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Abstract: The study of higher order energy functionals was first proposed by Eells and Sampson in
1965 and, later, by Eells and Lemaire in 1983. These functionals provide a natural generalization of
the classical energy functional. More precisely, Eells and Sampson suggested the investigation of the
so-called ES − r-energy functionals EES

r (ϕ) = (1/2)
∫

M
|(d∗ + d)r(ϕ)|2 dV , where r ≥ 2 and ϕ : M → N

is a map between two Riemannian manifolds. The initial part of this paper is a short overview on basic
definitions, properties, recent developments and open problems concerning the functionals EES

r (ϕ) and
other, equally interesting, higher order energy functionals Er(ϕ) which were introduced and studied
in various papers by Maeta and other authors. If a critical point ϕ of EES

r (ϕ) (respectively, Er(ϕ)) is
an isometric immersion, then we say that its image is an ES − r-harmonic (respectively, r-harmonic)
submanifold of N. We observe that minimal submanifolds are trivially both ES − r-harmonic and r-
harmonic. Therefore, it is natural to say that an ES − r-harmonic (r-harmonic) submanifold is proper
if it is not minimal. In the special case that the ambient space N is the Euclidean space Rn the notions
of ES − r-harmonic and r-harmonic submanifolds coincide. The Chen-Maeta conjecture is still open:
it states that, for all r ≥ 2, any proper, r-harmonic submanifold of Rn is minimal. In the second part
of this paper we shall focus on the study of G = SO(p + 1) × SO(q + 1)-invariant submanifolds of
Rn, n = p + q + 2. In particular, we shall obtain an explicit description of the relevant Euler-Lagrange
equations in the case that r = 3 and we shall discuss difficulties and possible developments towards the
proof of the Chen-Maeta conjecture for 3-harmonic G-invariant hypersurfaces.
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1. Introduction

Harmonic maps are the critical points of the energy functional

E(ϕ) =
1
2

∫
M
|dϕ|2 dV , (1.1)

where ϕ : M → N is a smooth map between two Riemannian manifolds (Mm, g) and (Nn, h) (note that,
if M is not compact, we have to consider compactly supported variations). In particular, ϕ is harmonic
if it is a solution of the Euler-Lagrange system of equations associated to (1.1), i.e.,

− d∗dϕ = trace∇dϕ = 0 . (1.2)

The left member of (1.2) is a vector field along the map ϕ or, equivalently, a section of the pull-back
bundle ϕ−1T N: it is called tension field and denoted τ(ϕ). In addition, we recall that, if ϕ is an isometric
immersion, then ϕ is a harmonic map if and only if the immersion ϕ defines a minimal submanifold
of N (see [11, 12] for background). Now, let us denote ∇M,∇N and ∇ϕ the induced connections on the
bundles T M,T N and ϕ−1T N respectively. The rough Laplacian on sections of ϕ−1T N, denoted ∆, is
defined by

∆ = d∗d = −

m∑
i=1

(
∇ϕei
∇ϕei
− ∇

ϕ

∇M
ei ei

)
,

where {ei}
m
i=1 is a local orthonormal frame field tangent to M. In recent years, the following r-order

versions of the energy functional where intensively studied by Maeta and other researchers (see [4, 5,
26–29, 37–39, 45]). If r = 2s, s ≥ 1:

E2s(ϕ) =
1
2

∫
M
〈 (d∗d) . . . (d∗d)︸           ︷︷           ︸

s times

ϕ, (d∗d) . . . (d∗d)︸           ︷︷           ︸
s times

ϕ 〉N dV

=
1
2

∫
M
〈∆

s−1
τ(ϕ), ∆

s−1
τ(ϕ) 〉N dV . (1.3)

In the case that r = 2s + 1:

E2s+1(ϕ) =
1
2

∫
M
〈 d (d∗d) . . . (d∗d)︸           ︷︷           ︸

s times

ϕ, d (d∗d) . . . (d∗d)︸           ︷︷           ︸
s times

ϕ 〉N dV

=
1
2

∫
M

m∑
j=1

〈 ∇ϕe j
∆

s−1
τ(ϕ), ∇ϕe j

∆
s−1
τ(ϕ) 〉N dV . (1.4)

We say that a map ϕ is r-harmonic if, for all variations ϕt,

d
dt

Er(ϕt)
∣∣∣∣∣
t=0

= 0 .

In the case that r = 2, the functional (1.3) is called bienergy and its critical points are the so-called
biharmonic maps. At present, a very ample literature on biharmonic maps is available and we refer
to [9,23,35,36,40,41] for an introduction to this topic. When r ≥ 3, the Euler-Lagrange equations for
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Er(ϕ) were obtained by Wang [45] and Maeta [26]. The expressions for their second variation were
derived in [27], where it was also shown that a biharmonic map is not always r-harmonic (r ≥ 3) and,
more generally, that an s-harmonic map is not always r-harmonic (2 ≤ s < r). On the other hand,
any harmonic map is trivially r-harmonic for all r ≥ 2. Therefore, we say that an r-harmonic map
is proper if it is not harmonic (similarly, an r-harmonic submanifold, i.e., an r-harmonic isometric
immersion, is proper if it is not minimal). As a general fact, when the ambient space has nonpositive
sectional curvature there are several results which assert that, under suitable conditions, an r-harmonic
submanifold is minimal (see [9], [26], [29] and [39], for instance), but the Chen conjecture that an
arbitrary biharmonic submanifold of Rn must be minimal is still open (see [10] for recent results in
this direction). More generally, the Maeta conjecture (see [26]) that any r-harmonic submanifold of
the Euclidean space is minimal is open. More precisely, Maeta showed that the conjecture holds for
curves, but very little is known when dim M > 1: one of the goals of this paper is to study the Maeta
conjecture in the case of G = SO(p + 1)× SO(q + 1)-invariant submanifolds of Rn, n = p + q + 2. This
study will be carried out in Section 3. By contrast, things drastically change when the ambient space is
positively curved. More precisely, let us denote by Sn(R) the Euclidean sphere of radius R and write Sn

for Sn(1). Then we have the following fundamental examples of proper r-harmonic submanifolds into
spheres (see [23] for the biharmonic case, [28] for r = 3 and [37] for r ≥ 4):

Theorem 1.1. Assume that r ≥ 2, n ≥ 2. Then a small hypersphere i : Sn−1(R) ↪→ Sn is a proper
r-harmonic submanifold of Sn if and only if the radius R is equal to 1/

√
r.

Theorem 1.2. Let r ≥ 2, p, q ≥ 1 and assume that the radii R1,R2 verify R2
1 + R2

2 = 1. Then a
generalized Clifford torus i : Sp(R1) × Sq(R2) ↪→ Sp+q+1 is:

(a) minimal if and only if
R2

1 =
p

p + q
and R2

2 =
q

p + q
; (1.5)

(b) a proper r-harmonic submanifold of Sp+q+1 if and only if (1.5) does not hold and either

r = 2 , p , q and R2
1 = R2

2 =
1
2

or r ≥ 3 and t = R2
1 is a root of the following polynomial:

P(t) = r(p + q) t3 + [q − p − r(q + 2p)] t2 + (2p + rp) t − p . (1.6)

Remark 1.3. For a discussion on the existence of positive roots of the polynomial P(t) in (1.6), which
provide proper r-harmonic submanifolds, we refer to [37].

The setting for r-harmonicity which we have outlined so far represents, both from the geometric and
the analytic point of view, a convenient approach to the study of higher order versions of the classical
energy functional. However, we point out that actually the first idea of studying higher order versions
of the energy functional was formulated in a different way. More precisely, in 1965 Eells and Sampson
(see [14], and also [11]) proposed the following functionals, which we denote EES

r (ϕ) to remember
these two leading mathematicians:

EES
r (ϕ) =

1
2

∫
M
|(d∗ + d)r(ϕ)|2 dV . (1.7)
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To avoid confusion, it is important to fix the terminology: as we said above, a map ϕ is r-harmonic
if it is a critical point of the functional Er(ϕ) defined in (1.3), (1.4). Instead, we say that a map ϕ

is ES − r-harmonic if it is a critical point of the functional EES
r (ϕ) defined in (1.7). The functionals

EES
r (ϕ) and Er(ϕ) coincide in the following cases:

(i) r = 2, 3;
(ii) dim M = 1;

(iii) the sectional curvature tensor of N vanishes.

By contrast with the case of Er(ϕ), the explicit derivation of the Euler-Lagrange equation for the
Eells-Sampson functionals EES

r (ϕ) seems, in general, a very complicated task. These difficulties are
explained in detail in the recent paper [6], where the Euler-Lagrange equation of the functional
EES

4 (ϕ) was computed. To end this introduction, let us briefly point out some of the technical reasons
which make the study of the functionals EES

r (ϕ) rather different from that of their companions Er(ϕ).
As we said, the two types of functionals coincide when r = 2 (the case of biharmonic maps) and
r = 3: this is a consequence of the fact that d∗ vanishes on 0-forms and d2ϕ = 0, as computed in [11].
The first fundamental difference, as it was already observed in [29], arises when r = 4 because d2τ(ϕ)
is not necessarily zero unless N is flat or dim M = 1. So, in general, we have

EES
4 (ϕ) =

1
2

∫
M

(
|d2τ(ϕ)|2 + |d∗dτ(ϕ)|2

)
dV =

1
2

∫
M
|d2τ(ϕ)|2 dV + E4(ϕ) . (1.8)

This description of EES
4 (ϕ) appeared in [29], but the Euler-Lagrange equation associated to the first

term on the right-side of (1.8) was computed only very recently in [6]. When r ≥ 5 things become
even more complicated. For instance, we know that the integrand of E5(ϕ) is the squared norm of a 1-
form, but we cannot write EES

5 (ϕ) as the sum of E5(ϕ) and a functional which involves only differential
forms of degree p , 1. The reason for this is the fact that, in general, the 1-form dd∗dτ(ϕ) (whose
squared norm is the integrand of E5(ϕ)) may mix up with d∗d2τ(ϕ). Difficulties of this type boost as r
increases.

The present paper is organised as follows: in Section 2, we describe some recent advances
concerning the Eells-Sampson functionals EES

r (ϕ) and propose a list of open problems on this topic.
In Section 3, we study the Maeta conjecture for 3-harmonic G = SO(p + 1) × SO(q + 1)-invariant
submanifolds of Rn, n = p + q + 2.

2. Recent results on the functionals EES
r (ϕ) and open problems

In this section, we describe some recent results on the Eells-Sampson functionals EES
r (ϕ) and

conclude by proposing some open problems in this context. We start with the Euler-Lagrange
equation for EES

4 (ϕ). First, we shall describe the equations in the general case. Next, we shall
illustrate some relevant simplifications which occur when the target is a space form. We recall that,
when r = 4, the Eells-Sampson functional is

EES
4 (ϕ) =

1
2

∫
M
|(d∗ + d)(dτ(ϕ))|2 dV =

1
2

∫
M
|d∗dτ(ϕ) + d2τ(ϕ)|2 dV.
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Note that d∗dτ(ϕ) ∈ C(ϕ−1T N) = A0(ϕ−1T N) and d2τ(ϕ) ∈ C(Λ2T ∗M ⊗ ϕ−1T N) = A2(ϕ−1T N). In
order to simplify the formal sum in EES

4 (ϕ) we observe that

|d∗dτ(ϕ) + d2τ(ϕ)|2 = |d∗dτ(ϕ)|2 + |d2τ(ϕ)|2 = |∆τ(ϕ)|2 + |d2τ(ϕ)|2.

The curvature term here acquires the form

|d2τ(ϕ)|2 = |Rϕ ∧ τ(ϕ)|2 =
1
2

∑
i, j

|RN(dϕ(Xi), dϕ(X j))τ(ϕ)|2,

where {Xi} denotes a geodesic frame field around a point p ∈ M and we shall perform the calculations
at p. In the sequel, we shall omit to write the symbol

∑
when it is clear from the context. Therefore,

we have

EES
4 (ϕ) =

1
2

∫
M
|∆τ(ϕ)|2 dV +

1
4

∫
M
|RN(dϕ(Xi), dϕ(X j))τ(ϕ)|2 dV

= E4(ϕ) +
1
4

∫
M
|RN(dϕ(Xi), dϕ(X j))τ(ϕ)|2 dV.

It was first noted in [29], equation (2.8), that the four energy of Eells and Sampson contains a curvature
contribution. Next, we wish to describe the Euler-Lagrange equation for EES

4 (ϕ). To this end we set

Ê4(ϕ) =
1
2

∫
M
|d2τ(ϕ)|2 dV =

1
4

∫
M
|RN(dϕ(Xi), dϕ(X j))τ(ϕ)|2 dV,

so that
EES

4 (ϕ) = E4(ϕ) + Ê4(ϕ).

The first variation of E4(ϕ) was computed by Maeta in [26], while the first variation of Ê4(ϕ) was
obtained in [6]. Combining these results we have:

Theorem 2.1. Consider a smooth map ϕ : (Mm, g)→ (Nn, h). Then the following formula holds

d
dt

EES
4 (ϕt)

∣∣∣∣∣
t=0

= −

∫
M
〈τES

4 (ϕ),V〉 dV,

where τES
4 (ϕ) is given by the following expression

τES
4 (ϕ) = τ4(ϕ) + τ̂4(ϕ) , (2.1)

where

τ4(ϕ) =∆
3
τ(ϕ) + RN(dϕ(Xi),∆

2
τ(ϕ))dϕ(Xi) − RN(∇ϕXi

∆τ(ϕ), τ(ϕ))dϕ(Xi)

+ RN(∆τ(ϕ),∇ϕXi
τ(ϕ))dϕ(Xi) ,

τ̂4(ϕ) = −
1
2
(
2ξ1 + 2d∗Ω1 + ∆Ω0 + trace RN(dϕ(·),Ω0)dϕ(·)

)
,

and we have used the following abbreviations

Ω0 = RN(dϕ(Xi), dϕ(X j))(RN(dϕ(Xi), dϕ(X j))τ(ϕ)), Ω0 ∈ C(ϕ−1T N);
Ω1(X) = RN(RN(dϕ(X), dϕ(X j))τ(ϕ), τ(ϕ))dϕ(X j), Ω1 ∈ A1(ϕ−1T N);
ξ1 = −(∇NRN)(dϕ(X j),RN(dϕ(Xi), dϕ(X j))τ(ϕ), τ(ϕ), dϕ(Xi)), ξ1 ∈ C(ϕ−1T N).

Remark 2.2. We point out that the Euler-Lagrange equation τES
4 (ϕ) = 0 is a semi-linear elliptic system

of order 8. The leading terms are given by τ4(ϕ), while τ̂4(ϕ) is a differential operator of order 4.
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2.1. The case of space form target

In the case that the target manifold (Nn, h) is a real space form Nn(ε) with constant curvature ε the
first variational formula of Ê4(ϕ) simplifies and we have:

d
dt

Ê4(ϕt)
∣∣∣∣∣
t=0

=
1
2

∫
M

〈
2RN(∇ϕXi

V, dϕ(X j))τ(ϕ)

+ RN(dϕ(Xi), dϕ(X j))(−∆V − trace RN(dϕ(·),V)dϕ(·)),
RN(dϕ(Xi), dϕ(X j))τ(ϕ)

〉
dV. (2.2)

We have to compute all the terms on the right hand side of (2.2). Recall that

〈RN(∇ϕXi
V , dϕ(X j))τ(ϕ),RN(dϕ(Xi), dϕ(X j))τ(ϕ)〉 = div Y + 〈d∗Ω1,V〉,

where Ω1 ∈ A1(ϕ−1T N) is defined as

Ω1(X) = RN(
RN(dϕ(X), dϕ(X j))τ(ϕ), τ(ϕ)

)
dϕ(X j)

and Y = 〈Ω1(Xk),V〉Xk is a well-defined, global vector field on M. Next, for our purposes, it turns out
to be useful to define the following vector field:

Z = 〈τ(ϕ), dϕ(Xk)〉Xk = −(div S )],

where S is the stress-energy tensor field associated to ϕ. Clearly, we have

div Z = |τ(ϕ)|2 + 〈dϕ,∇ϕτ(ϕ)〉.

We can now state the main result in the context of maps into a space form:

Theorem 2.3. [6] In the case that (Nn, h) = Nn(ε) the terms in the expression of τES
4 (ϕ) given by (2.1)

simplify as follows:

ξ1 =0,
Ω0 =2ε2(trace〈dϕ(·), dϕ(Z)〉dϕ(·) − |dϕ|2dϕ(Z)),

Ω1 =ε2(|Z|2dϕ(·) − Z[ ⊗ dϕ(Z) − 〈dϕ(Z), dϕ(·)〉τ(ϕ) + |dϕ|2Z[ ⊗ τ(ϕ)
)
.

2.2. Some geometric applications

We observe that if Rϕ(X,Y)τ(ϕ) = 0 for any X,Y ∈ C(T M), then ϕ is an absolute minimum for
Ê4(ϕ) and so it is a critical point for Ê4(ϕ). As an application, we have (see [6]):

Proposition 2.4. Let ϕ : (Mm, g) → (Nn, h) be a smooth map. Assume that Rϕ(X,Y)τ(ϕ) = 0 for any
X,Y ∈ C(T M). Then ϕ is a critical point of EES

4 if and only if it is a critical point of E4.

Corollary 2.5. Let ϕ : (Mm, g)→ Nn(ε) be a smooth map. Assume that τ(ϕ) is orthogonal to the image
of the map. Then ϕ is ES-4-harmonic if and only if it is 4-harmonic. In particular, if ϕ : Mm → Nn(ε)
is an isometric immersion, then it is ES-4-harmonic if and only if it is 4-harmonic.
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2.3. Second variation

Let us consider a smooth map ϕ : (Mm, g)→ (Nn, h) and, for simplicity, assume that M is compact.
We consider a two-parameter smooth variation of ϕ, that is a smooth map

Φ : R × R × M → N, (t, s, p) 7→ Φ(t, s, p) = ϕt,s(p)

such that ϕ0,0(p) = ϕ(p) for any p ∈ M. To any given two-parameter variation of ϕ we associate the
corresponding variation vector fields, i.e., the sections V,W ∈ C(ϕ−1T N) which are defined by

V(p) =
d
dt
ϕt,0(p)

∣∣∣∣∣
t=0
∈ Tϕ(p)N,

W(p) =
d
ds
ϕ0,s(p)

∣∣∣∣∣
s=0
∈ Tϕ(p)N.

We will now compute

∂2

∂t∂s
Ê4(ϕt,s)

∣∣∣∣∣∣
(t,s)=(0,0)

starting with

∂

∂s
Ê4(ϕt,s)

∣∣∣∣∣
(t,s)=(t,0)

=
1
2

∫
M
〈∇Φ

∂
∂s (t,0,p)

RΦ(Xi, X j)τ̃,Rϕt,0(Xi, X j)τ(ϕt,0)〉 dV,

where τ̃ ∈ C(Φ−1T N) is defined by

τ̃(t, s, p) = τ(ϕt,s)p ∈ Tϕt,s(p)N.

Then we find

∂2

∂t∂s
Ê4(ϕt,s)

∣∣∣∣∣∣
(t,s)=(0,0)

=
1
2

∫
M

(
〈∇Φ

∂
∂t (0,0,p)

∇Φ
∂
∂s

RΦ(Xi, X j)τ̃,Rϕ(Xi, X j)τ(ϕ)〉 (2.3)

+ 〈∇Φ
∂
∂s (0,0,p)

RΦ(Xi, X j)τ̃,∇Φ
∂
∂t (0,0,p)

RΦ(Xi, X j)τ̃〉
)

dV.

Even if Rϕ(X,Y)τ(ϕ) = 0 for any X,Y ∈ C(T M), so that ϕ is a critical point of Ê4, the Hessian of Ê4

can be different from zero. Indeed, in this case we have

∂2

∂t∂s
Ê4(ϕt,s)

∣∣∣∣∣∣
(t,s)=(0,0)

=
1
2

∫
M
〈∇Φ

∂
∂s (0,0,p)

RΦ(Xi, X j)τ̃,∇Φ
∂
∂t (0,0,p)

RΦ(Xi, X j)τ̃〉 dV

and this term will not vanish in general. We can conclude that, if Rϕ(X,Y)τ(ϕ) = 0 and ϕ is a critical
point for both EES

4 and E4, then the stability of ϕ may depend on which of the two functionals we are
actually considering. Since, in this case, ϕ is an absolute minimum point for Ê4, its index computed
with respect to EES

4 could be smaller than the one computed using E4. However, in the case of a
one-dimensional domain, there is no difference.

The previous discussions suggest that, in general, the notions of r-harmonicity and
ES − r-harmonicity display significant differences. However, we have the following surprising result:
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Theorem 2.6. [6] Theorems 1.1 and 1.2 hold with the word r-harmonic replaced by ES −r-harmonic.

The proof of this result requires essentially two ingredients. One is the explicit computation of the
terms involving d2. The other key tool is Proposition 2.8 below, which says that we can apply a rather
general theorem of Palais which ensures the validity of the so-called principle of symmetric criticality.
This result of Palais can be found in [42], p.22. However, since the paper [42] is written using a
rather obsolete notation, we rewrite it here in a form which is suitable for our purposes. In order to do
this, let us assume that G is a Lie group which acts on both M and N. Then G acts on C∞(M,N) by
(gϕ)(x) = gϕ(g−1x), x ∈ M. We say that a map ϕ is G-equivariant (shortly, equivariant) if gϕ = ϕ for
all g ∈ G. Now, let E : C∞(M,N)→ R be a smooth function. Then we say that E is G-invariant if, for
all ϕ ∈ C∞(M,N), E(gϕ) = E(ϕ) for all g ∈ G. Now we can recall the Palais result in this context:

Theorem 2.7. [42] Let M,N be two Riemannian manifolds and assume that G is a compact Lie group
which acts on both M and N. Let E : C∞(M,N) → R be a smooth, G-invariant function. If ϕ is
G-equivariant, then ϕ is a critical point of E if and only if it is stationary with respect to G-equivariant
variations, i.e., variations ϕt through G-equivariant maps.

Palais observed in [42] that, if G is a group of isometries of both M and N, then the volume
functional and the energy functional are both G-invariant and so the principle of symmetric criticality
stated in Theorem 2.7 applies in both cases: the first, beautiful instances of this type can be found in
the paper [21] for minimal submanifolds and in [44] for harmonic maps. It is also easy to show that
the same is true for the bienergy functional: this is a special case in a more general setting of a
reduction theory for biharmonic maps developed in [33, 34]. Now we shall extend this to the
Eells-Sampson functionals EES

r (ϕ), r ≥ 3. In particular, using Theorem 2.7, we could prove the
following basic result:

Proposition 2.8. [6] Let M,N be two Riemannian manifolds and assume that G is a compact Lie
group which acts by isometries on both M and N. If ϕ is a G-equivariant map, then ϕ is a critical point
of EES

r (ϕ) if and only if it is stationary with respect to G-equivariant variations.

Remark 2.9. The conclusion of Proposition 2.8 is true also for the r-energy functional Er(ϕ).

Remark 2.10. Theorems 1.1, 1.2 and 2.6 were first proved for r = 2 (see [8] and [23]) and r = 3
(see [28]). The proofs given in [8, 23, 28] do not use the methods of equivariant differential geometry,
but they are based on geometric constraints which the second fundamental form of a biharmonic, or
3-harmonic, immersion into Sn must satisfy. By contrast, we point out that the use of the principle
of symmetric criticality of Proposition 2.8 enabled us to prove the existence of G-equivariant critical
points even if the explicit general expression of the ES −r-tension field is not available. For this reason,
this seems to be a very convenient approach to the study of the Eells-Sampson functionals EES

r (ϕ).

2.4. Condition (C)

To our knowledge, no work in the literature clarifies and proves in which contexts the Condition (C)
of Palais-Smale holds for the ES − r-energy (r-energy) functionals. A general belief (see [13, 15, 25])
is that, if 2r > dim M and the curvature of the target is non-positive, then the ES − r-energy (r-energy)
functionals may satisfy Condition (C). But, for each of these functionals, a further difficulty in the
search of proper critical points is the fact that the minimum point in a given homotopy class can very
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well be reached by a harmonic map. By contrast, when the target has positive curvature, there is little
hope that these higher order energy functionals satisfy Condition (C). The following result displays a
homotopy class where the ES − 4-energy functional does not reach the infimum.

Theorem 2.11. [6] Let T2 denote the flat 2-torus. Then

Inf
{
EES

4 (ϕ) : ϕ ∈ C∞
(
T2,S2

)
, ϕ has degree one

}
= 0 . (2.4)

Moreover, the functional EES
4 (ϕ) does not admit a minimum in the homotopy class of maps ϕ : T2 → S2

of degree one.

The conclusion (2.4) in Proposition 2.11 was obtained by Lemaire (see [25]) in the case of the
bienergy. It was pointed out in [6] that the same conclusion holds for E3(ϕ), E4(ϕ) and, more generally,
for r ≥ 5. We end this section with some open questions in this context.

Problem 2.12. Compute the Euler-Lagrange equation for EES
r (ϕ), r ≥ 5.

Problem 2.13. Simplify the expression (2.3) of the second variation operator associated to Ê4(ϕ), and
apply it to some specific instance.

Problem 2.14. When dim M = 2, the energy functional is invariant with respect to conformal
transformations of the domain. When m = 4, the relationship between the bienergy and conformal
changes has been thoroughly studied (see [1, 2, 32], for instance) and has produced several interesting
examples. In particular, we know that the inverse stereographic projection from Rn to Sn\{Pole} is a
proper conformal biharmonic diffeomorphism. When m = 2r, the functionals EES

r (ϕ) and Er(ϕ) are
invariant under homothetic changes of the metric on the domain. It would be interesting to explore the
relationship between EES

r (ϕ) (or Er(ϕ)) and conformal transformations when dim M = 2r.

Problem 2.15. Establish a version of the unique continuation principle for the functionals EES
r (ϕ) and

Er(ϕ), r ≥ 3 (see [7, 43] for the cases r = 1, 2).

Problem 2.16. Develop a theory of interior regularity for the critical points of the functionals EES
r (ϕ)

and Er(ϕ), r ≥ 3. In this context, we cite [22, 24] for the case r = 2. As for r ≥ 3, we mention the
papers [16] for maps from domains in Rn, and [17] for maps into spheres.

3. SO(p + 1) × SO(q + 1)-invariant 3-harmonic submanifolds of the Euclidean space

In this section, we study SO(p + 1) × SO(q + 1)-invariant 3-harmonic submanifolds of the
Euclidean space. The original motivation to develop a theory of G-invariant submanifolds (see [21])
was the search of examples of solutions of geometrically relevant partial differential equations or
systems of equations. In this order of ideas, we first cite the counterexamples for classical (see [3])
and spherical (see [19]) Bernstein problems. In the same spirit, Hsiang [20] also proved the existence
of non-Euclidean CMC immersions of Sn into Rn+1, n ≥ 3. By contrast, in the context of biharmonic
immersions, the study of G-invariant submanifolds has contributed to substantiate the validity of the
Chen conjecture (see [18], [30], [31]). In particular, we proved:

Theorem 3.1. [31] Let G be a cohomogeneity two group of isometries acting on Rn (n ≥ 3). Then any
G−invariant biharmonic hypersurface in Rn is minimal.
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In the case of 3-harmonic immersions, aside from the above mentioned case of curves (see [26]),
very little is known. Here we shall develop some new material which may prove useful to study the
Maeta conjecture in the case of G = SO(p+1)×SO(q+1)-invariant submanifolds of Rn, n = p+q+2. In
particular, as a first result, we shall extend the method of [33] to obtain the relevant system of ordinary
differential equations for a 3-harmonic SO(p+1)×SO(q+1)-invariant hypersurface of Rn (our analysis
will include, as a special instance, the case of rotation hypersurfaces in Rn, n ≥ 3). We shall illustrate
the difficulties which arise when we want to apply the standard existence and uniqueness theorems for
ordinary differential equations. In particular, we shall see that not even local existence of non-minimal
3-harmonic G-invariant submanifolds can be deduced using these methods.

Assuming the canonical splitting Rn = Rp+1 ×Rq+1, we can suppose that an S O(p + 1)× S O(q + 1)-
invariant immersion into Rn is described as follows:

ϕγ : M = Sp × Sq × I → Rp+1 × Rq+1 = Rn

(w , z , s ) 7−→ (x(s) w, y(s) z) ,
(3.1)

where I ⊂ R is an open interval and x(s), y(s) are smooth positive functions on I. We shall also assume
that

ẋ2 + ẏ2 = 1 , (3.2)

so that the induced metric on the domain in (3.1) is given by:

g = x2(s) gSp + y2(s) gSq + ds2 , (3.3)

where gSp and gSq denote the Euclidean metrics of the unit spheres Sp and Sq respectively. We shall
work in the framework of equivariant differential geometry (see [19]). In particular, in this case the
orbit space coincides with the flat Euclidean first quadrant

Q = Rn/G =
{
(x, y) ∈ R2 : x, y ≥ 0

}
and the orbit Volume function is V(s) = xp(s) yq(s). We note that regular (i.e., corresponding to a point
(x, y) with both x, y > 0) orbits are of the type Sp × Sq. The orbit associated to the origin is a single
point, while the other points on the x-axis (respectively, the y-axis) correspond to Sp (respectively, Sq).

Definition 3.2. The curve γ(s) =
(
x(s), y(s)

)
in the orbit space Q, where x(s), y(s) are the functions

which appear in (3.1), is called the profile curve associated to the equivariant immersion.

The general, basic principle of equivariant differential geometry (see [42]) can be roughly stated by
saying that a G-invariant submanifold is a critical point of a G-invariant functional provided that the
profile curve γ satisfies a suitable system of ordinary differential equations. Our basic result in this
context is the following:

Theorem 3.3. Consider an SO(p + 1) × SO(q + 1)-invariant submanifold of Rn, n = p + q + 2, as in
(3.1), and assume that (3.2) holds. Then the 3-tension field of ϕγ is the horizontal lift, with respect to
the canonical projection π : Rn → Q, of

τ3,x
∂

∂x
+ τ3,y

∂

∂y
, where
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(3.4)

τ3,x =
−1

2x5y5

[
− (−4 + p)py5( − p2 − 5pẋ2 + (2p2 + 3p − 12)ẋ6 + ẋ4(12 + 2p − p2 + p(−3 + 2p)ẏ2)

)
+2pxy4

(
5pqẋẏ − (−12 + p + 2p2)qẋ5 ẏ + 5pyẍ + (84 − 37p − 8p2 + 2p3)yẋ4 ẍ + yẋ2( − 30 + p + p2

+p(12 − 9p + p2)ẏ2)ẍ + ẋ3 ẏ
(
(−6 − 3p + p2)q − 2(−2 + p)pqẏ2 + p(8 − 7p + p2)yÿ

))
+px2y3

(
3y2(2 − p + (−2 + p)pẏ2 ẍ2 − 2(2 + p)qẋ4((−3 + p + q)ẏ2 − (−3 + p)yÿ

)
+ 2yẋ3((−38 + p + 5p2)qẏẍ

+(−34 + 11p + 3p2)yx(3)) + 2yẋ
(
2(−3 + p)pqẏ3 ẍ + ẏẍ(−(−2 + p)q + p(−12 + 7p)yÿ) − 2(−2 + p)yx(3)

+2(−2 + p)pyẏ2 x(3)) + ẋ2( − 2pq(−3 + p + q)ẏ4 + qẏ2((−2 + p)(p + q) + 4p(−5 + 2p)yÿ)

+y2(6(−26 + 9p + 2p2)ẍ2 + p(−4 + 3p)ÿ2) + 2p(−5 + 3p)y2 ẏy(3)))
+2px3y2

(
qẋ3(−2(−3 + p(−1 + q) + q)ẏ3 + (−9 + 2q + p(−3 + 2q))yẏÿ + (3 + p)y2y(3))

+yẋ2(q(−17 + 6q + p(−5 + 4q))ẏ2 ẍ + (17 + 3p)qyẏx(3) + y
(
(17 + 5p)qẍÿ − (−11 + p)yx(4))

)
+y

(
p(−3 + q)qẏ4 ẍ + 2pqyẏ3 x(3) + yẏ(−2(q − 2pyÿ)x(3) + 5pyẍy(3))

+ẏ2(qẍ(2 + p − q + 10pyÿ) + py2 x(4)) − y(2qẍÿ + y(2(−6 + p)ẍ3 − 2pẍÿ2 + x(4)))
)

+ẋ
(
− 2p(−2 + q)qẏ5 + qẏ3((1 + p)(−2 + q) + p(−13 + 5q)yÿ) + 8pqy2 ẏ2y(3) + y2(−qy(3)

+y((47 − 7p)ẍx(3) + 3pÿy(3))) + yẏ((3 + 2p − q)qÿ + qy(3(9 + p)ẍ2 + 10pÿ2) + 3py2y(4))
))

+px4y
(
q3 + q(−12 + 11q − 2q2)ẏ6 + qy2(1 + (6 + q)ẋ2)ÿ2 + qẏ4(12 − 6q + q2 + (12 + q − 2q2)ẋ2

+4(10 − 8q + q2)yÿ
)

+ 2qyẏ3((−12 + q + q2)ẋẍ + (−9 + 5q)yy(3)) + qẏ2(−5q + 2y(3(−2 + q)

+(−12 − q + q2)ẋ2)ÿ + y2(−3(−4 + q)ẍ2 + (−34 + 20q)ÿ2 − 2(−7 + q)ẋx(3)) + 8y3y(4))

−2qy3(6ẍ2 ÿ − 2ÿ3 + 7ẋÿx(3) + 6ẋẍy(3) + ẋ2y(4)) + y4(−13(x(3))2 + (y(3))2 − 18ẍx(4) + 2ÿy(4) − 6ẋx(5))

+2y2 ẏ(qy(3) + 4qẋ2y(3) + y(−13qẍx(3) + 12qÿy(3)) − qẋ((−18 + q)ẍÿ + 5yx(4)) + y2y(5))
)

−2x5
(
qẋ(3(8 − 6q + q2)ẏ5 + (−60 + 39q − 5q2)yẏ3 ÿ + (20 − 11q + q2)y2 ẏ2y(3) + y2 ẏ((30 − 15q + q2)ÿ2

+(−5 + 2q)yy(4)) + y3((−10 + 3q)ÿy(3) + yy(5))) + y
(
− 3q(8 − 6q + q2)ẏ4 ẍ + q(14 − 9q + q2)yẏ3 x(3)

+qyẏ2((48 − 29q + 3q2)ẍÿ + 3(−2 + q)yx(4)) + qy2 ẏ(3(−7 + 3q)ÿx(3) + (−16 + 7q)ẍy(3)

+3yx(5)) + y2(4qẍ((−3 + q)ÿ2 + yy(4)) + y(7qx(3)y(3) + 6qÿx(4) + yx(6)))
))]

τ3,y =
1

2x5y5

[ (
q
(
2q3 − 5q2 − 24q + 48

)
ẏ6 + q

(
−q3 + 6q2 +

(
2q2 − 11q + 12

)
ẋ2q + 4q − 2

(
2q3 − 8q2 − 37q + 84

)
yÿ − 48

)
ẏ4

−2qy
(
q
(
q2 − 7q + 8

)
ẋẍ +

(
3q2 + 11q − 34

)
yy(3)

)
ẏ3 − q

(
−2(q − 11)y(4)y3 +

(
q(3q − 4)ẍ2 + 2

(
3
(
2q2 + 9q − 26

)
ÿ2

+q(3q − 5)ẋx(3)
))

y2 + 2
(
q2 +

(
q2 − 9q + 12

)
ẋ2q + q − 30

)
ÿy + 5(q − 4)q

)
ẏ2 − 2qy2

(
−3y(5)y2 +

(
3qẍx(3)

+(47 − 7q)ÿy(3)
)

y + 2(q − 2)qẋ2y(3) − 2(q − 2)y(3) + qẋ
(
(7q − 12)ẍÿ + 3yx(4)

))
ẏ − (q − 4)q3 + 3qy2

(
−(q − 2)qẋ2

+q − 2) ÿ2 − 10q2yÿ − 2qy3
(
−2(q − 6)ÿ3 + 2qẍ2 ÿ + 5qẋx(3) ÿ + 4qẋẍy(3) +

(
qẋ2 − 1

)
y(4)

)
− qy4

((
x(3)

)2
− 13

(
y(3)

)2

+2
(
ẍx(4) − 9ÿy(4) + ẋx(5)

))
+ 2y5y(6)

)
x5 + 2py

(
2q2

(
(q − 2)ẏ3 − (q − 3)yÿẏ − y2y(3)

)
ẋ3 − 2qy

(
q(2q − 5)ẍẏ2

+4qyx(3) ẏ + y
(
5qẍÿ + 2yx(4)

))
ẋ2 +

(
q
(
2q2 + q − 12

)
ẏ5 − q

(
q2 − 3q +

(
5q2 + q − 38

)
yÿ − 6

)
ẏ3 − q(3q + 17)y2y(3) ẏ2

−q
(
−5y(4)y3 +

(
10qẍ2 + 3(q + 9)ÿ2

)
y2 − (q − 2)ÿy + 5q

)
ẏ + y2

(
3y(5)y2 +

(
13qÿy(3) − 12qẍx(3)

)
y + 2qy(3)

))
ẋ

+y
(
q
(
−q2 + q + 6

)
ẍẏ4 − q(q + 3)yx(3) ẏ3 + qy

(
yx(4) − (5q + 17)ẍÿ

)
ẏ2 + y

(
(6yÿq + q) x(3) + y

(
7qẍy(3) + yx(5)

))
ẏ

+y
((

7x(3)y(3) + 4ÿx(4) + 6ẍy(4)
)

y2 − 2qẍ
(
ẍ2 − 3ÿ2

)
y + 2qẍÿ

)))
x4 − py2

(
−2q2

(
(p + q − 3)ẏ2 − (p − 3)yÿ

)
ẋ4

+2qy
(
(5p − 13)qẏẍ + (5p − 9)yx(3)

)
ẋ3 +

(
−2q(q + 2)(p + q − 3)ẏ4 + q ((q − 2)(p + q) + 2(−5q + p(4q + 6) − 17)yÿ) ẏ2

−2(p − 7)qy2y(3) ẏ + y
(
−6(p − 2)y(4)y2 + q

(
(20p − 34)ẍ2 − 3(p − 4)ÿ2

)
y + 2q(−p + q + 2)ÿ

))
ẋ2

+2y
(
q(2p(q + 1) − 3(q + 3))ẍẏ3 + 4qyx(3) ẏ2 +

(
(5 − 2p)x(4)y2 + qẍ (−p + 2q − (p − 18)yÿ + 3)

)
ẏ

+y
(
(q + (16 − 7p)yÿ) x(3) + 3(7 − 3p)yẍy(3)

))
ẋ + y2 ẍ

(
ẍ
(
(p + 6)qẏ2 + q − 8(p − 3)yÿ

)
+ 2(10 − 3p)yẏx(3)

))
x3

+2py3 ẋ
(
2(p − 2)q2 ẏẋ4 − 2

(
p2 − 8p + 10

)
qyẍẋ3 +

(
2q(qp + p − q − 3)ẏ3 − q

(
(p − 2)(q + 1) +

(
p2 + p − 12

)
yÿ

)
ẏ

+
(
p2 − 9p + 14

)
y2y(3)

)
ẋ2 + y

(
ẍ
((
−p2 + p + 12

)
qẏ2 − 3(p − 2)q +

(
3p2 − 29p + 48

)
yÿ

)
+

(
p2 − 11p + 20

)
yẏx(3)

)
ẋ

+
(
p2 − 15p + 30

)
y2 ẏẍ2

)
x2 − py4

((
−2p2 + 11p − 12

)
qẋ6 +

((
−2p2 + p + 12

)
qẏ2 +

(
p2 − 6p + 12

)
q

+ 6
(
p2 − 6p + 8

)
yÿ

)
ẋ4 + 2

(
5p2 − 39p + 60

)
yẏẍẋ3 − 5pqẋ2 + p2q

)
x + 6p

(
p2 − 6p + 8

)
y5 ẋ5 ẏ

]
In particular, a map ϕγ as in (3.1), which satisfies (3.2), defines a 3-harmonic submanifold if and only
if its profile curve γ(s) =

(
x(s), y(s)

)
satisfies the ODE’s system

τ3,x = 0, τ3,y = 0 . (3.5)

The case of rotation hypersurfaces can be deduced by Theorem 3.3. Indeed, considering the special
case of surfaces into R3 for simplicity, we have:
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Corollary 3.4. Let
ϕrot : M = S1 × I → R2 × R = R3

(w , s ) 7−→ (x(s) w, y(s)) ,

where I ⊂ R is an open interval, x(s), y(s) are smooth functions on I and x(s) > 0 on I. Assume that
(3.2) holds. Then ϕrot defines a 3-harmonic rotation surface in R3 if and only if (3.5) holds, where:

τ3,x =
[
− x4

(
y(3)

)2
− 2x4y(5)ẏ − 2x4y(4)ÿ − 8x3x(3)ẏÿ + 3x2 ẍ2

(
ẏ2 − 1

)
+ 21ẋ6 + 2x5x(6)

−2x3x(4)ẏ2 + 13x4
(
x(3)

)2
+ 2x3x(4) − 20x3 ẍ3 + 4xẋ3

(
10xx(3) − ẏÿ

)
+ẋ4

(
−82xẍ + 3ẏ2 − 39

)
+ 2xẍ

(
−2x2ÿ2 − 5x2y(3)ẏ + 9x(4)x3 − 5

)
(3.6)

+2x2 ẋ
(
3x

(
xx(5) − y(3)ÿ

)
+ 2x(3)ẏ2 + ẏ

(
5ẍÿ − 3xy(4)

)
− 2x(3) (20xẍ + 1)

)
+ẋ2

(
x2ÿ2 − 8xẍ

(
ẏ2 − 7

)
+ 4x2y(3)ẏ + 90x2 ẍ2 − 20x(4)x3 + 15

)
+ 3

] 1
2x5

τ3,y =
[
− 9xẋ4ÿ + 9ẋ5ẏ + 2xẋ3

(
3xy(3) − 13ẍẏ

)
+ x2 ẋ2

(
10x(3)ẏ + 22ẍÿ − 3xy(4)

)
+x3

(
−8ẍ2ÿ + ẍ

(
6xy(4) − 7x(3)ẏ

)
+ x

(
x(5)ẏ + 4x(4)ÿ + 7x(3)y(3) + xy(6)

))
+x2 ẋ

((
16ẍ2 − 3xx(4))ẏ + 3x

(
−3x(3)ÿ − 4y(3) ẍ + xy(5)

) )] 1
x5

Remark 3.5. Inspection of (3.4) and (3.6) shows that system (3.5) is always of the type{
x(6) = F

(
x, ẋ, ẍ, x(3), x(4), x(5), y, ẏ, ÿ, y(3), y(4), y(5))

y(6) = H
(
x, ẋ, ẍ, x(3), x(4), x(5), y, ẏ, ÿ, y(3), y(4), y(5)) (3.7)

for some suitable smooth functions F and H. It follows easily that the standard local existence and
uniqueness theorem for ordinary differential equations can be applied and ensures the existence of
local solutions of (3.5). Moreover, the initial conditions at some s = s0 can easily be chosen in such a
way that their associated tension field does not vanish, so that they would not correspond to harmonic
maps. The problem is that, so doing, nothing guarantees that (3.2) holds and, consequently, these maps
may well not be isometric immersions. The same applies to the maps of Corollary 3.4.

Proof of Theorem 3.3. We adapt to the 3-energy the method introduced in [33] (see [33], alternative
proof of Proposition 4.3). The ideas behind this proof are conceptually not difficult. However, as a
look at (3.4) may suggest, the involved computations are huge. Therefore, it is wise to carry them out
by means of a suitable software (we used Wolfram Mathematica R©). Here we describe the theoretical
steps. First, we fix on the domain a metric

g0 = x2
0(s) gSp + y2

0(s) gSq + ds2 ,

where x0(s), y0(s) are smooth positive functions which verify (3.2). Also, we set V0(s) = xp
0(s) yq

0(s).
Now, the first idea is to find the system of equations which defines when a map of the type (3.1) (without
assuming (3.2)) is 3-harmonic with respect to the metric g0. Then, setting x0(s) = x(s), y0(s) = y(s)
into this system of equations, we shall obtain (3.5). Now, the energy of a map of the type (3.1) with
respect to g0 is given by

E(ϕγ) = ω0

∫
I

L(s, x, ẋ, y, ẏ) ds ,
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where ω0 = Vol(Sp) Vol(Sq) and the Lagrangian L is the product of the energy density and the volume
term as follows:

L = e(ϕγ) V0(s) , where

e(ϕγ) =
1
2

[
ẋ2(s) + ẏ2(s) + p

x2(s)
x2

0(s)
+ q

y2(s)
y2

0(s)

]
.

Now, as in [33], the tension field τ(ϕγ) is the horizontal lift of

τx
∂

∂x
+ τy

∂

∂y
, where

τx =
1
V0

[
d
ds

(
∂L
∂ẋ

)
−
∂L
∂x

]
τy =

1
V0

[
d
ds

(
∂L
∂ẏ

)
−
∂L
∂y

]
We proceed in a similar fashion for the 3-energy. Indeed, computing in local coordinates with respect
to g0, we obtain:

E3(ϕγ) = ω0

∫
I

L3

(
s, x, ẋ, ẍ, x(3), y, ẏ, ÿ, y(3)

)
ds , where

L3 =
1
2

∣∣∣dτ(ϕγ)
∣∣∣2 V0(s) =

1
2

τ̇2
x + τ̇2

y + p
τ2

x

x2
0

+ q
τ2

y

y2
0

 V0(s) .

We are in the framework of Proposition 2.8: it follows that the 3-tension field τ3(ϕγ) with respect to g0

is a G-equivariant section. Therefore, arguing as in [33], we deduce that τ3(ϕγ) is the horizontal lift of

τ3,x
∂

∂x
+ τ3,y

∂

∂y
, where

τ3,x =
1
V0

[
d3

ds3

(
∂L
∂x(3)

)
−

d2

ds2

(
∂L
∂ẍ

)
+

d
ds

(
∂L
∂ẋ

)
−
∂L
∂x

]
(3.8)

τ3,y =
1
V0

[
d3

ds3

(
∂L
∂y(3)

)
−

d2

ds2

(
∂L
∂ÿ

)
+

d
ds

(
∂L
∂ẏ

)
−
∂L
∂y

]
.

Finally, we compute (3.8) explicitly with the software Mathematica. Then, setting x0(s) = x(s), y0(s) =

y(s) and simplifying with Mathematica we obtain (3.4). �

Proof of Corollary 3.4. As explained in [30], the calculation in this case can be performed simply by
setting p = 1, q = 0 in (3.4) and dropping the requirement y(s) > 0. Then simplification using the
software Mathematica leads us to (3.6). �

Remark 3.6. In Remark 3.5 we pointed out that the standard local existence theory for ODE’s does not
guarantee that local solutions are isometric immersions. It is natural to try to understand whether this
problem depends on the method or it represents a real difficulty. To answer this question, we dropped
the assumption ẋ0

2 + ẏ0
2 = 1 and started our process with a fixed metric now given by

g0 = x2
0(s) gSp + y2

0(s) gSq +
(
ẋ0

2(s) + ẏ0
2(s)

)
ds2 .
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After the suitable adjustments in the computations, we found that a map of the type (3.1), which does
not necessarily satisfies (3.2), is a 3-harmonic isometric immersion provided that the profile curve
γ(s) =

(
x(s), y(s)

)
satisfies a system of the following type:{

a11 x(6) + a12 y(6) = F1
(
x, ẋ, ẍ, x(3), x(4), x(5), y, ẏ, ÿ, y(3), y(4), y(5))

a21 x(6) + a22 y(6) = F2
(
x, ẋ, ẍ, x(3), x(4), x(5), y, ẏ, ÿ, y(3), y(4), y(5)) , (3.9)

where F1, F2 are smooth functions and the coefficient matrix is given by

A =

[
a11 a12

a21 a22

]
=

 −
ẏ2

(ẋ2+ẏ2)4
ẋẏ

(ẋ2+ẏ2)4

ẋẏ

(ẋ2+ẏ2)4 − ẋ2

(ẋ2+ẏ2)4

 .
Since det A = 0, system (3.9) cannot be written in the form (3.7) and therefore the standard local
existence theorem for ODE’s cannot be directly applied. This fact substantiates the claim that it is not
easy to overcome the difficulties illustrated in Remark 3.5.
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