, where an improved cell adhesion and proliferation by 
PCL/PGS fiber mats compared to PCL fiber mats was reported [13,20,47]. Such discrepancy could be 
explained as follows. According to the literature above, samples immersion in aqueous 70% v/v 

Figure 7. Representative stress–strain curves of as spun samples: (a) blended and composite fibers;
(b) only blended fibers (without BG particles). Young’s Modulus values for all samples (Sample labels
are reported in Table 1) (* p < 0.05). In Figure 7 (c) sample labels are reported accordingly to Table 1.

The obtained values of the Young’s modulus (E) for PCL specimens (2.4 ± 0.5 MPa) were found
to be lower than previously published data [10,47]. On the other hand, values of E for PCL/PGS
blends (3.8 ± 0.8 MPa and 4.4 ± 0.5 MPa for PCL/PGSp and PCL/PGSmxl, respectively) are close to
values reported in the literature [28,47]. E of PCL/PGSp and PCL/PGSmxl blends significantly increased
in comparison to that of neat PCL samples, as reported in Figure 7c, indicating an improvement of
scaffolds stiffness (Figure 7b) with the introduction of PGS. Furthermore, as reported in Table 3, UTS of
PGS/PCL samples was found to be comparable, while values of failure strain decreased when PCL/PGS
blends were considered. Those results could be related to the higher average fiber diameter of all
blended PCL/PGS samples, respect to the neat PCL. In fact, the mechanical properties of fiber scaffolds
were observed to depend on fiber diameter and average fiber diameter distribution. As seen in
Figure 7a, the mechanical properties of the samples containing BG particles were found to be lower than
those of BG-free fibers. This feature can be ascribed to the increased inhomogeneity in the distribution
of the average fiber diameter as well as to the presence of a weak interface between BG particles and
polymer, as previously reported by Liverani et al. [43]. The weak interface can be observed in the SEM
micrographs of the samples after the degradation and bioactivity test (Figures 5 and 6), in fact from
the signs left from the BG particles, it is possible to assume superficial and weak incorporation of the
particles in the polymeric fibers. This reduction of mechanical properties is interestingly more visible
in the fibers containing borosilicate glass particles. Therefore, the addition of BGs particles of different
composition is meant to add functionalities related to ion release, but such different types of particles
has also an effect on the resultant mechanical properties of the fibers.

3.7. Cell Study

The stromal cell line ST-2 was used to evaluate cell viability, proliferation, and adhesion to fiber
mats. The results of WST-8 assay after 1 and 7 days of incubation are presented in Figure 8. It can
be noticed that cell viability is significantly lower in all samples containing PGS, i.e., PCL/PGSp,
PCL/PGSmxl and PCL/PGSmxl/13-93, and PCL/PGSmxl/13-93BS, as compared to neat PCL control.
This outcome is in contrast to previous research, where an improved cell adhesion and proliferation
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by PCL/PGS fiber mats compared to PCL fiber mats was reported [13,20,47]. Such discrepancy could
be explained as follows. According to the literature above, samples immersion in aqueous 70% v/v
ethanol solution is usually utilized for disinfection purposes prior the cell seeding stage. Most likely,
this procedure is aimed not only to disinfect samples but also to remove unreacted monomers and
oligomers from the PGS structure. Indeed, the presence of residual monomers can strongly affect
the pH of culture medium and be harmful for cells. In this regard, previous works [8,59] studied
the possible effects of the disinfection procedures (using of 70% v/v aqueous ethanol versus UV light
treatment) on the chemical composition and morphology of as-spun PCL/PGS mats. Results arising
from these studies indicate that sample immersion in ethanol leads, even after only 1-h soaking, to the
complete removal of PGS from the blend. Authors reported that leaching of PGS is accompanied
by the formation of pores on the fiber surfaces. In the present study, UV light for 1 h was used to
disinfect the samples. Then, pre-conditioning in culture medium was performed for 1 min just before
the cell seeding.
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(Sample labels are reported in Table 1) (* p < 0.05). A table reporting the increase of the OD values
(at 450 nm) expressed as ratio between the measured OD 7 days after seeding respect to the OD value
at 1 day. Sample labels are reported accordingly to Table 1.

Results of WST-8 assay for the blended and composite fiber mats presented in Figure 8 show no
significant difference after 1 day from the seeding in cell viability with respect to neat PCL.

However, after 7 days, it is possible to detect a significant increase in the measured OD values
for all samples, beside PCL/PGSmxl, whose normalized ratio values (d7)/d1 are reported in Figure 8.
This ratio was obtained dividing the average OD value for d7 (ODd7) by the average OD value for
d1 (ODd1) for each sample. The observed increase is different depending on the specific system
considered. As already noticed from the pH measurements during the degradation test, it is clear that
the presence of PGS and its related fast degradation rate affect not only cell adhesion but also their
proliferation. This effect appears to be mitigated by the presence of 13-93 BG particles, while the same
result is not detectable in the sample containing 13-93BS, confirming that the BG degradation rate
and the ion release profile can be different and tailored depending on BG composition. On the other
hand, from the results obtained on the electrospun fibers without PGS and reported in Figures 8 and 9,
it is possible to notice that the addition of BG particles did not affect neither the cell adhesion nor
proliferation. Furthermore, the two BG compositions showed comparable performance.
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Figure 9. Fluorescence images of ST-2 cells on as-spun fiber mats after 7 days of incubation.
(Sample labels are reported in Table 1).

As already reported in literature [8], the PGS degradation from the surface of the electrospun
fibers could reduce the cell adhesion capability, because of a local effect determined by those acidic
degradation products. Therefore, a reduced number of cells could be detected on blended PCL/PGS,
as reported in Figure 8. From the fluorescence microscopy study performed 7 days after seeding, it can
be noticed that the stained living cells look elongated (as indicated by actin filaments in red) on the
scaffolds in all sample types, as shown in Figure 9. The differences between samples S1 and S2 could
be related to the fact that the PGS prepolymer (not crosslinked) was already completely degraded
at the time point and the recorded effect on cell proliferation is mainly due to PCL, even though the
number of adherent cells was less than that of the control (as reported in Figure 8 from WST-8 test
at d1). Moreover, the PGSmxl component was not fully degraded and the presence of degradation
products could be responsible for the reduced number of cells detected, as reported in Figure 9.

4. Conclusions

Homogeneous bead-free PCL/PGS fiber mats were prepared in this work by electrospinning.
Bioactive glass particles of two different BG compositions, 13-93 and 13-93BS, were also successfully
incorporated within the electrospun mats. The effect of fiber composition on the mechanical properties
and degradation characteristics was also assessed. In particular, PGS prepolymer improved scaffold’s
stiffness, while the incorporation of BG particles led to the overall decrease of mechanical properties.
From pH measurements, it could be assumed that ionic dissolution species from BGs compensated
the presence of acidic degradation products from PGS prepolymer. Moreover, it was noticed that BG
particles could be completely released from the composite fibers already after 1 day of immersion
in SBF, offering a controlled particle release, suitable for several applications where the release of
therapeutic ions from BGs plays a pivotal role. Additionally, the absence of mineralization revealed
the suitability of the obtained fiber mats for such applications where mineralization is not required,
for example in wound healing. The promising results form the basis for further comparative studies in
which different BG compositions could be considered in particulate form for incorporation in PCL/PGS
electrospun fibers.
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