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Introduction

Modern distribution networks are currently subjected to a deep change. Origi-
nally meant only to distribute the electric energy to the consumers, nowadays,
due to the deregulation of the energy market and the massive penetration of un-
planned generation units directly connected to both Medium and Low Voltage
levels (respectively MV and LV), an increasing presence of aleatory generation
provided by renewable energy sources is deeply modifying the original concept
of distribution networks.

All these aspects are transforming the distribution grid from a passive net-
work to a highly complex active system, thus leading to new management, con-
trol and protection issues. Significant intermittency on generations and loads is
expected, with important consequences on how intensively the electric grid may
be exploited. Nevertheless, it is worth underlining that these factors, if prop-
erly managed, have the potentiality to bring important benefits to the electric
systems, in terms of reliable and efficient operation. In this scenario, which we
commonly refers to with the term Smart Grid, the use of an accurate, effective,
and real-time monitoring of the electric grid status is mandatory to pursue the
goal of a strong modernization of the management and control tools.

The possibility to perform an efficient management and control of the distri-
bution grids strictly depends on the capability to achieve an accurate knowledge
of the real operating conditions of the system. This, as an example, can prevent
wrong decisions by the distribution management system and can allow avoiding
needless actions aimed at keeping too conservative safety margins. An accurate
snapshot of the operating conditions of the electric systems could be obtained
by means of measurements gathered from the field, which permit to estimate the
most probable network conditions at a given time. Now, in distribution systems,
the penetration of measurement and monitoring devices is usually minimal. In
general, to address the poor installation of measurement devices, a commonly
adopted solution is to use historical and statistical data to obtain the so-called
"pseudo-measurements". Despite the importance of these pseudo-measurements
to get information necessary for observability, it is clear that their limited ac-
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INTRODUCTION

curacy (commonly pseudo-measurements are associated with 50% of tolerance)
cannot lead to the achievement of high accuracies in the results.

Since the operation of every management or control tool is based on the
processing of the measurements collected from the grid, a key role to obtain
accurate results is played by the metrological characteristics of the deployed
instrumentation but also by the measurement infrastructure available on the
field. For example, it is known that when a fault occurs into the system, both
voltage and current signals are characterized by high dynamics, and magnitude
variations. These working scenarios denote particularly stressful conditions for
the measurement devices, leading to a decrement in the measurement accuracies,
and thus in the performance of the implemented Fault Location (FL) procedures.
Similar considerations hold for the harmonic analysis, necessary to monitor
one of the main Power Quality (PQ) phenomena in distribution systems, the
harmonic pollution. It is well known that the presence of harmonics affects
the performance of the equipment, for example decreasing their lifetime. The
accurate detection of the polluting sources is useful for the grid operator, since
these disturbances are spread through the whole system involving all devices
connected to the same nodes, and it can help in the mitigation process, also
reducing the maintenance costs. Based also on the well-known State Estimation
(SE) principles, harmonic State Estimation solutions have been proposed, in
order to estimate the harmonic levels in the system. In the distribution grid
scenario, this type of analysis suffers the same problems of lack of measurements
from the field as other applications and analysis.

In Smart Grid perspective, it is therefore evident that an upgrade in number
and quality of the measurements usable in FL and harmonic sources estimation
techniques is absolutely needed. From this point of view, the increasing presence
of new smart meters could also be considered. Their number is rapidly increasing
and, moreover, they can provide PQ information, surely useful to estimate the
harmonic sources of the grid. In this regard, from one side, many instruments
would be important to get distributed information on the electrical quantities
in different points of the network, and to ensure robustness with respect to
possible malfunctions of measurement system components. On the other hand,
different type of measurement devices, with different quantities monitored and
different (or even absent) synchronization capabilities, must be appropriately
considered, in order to make the use of these various information possible and
effective. Thus, intense research activity is necessary to use all the available
information in the best way for the achievement of given accuracy targets.

In lasts years, an increasing interest raised on the use of the Phasor Mea-
surement Units (PMUs) for distribution system applications. The PMUs are
new generation devices, able to provide accurate measurements of voltage and
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INTRODUCTION

current phasors, frequency and rate of change of frequency, synchronized with
respect to the Coordinated Universal Time (UTC). The use of the common time
reference allows the comparison of the synchronized measurements performed
in different remote points of the network. Considering the expected continuous
variations of the status of modern distribution systems, the possibility to use
synchronized measurement can play a key role in obtaining an accurate moni-
toring of the system. Despite all the benefits that these instruments can bring
to the analysis on distribution networks, a large scale deployment is currently
thwarted by the high cost of these devices. Currently, the overall estimated
costs for installing a PMU can vary between $ 10000 and $ 30000, of which
hardware cost is around $ 5000. Nevertheless, the costs of these instruments
are nowadays decreasing, thus, it is reasonable to consider that the cost will
decrease even more in the near future and the use in distribution systems will
become really possible.

It is important to remember that the PMUs were originally designed for the
transmission systems monitoring, as a consequence, the expected “measurand”
signals were basically sinusoidal. Nowadays, thanks to the new reference stan-
dards, these instruments also need to demonstrate their capacity to measure
dynamic signals, by combining a high reporting rate with the use of proper al-
gorithms. Nonetheless, current commercial PMUs do not permit accurate power
quality monitoring and harmonic sources estimation. In this regard, solutions
for developing harmonic PMUs are currently under study.

In this context, new algorithms and methodologies capable to perform ac-
curate FL and harmonic sources estimation with the available measurement
devices, in a cost-saving environment and considering the specificity of the new
distribution system scenario, are needed.

In this regard, in the last years, the theory of Compressive Sensing (CS) has
raised as an alternative method to reconstruct incomplete signals in presence of
a limited number of measurements. For its application, CS has only two main
requirements: the signal to be recovered must be sparse (which means having
only few non-zero components with respect to the size of the signal itself) and the
availability of a minimum number of information, depending on both the size of
the system and the sparsity level. This second requirement matches distribution
systems conditions since they are generally characterized by a limited number
of measurements. Instead, the satisfaction of the first requirement depends on
the problem under study. With particular reference to fault location and the
identification of prevailing harmonic sources, it is possible to affirm that both
can be considered as sparse problems. In fact, the number of faults occurring
contemporaneously into the system is limited and, considering the large size
of the distribution networks, it is way lower than the dimension of the system
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INTRODUCTION

itself. Same considerations hold for the identification of the harmonic sources.
The number of actual polluting loads/sources (at least the main ones) is lower
than the number of loads connected to the system and thus, the model of the
system can be considered as sparse.

The monitoring applications, in charge to perform FL and harmonic sources
estimation, should be designed to appropriately use the best available informa-
tion for any evaluation, suitably considering measurement uncertainty sources,
synchronization levels, and so on. Only in this case, the estimation results could
be used in order to support appropriately possible management decisions.

This thesis is the result of a deep research activity on the study, and the anal-
ysis, of Compressive Senging-based methodologies for the accurate estimation
of the harmonic sources and the fault location in modern distribution systems.
In Chapter 1, the fundamentals of Compressive Sensing (CS) are presented,
in other to give the reader a basic knowledge of this innovative technique. In
Chapter 2 a CS solution for the identification of the main harmonic sources
in a distribution network is presented. Finally, Chapter 3 deals with the im-
pact of the measurement accuracies on a CS-based fault location algorithm and
discusses a proposal for an effective fault location approach in realistic measure-
ment scenarios.
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“Engineering isn’t about perfect solutions, it’s about doing the best you can
with limited resources.”

Randy Pausch, The Last Lecture



Chapter 1

Compressive Sensing

Compressive Sensing (CS), also called Compressed Sensing, is a mathematical
technique whose name derives from the discovery that it was possible to sense
a signal from a limited, and thus compressed, set of information.

Before this intuition, any data reconstruction method was governed by the
well-known works of Nyquist and Shannon [1,2]. According to these principles,
the full recovery of a bandwidth-limited signal needed a set of information sam-
pled at the Nyquist rate, which must have been twice the maximum frequency
of the signal of interest. The required number of samples, derived from this
approach, was not always easy to get, due to high costs and the physical limita-
tions. Such limitation from the signal processing point of view, was in contrast
with the increase of the available computational power.

Alternative techniques based on the compression, such as the transform cod-
ing, leaded to the sparse approximation, which in turn leaded to compressibility
schemes, and standards, such as JPEG, MP3 and so on. Nevertheless, it has to
be notice that in these cases, the compression implied the loss of information,
considered not important for the final goal (such has frequency components of
a song, not included in the frequency range of human hearing).

Then, in 2004 by a pure chance, a former student of Donoho, Emmanuel
Candes, while working on magneto resonance imaging, was able to perfectly
reconstruct an image from undersampled data. From that episode, and thanks
to the help of the Field medallist, Candes was able to outline the general the-
ory of compressive sensing. Since then, compressive sensing completely renewed
the idea behind the sampling of a signal. Instead of sampling at high rates
and post-compressing the samples, CS suggests to directly sense the data in a
compressed form. In particular, the amount of data needed for a robust sig-
nal recovery is directly proportional to some characteristics of both signal and
system representation. This enables a large reduction in the sampling require-
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CHAPTER 1. COMPRESSIVE SENSING

ments and, consequently, the opportunity to develop new sensors and standards
based on lower computational costs. Nowadays, CS is applied to many different
fields and applications: astronomy, biology, medicine, power systems, radars,
statistics, and so on.

Due to the complexity of CS theory, in this chapter, the general concepts
will be introduced with an increasing level of complexity.

1.1 Norm definitions

The use of the `p-norm is a key point in the CS theory, thus, before to proceed,
a brief introduction on the norms is mandatory.

Definition 1.1.1. Given a Euclidean space R of dimension n, for 1 ≤ p <∞,
the Lebesgue `p-norm of a vector x = (x1, x2, . . . , xi, . . . , xn) ∈ Rn is defined
as:

‖x‖p =

(
n∑
i=1

|xi|p
) 1
p

(1.1)

and it must follow the following properties:

• ‖x‖ ≥ 0 for each x ∈ Rn and ‖x‖ = 0 is and only if 0 = 0;

• ‖αx‖ = |α| ‖x‖ for each x ∈ Rn and for each α ∈ Rn;

• ‖x + y‖ ≤ ‖x‖+ ‖y‖ for every x,y ∈ Rn.

The `p-norm of a vector, can be seen as a function which measure the dis-
tances between points or the length of a vector. Different values of p correspond
to different meaning of each measurement.

The `1-norm is often called "Manhattan Distance", and it corresponds to the
sum of the magnitudes of the vectors in the space. It is also used to measure
the distance between two vectors, by summing the absolute difference of the
components of each vector.

‖x‖1 =

n∑
i=1

|xi| (1.2)

By setting p = 2, it is possible to obtain the more famous "Euclidean" norm
(`2). It is the square root of the sum of the squares of the components of the
vector. It is commonly used to measure the magnitude of a vector, and it gives
the shortest distance between two points.

‖x‖2 =

√√√√ n∑
i=1

|xi|2 (1.3)

2



CHAPTER 1. COMPRESSIVE SENSING

Moreover, by considering the definition of inner product between two vectors
x and y:

〈x,y〉 = yTx =

n∑
i=1

xiyi (1.4)

it is possible to see that it leads to the `2-norm: ‖x‖2 =
√
〈x,x〉.

Another interesting norm is the `∞. It is obtained by setting p =∞ and it
gives the absolute value of the largest magnitude among all elements of a vector.

‖x‖∞ = max
i=1,2,..,n

|xi|2 (1.5)

In figure 1.1, these three norms are represented graphically in relation to the
unit spheres in R2.

�

�1

= 1

�

�

�1

=

�

�

�1

= ∞

�

�

�1

� =
1

�

Figure 1.1: Unit spheres for `p norms with p = 1, p = 2, and p =∞.

In the CS context it is useful to extend the notion of norm also for p = 0.
This particular norm cannot be properly called as "norm", since it does not
respect all the properties of the norms. For example, scaling its argument by a
positive constant does not change the "norm". Due to this, the `0-norm is also
known as "quasi-norm", and it is defined as the limit of the `p-norm, for p→ 0,
and it counts the number of non-zero entries in a vector.

‖x‖0 = lim
p→0
‖x‖pp = lim

p→0

n∑
i=1

|xi|p (1.6)

In many engineering problems, norms are used to measure the approximation
error, thus the residuals, for problems in the form argminx∈R ‖x− x̂‖p, where
x̂ denotes the approximated vector. It is intuitive that different norms give
different measurements, thus different residuals.

In figure 1.2, the research of the optimal approximation of the point x be-
longing to the set H (represented by the line) is shown by means of different
norms. Once the set H is defined according to the constraints, minimizing the
`p-norm is equivalent to increase the size of the `p-sphere centred in the point
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CHAPTER 1. COMPRESSIVE SENSING

x, until it intersects the line H. The intersection point x̂ will correspond to the
minimum `p-norm point which satisfies all the constraints, and best approxi-
mates x. By comparing the selected points in figure 1.2, it can be seen that
only when considering p = 1 and p = 1

2 , the minimum norm point, x̂, is char-
acterized by only one component different than zero, which in general holds for
any `p-norm with p ≤ 1. It has to be notice that, among these, the `1-norm
is also the only convex norm since the linking segment between any two point,
taken inside the sphere, is always fully included in the sphere, as shown in figure
1.3. Only the `1 norm keeps both convex and sparse characteristics [3].

�

�1

= 1

�

�

�1

=

�

�

�1

=

�

�

�1

=
1

�

ℍ ℍ ℍ ℍ

�
� �

�

Figure 1.2: Best approximation of a point by using a one-dimensional subspace
obtained with different norms [4].

�

�1

= 1

�

�

�1

=
1

�

ℍ ℍ

Figure 1.3: Graphic representation of convex property for norm `1 and ` 1
2
.

1.2 General theory

Now that some norm theory has been presented, it is possible to proceed with
the CS discussion. As starting point, let consider a system in the form

y = Au (1.7)

where u ∈ Rn is a vector representing the state of the system, y ∈ Rm is the
measurements vector, and A ∈ Rm×n is the measurement matrix. When (1.7) is
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CHAPTER 1. COMPRESSIVE SENSING

overdetermined, m ≥ n, the system can be easily solved, and the trivial solution
is unique if the columns of the measurement matrix are linearly independent.
Instead, whenm < n, thus (1.7) is underdetermined, the system is characterized
by an infinite number of possible solutions.

In this thesis, we focus on the analysis of underdetermined systems, which
are common when studying distribution electric systems. In order to solve
these kind of problems, additional information, such as constraints, must be
considered. In the CS case, the considered constraint is that only few entries
of the vector u are different than zero. We refer to this peculiarity of the state
vector by defining the sparsity of the system, S.

Definition 1.2.1. A vector u ∈ Rn is sparse if ‖u‖0 � n, where ‖·‖α denotes
the `α norm. In particular, it is defined S-sparse when it has at most S non-zero
entries such that ‖u‖0 ≤ S < n.

Consequently, given an S-sparse vector u it is possible to define the set of
all the S-sparse vectors as:

ΣS = {u : ‖u‖0 ≤ S} (1.8)

Obviously, in the reality, not all the vectors are sparse as in Definition 1.2.1.
It is possible that a non-sparse vector admit a sparse representation when rep-
resented in a different base, and thus Definition 1.2.1 holds with reference to the
new base. In general, the measurement matrix corresponding to the base which
allows to represent the state vector as sparse, is also called "sensing matrix".
Furthermore, it is worth underlying that some vectors are characterized by en-
tries with different order of magnitude. In these cases, for example, the entries
with lower value can be neglected, and considered as if they are zeros. These
vectors are termed compressible, approximately sparse or relatively sparse. In
particular, when their entries are sorted in a decreasing order based on the
magnitudes, they decay according to a power law.

Definition 1.2.2. A vector u is compressible if there exist two positive con-
stants, c > 0 and r > 1, which verify the following inequality:

‖u− û‖p ≤ cS
−r (1.9)

where û denotes the sparse approximation of u.

Definition 1.2.3. Given a vector u and its sparse approximation û ∈ ΣS ,
the compressibility of the original vector can be quantified by evaluating the
approximation error:

σS(u)p = min
û
‖u− û‖p (1.10)
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CHAPTER 1. COMPRESSIVE SENSING

It is clear that the minimum in (1.10) can be easily reached by keeping only
the higher magnitude entries of u while replacing the others with zeros, whereas
if u ∈ ΣS , then σS(u)p = 0 for any p. Both (1.9) and (1.10) are valid for any
`p norm, and thus the optimal approximation is always valid.

1.3 Null Space

In order to distinguish between two different vectors u1 and u2, it is clear that
the corresponding set of measurements must be different, y1 6= y2, and thus
Au1 6= Au2. The ability of distinguish between two different state vectors
depends on the null space of the matrix A:

N (A) = {z : Az = 0} (1.11)

In particular, it is possible to observe that A uniquely represents all state
vectors x ∈ ΣS if, and only if, N (A) contains no vectors in Σ2S [4]:

N (A) ∩ Σ2S = ∅ (1.12)

where ∅ denotes the null space. In other words, this necessary and sufficient
condition, can be seen as a condition on every 2S-columns submatrix of A

which must form a linearly independent set [5].
Moreover, when dealing with approximately sparse vectors, a more restrictive

condition must be considered on the null space of the measurement matrix.
Given a set of indices Σ = {1, 2, ..., n}, denoting with Θ ⊂ Σ a subset of indices,
with Θc ⊂ Σ the complementary subset of Θ, and hΘ a vector in which the
entries corresponding to the subset of indices Θc are sets to zero, it is possible
to define the null space property [3].

Definition 1.3.1. A matrix A satisfies the null space property (NSP) of order
S if there exists a constant CNSP > 0 such that

‖hΘ‖2 ≤ CNSP
‖hΘc‖1√

S
(1.13)

holds for all h ∈ N (A) and for all Θ such that |Θ| ≤ S.

In [6], the NSP property is directly related to the robustness to non-sparse
signals of a generic recovery algorithm, via the following theorem. Moreover,
in [7] it is reported that is not necessary requiring (1.13) to hold for all Θ of size
S, but it is sufficient that it is satisfied for the Θ corresponding to the largest
magnitude entries of h. Consequently, by denoting the new subsets with Θ

′
and

Θc′ , it follows that ‖hΘ′‖2 ≤ ‖hΘ‖2 and ‖hΘc‖1 ≤ ‖hΘc′‖1.

6
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Theorem 1.1. Let A denote a measurement matrix, ∆ : Rm → Rn denote a
recovery method, if the pair (∆, A) satisfies

‖∆(Au)− u‖2 ≤ CNSP
σS(u)1√

S
(1.14)

A satisfies the NSP of order 2S.

If verified, eq. (1.14) guarantees the exact recovery of all possible S-sparse
signals, and not only for a small subsets of possible vectors, thus it is also referred
to with the name "instance-optimal" or "uniform" guarantee. In particular,
it has to be noticed the NSP is both necessary and sufficient for establishing
guarantees of this form.

The ability of distinguish between two different solutions, originated by two
different set of measurements can be also validated via the spark of the mea-
surement matrix.

1.3.1 Spark

Definition 1.3.2. The spark of a matrix A is the smallest possible number
such that exist a subgroup of σ columns that are linearly dependent [8].

σ = spark(A) = min
u6=0
‖u‖0 s.t. Au = 0 (1.15)

Given this definition of spark, it is interesting to observe the differences
between spark and rank of a matrix. The evaluation of the rank of a matrix is
a sequential process which requires n steps, while the evaluation of the spark
requires a combinatorial process of complexity 2n steps [8].

If A has no zero columns, the corresponding spark is equal to two if, and only
if, two columns of A are linearly dependent, otherwise σ will be greater than 2.
More in general, the spark of a matrix is bounded in the range: σ ∈ [2,m+ 1],
where the upper bound is often referred to as the "Singleton Bound" [9]. In this
regard, it is important to underline that:

σ = m+ 1 =⇒ rank(A) = m (1.16)

but, in general, the vice-versa does not hold. For example, let consider the
following measurement matrices:

Aex1 =

1 1 0 0

1 0 1 0

1 0 0 1

 Aex2 =

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

 (1.17)

where even if rank(Aex1) = rank(Aex2) = 3, based on Definition 1.3.2, it is
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CHAPTER 1. COMPRESSIVE SENSING

possible to affirm that:

σAex1 = 4

σAex2 = 2
(1.18)

Theorem 1.2. If a vector y has two different representations y = Au1 =

Au2, the two representations must have no less than spark(A) non-zero entries
combined [8].

Consequently, the solution u of a system of linear equations y = Au is
necessarily the sparsest possible if:

‖u‖0 <
spark(A)

2
(1.19)

Under this sufficient and necessary condition, the uniqueness of the sparse
solution is guaranteed otherwise, there will be two different solutions for the
same observation [9].

It is obvious that, in order to be able to recover the S-sparse component
of a vector, the number of measurements, m, must be equal or larger than the
sparsity level of the system. But, through the combination of (1.19) with the
upper bound of the spark, it is possible to obtain a more strict, requirement:

m ≥ 2S (1.20)

It has to be noticed that the condition m ≥ 2S does not necessarily enforce
σ > 2S, since there could exists an m× 2S matrix whose spark is smaller than
2S [9].

1.3.2 Mutual Coherence

Since computing the spark of a matrix is NP-hard, it is necessary to find eas-
ier methods to guarantee the uniqueness of the solution such as the mutual-
coherence [3], which characterize the columns dependency of a matrix.

Definition 1.3.3. Given a matrix A, the mutual-coherence is the largest ab-
solute inner product between any two columns of A = [a1,a2, ...,ai, ...,an] [4]:

µ(A) = max
i,j∈{1,..,n}

i 6=j

|〈ai,aj〉|
‖ai‖2 ‖aj‖2

(1.21)

It has to be notice that the coherence is limited, in fact µ ∈
[√

n−m
m(n−1) , 1

]
,

where the lower bound is often called "Welch bound". Moreover, when the
matrix A has very few rows with respect to the number of columns, n � m,
the lower bound is approximately µ(A) ≥ 1/

√
m [4].

8
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In [4] the coherence of a matrix A is related to its spark by applying the
Geršgorin circle theorem [10] to the Gram matrix G = AT

ΛAΛ, where AΛ de-
notes the matrix A in which each column has been normalized, in order to have
unit `2 norm. The corresponding relation allows to easily determine the lower
bound of spark(A):

spark(A) ≥ 1 +
1

µ(A)
(1.22)

Moreover, by combining (1.22) and (1.19) it is possible to define a new condi-
tion which relates the sparsity of the system to the coherence of the measurement
matrix.

Theorem 1.3. The solution of the linear system y = Au is necessarily the
sparsest possible if it obeys:

S <
1

2

(
1 +

1

µ(A)

)
(1.23)

It has to be notice that the condition given by Theorem 1.3 is weaker than
(1.19), due to its definition based on the coherence. In fact, while the upper
limit of the spark is m + 1, the coherence cannot be lower than 1√

m
, thus the

upper bound is fixed to m+1
2 for (1.19), and 1+

√
m

2 for (1.23) [11].

1.4 Restricted Isometry Property

Till now, only the trivial scenario in which the measurements are not affected
by errors has been considered. In a realistic scenario, when dealing with mea-
surements affected by errors, more strong conditions must be considered such
as the Restricted Isometry Property (RIP) [4], firstly introduced in [12].

Definition 1.4.1. A matrix A satisfies the RIP property of order S if there
exist a constant, δS ∈ (0, 1), such that:

(1− δS) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δS) ‖x‖22 (1.24)

for any x such that ‖x‖0 ≤ S [13].

Even if in this formulation, the bounds are limited to 1, the same definition
can be easily extended to arbitrary bounds until there is a scale of A which
satisfies the RIP [4].

By considering eq.(1.24), it is possible to affirm that the RIP property en-
sure a certain robustness to the measurement noise. For example, when the
measurement matrix A satisfies the RIP of order 2S, it is possible to affirm that

9



CHAPTER 1. COMPRESSIVE SENSING

it preserves the distance between any pair of S-sparse vectors [4], and it ensure
the correct reconstruction of the S non-zero components.

With a different prospective, the RIP also states that all sets of S-columns
taken from A are nearly orthogonal, which implies that S sparse vectors cannot
be in the null space of A [13].

Theorem 1.4. Given a matrix A which satisfies the RIP of order S, with
constant δS, for any S′ < S the same matrix satisfies the RIP of order S′, with
δS′ ≤ δS.

Moreover, in [5] it has been reported that, given a positive integer γ, if A

satisfies the RIP with constant δS , A also satisfies the RIP of order S′ = γbS2 c
with constant δS′ < γδS . This result, which might be trivial for γ = 1, 2, allows
the extension of the RIP to orders higher than S, if γ ≥ 3, S ≥ 4, and δS

sufficiently small [4]. For example: given a matrix A which satisfies the RIP
of order k = 4, by setting γ = 3, the same matrix satisfies the RIP of order
S′ = 3b 4

2c = 6, with constant δS′ < 3δS .

Theorem 1.5. If a sensing matrix A satisfies the RIP of order 2S with δ2S <√
2− 1, then A satisfies the NSP of order 2S with constant

CNSP =

√
2δ2S

1− (1 +
√

2)δ2S
(1.25)

Which leads to the conclusion that the RIP property is stronger than the
NSP, since when the first is satisfied, also the second is satisfied [3].

The relation between the RIP and the measurements errors, together with
the necessity of the RIP itself, can be also explained by considering the C-
stability as reported in [14].

Definition 1.4.2. Let A : Rn → Rm denote a measurement matrix and ∆ :

Rm → Rn denote a recovery algorithm. The pair (A,∆) is C-stable if, for any
x ∈ ΣS and any measurement error vector e ∈ Rm:t

‖∆(Ax + e)− x‖2 ≤ C ‖e‖2 (1.26)

Definition 1.4.2 underlines that a small measurement noise does not largely
impact the recovered signal. Thus, in order for the recovery algorithm to stably
recover x from noisy measurements, the sensing matrix A must satisfy the lower
bound of the RIP, with a constant determined by C [14].

Theorem 1.6. If the pair (A,∆) is C-stable, then

1

C
‖x‖2 ≤ ‖Ax‖2 (1.27)

for all x ∈ Σ2S.

10
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When C → 1, the measurement matrix must satisfy the lower bound of
(1.24) with RIP constant δS = 1 − 1

C2 → 0. Consequently, in order to reduce
the impact of the measurement noise on the recovered signal, A must satisfy
the same bound, with a tighter constant [14].

1.4.1 Measurement Bounds

Given any m × n measurement matrix, a general and sufficient condition on
the minimum number of measurements for obtain a stable recovery, when the
measurements are altered by errors, is

m ≥ Slog2n (1.28)

While more detailed results, for specific measurement matrices, are presented
in [15] now, the minimum number of measurements m will be related to the RIP
property.

Theorem 1.7. Let A be a m ∗ n matrix that satisfied the RIP of order S ≤ n
2

with constant δS ∈ (0, 1). Then

m ≥ CδS log
(n
S

)
(1.29)

where Cδ ≈ 0.18

log
(√

1+δS
1−δS

+1
) < 1 is a constant depending only on δS [14].

Similar results can be obtained by considering the Gelfand width of the `1
ball [16], or through the Johnson-Lindenstrauss lemma [17,18]. Consequently, it
is possible to affirm that, the recovery of an S-sparse vector requires a number
of measurements in the order of Slog

(
n
S

)
.

1.4.2 Mutual Coherence

The evaluation of δS , and thus verifying the RIP property, is as complex as
the evaluation of the spark, since it requires the sweep through all the

(
m
S

)
supports [11]. As already proposed for the evaluation of the spark, also the RIP
property can be related to the coherence of the measurement matrix A defined
in sec. 1.3.2, through the application of the Geršgorin circle theorem [10].

Theorem 1.8. A measurement matrix A with unit-norm columns, and coher-
ence µ = µ(A), satisfies the RIP of order S with [19]

δS ≤ (S − 1)µ (1.30)
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1.5 Recovery of a sparse vector

Given a sparse system in the form

y = Au + e (1.31)

where e ∈ Rm is a vector representing the band-limited measurement error,
‖e‖2 ≤ ε, the sparse solution can be estimated by solving the following opti-
mization problem

û = argmin
u
‖u‖0 s.t. ‖y −Au‖2 ≤ ε (1.32)

Based on what has been reported in section 1.1, the problem (1.32) is non-
convex, and thus is NP-hard to solve.

In [20], the RIP property has been used to show that both `0 and `1 norms
are equivalent for the signal recovery.

û = argmin
u
‖u‖1 s.t. ‖y −Au‖2 ≤ ε (1.33)

The use of the `1-norm makes problem (1.33) convex, reducing it into a linear
program, whose polynomial complexity depends on the solver. This problem is
also known as basis pursuit with denoise (BPDN), and it selects the entries of
u with residual norm below the tollerance ε.

In [21], eq. (1.33) has been shown to recover a sparse signal with an error
proportional to the noise level.

Theorem 1.9. Let A satisfy the RIP of order 4S, such that δ3S + 3δ4S < 2.
Then, for any signal u with ‖u‖0 ≤ S and any perturbation ε ≤ ‖e‖, the solution
of (1.33), û, obeys

‖û− u‖2 ≤ εCS (1.34)

where CS is a constant, depending only on δ4S. In particular, CS is well behaved
for reasonable values of δ4S (CS ≈ 8, 82 for δ4S = 1

5 and CS ≈ 10, 47 for
δ4S = 1

4).

It has to be noticed that, if A verifies the condition in Theorem 1.9, the
reconstruction from a noiseless measurement vector is exact, thus Aû = y.

A more general condition for the stable recovery on approximately sparse
vector, by minimizing the `1-norm only for the largest magnitude entries, is
given by the following Theorem [22]:

12
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Theorem 1.10. Let A satisfy the RIP of order 2S with δ2S <
√

2 − 1. The
solution of 1.33 obeys

‖û− u‖2 ≤ εC1,S + C0,S
‖û− u‖1√

S
(1.35)

where

C0,S = 2
1−

(
1−
√

2
)
δ2S

1−
(
1 +
√

2
)
δ2S

, C1,S = 4

√
1 + δ2S

1−
(
1 +
√

2
)
δ2S

(1.36)

It has to be notice that Theorem 1.10 holds also for the case in which the
vector to be reconstruct is properly sparse.

1.6 Sparse representation algorithms

The compressive sensing problem can be solved with different algorithms, each
one with different characteristics and properties, which affects the speed, the
ease of implementation and, in some cases, also the minimum number of mea-
surements. According with [23] the sparse recovery approaches can be divided in
three main categories: convex optimization problems, combinatorial algorithms,
and greedy algorithms.

1.6.1 Convex optimization algorithms

The convex optimization problem in (1.33) can be also expressed as uncon-
strained problem, based on the Lagrange multiplier theorem.

û = argmin
u

1

2
‖y −Au‖2 + λ ‖u‖1 (1.37)

where λ refers to the Lagrange multiplier.
Typical solvers for these problems are interior-point methods [24], project

gradient methods [25], iterative thresholding [26], and the basis pursuit [27].
These solvers are computationally more complex than other solutions, but they
requires fewer measurements.

1.6.2 Combinatorial algorithms

Characterized by very high solving speed, they often require many measure-
ments with a specific pattern, which are difficult to obtain. These techniques
are based on the application of the group testing on many samples derived from
the original signal. These algorithms are often characterized by binary and
sparse measurement matrices, in order to be able to apply specific properties
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for the sparse reconstruction [28, 29]. Heavy Hitters on Steroids (HHS) pur-
suit [30], and sub-linear Fourier transform [31] are typical examples of these
algorithms.

1.6.3 Greedy algorithms - OMP and BOMP

Greedy algorithms are characterized by procedures that use, during each step,
locally optimization criterion to solve the problem. With respect to the solutions
presented above, they are a good compromise in terms of required number of
measurements and computational burden. For this reason, in this thesis, this
family of algorithms will be applied to the analysis of electrical distribution
networks. In the CS case, greedy solvers allow to obtain approximate sparse
representation, without directly solving the optimization problem.

For example, considering the problem (1.33), the greedy algorithm starts
from an empty vector and builds the solution, û, by estimating a new non-
zero entry during each step. The selection of the new entry is based on tests
performed on each column of the sensing matrix A, which aims to reduce the
residual error in approximating the sparse vector u. Between two consecutive
iterations, the procedure also estimates the values of the chosen entries, by
optimizing their values. Characterized by high solving speed, their performance
guarantees are typically weaker than those of other methods [4].

The Orthogonal Matching Pursuit (OMP) algorithm is one of the most used
algorithms to solve CS problems, due to its implementation simplicity and speed.

The algorithm, briefly summarized in Algorithm 1, after the initialization of
the residuals to the measurement vector, and the definition of the sparsity level
one wants to reach, proceed iteratively, estimating a new non-zero component
during each iteration. While the number of iteration does not exceed the sparsity
level, the algorithm looks for the column of the sensing matrix which is most
correlated with the residuals, by considering the maximum energy inner product
among them (step 1):

j∗(it) = arg max
j=1,..,n

|〈aj , rit−1〉| (1.38)

In fact, the inner product is commonly used as similarity measure [32]. The se-
lected column is then attached to a temporary matrix, A∗, which also stores the
columns selected during the previous iterations (step 2). The selected columns,
together with the measurements, are then used to evaluate the sparse solution,
via a Least Square method (step 3). The estimated solution during this step
will be characterized by a number of entries equal to the number of performed
iterations, and the entries estimated during the previous iterations will be up-
dated. During step 4, the residuals are updated and the iteration counter is
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increased. Last, the estimated solution of (1.33) will be obtained by replacing
the entries corresponding to the indices of the selected columns, j∗, with the
components estimated during the iterative process.

Algorithm 1 Orthogonal Matching Pursuit (OMP)
Input: r0 = y, A∗ = [ ], u∗ = [ ], S, it = 1 while it ≤ S do

1: j∗(it) = arg max
j=1,..,n

|〈aj , rit−1〉|

j∗ = [j∗, j∗(it)]
2: A∗ = [A∗,aj∗(it)]

3: û∗ = argmin ‖y −A∗u∗‖22
4: rit = y −A∗û∗

it = it+ 1
end
Output: û(j∗) = û∗

Another implementation of this algorithm replaces the stopping criteria with
a threshold on the residuals. In this case, the number of estimated non-zero
entries is not fixed and it can be different than the expected one. Nevertheless,
a threshold based on the residuals can be more suitable in cases in which the
number of the expected non-zero entries is unknown. It has to be notice that,
due to the continuous update of the estimations, the wrongly selected entries
will be characterized by a low magnitude.

The key point of the OMP algorithm is that, contrarily to the "simplest"
matching pursuit, it never re-select an entry which was chosen during a previous
iteration, and the estimated residual is always orthogonal to all the selected
items [4].

When considering noise-free measurements, the OMP was proved to recover
the S-sparse unknown vector in exactly S iterations, for sensing matrices satis-
fying the RIP [33], and with bounded coherence only when the Exact Recovery
Condition (ERC) is satisfied (S < 1

2

(
1
µ + 1

)
) [34]. Due to the required small

constants to satisfy these conditions, this results apply when m = O(S2log(n)).
In [35], was shown that having m ≈ (Slog(n)) for certain random matrices leads
the OMP to selects the wrong elements, which results in a wrong estimation.

In [36], it was shown that the recovery of the sparse vector in presence of
noise is possible. In particular, for the case of `2 bounded noise, it has been
shown that the OMP can firstly select the significant components of the sparse
vector, whereas while applying modified stopping criteria to Algorithm 1, such
as a threshold based on the residuals, the OMP will recover all the non-zero
components [37,38].

Theorem 1.11. Given a bounded noise vector, ‖e‖2 < ε, and mutual coherence
µ < 1

2S−1 , the OMP algorithm with the stopping rule ‖rit‖2 ≤ ε recovers exactly
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the true subset of correct variables, if

|umin| ≥
2ε

1− (2S − 1)µ
(1.39)

where |umin| denotes the magnitude of the smallest non-zero coefficient of u.

The main computational cost of OMP is given by the sensing matrix-vector
inner products, which can became a problem when dealing with high dimension
systems. Another problem when dealing with high dimension systems is given
by the sparsity level, higher S requires high number of iterations and thus an
increasing estimation time. To reduce the dependency on these factors, some
variations of the OMP based on different coefficient updates (mainly Gradient
Pursuit and Conjugate gradients) [39–42], and variations in the element selection
[43–45], are proposed in literature but will not be considered in this thesis.

The only OMP variation considered in this thesis consists in the Block-OMP
(BOMP), which is a modification of the algorithm presented above. The BOMP
algorithm is of particular interest when dealing with block-sparse systems in the
form:

y = Abub + e (1.40)

where the subscript b indicates the block representation of matrices and vectors,
and

ub = [u1, u2, ..., ud︸ ︷︷ ︸
ub1

, ud+1, ..., u2×d︸ ︷︷ ︸
ub2

, ..., un−d+1, ..., un︸ ︷︷ ︸
ub(nb)

]T (1.41)

Ab = [

Ab1︷ ︸︸ ︷
a1,a2, ...,ad,

Ab2︷ ︸︸ ︷
ad+1, ...,a2×d, ...,

Ab(nb)︷ ︸︸ ︷
an−d+1, ...,an] (1.42)

Where nb = (n/d) is the number of blocks, and ubi and Abi denotes, respec-
tively, the i-th d-size block-vector and block-matrix of ub and Ab. Consequently,
it is possible to define the block sparsity Sb as the number of blocks in the state
vector, ub, with entries different than zero.

Given the a system in the form (1.40), it is possible to define the block-
coherence as [46]:

µb = max
l,r 6=l

1

d
ρ(M[l, r]) = max

l,r 6=l

1

d

√
λmax(MH [l, r]M[l, r]) (1.43)

where M[l, r] is the (l, r)-th d× d block of the nb × n matrix M = AH
b Ab with

AH
b the conjugate transpose of Ab. In general we have 0 ≤ µb ≤ µ, but it is

obvious that when considering d = 1 size blocks the block-coherence (1.43) and
the coherence (1.21) are the same (µb = µ). Moreover, if the columns of the l-th
block Abl are orthonormal, for each l, the block-coherence is upper bounded by
µb < 1/d.

The steps of the BOMP algorithm, described in Algorithm 2, are almost
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identical to the ones of the OMP, the main difference is in the columns selection.
In fact, during each iteration, in step 1, the algorithm picks the d columns of
the block Abj corresponding to the higher `2-norm product between each block
of the sensing matrix and the residual vector:

j∗(it) = arg max
j=1,n

∥∥rTit−1Abj

∥∥2

2
(1.44)

which is the natural extension of (1.38) for the evaluation of the similarities of
matrix blocks. Consequently, during each iteration, the BOMP estimates d new
non-zero entries.

Algorithm 2 Block Orthogonal Matching Pursuit (BOMP)
Input: r0 = y, A∗b = [ ], u∗b = [ ], Sb, it = 1
while it ≤ Sb do

1: j∗(it) = arg max
j=1,...,nb

∥∥rTit−1Abj

∥∥2

2

j∗ = [j∗, j∗(it)]
2: A∗b = [A∗b ,Abj∗(it)]

3: û∗b = argmin ‖y −A∗bu
∗
b‖

2
2

4: rit = y −A∗b û
∗
b

it = it+ 1
end
Output: ûb(j

∗) = û∗b

A sufficient condition for the perfect recovery in a noise-free scenario, ap-
plying the BOMP algorithm to a sensing matrix with orthonormal columns for
each block, is that the block-coherence must satisfy [46] :

Sbd <
1

2

(
d+

1

µb

)
(1.45)

By comparing (1.45) with the sufficient conditions for d = 1, given in (1.23),
it is possible to see that, since µb ≤ µ, the use of block sparse vectors and
matrices allows to guarantee recovery for potentially higher sparsity levels. This
holds only for blocks with orthonormal columns, otherwise highly correlated
dictionary blocks may cause noise amplifications, and the OMP solution can be
preferable [47]. In [47] the condition for the guaranteed recovery is given for
BOMP algorithm applied to cases in which the noise is bounded ‖e‖2 < ε.

Theorem 1.12. Given a bounded noise vector, ‖e‖2 < ε, and mutual coherence
µ < 1

2S−1 , the BOMP algorithm identify all the non-zero entries of ub, if

|ub,min| >
2ε

1− (2S − 1)dµb
(1.46)

where |ub,min| denotes the magnitude of the smallest non-zero coefficient of ub.
Then, the BOMP algorithm identifies all elements of ub, and its error is bounded
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by

‖ûb − ub‖22 ≤
ε2

1− (Sb − 1)dµb
(1.47)

which leads to the results presented in Theorem 1.11, for d = 1.

In the following chapters, the Compressive Sensing theory is applied on the
analysis of different problems of real distribution systems. Depending on the
operating conditions, the measurements available from the network are charac-
terized by different uncertainty performance. These different uncertainty sce-
narios will be suitably taken into account by means of numerous Monte Carlo
simulations, in the analysis of the performance of the proposed CS-based algo-
rithms.
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Chapter 2

Harmonic Source Estimation

2.1 State of the Art

Nowadays, the increasing diffusion of nonlinear loads in distribution networks is
leading to an increasing harmonic pollution [48]. Harmonics are one of the main
Power Quality (PQ) related phenomena, which involve serious consequences in
the system. The higher usage of the power cables, the reduction of the lifetime
of electric-supply devices, the increasing losses, and the higher costs of the
electrical energy are only few of the harmonic consequences.

In order to limits these phenomena, and thus the related consequences, har-
monic planning levels have been proposed, as in the technical report IEC/TR
61000-3-6 [49]. In particular, this report deals with distorting sources (loads
and generators) connected to medium and higher voltage networks. Table 2.1
reports the compatibility levels indicated in [49], only with reference to low and
medium voltage networks, expressed in percentage with reference to the funda-
mental component. These are reference values aimed at coordinating emission,
and immunity, of the devices connected to the same system, in order to limit
the impact on the operations of any component.

Table 2.1: Compatibility levels for individual harmonic voltages in low e medium
voltage networks, from [49]

Odd harmonics
non-multiple of 3

Odd harmonics
multiple of 3 Even harmonics

Harmonic
order h

Harmonic
voltage [%]

Harmonic
order h

Harmonic
voltage [%]

Harmonic
order h

Harmonic
voltage [%]

5 6 3 5 2 2
7 5 9 1.5 4 1
11 3.5 15 0.4 6 0.5
13 3 21 0.3 8 0.5

17 ≤ h ≤ 49 2.27 17
h − 0.27 21 ≤ h ≤ 45 0.2 10 ≤ h ≤ 50 0.25 10

h +0.25
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Since it is not feasible to control all the devices of the system, these limits
are meant for a system-wide based analysis, and not for a detailed evaluation.
Compatibility levels in table 2.1 are differentiated for each harmonic order,
but the report also sets the level for the total harmonic distortion (THD), in
particular THD = 8%.

Planning levels, as reported in table 2 of [49], are instead meant to be used
as emission limits. These levels should be, for obvious reasons, equal o lower
than the compatibility levels reported in table 2.1. The corresponding values,
always differentiated for each harmonic order in percentage of the fundamental
component, are reported here in table 2.2, while the indicative planning level
for the total harmonic distortion is sets to 6.5%.

Table 2.2: Planning levels for individual harmonic voltages in medium voltage
networks, from [49].

Odd harmonics
non-multiple of 3

Odd harmonics
multiple of 3 Even harmonics

Harmonic
order h

Harmonic
voltage [%]

Harmonic
order h

Harmonic
voltage [%]

Harmonic
order h

Harmonic
voltage [%]

5 5 3 4 2 1.8
7 4 9 1.2 4 1
11 3 15 0.3 6 0.5
13 2.5 21 0.2 8 0.5

17 ≤ h ≤ 49 1.9 17
h − 0.2 0.2 ≤ h ≤ 45 0.2 10 ≤ h ≤ 50 0.25 10

h +0.22

Since the actual planning levels should be accurately chosen depending on
the specific case study (type of the system, working scenario, and so on), the
limits in table 2.2 can be used as an indication for determining emission limits.

Nevertheless, limits are not always respected, and specific analysis must
be performed to inspect the causes of the overcome, the harmonic sources, in
order to reduce their effects and, maybe, allocate the costs arising from the
disturbances [50].

The detection of the harmonic sources in a system is not trivial, due to
the spreading nature of the harmonics. In this regard, in literature, many
solutions have been proposed [51–54], most of them based on the harmonic state
estimation. These techniques, originally meant for transmission networks, are
based on the more classic state estimation, and their goal, as it can be evinced
by the name, consists in estimating the harmonic pollution level in every point
of the system. It is worth underlining that the estimation of the harmonic state,
as well as the state estimation, requires a lot of information, such as numerous
measurements (these approaches are usually based on weighted least square
solutions), and network topology and parameters.

In particular, harmonic measurements are collected with dedicated PQ-
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meters, which can be characterized by high costs. Due to the high number
of nodes in distribution networks, only few real PQ measurements are typically
available, usually collected in the primary substations. Thus, it is not possible
to directly monitor the harmonic state of the systems and alternative solutions
must be taken into account.

The use of pseudo-measurements, such as historical and statistical infor-
mation, is sometimes proposed, in addition to the real measurement, as an
alternative solution to overcome this problem. Nevertheless, due to the high
uncertainty related to this kind of information, the corresponding estimation is
characterized by low accuracies, and is not always reliable.

A different approach can be based on the identification of the main harmonic
sources, rather than estimating the entire state of the network. Such technique,
proposed in [55] and [56], is known as Harmonic Source Estimation (HSE), and
it is aimed at the identification of the sources (loads and/or generators), in order
to act at the origin of the problem. The number of sources is clearly lower than
the number of nodes of the network, and thus only fewer measurements are
required with respect to the harmonic state estimation. Moreover, it is worth
noting that a further distinction can be made, between highly polluting sources
and poorly/not polluting sources. The first group is generally less populated
than the second one, and this leads to the approximation of considering the
system as sparse.

Based on these assumptions, a compressive sensing harmonics detector (CSHD)
has been proposed in [57] and [58]. These solutions, by investigating respectively
single and multiple harmonic orders simultaneously, allow to identify the har-
monic sources in the system, and estimate the value of the polluting component
(also defined forcing) using a realistic measurement system.

In the following sections, the modellization of the harmonic analysis is pre-
sented. Then, the compressive sensing-based approaches are explained and
tested on a test distribution system.

2.2 Modellization

The measurement model related to the harmonic sources identification and
estimation problem can be defined in the frequency domain. Starting from
the approach for harmonic measurements proposed in the international stan-
dards [49, 59], and considering a steady-state phenomena, with measurements
collected with a common time-tag, a general linear model of this problem can
be defined with reference to the generic harmonic order h. The following linear
system represents such model, where the over-bar denotes complex quantities,
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which change depending on the harmonic order h:

yh = Ahuh + eh (2.1)

In (2.1), yh ∈ Cm is the measurement vector, which includes m phasor
measurements (voltage or current measured phasors at harmonic h), uh ∈ Cn

is a vector whose entries are the n unknown forcing terms (harmonic sources)
of the hth harmonic (usually currents injected by nonlinear loads or genera-
tors), and eh ∈ Cm represents the phasor measurement errors vector. The
measurement matrix Ah ∈ Cm×n links the measured harmonic phasors to the
harmonic sources produced by the possible polluting loads or generators. This
matrix represents the matrix frequency response of the network computed at
frequency hf0, where f0 denotes the fundamental frequency of the system. Since
the effects of the polluting sources can be recorded by the PQ instrumentation,
and thus affects the measurements, the entries of Ah can be computed starting
from the impedances of lines and loads in the considered network, defining the
measurement relationship.

The model in (2.1) can be also expressed in rectangular coordinates, and
thus representing each phasor in terms of real and imaginary components. In
particular, by considering the system in such form, it is possible to take into
account the accuracies of the measurements. Thus, by denoting the real part of
the phasors with the superscript r, and the corresponding imaginary component
with x, the model of the system in rectangular coordinates can be written as
follows: [

yrh
yxh

]
=

[
Ar
h −Ax

h

Ax
h Ar

h

][
urh
uxh

]
+

[
erh
exh

]
yrxh = Arx

h urxh + erxh

(2.2)

where, denoting the transpose operation with the superscript T , the vectors
yrh = [yrh,1, . . . ,y

r
h,m]T and yxh = [yxh,1, . . . ,y

x
h,m]T represent, respectively, the

real and the imaginary components of the phasors measurements in yh. The
same holds for vectors urh, uxh, erh, and exh, and for the measurement matrix Arx

h .
Each phasor of yh is measured with a certain accuracy, and specific uncer-

tainties can be defined for both magnitude and phase angle. This information
can be reported in terms of standard uncertainty of the measurement, by con-
sidering the standard deviation associated to a certain level of confidence and a
probabilistic distribution. In general, in absence of specific information, uniform
distributions should be considered. In the following, both measurements and
uncertainties are considered available in magnitude and phase angle. Given the
i-th phasor, measured at the h-th harmonic, expressed in rectangular coordi-
nates, ȳh,i = yrh,i + jyxh,i, the corresponding 2× 2 covariance matrix is obtained
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by uncertainty propagation law [60]. The following expression is used:

Σrx
h,i =

[
cosφh,i −yh,i sinφh,i

sinφh,i yh,i cosφh,i

][
σ2
yh,i

0

0 σ2
φh,i

][
cosφh,i sinφh,i

−yh,i sinφh,i yh,i cosφh,i

]
(2.3)

where yh,i = |ȳh,i| and φh,i are the magnitude and phase angle of the i-th
measured phasor.

In this thesis, all the measured phasors are considered independent (or, at
least, uncorrelated), thus:

Σyrx =


Σrx
h,1 0

. . .

0 Σrx
h,m

 (2.4)

Measurement processes of different measurements are assumed thus as indepen-
dent. Correlation between measurements could arise due to several factors such
as common synchronization sources, the temperature of the devices and so on.
The analysis of these aspects is beyond the scope of this thesis, but they can be
conceptually set into the same framework in a simple way.

Consequently, the model in eq.(2.2) can be modified, in order to take into ac-
count the measurement uncertainties, by weighting the measurements according
to their uncertainties:

yrx
′
, U−Tyrx = U−TArx

h urx + erxw = Arx′

h urx + erx
′

w (2.5)

where erx
′

w is the result of the measurement errors whitening, and U is the
upper triangular matrix obtained from the Cholesky factorization of Σyrx , thus
Σyrx = UTU.

2.2.1 Single harmonic based detector

In order to identify and estimate the harmonic sources, vector urxh must be
recovered. This kind of estimation problem could be easily solved by applying
classic solving techniques for linear systems, such as the Weighted Least Square
(WLS). But, it has to be considered that the WLS can be applied only to
determined or overdetermined systems (m ≥ n), whereas estimation of the
harmonic sources problem is typically an underdetermined problem, due to the
lack of real measurements from the field. A possible solution to overcome this
problem could be the inclusion of additional information into the model of the
system under study. Pseudo-measurements, for example, could be considered,
but the high uncertainties of such information could significantly decrease the
performance of the estimation. Moreover, not all the harmonic sources in a
distribution system pollute simultaneously, and thus the vector of the forcing
terms, urxh , is sparse. According to these assumptions, the unknown non-zero
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entries in vector urxh of (2.2) can be recovered with a compressive sensing-based
algorithm, such as the BOMP illustrated in Section 1.6.3. In fact, the BOMP
algorithm allows to keep the correlation between magnitude and phase angle of
each quantity, through the representation in rectangular coordinates, and the
analysis of blocks with size d = 2.

As a first step, the block-sparsity level of the system must be defined, accord-
ing to the number of harmonic sources to be investigated in the network. Then,
after initializing the residual vector to the measurements, the measurement ma-
trix Arx

h , or Arx′

h when considering the whitening of the measurements, should
be reorganized in blocks associated to the real and imaginary components of
each load.

Arx
h GTGurxh = Arx

b urxb (2.6)

In the right-hand side of eq. (2.6), for sake of simplicity, the subscript h
denoting the harmonic order under analysis has been omitted, and just the sub-
script b denoting the block-reordered matrices and vectors is reported. Matrix
G in (2.6) is a orthonormal matrix, which allows reordering vector urxh in order
to have elements of the same block (real and imaginary components of the same
source) contiguous.

Then, as known from the CS theory, the block-columns of matrix Arx
b should

be orthogonalized, for example with the Gram-Schmidt method, and then every
column must be normalized with respect to the `2-norm. This step allows to
avoid the amplifications/attenuations caused by the different scaling of voltage
and current measurements. Consequently, the system (2.2) becomes:

yrxh = Arx
bNurxbN + erxh (2.7)

where the subscript N denotes the orthonormalized vectors and matrices.
Now, the iterative procedure of the BOMP can proceed as described in Algo-

rithm 2. During each iteration, the algorithm looks for the 2-size columns block
which is more related to the residuals, based on the analysis of the maximum
energy inner products between the residuals and each columns block.

The columns block corresponding to the selected index is then concatenated
with the temporary matrix, A∗b , containing the blocks selected during the pre-
vious iterations, if any. This matrix is then used to solve the following overde-
termined problem:

y = A∗b û
rx
bN (2.8)

where the estimated vector ûrxbN will have as many entries as the number of
performed iterations. It is important to mention that the indices of the selected
column blocks denote the location of each recovered entry in vector urxh . Then,
the residuals are updated, and a new iteration can begin.
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When the stopping criteria is verified, the iterative process ends, and the
non-zero entries of the unknown vector urxh are recovered from ûrxbN , by inverting
the orthonormalization and grouping procedures.

2.2.2 Multiple harmonics based detector

The procedure described above well applies to the analysis of a single har-
monic order, but not all the harmonic sources are always polluting for the same
harmonics. Each source is characterized by specific pollution levels for each
harmonic order, which can also be zero in some cases. Moreover, a passive load
with capacitors could act as harmonic "amplifier", making the identification of
the actual sources even harder. Consequently, the problem is complex, and the
approach has to be global. Based on the approach proposed in the previous
section, not all the polluting sources could be detected, depending on the con-
sidered harmonic order. This approach can be suitable for specific analysis, but
in a real application scenario, it is not feasible to know a priori which harmonic
order should be investigated.

In this section, a global harmonic detector, based on the contemporary anal-
ysis of multiple harmonic orders as proposed in [58], for the identification of the
most polluting sources in a system is presented.

Starting from the model in (2.2), since each source can be seen as a multiple
harmonics polluter, the more general model of the system can be written in the
form:



yrh1

yxh1

...
yrhQ
yxhQ


=


Arx
h1

. . .

Arx
hQ




urh1

uxh1

...
urhQ
uxhQ


+



erh1

exh1

...
erhQ
exhQ


yrx = Arxurx + erx

(2.9)

where Q denotes the total number of harmonics considered. The model in (2.9)
is obtained by applying the superposition principle to different harmonic orders.
Consequently, due to the orthogonality of the harmonics, the global measure-
ment matrix, Arx, is block diagonal, and the other vectors are obtained by
simply concatenating, for each considered harmonic order, the vectors corre-
sponding to single model analysis.

Thanks to this representation, each source can be inspected, contemporary,
in a wide range of harmonics. The overall forcing vector, urx, will have only few
non-zero entries with respect to its size, allowing to better detect the main pol-
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luting sources. In order to underline this, the forcing vector should be reordered,
by grouping the harmonic forcing terms related to the same source.


yrxh1

...
yrxhQ

=


Arx
h1,1

Arx
h1,n

. . . · · ·
. . .

Arx
hQ,1

Arx
hQ,n





urh1,1

uxh1,1
...

urhQ,1
uxhQ,1

...
urh1,n

uxh1,n
...

urhQ,n
uxhQ,n



+ erxb

yrx = Arx
b urxb + erxb

(2.10)

where urhk,l and uxhk,l, with k = 1, . . . , Q and l = 1, . . . , n, respectively
denote the real and imaginary components of the forcing quantity injected by
the l-th source for the k-th harmonic. Each sub-matrix Arx

hk,l
= [Ar

hk,l
Ax
hk,l

] ∈
R2m×2m is related to the measurement matrix of the l-th source, with reference
to the k-th harmonic. In (2.10), each block represents a specific source: urxl =

[urh1,l
, uxh1,l

, . . . , urhQ,l, u
x
hQ,l

]T . Consequently, having a block sparsity Sb = 2

corresponds to a forcing vector with only two blocks urxl with `0-norm different
than zero. For example, having Sb = 2 in a system with 4 loads (n), and
considering 3 harmonics (Q), could corresponds to a state vector in the form:

urxb =


urxl1
urxl2
urxl3
urxl4

 =


urxl1
0

urxl3
0

 =



urxh1,l1

urxh2,l1

urxh3,l1

0

0

0

urxh1,l3

urxh2,l3

urxh3,l3

0

0

0



=



0

urxh2,l1

0

0

0

0

urxh1,l3

urxh2,l3

urxh3,l3

0

0

0



(2.11)

where the load l1 has a forcing component only in correspondence of the h2
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harmonic, while the load l3 has forcing components in correspondence of all the
harmonics under analysis (h1, h2, and h3).

With reference to the measurement uncertainties, same consideration of Sec.
2.2.1 holds, the relation in eq.(2.3) is still valid for each measured phasor and
eq.(2.4) can be extended to a more generic representation, in order to consider
multiple measurements with reference to different harmonics, then:

Σyrx =



Σrx
h1,1

0

. . .

Σrx
h1,m

. . .

Σrx
hQ,1

. . .

0 Σrx
hQ,m


(2.12)

where Σrx
hk,v

denotes the covariance matrix related to the v-th measured
phasor (v = 1, . . . ,m) referred to the k-th harmonic. The matrix in (2.12)
can be than used to weight the different measurements as seen in the previous
section.

Also in this case, the BOMP algorithm is suitable to recover the sparse
vector urxb , by considering blocks of size d = 2Q. The procedure is an extension
of the one described in the previous section, and is composed by the following
stages:

1. Orthonormalization of the measurement matrix, inside each columns block,
through the right-moltiplication by the ortonormalization matrix D:

yrxh = Arx
b DD−1urxb + erx = Arx

N urxN + erx (2.13)

where D is the block-diagonal matrix including the orthogonalization basis
for all the blocks in Arx

b . With reference to the generic load l, and its
corresponding sub-matrix Arx

b,l = [arb h1,l
,axb h1,l

, . . . ,arb hQ,l,a
x
b hQ,l

], the l-
th block of matrix D is block-diagonal, due to the orthogonality of the
harmonics, and it can be written as:

Dl =



 1∥∥∥arb h1,l∥∥∥2 − arb h1,l·a
x
b h1,l∥∥∥arb h1,l∥∥∥22‖bh1,l‖2

0 1

‖bh1,l‖2

 0

. . .

0

 1∥∥∥arb hQ,l∥∥∥2 −
arb hQ,l

·axb hQ,l∥∥∥arb hQ,l∥∥∥22‖bhQ,l‖2
0 1

‖bhQ,l‖2




(2.14)
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where ‖bhk,l‖2 =

√∥∥∥axb hk,l∥∥∥2

2
−
〈arb hk,l,a

x
b hk,l

〉2∥∥∥arb hk,l∥∥∥22 with reference to the generic

hk-th harmonic order.

2. BOMP algorithm, which begins with the initialization of the residuals
(r0 = yrxh ) and the definition of the block-sparsity, to iteratively search
for the columns-block most correlated to the residuals. During each it-
eration, 2Q columns are selected from the measurement matrix Arx

N , by
considering:

j(it) = arg max
l=1,...,n

∥∥rTit−1A
rx
N l

∥∥2

2
(2.15)

where the subscript it denotes the number of iteration, and Arx
N l = [arN h1,l

,

,axN h1,l
, . . . ,arN hQ,l

,axN hQ,l
]. The index j(it) denotes the source corre-

sponding to the higher energy product and the corresponding columns are
attached to the temporary matrix which stores the columns of the selected
sources:

A∗N = [A∗N , Arx
N j(it)] (2.16)

This matrix has size (m×Q)-by-(2Q× it) and it represents the measure-
ment matrix of the overdetermined system yrx = A∗Nurx ∗N :

ûrx ∗N = (A∗TN A∗N )−1A∗TN yrx = A∗†N yrx (2.17)

where the use of the pseudo-inverse (A∗†N = (A∗TN A∗N )−1A∗TN ) is required
for the LS estimation of the sources at each iteration. During this step, not
only Q new entries are estimated, but the ones estimated in the previous
iterations, if any, are updated. Then, the residuals are updated, and a
new iteration can begins, if the number of performed iterations does not
overcomes the block-sparsity limit.

3. After quitting the iterative process, the number of entries in the recovered
vector ûrx ∗N , and thus its size, depends on the number of iterations and it
is equal to 2Q× it = 2Q× Sb. Its entries must be placed in the unknown
forcing vector according to the block indices selected during the iterative
procedure, and thus

ûrxN,j = ûrx ∗N (2.18)

while the other entries are zeros. Then, in order to obtain the effective
recovery of the forcing terms, it is necessary to de-orthonormalize ûrxN,j ,
by simply pre-multiplying it by the orthonormalization matrix:

ûrx = DûrxN,j (2.19)

In the following, we will refer to this algorithm as Load BOMP (LBOMP),
due to its peculiarity of considering each load as a block, consisting by a forcing

28



CHAPTER 2. HARMONIC SOURCE ESTIMATION

for each considered harmonic. It is worth mentioning that, when considering
only a single harmonic order (k = h), the procedure described above reduces to
the one described in Section 2.2.1.

2.2.3 Measurement uncertainties

The standard IEC 61000-4-7 [59] defines the measurement accuracy require-
ments with reference to two class of instruments: Class I and Class II. Class I
instruments are recommended for applications in which a high accuracy is re-
quired, such as standard compliance and emission measurements, whereas Class
II instruments are more suitable for general purpose. According to this defi-
nitions, Class I instruments are more appropriate for the aim of this Section,
the detection of harmonic polluting sources, and thus Class I instrument will be
considered.

In [59], the uncertainties for Class I instruments, here reported in table 2.3,
are expressed with reference to the ratio between the measured magnitudes
of voltage and current, respectively Um and Im, and the nominal voltage and
current, Un and In, of the measurement device.

Table 2.3: Accuracy Requirements for Voltage and Current Measurements [59]

Class Measurements Conditions Max Error

I
Voltage Um ≥ 1%Un ±5%Um

Um < 1%Un ±0.05%Un

Current Im ≥ 3%In ±5%Im
Im < 3%In ±0.15%In

As it can be seen from table 2.3, the standard [59] does not take into account
the phase angle uncertainties. In this thesis, the measurement accuracy of the
phase angles is considered, for all the tests and without loss of generality, equal
to 1 crad with reference to the fundamental, and it is assumed to increase pro-
portionally with the harmonic level for the harmonic phase angle measurements.
Moreover, based on previous research activities on the accuracy of the measure-
ment provided by instrument transformers under distorted conditions [61], the
measurement uncertainty on the magnitudes of the harmonics is considered ten
times larger than the one at the fundamental frequency.

2.3 Test and Results

The proposed methodologies are here tested and compared, in order to underline
their differences. In the following, the single harmonic analysis method, pre-
sented in Section 2.2.1, will be named "BOMP", whereas the multiple harmonic
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technique, presented in Section 2.2.2, will be labelled as "LBOMP". Moreover,
the performance of these two techniques will be compared with the performance
of a classic WLS technique. In this regard, it has to be noticed that the WLS
technique is based on finding the minimum `2-norm solution, and thus it does
not recover a sparse vector, it estimates a possible value for all the components
of the vector which should be recovered.

Tests will be performed on a small distribution network, which is derived
from the IEEE 13 bus distribution feeder [62], shown in figure 2.1.

Figure 2.1: Test grid.

The nominal rms value of the voltage source is Es = 2.4 kV, at the rated
frequency of fn = 60 Hz, while the nominal active powers and currents of each
one of the 5 loads are reported in table 2.4.

Table 2.4: Nominal Loads Configuration

Load Pn [kW ] In [A]

L1 1333.33 55.51
L2 80.15 39.00
L3 73.90 34.46
L4 345.33 180.47
L5 140.72 65.07

Loads L2, L3, L4 and L5 are considered as possible polluting sources, whereas
the substation and load L1 are considered linear and not polluting. The non-
linearity are represented through an ideal current source, connected in parallel
to the ohmic-inductive impedance (representing the linear load). The forcing
current of the l-th load is obtained by summing up all the harmonics components
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considered in the signal:

il(t) =

Q∑
k=1

ihk,l(t)

ihk,l(t) =
√

2Ihk,l sin(2πhkf0 + φhk,l)

(2.20)

where Ihk,l represents the rms value of the forcing current injected by the l-th
load with reference to the hk-th harmonic order, and φhk,l is the corresponding
phase angle. In this thesis, only the first four odd harmonics are considered,
thus h = [3, 5, 7, 9] and Q = 4. Reference values of magnitude and phase
angle, for each load (with exception of load L1, supposed fully linear) and each
harmonic order, are reported in table 2.5; where Ihk is expressed in percentage
with respect to the current rated at the fundamental frequency (In in table 3.4),
and φhk is expressed in radiants.

Table 2.5: Harmonic Load Configuration

Harmonic
order hk

Load L2 Load L3 Load L4 Load L5
Ihk
[%]

φhk
[rad]

Ihk
[%]

φhk
[rad]

Ihk
[%]

φhk
[rad]

Ihk
[%]

φhk
[rad]

3 10.2 -0.48 19.3 -0.37 7.5 -1.53 21.1 -0.35
5 2.1 0.89 3.8 1.12 3.7 -0.33 4.1 1.16
7 1.6 2.58 3 2.59 0.7 2.40 3.2 2.59
9 1.0 -1.67 1.9 -1.67 0.5 -1.69 2.1 -1.67

During the tests, these values, with reference to each load and each har-
monic level, will be enabled/disabled in order to simulated different scenarios.
According to this, the results here presented are based on the following test
cases:

• Case 1, forcing loads L3 and L4, for all the considered harmonic orders;

• Case 2, forcing loads L4 and L5, for all the considered harmonic orders;

• Case 3, forcing loads L3 and L4, for all the considered harmonic orders,
with the exception of L3 non-polluting for the 5-th harmonic;

• Case 4, all loads forcing at 10% of the values in table 2.5, whereas the
forcing of loads L3 and L4 are set to 100%, for all the considered harmonic
orders.

As shown in figure 2.1, only two multi-channels measurements devices are
considered. It should be noticed that no particular placement techniques have
been applied, but these locations can be considered as typical: one measurement
nearby the substation, and one in a point of common coupling. The accuracy
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of the measurements provided by these devices have been taken into account
by means of 10000 Monte Carlo (MC) simulations. During each MC trial, the
measurement error has been considered by extracting the additive terms from
uniform distributions. The limits of the distributions are defined according
to the standard [59], as described in Section 2.2.3. These accuracies are here
considered as representative of the overall uncertainty of the measurement chain,
thus including also the transducers.

As a fair comparison, an algorithm based on a WLS minimization is con-
sidered. This algorithm, in the following called WLS for the sake of brevity,
computes the minimum Mahalanobis distance solution of the single harmonic
model (equation (2.5)), with respect to Σyrx . In the following, the results of the
comparison between the proposed methodologies (BOMP, LBOMP) and WLS,
are presented in terms of percentage of detection of each polluting source, and
in terms of accuracy of the estimation of the pollution injected by the source.
In particular, since the main goal is to identify the main polluting sources,
the detection criteria is based on the application of a post-detection threshold.
The use of the threshold allows to neglect the sources characterized by a small
injection, and thus not significantly polluting, and to prevent false detections.

The post-detection threshold will be applied, for each harmonic order hk
and each load l, to the estimated forcing terms in ûrx:

vhk,l =
(√

ûr2hk,l + ûx2
hk,l
≥ thk

)
=

true⇒ polluting

false⇒ non-polluting
(2.21)

where ûrhk,l and û
x
hk,l

are the real and the imaginary component of the es-
timated source, while thk is the post-detection threshold referred to the hk
harmonic. The threshold, for example, could be adjusted by the operator which
is inspecting the network, depending on different criteria such as network char-
acteristics, type of sources and so on. The variable vhk,l, is binary and it can
be equal to 1 only when the inequality is verified, thus the corresponding load
should be labelled as polluter, whereas is 0 otherwise. It is worth noticing that,
since the thresholds are applied to all the considered harmonics, in the global
approach, LBOMP, proposed in Section 2.2.2, each load will be considered as
polluting if the relation in eq.(2.21) is verified for at least one harmonic order.

In order to set reasonable threshold limits, the information available in the
technical report IEC/TR 61000-3-6 [49] is considered, and reported in table
2.6. The limits in table 2.6 are expressed in percentage with reference to the
fundamental component. It has to be noticed that, since [49] does not include
limits for all the harmonics here considered, based on reasonableness criteria,
the limits for the 3-rd and the 9-th harmonic currents are assumed, respectively,
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equal to 5% and 3%.

Table 2.6: Harmonic current emission limits from [49], extended with 3rd and
9th harmonics

Harmonic order h
3 5 7 9 11 13 >13

Emission Limits [%] 5 5 5 3 3 3 500/h2

In the following, the identification results will be presented as functions of
the thresholds which will vary starting from 0% (which means that no post-
detection threshold is applied). The limits proposed in table 2.6 will be labelled
with "STD", whereas the reference polluting value of the source, representing
the actual current injected by the source, will be labelled as "REF". According
to this, the ideal detection function can be represented as a step function, which
should be equal to 100% for every threshold value lower than "REF", and which
will immediately decrease to 0% after it. It follows that, the detection function
corresponding to non-polluting sources should be always constant, and equal to
zero.

In figure 2.2, the detection functions are reported for Case 1, with reference
to the 3rd harmonic order, for the loads L3, L4 and L5. The proposed solutions
are reported with different lines: the single harmonic based technique, BOMP,
is represented with a blue line and circled markers, and the global approach,
LBOMP, with yellow line and star marker, while the WLS method is represented
with red line and diamond markers.
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Figure 2.2: Harmonic detection - Case 1: forcing loads L3 and L4, harmonic
order under analysis h = 3.

Load L3 is correctly detected as polluting (100%) by all the methodologies,
until the post-detection threshold is set equal to the reference value of the forc-
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ing. Same considerations hold also for load L4, where the detection function is
more step-like in correspondence of a threshold level equal to REF, as should
be in the ideal scenario. Load L5 instead, is correctly detected as not-polluting
by both BOMP and LBOMP, whereas is labelled as polluting for the WLS. The
erroneous detection provided by the WLS depends on the methodology itself,
since it tries to estimate every possible entry in the state vector, and the de-
tection rate becomes equal to 100% when the threshold is set to 0%, while it
decreases with the increment of the post-detection threshold, until 9% of the
nominal current, when also the WLS indicating load L5 as not-polluting.

In table 2.7, the absolute mean value and the corresponding standard de-
viation of the current magnitude errors are reported for loads L3, L4 and L5.
With reference to the polluting loads, L3 and L4, the WLS estimations denote
a lower mean error, but higher standard deviations. Whereas for load L5, since
the WLS is the only algorithm which erroneously detects this load as polluter,
both mean errors and standard deviations are much higher than zero. Similar

Table 2.7: Case 1, Absolute Means and Standard Deviations of current magni-
tude estimation errors for Loads L3, L4 and L5, harmonic under analysis h = 3.

BOMP [A] LBOMP [A] WLS [A]
mean std mean std mean std

L3 0.0012 0.1565 0.0012 0.1565 0.0007 0.1787
L4 0.0049 0.2432 0.0049 0.2432 0.0029 0.3696
L5 0 0 0 0 2.1232 1.0520

detection results can be found when performing the same analysis on the har-
monic orders h = 5, h = 7, and h = 9, always considering loads L3 and L4
as polluting. The corresponding identification results are reported in the fol-
lowing tables (respectively table 2.8, table 2.9 and table 2.10 for the harmonic
orders h = 5, h = 7, and h = 9), with reference to three different post-detection
threshold levels: 0%, 0.5% and 5%.

Table 2.8: Case 1, Percentage of occurrence of source detection, with reference
to three post-detection threshold levels, harmonic order under analysis h = 5

BOMP [%] LBOMP [%] WLS [%]
0% 0.5% 5% 0% 0.5% 5% 0% 0.5% 5%

L2 0 0 0 0 0 0 100 98.42 13.97
L3 100 100 0 100 100 0 100 100 0
L4 100 100 0 100 100 0 100 100 0
L5 0 0 0 0 0 0 100 98.34 6.98

The results corresponding to the analysis of the 9-th harmonic order are
interesting since the 0.5% post-detection threshold is equal to the value REF of
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Table 2.9: Case 1, Percentage of occurrence of source detection, with reference
to three post-detection threshold levels, harmonic order under analysis h = 7

BOMP [%] LBOMP [%] WLS [%]
0% 0.5% 5% 0% 0.5% 5% 0% 0.5% 5%

L2 0 0 0 0 0 0 100 91.90 0
L3 100 0 0 100 100 0 100 100 0
L4 99.22 99.22 0 100 100 0 100 100 0
L5 0.78 0.78 0 0 0 0 100 86.04 0

Table 2.10: Case 1, Percentage of occurrence of source detection, with reference
to three post-detection threshold levels, harmonic order under analysis h = 9

BOMP [%] LBOMP [%] WLS [%]
0% 0.5% 5% 0% 0.5% 5% 0% 0.5% 5%

L2 0 0 0 0 0 0 100 59.31 0
L3 100 100 0 100 100 0 100 100 0
L4 100 45.36 0 100 45.36 0 100 49.60 0
L5 0 0 0 0 0 0 100 43.50 0

the forcing for load L4. By looking at figure 2.3, it is possible to see that, with
reference to load L4, the detection function of all the techniques under study are
characterized by the descending step in correspondence of the 0.5% threshold.
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Figure 2.3: Harmonic detection - Case 1: forcing loads L3 and L4, harmonic
order under analysis h = 9.

Also in this case, the WLS estimations are characterized by lower mean er-
rors and higher standard deviations, as reported in table 2.11. The first analysis
of Case 2 considers the harmonic order h = 3, and the corresponding detection
functions are reported in figure 2.4. As expected, due the fact that the methodol-
ogy estimates the values of all the entries, the WLS gives an erroneous detection
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Table 2.11: Case 1, Absolute Means and Standard Deviations of current magni-
tude estimation errors for Loads L3, L4 and L5, harmonic under analysis h = 9

BOMP [A] LBOMP [A] WLS [A]
mean std mean std mean std

L3 0.0057 0.0716 0.0057 0.0716 0.0008 0.0755
L4 0.0114 0.0835 0.0113 0.0835 0.0015 0.1199
L5 0 0 0 0 0.3211 0.1885

of load L3 in the threshold range from 0% to 1%. The identification of load L4
instead, is perfect with all the techniques under analysis, whose detection func-
tions are almost identical to step functions in correspondence of "REF" values.
Both BOMP and LBOMP denote good identification performance also with ref-
erence to load L5, where the WLS is characterized by higher incorrect detection
rates in the threshold range from 14% to 30%. This characteristic of the WLS
leads to higher standard deviations, as shown in table 2.12.
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Figure 2.4: Harmonic detection - Case 2: forcing loads L4 and L5, harmonic
order under analysis h = 3.

Table 2.12: Case 2, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L4 and L5, harmonic under analysis h = 3

BOMP [A] LBOMP [A] WLS [A]
mean std mean std mean std

L4 0.0006 0.3669 0.0023 0.3653 0.0028 0.3656
L5 0.0081 0.4014 0.0071 0.4011 0.1279 2.2519

In figure 2.5, Case 2, forcing loads are L4 and L5, detection results are re-
ported considering the fifth harmonic. As happened in Case 1 for load L5, also in
this case load L3 is erroneously labelled as polluting by the WLS, whereas both

36



CHAPTER 2. HARMONIC SOURCE ESTIMATION

BOMP and LBOMP detection rates are always equal to 0%. Load L4 is per-
fectly detected (100%) by all the techniques under tests until the post-detection
threshold is lower than the actual value of the forcing (REF). The detections
of load L5 instead are slightly different for all the considered techniques. WLS
gives the worst detection rate, starting from 100%, when a null threshold is
applied, then the corresponding detection rate slowly decreases and reaches the
0% only when a 9% post-detection threshold is applied. Such detection function
denotes highly incorrect detections also when the threshold is above the REF
value. BOMP algorithm correctly detects load L5 as polluting only for 80% of
the trials. Despite this, the detection curve is more similar to a step function,
thus denoting a better overall detection with respect to the WLS. The LBOMP
technique shows the best detection performance, with a perfect identification of
load L5, for almost the entire threshold range between 0% and REF.
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Figure 2.5: Harmonic detection - Case 2: forcing loads L4 and L5, harmonic
order under analysis h = 5.

In this case, the mean errors and the standard deviations corresponding to
the estimation errors of the current magnitudes of the polluting load, L4, ob-
tained with the CS-based techniques, BOMP and LBOMP, are almost identical
to the ones obtained with the WLS technique, as shown in table 2.13. It has
to be notice that, both CS-based techniques are always characterized by the
same values for both mean and standard deviation when they identify the same
source as polluter. This is due to the fact that the two proposed algorithms
differ only in the selection of the most correlated columns to the residuals (and
thus the selection of the entries to be estimated). The estimation of the entries
in both BOMP and LBOMP, is based on the least squares problem applied
to an overdetermined system. Consequently, if the two techniques select the
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columns referred to the same forcing, the estimated values are the same, since
both measurements and measurement matrices are the same. In fact, since the
LBOMP always identify load L5 as polluter (100%), contrarily to the BOMP
(80%), the corresponding values of mean and standard deviation of the error
differ.

Table 2.13: Case 2, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L4 and L5, harmonic under analysis h = 5

BOMP [A] LBOMP [A] WLS [A]
mean std mean std mean std

L4 0.0005 0.1713 0.0004 0.1713 0.0007 0.1722
L5 0.0124 0.1949 0.0043 0.1934 0.5055 1.3891

In order to test the robustness of the proposed global methodology, LBOMP,
Case 3 is here considered. From the corresponding detection functions, which
are shown in figure 2.6, it can be seen that all the methodologies correctly
detect load L4 as polluter, until the post-detection threshold reaches the REF
value. As seen in Case 1, load L5 is erroneously detected as polluting only by
WLS method, with a percentage of cases which decreases with the increasing
threshold. Still referring to the detection of load L5, it can be seen that also
the single harmonic CS-based technique, BOMP, detects load L5 as polluter,
for a small percentage of cases. This is again due to the implementation of the
algorithm that, when looking for the two main polluting loads, detects load L5
instead of load L3.
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Figure 2.6: Harmonic detection - Case 3: forcing loads L3, not for the harmonic
order under analysis, and L4, harmonic order under analysis h = 5.

The most interesting result of this test case is that related to the identifi-
cation of load L3, which has been set as polluting for all the harmonic orders,
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with exception to the one under analysis. The detection functions of all the
methodologies underline how load L3 is detected as polluter when no threshold
is considered but then, when the threshold increases, all the techniques label
load L3 as non-polluting. This result is very important because, even when the
threshold is applied, the LBOMP technique will still label load L3 as global har-
monic polluter because of the other harmonic orders, with also the additional
information that it does not pollute at the 5-th harmonic. Contrarily, when
considering the techniques based on the analysis of a single harmonic order,
BOMP and WLS, this load will be erroneously recognized as non-polluting.

In table 2.14, the percentage of identification, of all the possible polluting
loads, are reported for the three methodologies considering three post-detection
threshold levels: 0%, 0.5% (which is ten times lower than the STD value), and
the limit of 5%, taken from the standard [49]. Here it is more evident that a
threshold of 0.5% is sufficient to consider load L3 as non-polluting. Moreover,
when considering a threshold equal to 5%, both CS-based techniques label all
the loads as non-polluting, since the actual values of the forcing (REF) are
lower than this limit. It is worth mentioning that, contrarily to the CS-based
techniques, the WLS identifies loads L2 and L5 as polluters, also for threshold
values higher than 5%, whereas load L4 is not recognized as polluter. This is
of particular interest, since it denotes the poor reliability of the method, which
gives a complete incorrect detection.

Table 2.14: Case 3, Percentage of occurrence of source detection for Loads L2,
L3, L4, and L5, harmonic under analysis h = 5

BOMP [%] LBOMP [%] WLS [%]
0% 0.5% 5% 0% 0.5% 5% 0% 0.5% 5%

L2 0 0 0 0 0 0 100 98.30 11.53
L3 65.02 0 0 100 0 0 100 0.01 0
L4 100 100 0 100 100 0 100 100 0
L5 4.9 2.58 0 0 0 0 100 98.12 5.08

The minimum value of mean errors for the estimations of load L3 forcing
current, as shown in table 2.15, is obtained with the LBOMP technique, but the
corresponding standard deviation is higher than that obtained with the BOMP.
Contrarily, the BOMP gives the minimum mean estimation error for load L4,
but with a standard deviation higher than that obtained with the LBOMP.

Moreover, it has to be noticed that the detection performance for the other
harmonics are not affected by the fact that the 5-th harmonic forcing for load
L3 has been set to zero.

As an example, the detection functions for harmonic orders h = 3 and h = 7

are shown, respectively, in figure 2.7 and figure 2.8.
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Table 2.15: Case 3, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L3, and L4, harmonic under analysis h = 5

BOMP [A] LBOMP [A] WLS [A]
mean std mean std mean std

L3 0.0751 0.0283 0.0622 0.0314 0.0732 0.0356
L4 0.0006 0.1509 0.0030 0.1121 0.0007 0.1739
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Figure 2.7: Harmonic detection - Case 3: forcing loads L3, not for the 5-th
harmonic order, and L4, harmonic order under analysis h = 3.
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Figure 2.8: Harmonic detection - Case 3: forcing loads L3, not for the 5-th
harmonic order, and L4, harmonic order under analysis h = 7.

To further test the robustness of the proposed methodologies, in Case 4 all
loads are considered as polluters. In particular L2 and L5 are considered as
poorly polluters, with a forcing current magnitude equal to 10% of the nominal
values reported in table 2.5, whereas loads L3 and L4 are the main polluting
loads with forcings equals to the nominal values.
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The detection functions and the errors for Case 4, with reference to the 3-rd
harmonic are reported respectively in figure 2.9 and table 2.16. The detection
functions highlight how both CS-based methodologies correctly label loads L2
and L5 as non-polluters, contrarily to WLS. Despite this, by observing the
detection of load L3, it can be seen that both BOMP and LBOMP overestimate
its forcing value, which leads to erroneous detections for thresholds higher than
the nominal value "REF". These results are also confirmed in table 2.16, where
the WLS is characterized by lower mean errors for loads L3 and L4, but with
higher standard deviations.

Table 2.16: Case 4, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L2, L3, L4, and L5; harmonic under analysis
h = 3

BOMP [A] LBOMP [A] WLS [A]
mean std mean std mean std

L2 0 0 0 0 0.8669 0.6371
L3 0.4021 0.1567 0.4021 0.1567 0.0007 0.1782
L4 0.2570 0.2574 0.2570 0.2574 0.0028 0.3693
L5 0 0 0 0 1.1612 1.2015
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Figure 2.9: Harmonic detection - Case 4: forcing loads L3 and L4, with L2 and
L5 forcing at 10% harmonic order under analysis h = 3.

When considering the harmonic order h = 7, the performances of BOMP
and LBOMP differs, especially regarding the identifications of loads L4 and L5.
As shown in figure 2.10, when a 0% threshold is considered, the BOMP, instead
of selecting always the main polluting sources L3 and L4, chooses load L4 with
a maximum occurrence of 80%. Moreover, load L5 is detected as polluter, with
a 20% occurrence, even for threshold values higher than its actual forcing value.
The LBOMP technique instead, always detects the main polluters loads, L3 and
L4, even if its detection function starts to decrease for threshold values higher
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than the REF value, denoting an overestimation of the corresponding forcing
value.

Table 2.17: Case 4, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L2, L3, L4, and L5; harmonic under analysis
h = 7

BOMP [A] LBOMP [A] WLS [A]
mean std mean std mean std

L2 0 0 0 0 0.4539 0.2475
L3 0.0695 0.0621 0.0786 0.0587 0.0005 0.0710
L4 0.1067 0.0538 0.1061 0.0523 0.0012 0.1195
L5 0.8550 0.0473 0 0 0.4843 0.3351

0 1 2 3 4 5 6 7

0%
20%
40%
60%
80%

100%

D
e

te
c
ti
o

n

Load L2
STDREF

BOMP

WLS

LBOMP

0 1 2 3 4 5 6 7

0%
20%
40%
60%
80%

100%

D
e

te
c
ti
o

n

Load L3
STDREF

BOMP

WLS

LBOMP

0 1 2 3 4 5 6 7

0%
20%
40%
60%
80%

100%

D
e

te
c
ti
o

n Load L4
STDREF

BOMP

WLS

LBOMP

0 1 2 3 4 5 6 7

Threshold (%)

0%
20%
40%
60%
80%

100%

D
e

te
c
ti
o

n

Load L5
STDREF

BOMP

WLS

LBOMP

Figure 2.10: Harmonic detection - Case 4: forcing loads L3 and L4, with L2
and L5 forcing at 10% harmonic order under analysis h = 7.

It is worth mentioning that the same techniques can be directly applied to
distribution networks with different nominal frequency, such as 50 Hz typically
used in Europe. The different rated frequency of the system does not affect the
methodological approach of the proposed algorithms, neither their performance.
Despite this, it has to be noticed that a different fundamental frequency would
affect the value of the reactances/susceptances, leading to a different model of
the network. These differences must be taken into account when defining the
measurement matrix which relates the measurements to the state of the system
under study.

2.4 Conclusions

The limited resources in terms of monitoring devices, make unfeasible to apply
classic analysis techniques, and alternative solutions are needed for the identi-
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fication of the main harmonic sources. The Compressive Sensing seems to be
a perfect solution for such problem, since it requires only a few information,
and thus measurements, in order to identify and estimate the prevailing pol-
luting sources connected to the grid. In this thesis, two Compressive Sensing
based approaches have been proposed: the Block Orthogonal Matching Pursuit
(BOMP), more specific, based on the analysis of the loads with reference to a
single harmonic order, and the more general Load BOMP (LBOMP), in which
the investigation is performed by considering, for each load, multiple harmonic
order simultaneously. The BOMP can be successfully used when the operator
has already the knowledge of the harmonic order which should be investigated,
whereas the use of the LBOMP is instead more convenient for starting the
analysis when no knowledge is available. Thanks to the modellization of each
load/generator as the union of many different harmonic orders, the LBOMP
allows labelling an element as polluter when it is generating a distortion for at
least one of the considered harmonics. The tests here presented have shown,
under realistic uncertainty scenarios, how the LBOMP is capable to correctly
identify the main harmonic sources, and estimate their forcing values, not only
in presence of few polluting sources with all the other loads non-polluting, but
also when all the loads are somehow polluting with a forcing value lower than
the prevailing one.
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Chapter 3

Fault Location

Faults are one of the challenges in modern electric systems because their oc-
currence leads to critical operating conditions characterized by high currents
flowing into the network. In order to reduce the damages associated to such
conditions, the fault should be extinguished as soon as possible, and dedicated
protection systems have been developed. The protections typically interrupt
the power supply, with consequent effects also on the customers connected to
the network. In particular, almost 80% of the customer interruptions occur due
to distribution faults [63]. In general, they can be caused by bad weather events
(storms, lightning, snow and freezing), insulation losses, and contact with ex-
ternal objects (typically branches) or animals (such as birds), and they can lead
to physical damages of the line, which must be repaired in order to be able to
re-establish the power supply to all the customers. Thus, a quick response from
the Distribution System Operator (DSO) is needed, to locate and circumscribe
the fault.

In particular, faults can be divided in different categories, depending on the
phases involved in the fault or on the permanence of the failure. With regard
to the involved phases, it is possible to distinguish between:

• symmetrical faults, which involves three phases (three-phase and three
phase-to-ground faults). This kind of faults is the less common, around
5% of occurrence [64], but also the most serious one, due to the high fault
currents;

• asymmetrical faults:

– single line-to-ground faults, which are the most common with almost
70% of occurrence [64], and are usually due to lines coming in contact
with the ground or the neutral cable because of wind or external
objects;
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– line-to-line and double line-to-ground faults, with 15% and 10% of oc-
currence respectively [64], are usually due to external objects landing
on the lines and can evolve in three-phase faults.

Temporary faults are typical of overhead lines, they represent about 75% -
90% [65], and usually are caused by multiple lines touching due to wind or birds,
but they can be also caused by tree branches touching the lines. This kind of
fault is cleared by disconnecting the faulty line, and thus restoring the dielectric
strength in the fault point. The procedure which allows to clear these faults is
carried out by an automated operation of the breakers, which open and reclose
the circuit with specific time sequence, called Auto-Reclosure. It is evident that,
even if the temporary faults affect the power supply for just a short time, they
must be investigated anyway, in order to verify that the grid has not be injured.

In case of permanent faults, the breakers are opened permanently to de-
energize the fault, with the consequent outage of the customers connected to
the involved sections. It is also possible that due to a cascade tripping, also
other parts of the network can be involved in the outage and, in some very
unlucky cases, a large blackout can occur.

Fault location techniques are thus important to provide accurate information
regarding the position of the fault to the maintenance crew. In fact, the high
costs of dedicated inspection devices for each line make this solution impractical.
Moreover, it is not feasible to visually inspect the entire fault section of the grid,
not only for the length of the section itself, but also for limitations due to rough
terrains (by ground), and trees covering the lines (by air).

Fault detection is the first step of the FLISR process: Fault Location, Iso-
lation and Supply Restoration. The order in the acronym reflects the sequence
of the procedure, and it is evident that the accurate location of the fault plays
a key role and could help to reduce costs and maintenance time.

3.1 State of the Art

Traditionally, short-circuit analysis of unbalanced faults in three-phase balanced
systems have been conducted by means of the symmetrical components. This
solution was suitable for transmission systems, but it cannot be applied to distri-
bution systems, which are typically unbalanced. The unequal mutual coupling
between phases, leads to mutual coupling between sequence network, and thus
there are no advantages in using symmetrical components [66].

Automatic fault location techniques can be divided in different categories,
based on:
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• voltages and currents at the fundamental frequency, also known as impedance-
based methods [67, 68]. These methods are the most frequently imple-
mented in power systems, also because they are the cheapest and simplest
to implement. Further classified in one-end methods or two-end methods,
if the measurements are collected, respectively, only in the substation or in
both substation and terminal node, they usually require the magnitudes
of voltage and current; but also the phase angle can be used. The measure
of the distance to the fault is given by the impedance of the faulted-line
segment. The accuracy of these methods depends on many factors, espe-
cially on the fault resistance and the accuracy of both the model of the
network and the measurements.

• travelling-waves methods [69, 70], which consider both voltage and cur-
rent waves travelling at the speed of light from the fault towards the line
terminals. The fault location is evaluated in terms of distance from the
terminal, by considering the difference between the time required by the
wave to be transmitted to the fault point and the time taken from the
reflected wave to reach the measurement point. These methods are very
accurate (e.g. the accuracy of the estimation does not vary depending on
the load variance), but they are complex and costly, due to the required
high sampling frequency.

• high-frequency components of voltages and currents generated by the fault
[71], which are not largely used due to the complexity and the related
costs. In fact, special tuned filters, and dedicated measurement devices,
are required to measure the high-frequency components generated by the
sudden change in the system. Depending on the application, the fault
location can be determined by considering the entity of the high-frequency
components or their travelling time.

• intelligence, such as neural network and machine learning [72, 73]. These
algorithms are getting very popular, due to the possibility of solving com-
plex problems. The ease of implementation is mainly given by the fact
that it is not necessary to know the model of the system under study, but
only measurements related to it. The performance of these approaches
strictly depends on the training of the application and thus, the accuracy
in the detection cannot be guaranteed. Limited available information,
together with the low quality of the available data, make difficult to pro-
duce a well-trained algorithm. Moreover, every time that the network
under study changes, a new training is required.

Nowadays, there is an increasing interest in Compressive Sensing-based tech-
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niques [74–77], due to their ability in recovering sparse signals when few infor-
mation are available. In fact, based on the assumption that the number of faults
simultaneously occurring in the network is lower than the size of the network,
the model of the system can be considered sparse. This approach is model-based,
and thus allows to evaluate the performance of the algorithm in relation to the
considered model of both network and measurements. In particular, measure-
ments aspects that are usually avoided, such as the impact of the measurement
uncertainties together with the inclusion of the branch current measurements,
will be taken into account. In this thesis, CS methods are presented, and the
fault analysis is modelled through the application of the superposition princi-
ple between two scenarios: pre-fault and during fault. In the following, the
quantities related to the two scenarios will be respectively labelled with the
subscripts pre and dur (for example, Vpre will denotes a pre-fault voltage, while
Idur denotes a during fault current).

3.2 Fault Model

In order to explain this approach, let us consider a generic distribution system
as reported in figure 3.1a. The voltage in the generic point of the network, F ,
can be represented by a voltage, characterized by magnitude (VF pre) and phase
angle (φF pre) so that V F pre = VF pree

jφF pre .
The effect of a fault in node F can be represented by shorting out all the

voltage sources, and adding a series element including a voltage source and a
fault impedance, ZF , as shown in figure 3.1b. This new source, the only one in
the system, will be characterized by the same magnitude of the pre-fault one,
but the phase angle will be shifted by 180°(V

∗
f = VF pree

j(φF pre+180°)) [78]. More
specifically, this grid is also defined as Thévenin’s network and the corresponding
voltages and currents represent the variations of both quantities due to the fault.
According with figure 3.1d, the corresponding fault current, IF , can be then
determined as follow:

IF =
V
∗
F

zth + zF
(3.1)

where zth represents the Thévenin equivalent impedance of the network, seen
from node F, and zF is the fault impedance.

Due to the application of the superposition principle, is it possible to affirm
that the during fault voltages and currents in the network are given by the
sum of the pre-fault conditions with the changes given by the fault. Thus,
by combining figure 3.1a and figure 3.1b the during fault network is the one
represented in figure 3.1c.
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Figure 3.1: Grid examples.
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Consequently, during the fault, as it can be easily seen from the Thévenin’s
equivalent in figure 3.1e, the voltage in the node F will drops to the one across
the fault impedance.

V F dur = zF IF (3.2)

With this idea in mind, it is possible to express the mathematical model
of the fault. Given a generic 3-phase N -bus distribution system, the pre-fault
complex voltages, in magnitude and phase, in all the busses (m = 3N), can be
related to the currents injected in each node:

Vpre = Znet · Jpre (3.3)

where V ∈ Cm is a complex vector representing the voltages measured in the
three phases of all the buses; J ∈ C3N is the vector representing the complex
currents injected into each phase of the N nodes of the considered network;
Znet ∈ Cm×n is the overall impedance matrix of the network.

With reference to the impedance matrix of the network, Znet, it has to be
noticed that it should take into account all the components of the network, the
parameters of lines, transformers and loads, and can be computed following the
procedure described in [79]. In particular, every network component can be
represented by using a 3-by-3 matrix where the diagonal elements describe the
self-parameters for each phase, while the mutual parameters are reported as off-
diagonal entries. It is interesting to note that the considered network representa-
tion, given by Znet and the corresponding admittance matrix (Znet)

−1 = Ynet,
can be adopted for any distribution system (medium or low voltage, balanced
or unbalanced, etc.), since it allows considering:

• for the lines, both three-phase and single-phase lines as well as different
characteristics of the conductors, and the π model is adopted for each
branch. Typically, in distribution system power flow analysis, shunt ad-
mittances can be neglected due to their low value. However, for line-to-
ground fault analysis, shunt susceptances play a key role in the path of the
fault currents and therefore they must be considered. The corresponding
shunt elements must be included in Ynet by adding them to the associated
node;

• for the substation, any transformer which can be represented by using a
two-port scheme;

• for the loads, both balanced and unbalanced loads, since each one is rep-
resented in terms of phase coordinates. Starting from the nominal values
of active and reactive powers and voltage of the ph-th phase (respectively
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Pph,Qph, and Vph), the admittance of the corresponding element is given
by: yph = [

Pph−Qph
|Vph|2 ];

In the following, for sake of simplicity, unless differently specified, we will
refer to single-phase systems; it is evident that the same considerations can be
extended considering three-phase systems.

When considering the impedance matrix, it is important to consider the
meaning of each element. Given the impedance matrix of a N -bus system, it is
possible to define two kind of elements:

• diagonal elements zi,i, which are usually termed as driving point impedance
or Thévenin’s impedance from the node i, whose value corresponds to
the ratio between the voltage and the injected current at the i-th node
(considering all the current sources connected to the other nodes equal to
zero);

• off-diagonal elements zi,j , transfer impedance, between nodes i and j, since
they are given by the ratio between the voltage at node i and the current
injected at bus j when the current sources connected to the other nodes
are neglected.

When a fault occurs in the system, the impedance matrix of the system
should be modified, accordingly to the type of fault. For faults on nodes, the
impedance of the fault, zF , should be added to the driving point impedance of
the affected node, while the rest of the impedance matrix remains the same.
For example, considering a fault occurring on node i it follows:

zi,i new = zi,i + zF (3.4)

and, consequently, the fault current is given by: IF = V
∗
F /zi,i new. It is worth

mentioning that, depending on the fault, the matrix can be also considered
constant (e.g. for faults with zF = 0).

Instead, the fault occurring on a branch can be modelled as a new node which
must be introduced in the impedance matrix. Consequently, the cardinally
of Zbus becomes (N+1)-by-(N+1), (N+3)-by-(N+3) in case of a three-phase
matrix. This lead to the necessity of recalculate the impedance matrix: the
fault impedance must be added in correspondence of the new node, and the
entries in correspondence of the nodes delimiting the faulted branch must be
updated, since the topology of the system has changed. This procedure is not
trivial, and it can be also carried out by firstly modifying the admittance matrix,
and then calculating the impedance matrix.

As seen in figure 3.1b, the voltage variation on all the nodes, ∆V, corre-
sponding to one fault occurring in the F -th node, can be directly related to the
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fault current, (3.1), injected in the fault node.

∆V = Zbus ·∆J

∆V1

...
∆VF

...
∆VN


=



z1,1 · · · z1,f · · · z1,N

... · · ·
... · · ·

...
zf,1 · · · zf,f · · · zf,N
... · · ·

... · · ·
...

zN,1 · · · zf,f · · · zN,N


·



0
...
−IF
...
0


(3.5)

In particular, since the only non-zero entry of ∆J is the one corresponding
to the node affected by the fault:

∆V 1

...
∆V F

...
∆V N


=



−z1,fIF
...

−zf,fIF
...

−zN,fIF


(3.6)

From a practical point of view, the voltage variation can be also determined
by the difference between the during-fault and the pre-fault voltage profiles in
the nodes, which merged with equation (3.5) leads to:

∆V =Vdur −Vpre = Zbus ·∆J

∆V 1

...
∆V F

...
∆V N


=



V1 dur −V1 pre

...
VF dur −VF pre

...
VN dur −VN pre


=



z1,1 · · · z1,f · · · z1,N

... · · ·
... · · ·

...
zf,1 · · · zf,f · · · zf,N
... · · ·

... · · ·
...

zN,1 · · · zf,f · · · zN,N


·



0
...
−IF
...
0


(3.7)

The relation in eq. (3.7) is very important when practical analysis must be
carried out, since it allows to avoid the calculations of the updated impedance
matrix. In the reality, both pre- and during-fault voltage measurements might
be available, and thus the following relation can be used to estimate the fault
location:

Vdur −Vpre = Zbus ·∆J + e (3.8)

in which the entries of the vector e ∈ Cm are the complex measurement
errors. The system in eq.(3.8) can be also expressed in terms of real and imagi-
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nary components, in the following respectively denoted by the superscript r and
x, as follows:



V r1 dur − V r1 pre
V x1 dur − V x1 pre

...
V rN dur − V rN pre

V xN dur − V xN pre


=



R11 −X11 · · · R1N −X1N

X11 R11 X1N R1N

...
. . .

...
RN1 −XN1 RNN −XNN

XN1 RN1 · · · XNN RNN





Jr1 dur − Jr1 pre
Jx1 dur − Jx1 pre

...
JrN dur − JrN pre

JxN dur − JxN pre


+



er1

ex1
...
erN
exN


∆Vrx = Zrxbus ∆Jrx + erx (3.9)

where Zrxbus is the impedance matrix in terms of real and imaginary compo-
nents with Zbus,hk = Rhk + jXhk the (h, k) entry of Zbus.

It is worth to underline that, when considering the system in the form (3.9),
each fault will lead to two non-zero components in the vector of the injected
currents ∆Jrx, corresponding to the real and the imaginary component of the
injected current.

Considering what has been presented above, the state vector of the sys-
tem is sparse, with a sparsity level equal to the number of faults affecting the
grid at the same time. Moreover, considering the limited number of available
measurements, which characterize a realistic scenario, the resulting model is un-
derdetermined. These two characteristics make this problem a perfect candidate
for the Compressive Sensing approach.

The proposed CS-based algorithm for the fault detection is the BOMP, based
on the Algorithm 2 presented in Section 1.6.3, which will be applied to the fault
model expressed in real and imaginary components, as in (3.9). According to
the formulation of the problem, each i-th block of the state vector ∆Jrx will
be considered with cardinality 2, and it will be composed of the real and the
imaginary parts of ∆J i.

3.3 Impact of Measurement Accuracy

Real measurements are characterized by their uncertainties, which can have an
important impact on the performance of the implemented algorithm. In gen-
eral, when the measurement errors are high, the corresponding measurements
are not correctly representing the measurand, and the use of such information
for the analysis of any system leads to unreliable results. In this regard, the
decrease of the performance of a CS-based fault location algorithm due to the
low measurement accuracy has been presented in [76]. In this section, the im-
pact of real measurements will be underlined, by comparing the identification
provided by a fault location compressive sensing-based algorithm, whose inputs
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are measurements provided by devices with different accuracies.
The pre-fault and the during-fault scenarios are characterized by different

dynamics, the first can be associated to a steady-state condition, with static
signals, while the second one presents strongly dynamics signals. In this regard,
it is worth mentioning the different performance of voltage transformers (VTs)
in the two scenarios. With reference to steady-state conditions, pre-fault, the
performance of the VTs are well defined in the standard [80]. Reference stan-
dard for voltage transformers (VTs), [80], provides different accuracy classes
for measurements and protection purposes, characterized by different accuracy
limits for both magnitude and phase angle. The corresponding limits, for both
measurement and protection purpose are reported in table 3.1, labelled, respec-
tively, with M or P in the first column.

Table 3.1: Accuracy requirements for voltage transformers [80]

Transformer
purpose

Accuracy
Class

Ratio error
[%]

Phase displacement
[± crad ]

M 0.1 0.1 0.15
M 0.2 0.2 0.3
M 0.5 0.5 0.6
M 1 1.0 1.2
M 3 3.0 not specified
P 3P 3.0 3.5
P 6P 6.0 7.0

Traditional VTs were meant for just one purpose, measurement or protec-
tion. The possibility of choosing only one between the two options, M or P, was a
huge limitation, since it was not possible using only one VT to properly monitor
the same signal under different dynamic conditions. In a Smart Grid scenario,
it is not reasonable to deal with devices characterized by such limitations. The
management policies of the network will be based on the results deriving from
the algorithms which, in turn, take the measurements collected from the system
as input. The measurement chain is thus required to have an accuracy always
limited in a certain range, despite the variability of the dynamics of the sig-
nal. Nowadays, new generation multipurpose low power voltage transformers
(LPVT), which are suitable for both measuring and protection applications, are
available. One of the main aspects of these new sensors is the no-saturation
characteristic, since ferromagnetic cores are avoided, together with the linear-
ity in the whole measurement range. These devices are also characterized by
reduced size, compared to the conventional instrument transformers, and allow
implementing more functions in combination with electronic relays. Moreover,
due to the absence of the iron core, these sensors have a low energy consumption,

53



CHAPTER 3. FAULT LOCATION

which also lead to a more stable temperature of the device. In the following
analysis, the output of these new sensors will be considered to supply the data
to the measurement devices, which are assumed to be PMUs.

In literature it is possible to find solutions that consider measurement pro-
vided by Smart Meters instead of PMUs [74,75,81,82], due to their lower costs in
the range of $ 200. Nevertheless, it is worth mentioning that there is a massive
ongoing research for developing low cost PMUs [83–85], with a forecasted price
similar to the current price of a Smart Meter (which in turn is expected to de-
crease). Moreover, contrarily to PMUs, Smart Meters do not typically provide
phase angle measurements, since the required synchronization system would in-
crease the costs of the measurement devices, and thus the linear formulation of
the problem in terms of phasors would be compromised. Even considering the
availability of synchronization, Smart Meters are characterized by lower report-
ing rates, and measurement uncertainties higher than those of the PMUs, thus
the implementation of such measurements in a fault location algorithm provides
less accurate results [74,75].

The PMU performance is usually expressed in terms of Total Vector Error
(TVE), a measure of the phasor difference between the synchrophasor estimated
from a PMU and the reference one, as reported in the related standards on
synchrophasor measurements (e.g. IEEE and IEC standards [86], [87] and [88]).
Since the limits reported in the standards refer to the measured phasor, the
limits on the magnitude and phase angle errors are determined based on this
information. Given a generic phasor P̄ and its measurement P̄measured, as shown
in figure 3.2, the maximum TVE can be represented as a circumference centred
in correspondence of the terminal point of P̄ , with radius equal to the maximum
TVE (1% in figure 3.2).

ℝ

�

�

������	�


��

Figure 3.2: TVE approximation.

Consequently, in order to respect the limit on the maximum TVE, the ter-
minal point of the measured phasor, P̄measured, should result inside/on the
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circumference. It is evident that is not possible to define a unique limit on the
maximum error for both magnitude and phase angle, here represented in rectan-
gular coordinates. In fact, depending on the position on the circumference, the
maximum error on the real component is obtained in correspondence of a null
error of the imaginary component, and vice versa. In literature, it is common
to consider the error equally split on both real and imaginary components, and
the corresponding value is then obtained by dividing the TVE by

√
2.

As a consequence, the considered TVE limits of the standards and the cor-
responding limits defined as above are reported in table 3.2. Since these devices
are meant to track the dynamic phenomena occurring in power systems, the
standards clearly specify the different accuracy limits for both steady-state and
dynamic scenarios.

Table 3.2: PMUs Maximum Accuracy Limits

Condition TVE [%] Magnitude [%] Phase [crad]
Steady-state 1 0.7 0.7
Dynamic 3 2.1 2.1

Other works in literature rarely consider the impact of measurement accu-
racy on fault location algorithms. When considered, the measurement accuracy
is modelled as a generic random noise added to the measurement, neglecting the
requirements reported in the standards and the impact of different dynamics of
the involved signals [75, 89, 90]. Consequently, the proposed algorithms are
tested under non-realistic conditions, in which the measurements are considered
more accurate than those available in the field, arising doubts on the efficacy of
the proposed solutions. In this thesis, two different uncertainty scenarios will
be considered:

• "static", denoted with S and characterized by the same uncertainty (steady-
state) for both pre-fault and during-fault scenario;

• "static and dynamic", the most realistic one, denoted with S+D, in which
the proper uncertainties are taken into account (steady-state conditions
for pre-fault and dynamic conditions for during-fault).

In particular, since different VTs accuracy classes are available, this analysis
will consider the two classes that are most common in distribution systems:
0.5 and 3P for measuring and protection purpose, respectively. The accuracy
classes and the TVE limits for each uncertainty scenario are briefly summarized
in table 3.3.
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Table 3.3: Accuracy classes and maximum TVE for the uncertainty scenarios

S S + D
pre fault fault pre fault fault

VT class 0.5 0.5 0.5 3P
PMU TVEmax 1% 1% 1% 3%

The analysis will be carried out by means of 10000 Monte Carlo (MC) simu-
lations, in which the uncertainty related to each measurement will be taken into
account by adding a measurement uncertainty to the reference measurements.
The errors will be extracted from uniform distributions, with limits based on
the scenarios in table 3.3, defined in compliance with the standards of both VTs
and PMUs.

The VT and PMU uncertainty contributions have been assumed to be inde-
pendent and the same assumption has been done for magnitude and phase angle
errors. Since each entry of the measurement vector ∆V is computed as the real
or imaginary component of the difference of two voltage phasors measured at
two different time instants, the corresponding uncertainty is given by the com-
bination of the uncertainties of the pre and during fault phasors. Measurements
corresponding to different time-tags are considered as independent.

3.3.1 Tests and Results

In order to properly test the proposed algorithm, the reference measurements
have been obtained by simulating a distribution network on a Real Time Digital
Simulator (RTDS), in combination with its software tool RSCAD. This powerful
simulator allows to simulate power system dynamics, from DC up to 3 kHz, and
thus to provide the detailed view of the network operating conditions during
both normal and fault conditions. RTDS is also capable to provide phasors of
both voltages and currents, which have been taken as reference values for the
following analysis. In the following, in order to evaluate the performance of the
proposed algorithm, and study the impact of different measurement accuracies
on the results, simulations are conducted by considering only one single line-to-
ground fault occurring at a given time. The block-sparsity of the CS model has
been chosen accordingly as Sb = 1. Single-phase-to-ground faults are considered
since these are the most common among the different types of fault [91].

Also in this case, to better study the performance of the proposed technique
in a fully controlled environment, the chosen test grid is a small three-phase
radial distribution system (Vn = 20 kV), composed by 7 nodes and 5 loads, as
shown in figure 3.3. Nevertheless, the same technique can be easily applied on
the analysis of bigger networks.
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Table 3.4: Nominal Loads Configuration.

Load Pn [kW ] Qn [kV AR]

L1 50.00 20.00
L2 130.00 75.00
L3 90.00 40.00
L4 70.00 35.00
L5 80.00 40.00

Table 3.5: Pi-Model Configuration.

d− sequence 0− sequence
Z [Ω] 0.320+j0.170 1.050+j0.530
Xc [MΩ] 0.0104 0.0107

The single-phase values of nominal active and reactive powers for each load
are reported in table 3.4. Distribution lines have been modelled with a pi-
model whose values, referred to both direct (d−) and zero (0−) sequences, are
reported in table 3.5. The upstream network feeding the test grid has been
modelled considering a short-circuit power equal to 500MVA.

Firstly, the proposed BOMP-based solution, described in Section 3.2, has
been tested in an ideal scenario, considering measurements without uncertainties
and voltage phasor measurements available in every node. This solution, which
actually does not correspond to any realistic scenario, can be considered as a
calibration test, to prove the efficacy of the proposed algorithm. Moreover, since
the gravity of the fault depends on the Phase of Waveform (POW), the phase
angle in correspondence of the occurrence of the fault, different POWs have
been considered: POW = 0°, 30°, 60°, and 90°. In table 3.6, the percentage of
detection is reported considering POW = 0°. In this table, each row represents
a possible fault node, while the percentages of detection are reported in column,

Figure 3.3: Test grid.
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expressed as percentage computed in 10000 MC simulations.

Table 3.6: Percentages of fault detection, without uncertainties, all nodes mon-
itored and POW = 0°

Bus
number

Faulted bus
2
[%]

3
[%]

4
[%]

5
[%]

6
[%]

7
[%]

1 0 0 0 0 0 0
2 100 0 0 0 0 0
3 0 100 0 0 0 0
4 0 0 100 0 0 0
5 0 0 0 100 0 0
6 0 0 0 0 100 0
7 0 0 0 0 0 100

The results underline how the algorithm perfectly detects the faulty node, if
no uncertainties are taken into account. Moreover, the same results are obtained
also when different POWs (30°, 60°, and 90°) are considered. According to this,
it is possible to affirm that the theoretical efficiency of the algorithm is proved,
and the same methodology can be tested under more realistic conditions, in
presence of measurement uncertainty.

Once the effectiveness of the proposed BOMP-based fault location algorithm
have been established in a scenario without uncertainties, the performance can
be evaluated by considering the uncertainty scenarios of table 3.3, and different
cases reported in table 3.7, which correspond to four different meter placement
configurations.

Table 3.7: Measurement placement in the different Test Cases

Test case Voltage meas.
Case 1 V1, V2, V3, V4, V5, V6, V7

Case 2 V1, V3, V5, V7

Case 3 V1, V4, V7

Case 4 V1, V7

The different cases reported in table 3.7 are characterized by a decreasing
number of voltage measurements because, as already discussed, distribution
networks are not fully monitored, and it is fundamental to study the performance
of the proposed solution in realistic scenarios. Otherwise, based on the results
provided by a not properly tested algorithm, erroneous decision could be made,
leading to an incorrect management of the network. The same configurations
have been also tested without uncertainties, and the proposed identification
algorithm has always correctly identified the node affected by the fault.
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In tables 3.8 to 3.11, the detection of the faulty node are reported for the
measurement scenario in Case 1, with reference to different POWs (respectively
POW = 0°, POW = 30°, POW = 60°and POW = 90°). In the following tables,
the performance of the algorithm are reported for both uncertainty scenarios S
and S + D. By comparing these results with those presented above, when the
measurement uncertainty was not taken into account, it is evident how, even if
the voltages in all nodes are monitored and the system is completely observed,
the uncertainties play a key role in the identification. The performance of the
methodology, when the uncertainty scenario characterized by lower uncertain-
ties, S, is considered, slightly decrease with respect to the ideal scenario. The
correct detection remains above 96% for all the nodes, and there are cases in
which it remains equal to 100%. The more realistic uncertainty scenario instead,
S + D, denotes performance strongly affected by measurement uncertainty. In
particular, the percentage of correct detection decreases to 60%, which results
in a not reliable detection. By comparing the results for both uncertainty sce-
narios, it is also evident how the more realistic scenario is also characterized by
a higher spread of the incorrect identifications which involve, sometimes, also
nodes which are far from the actual faulty one.

Table 3.8: Case 1, POW = 0°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 0,57 0 0 0 0 0 0 0 0 0 0
2 100 98,80 0 2,72 0 0,01 0 0 0 0 0 0
3 0 0,63 100 93,69 0 6,44 0 0,11 0 0 0 0,01
4 0 0 0 3,59 100 85,47 0 11,19 0 1,10 0 0,51
5 0 0 0 0 0 7,99 99,89 74,40 0,42 16,77 0 4,74
6 0 0 0 0 0 0,09 0,11 13,29 97,99 60,08 3,26 22,54
7 0 0 0 0 0 0 0 1,01 1,59 22,05 96,74 72,20

Table 3.9: Case 1, POW = 30°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 0,71 0 0 0 0 0 0 0 0 0 0
2 100 98,73 0 2,67 0 0,01 0 0 0 0 0 0
3 0 0,56 100 93,69 0 6,69 0 0,12 0 0 0 0,01
4 0 0 0 3,64 100 85,44 0 11,26 0 1,08 0 0,51
5 0 0 0 0 0 7,78 99,91 74,47 0,41 16,69 0 4,78
6 0 0 0 0 0 0,08 0,09 13,12 97,88 59,85 3,29 22,63
7 0 0 0 0 0 0 0 1,03 1,71 22,38 96,71 72,07
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Table 3.10: Case 1, POW = 60°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 0,76 0 0 0 0 0 0 0 0 0 0
2 100 98,69 0 2,56 0 0,01 0 0 0 0 0 0
3 0 0,55 100 93,75 0 6,34 0 0,11 0 0 0 0,01
4 0 0 0 3,69 100 85,44 0 11,21 0 1,24 0 0,51
5 0 0 0 0 0 8,10 99,88 74,36 0,56 17,52 0 4,81
6 0 0 0 0 0 0,11 0,12 13,31 98,43 60,93 3,23 22,46
7 0 0 0 0 0 0 0 1,01 1,01 20,31 96,77 72,21

Table 3.11: Case 1, POW = 90°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 0,52 0 0 0 0 0 0 0 0 0 0
2 100 98,86 0 2,85 0 0,01 0 0 0 0 0 0
3 0 0,62 100 93,63 0 6,70 0 0,09 0 0,00 0 0,01
4 0 0 0 3,52 100 85,38 0 10,71 0 1,24 0 0,51
5 0 0 0 0 0 7,84 99,81 74,03 0,65 18,00 0 4,73
6 0 0 0 0 0 0,07 0,19 14,02 98,45 60,93 3,31 22,71
7 0 0 0 0 0 0 0 1,15 0,90 19,83 96,69 72,04

Table 3.12 reports the percentages of identification with reference to the
measurement configuration of Case 2, when POW = 0°. As for Case 1, the
correct identification strongly depends on the uncertainty level. By comparing
these results to those of Case 1, it is also possible to see a small reduction
in the performance related to both uncertainty scenarios, due to the lack of
measurements. Moreover, the POW does not seem to affect the identification
of the faulty nodes as shown in table 3.13, table 3.14 and table 3.15, for POW
= 30°, 60°, and 90°, respectively.

Table 3.12: Case 2, POW = 0°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 1,18 0 0 0 0 0 0 0 0 0 0
2 100 91,30 0 13,74 0 1,58 0 0,01 0 0,01 0 0
3 0 7,49 99,99 78,76 0,01 10,86 0 0,23 0 0,12 0 0,04
4 0 0,03 0,01 7,50 99,54 68,06 0,91 21,00 0 7,47 0 1,75
5 0 0 0 0 0,45 16,88 97,85 58,05 2,30 19,55 0 3,09
6 0 0 0 0 0 2,62 1,24 19,79 93,31 45,99 5,81 25,13
7 0 0 0 0 0 0 0,00 0,92 4,39 26,86 94,19 69,99
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Table 3.13: Case 2, POW = 30°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 1,32 0 0 0 0 0 0 0 0 0 0
2 100 92,04 0 13,69 0 1,47 0 0,01 0 0,01 0 0
3 0 6,62 99,99 78,71 0,02 11,26 0 0,23 0 0,09 0 0,04
4 0 0,02 0,01 7,60 99,59 68,30 0,92 21,19 0 7,18 0 1,70
5 0 0 0 0 0,39 16,50 97,82 57,78 2,26 19,66 0 3,16
6 0 0 0 0 0 2,47 1,26 19,87 93,25 46,13 5,97 25,32
7 0 0 0 0 0 0 0 0,92 4,49 26,93 94,03 69,78

Table 3.14: Case 2, POW = 60°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 1,47 0 0 0 0 0 0 0 0 0 0
2 100 91,87 0 13,03 0 1,54 0 0,02 0 0,01 0 0
3 0 6,64 99,99 79,17 0,01 10,64 0 0,23 0 0,12 0 0,04
4 0 0,02 0,01 7,80 99,51 67,94 0,87 20,82 0 8,32 0 1,73
5 0 0 0 0 0,48 17,11 97,85 58,05 3,29 20,53 0 3,14
6 0 0 0 0 0 2,77 1,28 19,96 93,47 45,55 5,95 25,32
7 0 0 0 0 0 0 0 0,92 3,24 25,47 94,05 69,77

Table 3.15: Case 2, POW = 90°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 1,03 0 0 0 0 0 0 0 0 0 0
2 100 91,72 0 14,94 0 1,62 0 0,01 0 0,01 0 0
3 0 7,22 99,99 77,83 0,02 11,24 0,00 0,21 0 0,12 0 0,04
4 0 0,03 0,01 7,23 99,59 68,28 0,70 20,07 0 8,20 0 1,70
5 0 0 0 0 0,39 16,47 97,44 57,70 3,87 21,19 0 3,14
6 0 0 0 0 0 2,39 1,86 21,02 93,30 45,61 5,98 25,31
7 0 0 0 0 0 0 0 0,99 2,83 24,87 94,02 69,81

The identification corresponding to the uncertainty scenario of Case 3 are
reported in tables 3.16, 3.17, 3.18, and 3.19. Same considerations of the previous
cases hold. The static scenario is still characterized by identification rates higher
than 85%, while the more realistic scenario, S+D, reach the lower limit of 39%.
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Table 3.16: Case 3, POW = 0°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 1,48 0 0 0 0 0 0 0 0 0 0
2 100 90,79 0,03 14,32 0 0,77 0 0,56 0 0,28 0 0,08
3 0 7,73 98,77 60,90 2,67 25,34 0,00 9,56 0 1,91 0 0,31
4 0 0 1,20 20,99 97,00 57,51 1,17 15,62 0 1,75 0 0,16
5 0 0 0 3,79 0,33 16,18 96,00 48,95 4,73 25,45 0 7,22
6 0 0 0 0 0 0,20 2,83 22,54 87,38 39,36 9,99 26,26
7 0 0 0 0 0 0 0 2,77 7,89 31,25 90,01 65,97

Table 3.17: Case 3, POW = 30°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 1,68 0 0 0 0 0 0 0 0 0 0
2 100 91,54 0,03 13,92 0 0,71 0 0,53 0 0,27 0 0,08
3 0 6,78 98,61 60,67 2,23 24,73 0 9,18 0 1,86 0 0,31
4 0 0 1,36 21,45 97,45 58,18 0,98 15,42 0 1,66 0 0,16
5 0 0 0 3,96 0,32 16,18 95,62 48,79 4,43 25,31 0 7,29
6 0 0 0 0 0 0,20 3,40 23,13 87,37 39,43 10,14 26,24
7 0 0 0 0 0 0 0 2,95 8,20 31,47 89,86 65,92

Table 3.18: Case 3, POW = 60°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 1,85 0 0 0 0 0 0 0 0 0 0
2 100 91,42 0,01 13,14 0 0,73 0 0,61 0 0,29 0 0,08
3 0 6,73 98,25 60,44 2,27 24,75 0,01 9,94 0 1,97 0 0,26
4 0 0 1,74 22,16 97,35 57,54 1,49 16,07 0 2,09 0 0,16
5 0 0 0 4,26 0,38 16,77 96,32 49,15 5,88 26,27 0 7,16
6 0 0 0 0 0 0,21 2,18 21,67 87,44 39,14 9,54 25,94
7 0 0 0 0 0 0 0 2,56 6,68 30,24 90,46 66,40

Table 3.19: Case 3, POW = 90°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 1,37 0 0 0 0 0 0 0 0 0 0
2 100 91,08 0,03 15,13 0 0,80 0 0,61 0 0,27 0 0,08
3 0 7,55 99,08 61,22 3,03 26,01 0,00 9,72 0 1,98 0 0,32
4 0 0 0,89 20,22 96,71 57,43 1,03 15,23 0 2,16 0 0,16
5 0 0 0 3,43 0,26 15,56 95,86 48,77 6,22 26,54 0 7,38
6 0 0 0 0 0 0,20 3,11 22,85 87,55 39,13 10,50 26,40
7 0 0 0 0 0 0 0 2,82 6,23 29,92 89,50 65,66

Finally, the identification results corresponding to the measurement config-
uration of Case 4 are reported in tables 3.20, 3.21, 3.22, and 3.23. This case

62



CHAPTER 3. FAULT LOCATION

study is characterized by very low percentages of correct detection, for some
nodes even lower than 20%, e.g. the identification of fault on node 6 with the
realistic uncertainty scenario. It is evident how, under realistic measurement
conditions, the fault location algorithm is no longer capable to provide accurate
detections for all the fault conditions.

Table 3.20: Case 4, POW = 0°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 2,96 0 0 0 0 0 0 0 0 0 0
2 100 87,93 0,08 16,72 0 1,41 0 0,14 0 0 0 0
3 0 9,11 98,49 59,35 3,73 26,80 0 8,88 0 2,91 0 1,07
4 0 0 1,43 21,27 86,63 38,32 12,31 26,50 0,08 15,59 0 8,86
5 0 0 0 2,56 9,64 21,10 69,39 26,00 20,24 21,35 1,82 15,98
6 0 0 0 0,10 0 7,97 17,71 17,19 53,31 18,40 25,61 16,71
7 0 0 0 0 0 4,40 0,59 21,29 26,37 41,75 72,57 57,38

Table 3.21: Case 4, POW = 30°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 3,18 0 0 0 0 0 0 0 0 0 0
2 100 88,64 0,06 16,41 0 1,31 0 0,14 0 0 0 0
3 0 8,18 98,32 58,73 3,22 26,30 0 8,53 0 2,86 0 1,07
4 0 0 1,62 22,03 86,32 38,20 10,97 26,16 0,08 15,58 0 8,87
5 0 0 0 2,71 10,45 21,41 68,47 25,67 20,38 21,43 1,79 15,95
6 0 0 0 0,11 0,01 8,20 19,82 17,46 53,48 18,64 25,45 16,66
7 0 0 0 0,01 0 4,58 0,74 22,04 26,06 41,49 72,76 57,45

Table 3.22: Case 4, POW = 60°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 3,51 0 0 0 0 0 0 0 0 0 0
2 100 88,55 0,01 15,38 0 1,31 0 0,17 0 0,01 0 0
3 0 7,94 97,73 58,53 3,13 26,21 0 9,23 0 2,95 0 1,01
4 0 0 2,26 23,03 85,88 38,04 13,73 27,08 0,09 15,57 0 8,60
5 0 0 0 2,87 10,98 21,52 69,86 25,97 20,03 21,15 1,56 15,83
6 0 0 0 0,18 0,01 8,23 15,94 17,00 52,83 18,31 24,11 16,51
7 0 0 0 0,01 0 4,69 0,47 20,55 27,05 42,01 74,33 58,05
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Table 3.23: Case 4, POW = 90°- Percentages of fault detection

Bus
number

Faulted bus
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

S S + D S S + D S S + D S S + D S S + D S S + D
1 0 2,57 0 0 0 0 0 0 0 0 0 0
2 100 88,26 0,12 17,92 0 1,47 0 0,15 0 0 0 0
3 0 9,17 98,85 59,48 4,34 27,58 0 9,08 0 2,95 0 1,10
4 0 0 1,03 20,29 87,53 38,60 13,13 26,93 0,08 15,45 0 9,19
5 0 0 0 2,21 8,13 20,67 69,81 25,82 19,62 21,15 2,10 16,31
6 0 0 0 0,10 0 7,62 16,55 17,18 53,00 18,34 27,45 16,72
7 0 0 0 0 0 4,06 0,51 20,84 27,30 42,11 70,45 56,68

The algorithm here proposed, similarly to other proposals in the literature,
was perfectly capable of identifying the node affected by the fault, when no
uncertainties or moderate ones are considered. But the results reported above
underline how, it is extremely important to correctly assess fault location algo-
rithm performance in the presence of realistic measurement uncertainties.

3.4 Fault on branch

Once the impact of the measurement uncertainties has been established, a sec-
ond consideration regarding the fault location must be done. The model pre-
sented above, (3.9), can be easily applied for analysis involving faults occurring
at the nodes. However, it has to be noticed that faults occur also along the
branches of the network. These kinds of faults can be detected by considering
a modified version of the modellization presented above.

In these cases, the impedance matrix, and thus the model of the system
itself, changes, as if a virtual node has been created. Since it is not possible to
know a priori the exact location of the fault, the corresponding model cannot
be built properly. As proposed in [92], starting from the model of eq.(3.9), the
fault occurring on a branch can be modelled by means of two current injection
contributions, coming from the nodes delimiting the branch, as shown in figure
3.4.

i j i j

Figure 3.4: Fault on branches, source model.

The proposed fault location algorithm, based on the identification of the
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nodes delimiting the branch involved in the fault is reported in the following
Algorithm 3 box.

Algorithm 3 Block Orthogonal Matching Pursuit (BOMP) for fault location
in branches
Input: r0 = Vrx

dur, A∗b = [ ], Sb, it = 1

1: find, and select, one of the two nodes contributing to the fault, by applying
the BOMP algorithm to the system in the form (3.9), considering a block-
sparsity level Sb = 1;

2: identify all the branches converging to the selected node, i, and the corre-
sponding terminal nodes;

3: for each pair of nodes (i, j) delimiting the branches identified in the previous
step, build the sub-matrix Zrxbus,ij composed of the related column blocks i
and j;

4: for each pair of nodes (i, j), estimate their resulting current injections by
solving ∆Jrxij = Zrx+

bus,ij ·∆Vrx, where Zrx+
bus,ij is the pseudo-inverse of Zrxbus,ij ;

5: identify the branch associated to the pair of nodes (i, j) with the largest
overall current injection (calculated as the magnitude of the sum of the
contributions at the two nodes) and label it as the faulty branch.

Output: ∆Jrx

To better understand the presented algorithm, a small example is reported
in the following. Starting from the system in figure 3.5, a single line-to-ground
fault is considered on the branch included between node 2 and node 3.

1 2

3

4

5

Figure 3.5: Example grid.

Through the application of the BOMP algorithm, step 1, the proposed tech-
nique identifies one node among node 2 and node 3, as one of the two con-
tributing to the fault current. Let us suppose that the identified node is node
2. Consequently, all the branches converging to this node are selected and their
terminal nodes are eligible to be selected as second contributors to the fault. In
this step, the incidence matrix of the system can be used to identify the pairs of
nodes delimiting each branch. In fact, as shown in (3.10) for the example grid
in figure 3.5, this matrix contains as many rows as the number of branches of
the network, and as many columns as the number of nodes. The entries of each
row are set to 1 in correspondence of the columns which represent the terminal
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nodes of the considered branch, otherwise are zeros.

Ainc =



bus 1 bus 2 bus 3 bus 4 bus5

branch 1 1 1 0 0 0

branch 2 0 1 1 0 0

branch 3 0 1 0 1 0

branch 4 0 0 1 0 1

 (3.10)

The use of the incidence matrix makes the identification of the branches con-
verging to the node, i, selected during the first step, immediate. This branches
correspond to the rows of Ainc whose entries are 1 in correspondence of the col-
umn associated to bus i. Then, by inspecting these rows, the delimiting nodes
of the branches are automatically determined. In the considered example, node
2 corresponds to the second column of Ainc, and thus the possible pair of nodes
which should be investigated, and considered during the following steps, are:
(1,2), (3,2) and (4,2). The estimation of the contributions provided by each
pair of nodes, as reported in step 4, is then carried out by solving the following
equations:

∆Jrx12 = Zrx+
bus,12 ·∆Vrx (3.11a)

∆Jrx32 = Zrx+
bus,32 ·∆Vrx (3.11b)

∆Jrx42 = Zrx+
bus,42 ·∆Vrx (3.11c)

where ∆Jrxij is the subset of the state vector ∆Jrx that includes only the cur-
rent injections at nodes i and j, while Zrx+

bus,ij is the already mentioned pseudo-
inverse of the matrix obtained extracting from Zrxbus only the column blocks
related to nodes i and j. Finally, in step 5, the estimated current injections
are compared with each other to detect the faulty branch. In the example here
considered, the pair of nodes (3,2) should give the largest overall injection to
allow the correct identification of the fault location.

3.4.1 Tests and Results

The proposed algorithm is now tested on the same test grid proposed in Section
3.3.1. Obviously, in this case, the faults will be simulated along the branches. In
particular, three different fault positions are considered for each branch: 25%,
50%, and 75% of the length of the considered branch. Only one fault at the
time will be considered.

Also in these tests, different measurement scenarios are considered, according
to those reported in table 3.7, thus:

• Case 1, the ideal and less realistic one, in which the voltages in all nodes
are considered monitored;
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• Case 2, where the number of measurements is reduced to one every two
nodes;

• Case 3, the voltages are measured every three nodes;

• Case 4, which considers a measurement placement with only two nodes
monitored, the substation (node 1) and the last node of the network (node
7).

For sake of simplicity, the first results presented refer to the ideal scenario
when no uncertainties are considered. Even if this scenario is not realistic, it
allows to better understand the performance of the proposed algorithm, with
reference to the contributions of the delimiting nodes to the fault current.

For all measurement scenarios, the proposed algorithm provides a perfect
identification of the faulted branch. In table 3.24 and table 3.25 the identifi-
cation of the fault branch is reported for Case 1 and Case 4 respectively. For
each possible fault, rows, the detected branches, columns, are reported. These
results validate the algorithm under ideal conditions, since a perfect detection
is obtained for every possible fault.

Table 3.24: Case 1 without uncertainties - branch fault detection

Faulty
section

Detected branch [%]
1 2 3 4 5 6

1 25% 100 0 0 0 0 0
1 50% 100 0 0 0 0 0
1 75% 100 0 0 0 0 0
2 25% 0 100 0 0 0 0
2 50% 0 100 0 0 0 0
2 75% 0 100 0 0 0 0
3 25% 0 0 100 0 0 0
3 50% 0 0 100 0 0 0
3 75% 0 0 100 0 0 0
4 25% 0 0 0 100 0 0
4 50% 0 0 0 100 0 0
4 75% 0 0 0 100 0 0
5 25% 0 0 0 0 100 0
5 50% 0 0 0 0 100 0
5 75% 0 0 0 0 100 0
6 25% 0 0 0 0 0 100
6 50% 0 0 0 0 0 100
6 75% 0 0 0 0 0 100
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Table 3.25: Case 4 without uncertainties - branch fault detection

Faulty
section

Detected branch [%]
1 2 3 4 5 6

1 25% 100 0 0 0 0 0
1 50% 100 0 0 0 0 0
1 75% 100 0 0 0 0 0
2 25% 0 100 0 0 0 0
2 50% 0 100 0 0 0 0
2 75% 0 100 0 0 0 0
3 25% 0 0 100 0 0 0
3 50% 0 0 100 0 0 0
3 75% 0 0 100 0 0 0
4 25% 0 0 0 100 0 0
4 50% 0 0 0 100 0 0
4 75% 0 0 0 100 0 0
5 25% 0 0 0 0 100 0
5 50% 0 0 0 0 100 0
5 75% 0 0 0 0 100 0
6 25% 0 0 0 0 0 100
6 50% 0 0 0 0 0 100
6 75% 0 0 0 0 0 100

An interesting information of these tests is also the relation between the
contribution of the delimiting nodes to the fault current and the position of the
fault. In fact, according to the results presented in [92], through the comparison
of the contributions of the current injections estimated with Algorithm 3, it
is possible to estimate, indicatively, the section of the branch in which the
fault occurred. Since the overall fault current is given by the sum of the two
contributions (IF =

∥∥∆Jrxi + ∆Jrxj
∥∥

2
), the percentage of the contribution given

by each node is:

Ji =
‖∆Jrxi ‖2

IF
× 100 Jj =

∥∥∆Jrxj
∥∥

2

IF
× 100 (3.12)

Consequently, with reference to the example proposed above, if node 2 will
result in a contribution of J2 = 20% the fault will probably be more close to
node 3 (which will have a contribution of J3 = 80%), most likely nearby the
last 20% of the branch.

Table 3.26 reports the results of this analysis, for Case 1. Here, for each
considered fault, the contributions of the nodes delimiting the branch identified
as fault are reported. The values are reported in percentage with respect to
the overall estimated fault current. For example, let us consider the result
corresponding to the fault on branch 4. From table 3.26 it is possible to see
that when the fault occurs at 25% of the branch, the higher contribution to the
fault comes from node 4 (88%), while node 5 contributes for just the 12%.
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Table 3.26: Case 1 without uncertainties - node current injection contributions

Faulty
section

Injecting bus [%]
1 2 3 4 5 6 7

1 25% 84,38 15,62 0 0 0 0 0
1 50% 37,90 62,10 0 0 0 0 0
1 75% 6,24 93,76 0 0 0 0 0
2 25% 0 85,67 14,33 0 0 0 0
2 50% 0 39,89 60,11 0 0 0 0
2 75% 0 6,77 93,23 0 0 0 0
3 25% 0 0 87,01 12,99 0 0 0
3 50% 0 0 42,85 57,15 0 0 0
3 75% 0 0 7,61 92,39 0 0 0
4 25% 0 0 0 88,08 11,92 0 0
4 50% 0 0 0 44,88 55,12 0 0
4 75% 0 0 0 8,38 91,62 0 0
5 25% 0 0 0 0 88,66 11,34 0
5 50% 0 0 0 0 46,49 53,51 0
5 75% 0 0 0 0 9,05 90,95 0
6 25% 0 0 0 0 0 89,55 10,45
6 50% 0 0 0 0 0 48,64 51,36
6 75% 0 0 0 0 0 9,85 90,15

When the fault occurs at 50% of the branch, the contributions are more
balanced: 45% from node 4 and 55% from node 5. Whereas, for a fault occurring
at 75% of the branch, the higher contribution (92%) comes from bus 5. A similar
behaviour can be seen for all the branches, with only few cases in which this
relation is less balanced. Same considerations hold also for Case 2, Case 3 and
Case 4, as shown, respectively, in tables 3.27 to 3.29.

Table 3.27: Case 2 without uncertainties - node current injection contributions

Faulty
section

Injecting bus [%]
1 2 3 4 5 6 7

1 25% 85,05 14,95 0 0 0 0 0
1 50% 39,14 60,86 0 0 0 0 0
1 75% 6,54 93,46 0 0 0 0 0
2 25% 0 85,37 14,63 0 0 0 0
2 50% 0 39,06 60,94 0 0 0 0
2 75% 0 6,58 93,42 0 0 0 0
3 25% 0 0 87,28 12,72 0 0 0
3 50% 0 0 43,46 56,54 0 0 0
3 75% 0 0 7,79 92,21 0 0 0
4 25% 0 0 0 87,82 12,18 0 0
4 50% 0 0 0 43,97 56,03 0 0
4 75% 0 0 0 8,06 91,94 0 0
5 25% 0 0 0 0 88,82 11,18 0
5 50% 0 0 0 0 46,76 53,24 0
5 75% 0 0 0 0 9,16 90,84 0
6 25% 0 0 0 0 0 89,15 10,85
6 50% 0 0 0 0 0 47,45 52,55
6 75% 0 0 0 0 0 9,39 90,61
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Table 3.28: Case 3 without uncertainties - node current injection contributions

Faulty
section

Injecting bus [%]
1 2 3 4 5 6 7

1 25% 85,49 14,51 0 0 0 0 0
1 50% 40,21 59,79 0 0 0 0 0
1 75% 6,76 93,24 0 0 0 0 0
2 25% 0 85,71 14,29 0 0 0 0
2 50% 0 39,68 60,32 0 0 0 0
2 75% 0 6,70 93,30 0 0 0 0
3 25% 0 0 86,27 13,73 0 0 0
3 50% 0 0 41,12 58,88 0 0 0
3 75% 0 0 7,40 92,60 0 0 0
4 25% 0 0 0 88,58 11,42 0 0
4 50% 0 0 0 45,73 54,27 0 0
4 75% 0 0 0 8,49 91,51 0 0
5 25% 0 0 0 0 88,62 11,38 0
5 50% 0 0 0 0 45,74 54,26 0
5 75% 0 0 0 0 8,94 91,06 0
6 25% 0 0 0 0 0 89,09 10,91
6 50% 0 0 0 0 0 45,53 54,47
6 75% 0 0 0 0 0 9,48 90,52

Table 3.29: Case 4 without uncertainties - Node current injection contributions

Faulty
section

Injecting bus [%]
1 2 3 4 5 6 7

1 25% 86,59 13,41 0 0 0 0 0
1 50% 42,31 57,69 0 0 0 0 0
1 75% 7,31 92,69 0 0 0 0 0

2 25% 0 86,50 13,50 0 0 0 0
2 50% 0 41,26 58,74 0 0 0 0
2 75% 0 7,07 92,93 0 0 0 0

3 25% 0 0 86,73 13,27 0 0 0
3 50% 0 0 41,81 58,19 0 0 0
3 75% 0 0 7,59 92,41 0 0 0

4 25% 0 0 0 87,74 12,26 0 0
4 50% 0 0 0 44,76 55,24 0 0
4 75% 0 0 0 8,11 91,89 0 0

5 25% 0 0 0 0 88,82 11,18 0
5 50% 0 0 0 0 43,63 56,37 0
5 75% 0 0 0 0 8,86 91,14 0

6 25% 0 0 0 0 0 89,74 10,26
6 50% 0 0 0 0 0 46,67 53,33
6 75% 0 0 0 0 0 9,87 90,13

Now, the performance of the fault location technique will be evaluated by
considering the most realistic uncertainty scenario presented in the previous
section: S+D. The following analysis will be conducted by performing 10000 MC
simulations for each considered fault. During each MC trial the measurement
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error will be extracted from a uniform distribution, with limits defined according
to the accuracy classes in table 3.30.

Table 3.30: Identification of faults on branches, uncertainty scenarios

S + D
pre-fault during-fault

VT class 0.5 3P
PMU TVEmax 1% 3%

Table 3.31 reports the percentage of identification of the faulty branch for
Case 1. As expected, due to the uncertainty scenario, the performance of the
proposed algorithm, which was perfectly identifying the faulty branch when
no uncertainties were considered, strongly decreases. The impact of the mea-
surement error is even more evident when the others measurement placement
configurations are considered. Case 2, Case 3 and Case 4 results are reported,
respectively in table 3.32, table 3.33 and table 3.34.

Table 3.31: Case 1 with uncertainties - Branch fault detection

Faulty
section

Detected branch [%]
1 2 3 4 5 6

1 25% 100 0 0 0 0 0
1 50% 98,60 1,40 0 0 0 0
1 75% 81,15 18,85 0 0 0 0
2 25% 14,62 85,14 0,24 0 0 0
2 50% 2,74 92,52 4,74 0 0 0
2 75% 0,52 76,87 22,60 0 0 0
3 25% 0 22,27 76,15 1,57 0 0
3 50% 0 7,54 83,14 9,28 0 0
3 75% 0 2,22 71,04 26,56 0,18 0
4 25% 0 0,17 27,93 67,51 4,33 0
4 50% 0 0,04 13,37 72,49 13,73 0,37
4 75% 0 0 5,90 64,36 28,54 1,18
5 25% 0 0 1,23 32,84 56,18 9,75
5 50% 0 0 0,69 19,92 59,78 19,61
5 75% 0 0 0,38 11,26 56,50 31,86
6 25% 0 0 0 4,74 36,75 58,35
6 50% 0 0 0 3,51 27,02 69,32
6 75% 0 0 0 2,67 19,34 77,88

Looking at the identification percentages reported in these tables it is pos-
sible to see how, when the number of measurement is reduced, the proposed
algorithm begin to identify less accurately the faulty branch and erroneously
identify not only the branches directly connected to the faulty one, but also
branches which are more distant. In such scenario, the measurement uncertain-
ties not only impact on the identification of the faulty branch, but can also affect
the estimation of the contribution of the delimiting nodes to the fault current,
and thus the estimation of the branch section which is affected by the fault.

71



CHAPTER 3. FAULT LOCATION

Single phase-to-ground faults are characterized by lower fault currents, and
higher unbalances in the system, with respect to three phase-to-ground faults.

Table 3.32: Case 2 with uncertainties - branch fault detection

Faulty
section

Detected branch [%]
1 2 3 4 5 6

1 25% 100 0 0 0 0 0
1 50% 99,73 0,27 0 0 0 0
1 75% 87,05 12,94 0,01 0 0 0
2 25% 28,01 63,87 8,12 0 0 0
2 50% 12,03 66,18 21,79 0 0 0
2 75% 4,95 57,00 38,05 0 0 0
3 25% 1,29 26,07 70,93 1,69 0,02 0
3 50% 0,83 14,22 75,57 9,05 0,33 0
3 75% 0,49 6,94 67,69 22,57 2,26 0,05
4 25% 0,09 1,28 36,90 45,72 15,29 0,72
4 50% 0,05 0,64 23,41 49,14 25,40 1,36
4 75% 0,03 0,19 13,92 47,09 36,34 2,43
5 25% 0,01 0,04 6,63 31,47 51,08 10,77
5 50% 0,01 0,02 5,12 22,79 51,34 20,72
5 75% 0,01 0,02 4,20 15,86 47,94 31,97
6 25% 0,01 0,01 2,51 7,54 33,47 56,46
6 50% 0 0,01 1,78 4,86 26,20 67,15
6 75% 0 0,02 1,32 2,92 20,32 75,42

Table 3.33: Case 3 with uncertainties - Branch fault detection

Faulty
section

Detected branch [%]
1 2 3 4 5 6

1 25% 100 0 0 0 0 0
1 50% 99,44 0,56 0 0 0 0
1 75% 86,24 13,76 0 0 0 0
2 25% 28,22 69,80 1,92 0,06 0 0
2 50% 12,43 77,28 8,97 1,31 0,01 0
2 75% 5,32 69,38 19,50 5,72 0,08 0
3 25% 0,88 42,80 32,17 23,77 0,38 0
3 50% 0,50 31,43 32,82 34,39 0,86 0
3 75% 0,22 22,33 31,66 44,31 1,48 0
4 25% 0,11 13,06 21,21 58,21 7,33 0,08
4 50% 0,10 10,89 14,72 56,99 16,67 0,63
4 75% 0,10 8,65 9,73 51,31 27,60 2,61
5 25% 0,13 4,79 3,86 34,82 42,55 13,85
5 50% 0,13 3,13 2,32 27,21 44,10 23,11
5 75% 0,12 2,34 1,38 19,78 43,53 32,85
6 25% 0,05 1,21 0,49 9,77 35,98 52,50
6 50% 0,05 0,69 0,32 6,60 31,09 61,25
6 75% 0,03 0,48 0,20 4,74 26,42 68,13

According to the compressive sensing theory, the ability to recover sparse
signals in presence of measurement errors, depends not only on the bound of
the measurement errors, but also on the entity of the non-zero entries which one
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wants to recover. In this regard, it is clearly of interest to study the performance
of the proposed algorithm, also in presence of a three phase-to-ground fault.

Table 3.34: Case 4 with uncertainties - Branch fault detection

Faulty
section

Detected branch [%]
1 2 3 4 5 6

1 25% 100 0 0 0 0 0
1 50% 98,91 1,09 0 0 0 0
1 75% 84,42 15,58 0 0 0 0
2 25% 30,01 67,49 2,50 0 0 0
2 50% 14,69 73,82 11,36 0,13 0 0
2 75% 6,63 66,96 24,99 1,42 0 0
3 25% 1,44 43,35 42,52 10,91 1,63 0,15
3 50% 0,71 31,77 45,84 16,96 3,86 0,86
3 75% 0,43 23,41 44,63 22,04 6,99 2,50
4 25% 0,16 12,36 37,64 28,10 12,81 8,93
4 50% 0,10 8,89 33,69 28,58 15,44 13,30
4 75% 0,08 6,13 29,03 29,07 17,46 18,23
5 25% 0,02 3,33 21,19 27,27 19,61 28,58
5 50% 0,01 2,29 18,00 25,97 19,87 33,86
5 75% 0,01 1,73 15,47 24,31 19,61 38,87
6 25% 0 0,95 11,19 20,47 19,43 47,96
6 50% 0 0,69 9,62 18,72 18,76 52,21
6 75% 0 0,53 8,22 17,35 18,21 55,69

In table 3.35 the percentages of identification in case of three phase-to-ground
fault, considering the measurement configuration of Case 4, are reported.

Table 3.35: Case 4 with uncertainties, 3 phase-to-ground faults - Branch fault
detection

Faulty
section

Detected branch [%]
1 2 3 4 5 6

1 25% 100 0 0 0 0 0
1 50% 100 0 0 0 0 0
1 75% 100 0 0 0 0 0
2 25% 0 100 0 0 0 0
2 50% 0 100 0 0 0 0
2 75% 0 100 0 0 0 0
3 25% 0 0 99,80 0 0 0
3 50% 0 0 100 0 0 0
3 75% 0 0 96,77 3,23 0 0
4 25% 0 0 8,37 91,63 0 0
4 50% 0 0 0,10 99,36 0,54 0
4 75% 0 0 0 87,89 12,11 0
5 25% 0 0 0 20,92 78,80 0,28
5 50% 0 0 0 3,25 91,02 5,73
5 75% 0 0 0 0,27 80,65 19,08
6 25% 0 0 0 0 30,75 69,25
6 50% 0 0 0 0 9,76 90,24
6 75% 0 0 0 0 2,46 97,54
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Contrarily to the results presented in table 3.34, here the algorithm provides
a more accurate detection, which reaches the minimum level of 70% only in the
case of a fault occurring at the beginning of branch 6 (first 25% of the branch).
Moreover, when an incorrect detection occurs, the identified branch is always
adjacent to the actual faulty one.

Such performance is very interesting, since obtained by considering just two
voltage measurements, one in the substation and one at the end of the grid.

In this scenario, also the analysis of the contributions of the delimiting nodes,
to the fault current, is possible. In figure 3.6 the statistics of the occurrences
depending on the contribution of node 5, when faults occur on branch 4, are
presented. The contribution given by node 5 is presented on the x-axis with a
resolution of 10%, where 0% denotes no contribution and 100% indicates that
the fault current is entirely injected by node 5. Consequently, the histogram bar
between two percentages, c1 and c2, represents the number of trials in which
the contribution of node 5 to the fault current was between c1 and c2. For
faults occurring at 25% of the branch, the contribution provided by node 5 is,
in general, very low (it is lower than 30% for more than 6000 MC trials) which
corresponds to a higher contribution coming from the other delimiting node,
node 4. Same considerations hold for a fault occurring in the final section of
the branch, in which the higher contribution is given by node 5. Instead, when
faults occurring at 50% of the network are considered, it is evident how, in this
particular case, the identification of the faulty section is less accurate, but it
still gives an interesting indication.
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Figure 3.6: Case 4 with uncertainties, 3 phase-to-ground faults - Fault on line
4-5, contribution of node 5 to the fault.

Instead, as shown in figure 3.7, considering the contributions of node 4 to
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faults on line 3, also in the case of faults occurring in the middle of the branch,
the analysis of the contributions allows a better location of the fault.
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Figure 3.7: Case 4 with uncertainties, 3 phase-to-ground faults - Fault on line
3-4, contribution of node 4 to the fault.

When the measurement uncertainties are neglected, the algorithm here pre-
sented allows to perfectly identify the faulty nodes and branches. In particular,
through the analysis of the current contribution given by the terminal nodes
of the faulty branch, it has been shown that further information on the exact
location of the fault can be carried out. Nevertheless, a degradation of the per-
formance occurs when the measurement uncertainties are taken into account,
especially when single line-to-ground faults are considered. This is due to the
measurement uncertainties, which are particularly high due to the dynamics
of the involved signals. Additional information should be added, in order to
improve the performance of the CS-based algorithm.

3.5 Impact of branch current measurements

Until now, only voltage measurements have been considered. Usually, current
measurements were neglected in fault location applications, due to the satura-
tion of the current transformers and the consequent high uncertainties of the
measurements provided in the during-fault scenario [75, 93]. Nowadays, when
considering a realistic measurement scenario for smart grid applications, it is
reasonable to think on the availability of measurement transformers suitable for
this purpose, such as the low power current transformers (LPCT) that are the
corresponding of the LPVT for current measurements. To avoid the iron core,
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the working principle of these sensors is typically based on the Rogowski coil.
Moreover, it is worth mentioning that combined low power transformers, which
permits to monitor both voltage and current by merging the characteristics of
both LPVT and LPCT, are commercially available [94, 95]. Using combined
transformers together with PMUs, which allows to measure both voltages and
currents with just one device, it is possible to improve the performance of the
fault location algorithm with a limited number of measurement points.

In this regard, with reference to the identification of faults occurring on
nodes, the model of the system under analysis presented in (3.8) should be
modified, in order to include also the branch currents measurement:[

∆V

∆Ibr

]
=

[
AV

AI

]
∆I + e (3.13)

where ∆V ∈ Cmv is the vector of the mv measured voltage variations be-
tween pre- and during fault conditions, ∆Ibr ∈ Cmi is a similar vector including
themi measured branch current phasor variations between pre- and during fault
scenario, AV ∈ Cmv×n is the sub-matrix linking the voltage measurements to
the state vector, and AI ∈ Cmi×n is the sensing matrix that describes the mea-
sured branch currents as functions of the bus current injections within the state
vector.

In particular, if the voltage V j at the bus j is measured, the corresponding
row in AV is the j-th row of the network impedance matrix Zbus. Instead, the
row of matrix AI corresponding to the measurements of the current flowing from
bus i to bus j, is obtained by multiplying a row vector composed of admittance
terms by the impedance matrix Zbus. Consequently, the sensing matrix of (3.13)
can be also expressed as:

A =

[
AV

AI

]
=

[
LV

LI

]
· Znet (3.14)

where LV ∈ Cmv×n is a binary matrix, whose entries, for each row, are
equal to 1 only in correspondence of the index of the node where the voltage
measurement is placed, otherwise are zeros. To better understand, the voltage
measurement at the j -th bus of the network will be included in the matrix LV

(row k if it is the kth measurement) with the row:

LV,k =
j[ ]

0 . . . 1 . . . 0 (3.15)

Instead, each row of the sub-matrix related to the branch current measure-
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ments, LI ∈ Cmi×n, has, as non-zero elements, the longitudinal component of
the admittance of the corresponding monitored branch, placed in correspon-
dence of the indexes of the starting and receiving nodes of the branch; while the
other entries are set to zero. In addition, since the branch model should also
include the shunt susceptances, the shunt admittance is added to the vector en-
try associated to the starting node. For example, for a generic measurement of
the branch current flowing from bus i to bus j, there are two non-zero elements
of the corresponding l-th row of LI . They are given by the branch admittance
yi,j summed with the shunt admittance yi,j sh and by −yi,j in the positions i
and j of the vector, respectively. The l-th row is thus:

LI,l =
i j[ ]

0 . . . yi,j + yi sh 0 −yi,j . . . 0 (3.16)

Now that the meaning of the matrices in (3.13) is clear, the system can be
expressed in terms of real and imaginary parts, as done in the previous section.


∆Vr

∆Vx

∆Irbr

∆Ixbr

 =


Ar
V −Ax

V

Ax
V Ar

V

Ar
I −Ax

I

Ax
I Ar

I


[

∆Jr

∆Jx

]
+

[
er

ex

]

∆Yrx = Arx∆Jrx + erx

(3.17)

Vector ∆Yrx in (3.17) is the vector representing the variation of the mea-
surements between pre- and during-fault scenarios, obtained by concatenating
both ∆Vrx and ∆Irxbr vectors. Also in this case, the representation in (3.17) al-
lows to recover the non-zero components of the state vector, ∆Jrx, by applying
the BOMP algorithm, see Algorithm 2 in Section 1.6.3, considering blocks of
size 2.

3.5.1 Tests and Results

The performance of the proposed solution are tested in the following, by consid-
ering the test grid already presented in Section 3.3.1, simulated on RTDS. Also
in this case, the algorithm will be tested by considering a realistic uncertainty
scenario.

The accuracy classes for measurements obtained by means of the current
transformers (CTs), as described in the corresponding standard [96], are re-
ported in table 3.36 and table 3.37 for measurement and protection purposes
respectively.
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Table 3.36: Accuracy requirements for measurement purpose current transform-
ers [96]

Transformer
purpose

Accuracy
Class

Ratio error
[%]

Phase displacement
[± crad ]

at current (% of rated) at current (% of rated)
5 20 100 120 5 20 100 120

M 0.1 0.4 0.2 0.1 0.1 0.45 0.24 0.15 0.15
M 0.2 0.75 0.35 0.2 0.2 0.9 0.45 0.3 0.3
M 0.5 1.5 0.75 0.5 0.5 2.7 1.35 0.9 0.9
M 1 3.0 1.5 1.0 1.0 5.4 2.7 1.8 1.8

Table 3.37: Accuracy requirements for protection purpose current transformers
[96]

Transformer
purpose

Accuracy
Class

Ratio error
[%]

Phase displacement
[± crad ]

Protection 5P 1 1.8
10P 3 not specified

With reference to CTs for measurement purpose, the accuracy for both ra-
tio error and phase displacement are reported, for each accuracy class, with
reference to the effective measured current, considered as a percentage of the
nominal current. Instead, the maximum errors for protection purpose CTs are
defined only at the rated with rated burden connected. In particular, in the
following tests, the considered accuracy classes are chosen based on the ones
of the most installed in distribution systems: 0.5 and 5P for measurement and
protection purpose respectively.

With regard to the measurements provided by the PMUs, the performance
in case of current measurements are the same presented in table 3.2, for the
voltage measurements. Thus, the uncertainty scenario here considered is briefly
summarized in the following table:

Table 3.38: Uncertainty Scenarios

Pre-fault During fault

CT class 0.5 5P
VT class 0.5 3P

PMU TVEmax 1% 3%

Moreover, since the impact of the branch current measurements on the fault
location is of interest in this section, different measurement placement configu-
ration will be considered. Starting from a case study in which only voltage mea-
surements are available, the effects of introducing a new current measurement
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in the fault location analysis will be compared with the effects corresponding to
the inclusion of a new voltage measurements.

Table 3.39: Impact of branch current - Measurement placement test cases

Test case Voltage meas. Current meas.

Case 1 V1, V7 -
Case 2 V1, V4, V7 -
Case 3 V1, V7 Ibr12

Case 4 V1, V7 Ibr45

Case 5 V1, V7 Ibr12 , Ibr45
Case 6 V1 Ibr12 , Ibr45 , Ibr67

Case 1 and Case 2 have already been presented in Section 3.3.1, with ref-
erence to the comparison between different uncertainty scenarios (respectively,
Case 4 and Case 3). Now, the corresponding results with reference to the realis-
tic uncertainty scenario, S+D, are reported again in the following, respectively
in table 3.40 and table 3.41 for sake of clarity. Case 1 is considered here as a
starting point, in which it is not possible to rely on the identification provided
by the proposed algorithm due to the inaccurate detections, especially for faults
occurring on nodes 4, 5, and 6.

Table 3.40: Case 1 with measurement uncertainties S + D

Detected
node

Fault node
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

1 2,96 0 0 0 0 0
2 87,93 16,72 1,41 0,14 0 0
3 9,11 59,35 26,80 8,88 2,91 1,07
4 0 21,27 38,32 26,50 15,59 8,86
5 0 2,56 21,10 26,00 21,35 15,98
6 0 0,10 7,97 17,19 18,40 16,71
7 0 0 4,40 21,29 41,75 57,38

The first approach to improve the accuracy of the fault location could con-
sists in adding a voltage measurement in the middle of the network, bus 4 in
this case. The effect of the new measurement is particularly evident when nodes
5 or 6 are considered as fault, where the correct identifications are almost twice
those of Case 1. Despite this, still the detection improvement due to the new
voltage measurement is not sufficient to consider the algorithm enough accurate.
In fact, there is only one case in which the correct detection occurs more the
90% of the times, when fault involves node 2.
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Table 3.41: Case 2 with measurement uncertainties

Detected
node

Fault node
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

1 1,48 0 0 0 0 0
2 90,79 14,32 0,77 0,56 0,28 0,08
3 7,73 60,90 25,34 9,56 1,91 0,31
4 0 20,99 57,51 15,62 1,75 0,16
5 0 3,79 16,18 48,95 25,45 7,22
6 0 0 0,20 22,54 39,36 26,26
7 0 0 0 2,77 31,25 65,97

The second solution here analyzed, Case 3, is to consider the addition of
a branch current measurement, instead of the voltage one. In table 3.42 the
detection rates obtained by considering the measurement of the branch current
flowing in the first branch, Ibr12 , are presented. This solution is particularly
interesting, since it does not require the installation of a new measurement
point in the network. In fact, the current injected from the substation to the
system can be measured by using another channel of the PMU already installed
in node 1, with a consequent saving in terms of costs.

The impact of the new measurement is evident, not only with reference to
Case 1 but also in comparison with Case 2. The improvement in the performance
is higher than the one obtained by adding the voltage measurement V4, for each
fault node. Moreover, it is interesting to see that also the wrong identifications
are less spread along the network.

Table 3.42: Case 3 with measurement uncertainties

Detected
node

Fault node
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

1 0 0 0 0 0 0
2 99,28 6,61 0 0 0 0
3 0,72 85,90 15,95 0,47 0 0
4 0 7,49 66,59 23,21 2,99 0,21
5 0 0 17,04 50,95 26,40 7,64
6 0 0 0,42 21,78 39,40 26,13
7 0 0 0 3,59 31,21 66,02

In order to further study the improvements obtainable by measurements
current included in the fault location analysis, in Case 4 the measurement con-
figuration with a branch current measured in the middle of the network, Ibr45 ,
is tested.

The results for this test case, presented in table 3.43, are of particular inter-
est. Over the expected increase of the performance for the detection of faults
on nodes 3 and 4, a subdivision of the network can be observed. With reference
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to node 4, where the new current measurement is introduced, two sections are
denoted: the upstream network, from node 1 to node 4, and the downstream
one, which includes the nodes between node 5 and node 7.

Table 3.43: Case 4 with measurement uncertainties

Detected
node

Fault node
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

1 2,96 0 0 0 0 0
2 87,93 16,72 1,41 0 0 0
3 9,11 59,35 26,80 0 0 0
4 0 23,93 71,79 0 0 0
5 0 0 0 74,59 29,66 7,97
6 0 0 0 21,95 38,85 26,14
7 0 0 0 3,46 31,49 65,89

The results show how, when a fault occurs on a node belonging to the up-
stream network, the detection is always limited to the nodes belonging to that
subsection. Same considerations hold when the fault involves one node between
node 5, or node 7. This subdivision of the grid can be very useful, since it
allows confining the location of the fault in a certain area, based only on the
measurement placement. Such classification, and thus the delimitation of the
fault location to a specific area, was not possible when only voltage measure-
ments were considered (table 3.40 and table 3.41).

Consequently, by considering multiple current measurements, it is possible
to create multiple areas where to delimit the inspection, thus increasing the res-
olution in terms of nodes, since many areas mean less nodes per area. Based on
this principle, in Case 5, two current measurements are considered in addition
to the measurements of the voltages V1 and V7: Ibr12 and Ibr45 . With this mea-
surement configuration, considering what was shown in table 3.43, the network
should be divided in three areas: the first one including only the substation,
the second one including nodes 2 to 4, and the third one from node 5 to node
7. These assumptions are confirmed by the detection results reported in table
3.44, where the first column indicates the different areas.

Table 3.44: Case 5 with measurement uncertainties

Detected
node

Fault node
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

Area 1 1 0 0 0 0 0 0

Area 2
2 99,28 6,61 0 0 0 0
3 0,72 85,90 15,95 0 0 0
4 0 7,49 84,05 0 0 0

Area 3
5 0 0 0 80,63 25,07 3,25
6 0 0 0 18,74 49,45 25,84
7 0 0 0 0,63 25,48 70,91

81



CHAPTER 3. FAULT LOCATION

The first area, the one including only the substation (node 1), is correctly
never labelled as faulty, while, in the other areas, the percentages of correct
identification increase for all nodes, and the erroneous detections are limited to
the nodes belonging to the area.

Same considerations hold when different POWs are considered, as shown
in figure 3.8. In the figure, the detection results for Case 5 are reported with
reference to POW = 30°, 60°, and 90°. The percentages of detection are pre-
sented as bars, with different colours, according to the associated POW (blue,
red and yellow respectively for POW = 30°, 60°, and 90°). Each area has been
highlighted by vertical red lines, delimiting the nodes of the network. It can be
seen that neither the percentage of detections, neither the subdivision in areas,
are affected by the different POWs.
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Figure 3.8: Case 5, percentage of fault detection for different POWs.

The fact that node 1 is never detected as fault could seem obvious, since
no fault occurred on it, but it is worth noting that the same principle (having
an area composed by a single node) can be applied to monitor a node which is
critical and does not allow any erroneous fault detection.

Let us say, for example, that the load connected to node 7 is of particular
interest since the faults occurring in that node are particularly critical. Thus,
in Case 6, by substituting the voltage measurement V7 with the current mea-
surement flowing into the last branch, Ibr67 , a single node area, containing only
node 7, is obtained. Consequently, four areas have been created, as reported in
the first column of table 3.45.

Area 1, and thus node 1, is never labelled as faulty, while in area 4 the
identification of bus 7 as location of the fault is perfect (100% of the trials).
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In the other areas, area 2 and 3, the detection is always limited to the nodes
belonging to the area and the percentages of correct detection for each node
increase, with reference to the previous cases.

Table 3.45: Case 6 with measurement uncertainties

Detected
node

Fault node
2 [%] 3 [%] 4 [%] 5 [%] 6 [%] 7 [%]

Area 1 1 0 0 0 0 0 0

Area 2
2 99,87 1,68 0 0 0 0
3 0,13 93,66 8,12 0 0 0
4 0 4,66 91,88 0 0 0

Area 3 5 0 0 0 80,34 42,19 0
6 0 0 0 19,66 57,81 0

Area 4 7 0 0 0 0 0 100

As shown in the previous sections, the lack of measurements, together with
the uncertainties related to the real signals, decrease the performance of any
algorithm.

The additional information related to the area where the fault occurred can
be then used by the DSO. In fact, even if there has been an unclear identification,
the DSO can use the information on the area where the fault is located: to lead
the crew which should manage to extinguish the fault, by reducing the area to
be investigated, and to re-establish the power supply in the areas not affected
by the fault.

Furthermore, it is worth mentioning that the three phase-to-ground faults are
always characterized by higher percentages of correct detection, thanks to larger
non-zero entries of the state vector to be recovered. As example, in figure 3.9
the identification performance of three phase-to-ground faults, with reference
to the measurement configuration of Case 3, is presented for different POWs
(30°, 60°and 90°). The bars, indicating the percentage of trials corresponding
to a correct detection, highlight that the detection is almost perfect, for every
considered POW (blue bar for POW= 30°, red bar for POW= 60°and yellow bar
for POW = 90°). Moreover, it is worth mentioning that in this configuration
only three measurements are considered: V1, V7, and Ibr12 , but it has to be
noticed that the identification of three phase-to-ground faults is always almost
perfect, also when the other measurement configurations are taken into account.
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Figure 3.9: Case 3, considering 3 phase-to-ground faults, percentage of fault
detection for different POWs.

3.6 Conclusions

In this chapter, the problem of locating the fault in a distribution network has
been discussed. Also in this case, the few measurements commonly available in
the network are not sufficient to apply standard analysis techniques, especially
because most of them require redundancy of information. Moreover, during the
preliminary study of the problem, the bibliographic research underlined how
most of the related papers presented in literature were not properly considering
the impact of measurement uncertainties. Thus, a compressive sensing based
fault location technique has been proposed, and tested, in a realistic uncer-
tainty scenario, appropriately distinguishing the performance of the measure-
ment chain between the pre-fault, that is in steady-state operating conditions,
and the during fault, when signals are highly dynamic.

The obtained results underline the impact that the measurement chain has
on the performance of the algorithm. Thus, in order to improve the perfor-
mance of the fault location algorithms, additional information regarding the
branch current measurements have been considered. Nowadays, new generation
transformers allow to overcome the problems related to the saturation of the
current transformers, and here it has been shown that branch current measure-
ments play an important role in the proposed fault location algorithm. Thanks
to these additional measurements, it is possible to define "areas" where the fault
is included.
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The upcoming Smart Grid scenario will be characterized by strictly requirements
in terms of reliability and efficiency of the power supply. This will require a
high empowerment in the management of the distribution, and transmission,
networks by the system operators.

The improvement of the monitoring infrastructure, in parallel to the de-
velopment of new management policies, is strictly needed, to fully exploit the
capabilities of the Smart Grids. Thus, in this transition period, it is manda-
tory to find algorithms and solutions aimed at supporting system operators,
while managing the networks. In this thesis, the focus has been on the analysis
of Compressive Sensing-based solutions for the monitoring and management of
the distribution grids. In particular, methodologies for detecting the main har-
monic polluting sources, and for identifying the location of faults occurring in
distribution systems have been presented.

This powerful mathematical technique allows to identify, and estimate, the
sparse components of the vector state when the model of the problem is charac-
terized by measurements in number fewer than the state variables. Such scenario
is very common in the analysis of modern distribution systems, and the prob-
lems here considered, the identification of the prevailing harmonic sources and
the fault location, are only two of the problems for which this technique is suit-
able. Due to the low computational burden, and the ease of implementation,
the Orthogonal Matching Pursuit has been chosen as starting point to develop
algorithms for the analysis of the distribution networks. For the identification
of the main harmonic sources and fault location, the proposed solutions have
demonstrated the capability of finding a solution to the considered problem.
Moreover, the proposed solutions have been tested under realistic uncertainty
scenarios, to properly validate the algorithms.

The algorithms for the identification of the main harmonic sources proved
to be robust with respect to the measurement uncertainties. The BOMP-based
algorithm has proved to be suitable in main harmonic source detection, when
there is the need to perform analysis on a specific harmonic order. Nevertheless,
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it is known that the harmonic sources can be commonly polluting for multiple
harmonic orders, and the proposed global detector, LBOMP, has been proved to
be particularly suitable for general analysis, since it allows to consider multiple
harmonic orders simultaneously. This technique is in fact capable to detect the
polluting sources by providing an estimation of the polluting currents, for each
considered scenario.

Fault location analysis is more critical, due to the higher uncertainties in
measuring the dynamic signals involved during the fault. Contrarily to what
commonly presented in literature, in this thesis the proper uncertainty scenar-
ios have been considered and the difficulties in detecting the fault have been
underlined. Then, considering the possibility of using the most advanced mea-
surement chain, composed of low power transformers and PMUs, the impact
of the branch current measurements on the fault location algorithm has been
presented. The obtained results have underlined how, with only few measure-
ment devices installed, the branch current measurements allow, as minimum
result, to detect sections of the network, areas, which include multiple nodes,
including the fault. In the absence of a monitoring system planned specifically
for detection purpose, despite the possibility of having not certain identification
of the faulty bus, the identification of a fault inside an area has been proved to
be always correct. This is a useful information that the system operator could
use to conduct further analysis.

Further studies could focus on the appropriate modellization of the impact of
the measurement uncertainties, starting from the analysis of the measurement
matrix so that the inevitable degradation of the accuracy performance of the
measurement chain in dynamic conditions could be better faced by monitoring
algorithms.

86



References

[1] H. Nyquist, “Certain topics in telegraph transmission theory,” Transactions
of the American Institute of Electrical Engineers, vol. 47, no. 2, pp. 617–
644, April 1928.

[2] C. E. Shannon, “Communication in the presence of noise,” Proceedings of
the IRE, vol. 37, no. 1, pp. 10–21, Jan 1949.

[3] H. Cheng, Sparse Representation, Modeling and Learning in Visual Recog-
nition: Theory, Algorithms and Applications. Springer Publishing Com-
pany, Incorporated, 2015.

[4] G. K. Yonina C. Eldar, Compressed Sensing: Theory and Applications.
Cambridge University Press, 2012.

[5] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from
incomplete and inaccurate samples,” Applied and Computational Harmonic
Analysis, vol. 26, no. 3, pp. 301 – 321, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1063520308000638

[6] A. Cohen, W. Dahmen, and R. DeVore, “Compressed sensing and best k-
term approximation,” American Mathematical Society, vol. 22, pp. 211–231,
01 2009.

[7] Y. C. Eldar, Sampling Theory: Beyond Bandlimited Systems. Cambridge
University Press, 2015.

[8] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization,” Proc Natl Acad Sci, pp.
100(5):2197–2202, 2003.

[9] H.-N. Lee, “Introduction to compressed sensing,” Lecture notes, Spring
Semester, 2011.

[10] S. Geršgorin, “Über dieabgrenzung der eigenwerte einer matrix,” Izv. Akad
Nauk SSSR Ser Fiz.-Mat, p. 6:749–754, 1931.

87

http://www.sciencedirect.com/science/article/pii/S1063520308000638


REFERENCES

[11] E. Michael, Sparse and Redundant Representations: From Theory to Ap-
plications in Signal and Image Processing. New York: Springer, 2010.

[12] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans-
actions on Information Theory, vol. 51, no. 12, pp. 4203–4215, Dec 2005.

[13] V. M. Patel and R. Chellappa, Sparse Representations and Compressive
Sensing for Imaging and Vision, ser. SpringerBriefs in Electrical and
Computer Engineering. New York: Springer-Verlag, 2013. [Online].
Available: https://www.springer.com/gp/book/9781461463801

[14] M. A. Davenport, “Random observations on random observations: Sparse
signal acquisition and processing,” Ph.D. dissertation, Rice University,
Houston, Texas, 8 2010.

[15] E. J. Candès and Y. Plan, “A probabilistic and ripless theory of
compressed sensing,” CoRR, vol. abs/1011.3854, 2010. [Online]. Available:
http://arxiv.org/abs/1011.3854

[16] A. Garnaev and E. Gluskin, “On widths of the euclidean ball.” Dokl An
SSSR, vol. 277, no. 5, pp. 1048–1052., 1984.

[17] W. Johnson and J. Lindenstrauss, “Extensions of lipschitz maps into a
hilbert space,” Contemporary Mathematics, vol. 26, pp. 189–206, 01 1984.

[18] F. Krahmer and R. Ward, “New and improved johnson-lindenstrauss em-
beddings via the restricted isometry property,” CoRR, vol. abs/1009.0744,
2011. [Online]. Available: http://arxiv.org/abs/1009.0744

[19] H. Rauhut, “Compressive sensing and structured random matrices,” The-
oretical Foundations and Numerical Methods for Sparse Recovery, vol. 9,
pp. 1–92, 01 2010.

[20] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans-
actions on Information Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[21] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on Pure and
Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 8 2006. [Online].
Available: https://doi.org/10.1002/cpa.20124

[22] E. J. Candès, “The restricted isometry property and its implications for
compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9,
pp. 589 – 592, 2008. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1631073X08000964

88

https://www.springer.com/gp/book/9781461463801
http://arxiv.org/abs/1011.3854
http://arxiv.org/abs/1009.0744
https://doi.org/10.1002/cpa.20124
http://www.sciencedirect.com/science/article/pii/S1631073X08000964
http://www.sciencedirect.com/science/article/pii/S1631073X08000964


REFERENCES

[23] H. Cheng, Z. Liu, L. Yang, and X. Chen, “Sparse representation
and learning in visual recognition: Theory and applications,” Signal
Processing, vol. 93, no. 6, pp. 1408 – 1425, 2013, special issue on
Machine Learning in Intelligent Image Processing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165168412003313

[24] S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-
point method for large-scale`1-regularized least squares,” IEEE Journal of
Selected Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, Dec 2007.

[25] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection
for sparse reconstruction: Application to compressed sensing and other
inverse problems,” IEEE Journal of Selected Topics in Signal Processing,
vol. 1, no. 4, pp. 586–597, Dec 2007.

[26] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,”
Communications on Pure and Applied Mathematics, vol. 57, no. 11, pp.
1413–1457, 2004. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpa.20042

[27] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61,
1998. [Online]. Available: https://doi.org/10.1137/S1064827596304010

[28] M. Iwen, “Compressed sensing with sparse binary matrices: Instance
optimal error guarantees in near-optimal time,” Journal of Complexity,
vol. 30, no. 1, pp. 1 – 15, 2014. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0885064X13000642

[29] S. Jafarpour, W. Xu, B. Hassibi, and R. Calderbank, “Efficient and robust
compressed sensing using optimized expander graphs,” IEEE Transactions
on Information Theory, vol. 55, no. 9, pp. 4299–4308, Sep. 2009.

[30] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, “One
sketch for all: Fast algorithms for compressed sensing,” in Proceedings of
the Thirty-ninth Annual ACM Symposium on Theory of Computing, ser.
STOC ’07. New York, NY, USA: ACM, 2007, pp. 237–246. [Online].
Available: http://doi.acm.org/10.1145/1250790.1250824

[31] M. Iwen, “Combinatorial sublinear-time fourier algorithms,” Foundations
of Computational Mathematics, vol. 10, pp. 303–338, 06 2010.

89

http://www.sciencedirect.com/science/article/pii/S0165168412003313
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20042
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20042
https://doi.org/10.1137/S1064827596304010
http://www.sciencedirect.com/science/article/pii/S0885064X13000642
http://www.sciencedirect.com/science/article/pii/S0885064X13000642
http://doi.acm.org/10.1145/1250790.1250824


REFERENCES

[32] S.-H. Cha, “Comprehensive survey on distance/similarity measures between
probability density functions,” Int. J. Math. Model. Meth. Appl. Sci., vol. 1,
01 2007.

[33] M. A. Davenport and M. B. Wakin, “Analysis of orthogonal matching pur-
suit using the restricted isometry property,” IEEE Transactions on Infor-
mation Theory, vol. 56, no. 9, pp. 4395–4401, Sep. 2010.

[34] J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,”
IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242,
Oct 2004.

[35] D. L. Donoho, “For most large underdetermined systems of equations, the
minimal l-norm near-solution approximates the sparsest near-solution,”
Communications on Pure and Applied Mathematics, vol. 59, no. 7, pp.
907–934, 2006. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpa.20131

[36] J. Wang, “Support recovery with orthogonal matching pursuit in the pres-
ence of noise,” IEEE Transactions on Signal Processing, vol. 63, no. 21, pp.
5868–5877, Nov 2015.

[37] T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal
recovery with noise,” IEEE Transactions on Information Theory, vol. 57,
no. 7, pp. 4680–4688, July 2011.

[38] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Transactions
on Information Theory, vol. 52, no. 1, pp. 6–18, Jan 2006.

[39] T. Blumensath and M. E. Davies, “Gradient pursuits,” IEEE Transactions
on Signal Processing, vol. 56, no. 6, pp. 2370–2382, June 2008.

[40] B. Mailhe, R. Gribonval, F. Bimbot, and P. Vandergheynst, “A low com-
plexity orthogonal matching pursuit for sparse signal approximation with
shift-invariant dictionaries,” in 2009 IEEE International Conference on
Acoustics, Speech and Signal Processing, April 2009, pp. 3445–3448.

[41] G. Golub, C. Van Loan, C. Van Loan, and P. Van Loan,
Matrix Computations, ser. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, 1996. [Online]. Available:
https://books.google.it/books?id=mlOa7wPX6OYC

[42] H. Crowder and P. Wolfe, “Linear convergence of the conjugate gradient
method,” IBM Journal of Research and Development, vol. 16, no. 4, pp.
431–433, July 1972.

90

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20131
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20131
https://books.google.it/books?id=mlOa7wPX6OYC


REFERENCES

[43] D. L. Donoho, Y. Tsaig, I. Drori, and J. Starck, “Sparse solution of under-
determined systems of linear equations by stagewise orthogonal matching
pursuit,” IEEE Transactions on Information Theory, vol. 58, no. 2, pp.
1094–1121, Feb 2012.

[44] T. Blumensath and M. E. Davies, “Stagewise weak gradient pursuits,” IEEE
Transactions on Signal Processing, vol. 57, no. 11, pp. 4333–4346, Nov 2009.

[45] K. Schnass and P. Vandergheynst, “Average performance analysis for
thresholding,” IEEE Signal Processing Letters, vol. 14, no. 11, pp. 828–
831, Nov 2007.

[46] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Un-
certainty relations and efficient recovery,” IEEE Transactions on Signal
Processing, vol. 58, no. 6, pp. 3042–3054, June 2010.

[47] Z. Ben-Haim and Y. C. Eldar, “Near-oracle performance of greedy block-
sparse estimation techniques from noisy measurements,” IEEE Journal of
Selected Topics in Signal Processing, vol. 5, no. 5, pp. 1032–1047, Sep. 2011.

[48] M. H. J. Bollen, “What is power quality?” Electric Power Systems Research,
vol. 66, no. 1, pp. 5–14, Jul. 2003.

[49] Electromagnetic compatibility (EMC) – Part 3-6: Limits – Assessment of
emission limits for the connection of distorting installations to MV, HV
and EHV power systems, IEC IEC TR 61000-3-6:2008, Feb. 2008.

[50] E. J. Davis, A. E. Emanuel, and D. J. Pileggi, “Evaluation of single-point
measurements method for harmonic pollution cost allocation,” IEEE Trans-
actions on Power Delivery, vol. 15, no. 1, pp. 14–18, Jan 2000.

[51] C. F. M. Almeida and N. Kagan, “Harmonic state estimation through opti-
mal monitoring systems,” IEEE Transactions on Smart Grid, vol. 4, no. 1,
pp. 467–478, March 2013.

[52] C. Rakpenthai, S. Uatrongjit, N. R. Watson, and S. Premrudeep-
reechacharn, “On harmonic state estimation of power system with uncertain
network parameters,” IEEE Transactions on Power Systems, vol. 28, no. 4,
pp. 4829–4838, Nov 2013.

[53] A. Farzanehrafat and N. R. Watson, “Power quality state estimator for
smart distribution grids,” IEEE Transactions on Power Systems, vol. 28,
no. 3, pp. 2183–2191, Aug 2013.

91



REFERENCES

[54] K. K. C. Yu, N. R. Watson, and J. Arrillaga, “Error analysis in static
harmonic state estimation: a statistical approach,” IEEE Transactions on
Power Delivery, vol. 20, no. 2, pp. 1045–1050, April 2005.

[55] G. D’Antona, C. Muscas, and S. Sulis, “Localization of Nonlinear Loads in
Electric Systems Through Harmonic Source Estimation,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 60, no. 10, pp. 3423–3430,
Oct. 2011.

[56] G. D’Antona, C. Muscas, P. A. Pegoraro, and S. Sulis, “Harmonic Source
Estimation in Distribution Systems,” IEEE Transactions on Instrumenta-
tion and Measurement, vol. 60, no. 10, pp. 3351–3359, Oct. 2011.

[57] D. Carta, C. Muscas, P. A. Pegoraro, and S. Sulis, “Harmonics Detector in
Distribution Systems based on Compressive Sensing,” in 2017 IEEE Inter-
national Workshop on Applied Measurements for Power Systems (AMPS),
Sep. 2017, pp. 1–5.

[58] D. Carta, C. Muscas, P. A. Pegoraro, and S. Sulis, “Identification and es-
timation of harmonic sources based on compressive sensing,” IEEE Trans-
actions on Instrumentation and Measurement, vol. 68, no. 1, pp. 95–104,
Jan 2019.

[59] Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement
techniques - General guide on harmonics and interharmonics measurements
and instrumentation, for power supply systems and equipment connected
thereto, IEC IEC 61000-4-7:2002+AMD1:2008 CSV, Oct. 2009.

[60] JCGM, “Evaluation of data - guide to the expression of uncertainty in
measurement,” JCGM 100:2008, Sep. 2008.

[61] N. Locci, C. Muscas, and S. Sulis, “Experimental comparison of mv voltage
transducers for power quality applications,” in 2009 IEEE Instrumentation
and Measurement Technology Conference, May 2009, pp. 92–97.

[62] W. H. Kersting, “Radial distribution test feeders,” IEEE Transactions on
Power Systems, vol. 6, no. 3, pp. 975–985, Aug. 1991.

[63] T. Gonen, Electric power distribution engineering. CRC press, 2015.

[64] S. Shilpa G, H. Mokhlis, and H. Illias, “Fault location and detection tech-
niques in power distribution systems with distributed generation: A re-
view,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 949–958, 07
2017.

92



REFERENCES

[65] A. Bahmanyar, S. Jamali, A. Estebsari, and E. Bompard, “A
comparison framework for distribution system outage and fault location
methods,” Electric Power Systems Research, vol. 145, pp. 19–34, Apr.
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0378779616305302

[66] W. H. Kersting, Distribution system modeling and analysis. CRC press,
2006.

[67] R. Krishnathevar and E. E. Ngu, “Generalized impedance-based fault lo-
cation for distribution systems,” IEEE Transactions on Power Delivery,
vol. 27, no. 1, pp. 449–451, Jan 2012.

[68] F. C. L. Trindade, W. Freitas, and J. C. M. Vieira, “Fault location in
distribution systems based on smart feeder meters,” IEEE Transactions on
Power Delivery, vol. 29, no. 1, pp. 251–260, Feb 2014.

[69] A. Borghetti, M. Bosetti, C. A. Nucci, M. Paolone, and A. Abur, “In-
tegrated use of time-frequency wavelet decompositions for fault location
in distribution networks: Theory and experimental validation,” IEEE J
PWRD, vol. 25, no. 4, pp. 3139–3146, Oct 2010.

[70] W. C. Santos, F. V. Lopes, N. S. D. Brito, and B. A. Souza, “High-
impedance fault identification on distribution networks,” IEEE J PWRD,
vol. 32, no. 1, pp. 23–32, Feb 2017.

[71] Z. Q. Bo, G. Weller, and M. A. Redfern, “Accurate fault location technique
for distribution system using fault-generated high-frequency transient volt-
age signals,” IEE Proceedings - Generation, Transmission and Distribution,
vol. 146, no. 1, pp. 73–79, Jan 1999.

[72] M. Majidi, M. Etezadi-Amoli, and M. Sami Fadali, “A novel method for sin-
gle and simultaneous fault location in distribution networks,” IEEE Trans-
actions on Power Systems, vol. 30, no. 6, pp. 3368–3376, Nov 2015.

[73] D. Thukaram, H. P. Khincha, and H. P. Vijaynarasimha, “Artificial neural
network and support vector machine approach for locating faults in radial
distribution systems,” IEEE Transactions on Power Delivery, vol. 20, no. 2,
pp. 710–721, April 2005.

[74] M. Majidi, A. Arabali, and M. Etezadi-Amoli, “Fault Location in Distri-
bution Networks by Compressive Sensing,” IEEE Transactions on Power
Delivery, vol. 30, no. 4, pp. 1761–1769, Aug. 2015.

93

http://www.sciencedirect.com/science/article/pii/S0378779616305302
http://www.sciencedirect.com/science/article/pii/S0378779616305302


REFERENCES

[75] M. Majidi and M. Etezadi-Amoli, “A new fault location technique in smart
distribution networks using synchronized/nonsynchronized measurements,”
IEEE Transactions on Power Delivery, vol. 33, no. 3, pp. 1358–1368, Jun.
2018.

[76] D. Carta, P. A. Pegoraro, and S. Sulis, “Impact of measurement accuracy on
fault detection obtained with compressive sensing,” in 2018 IEEE 9th Inter-
national Workshop on Applied Measurements for Power Systems (AMPS),
Sept 2018, pp. 1–5.

[77] F. Yang, J. Tan, J. Song, and Z. Han, “Block-wise compressive sensing
based multiple line outage detection for smart grid,” IEEE Access, vol. 6,
pp. 50 984–50 993, 2018.

[78] M. Saha, J. Izykowski, and E. Rosolowski, Fault Location on Power Net-
works, 01 2010, vol. 48.

[79] E. B. Makram, M. A. Bou-Rabee, and A. A. Girgis, “Three-phase modeling
of unbalanced distribution systems during open conductors and/or shunt
fault conditions using the bus impedance matrix,” Electric Power Systems
Research, vol. 13, no. 3, pp. 173–183, Dec. 1987. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0378779687900022

[80] IEC, “Instrument transformers - Part 3: Additional requirements for induc-
tive voltage transformers,” Standard IEC 61869-3, 2011.

[81] S. Jamali, A. Bahmanyar, and E. Bompard, “Fault location method for
distribution networks using smart meters,” Measurement, vol. 102, pp. 150
– 157, 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0263224117301033

[82] F. C. L. Trindade, W. Freitas, and J. C. M. Vieira, “Fault location in
distribution systems based on smart feeder meters,” IEEE Transactions on
Power Delivery, vol. 29, no. 1, pp. 251–260, Feb 2014.

[83] A. Angioni, G. Lipari, M. Pau, F. Ponci, and A. Monti, “A low cost pmu
to monitor distribution grids,” in 2017 IEEE International Workshop on
Applied Measurements for Power Systems (AMPS), Sep. 2017, pp. 1–6.

[84] P. Romano, M. Paolone, T. Chau, B. Jeppesen, and E. Ahmed, “A high-
performance, low-cost pmu prototype for distribution networks based on
fpga,” in 2017 IEEE Manchester PowerTech, June 2017, pp. 1–6.

[85] C. G. C. Carducci, G. Lipari, N. Bosbach, T. D. Raimondo, F. Ponci,
and A. Monti, “A versatile low-cost os-based phasor measurement unit,”

94

http://www.sciencedirect.com/science/article/pii/0378779687900022
http://www.sciencedirect.com/science/article/pii/S0263224117301033
http://www.sciencedirect.com/science/article/pii/S0263224117301033


REFERENCES

in 2019 IEEE International Instrumentation and Measurement Technology
Conference (I2MTC), May 2019, pp. 1–6.

[86] IEEE, “IEEE standard for synchrophasor measurements for power sys-
tems,” IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005),
pp. 1–61, Dec. 2011.

[87] ——, “IEEE standard for synchrophasor measurements for power systems
– amendment 1: Modification of selected performance requirements,” IEEE
Std C37.118.1a-2014 (Amendment to IEEE Std C37.118.1-2011), pp. 1–25,
Apr. 2014.

[88] IEEE/IEC International Standard - Measuring relays and protection equip-
ment - Part 118-1: Synchrophasor for power systems - Measurements,
IEEE/IEC IEC/IEEE 60255-118-1:2018, Dec 2018.

[89] S. H. Mortazavi, Z. Moravej, and S. M. Shahrtash, “A searching based
method for locating high impedance arcing fault in distribution networks,”
IEEE Transactions on Power Delivery, vol. 34, no. 2, pp. 438–447, April
2019.

[90] S. F. Alwash, V. K. Ramachandaramurthy, and N. Mithulananthan, “Fault-
location scheme for power distribution system with distributed generation,”
IEEE Transactions on Power Delivery, vol. 30, no. 3, pp. 1187–1195, June
2015.

[91] S. Das, N. Karnik, and S. Santoso, “Distribution fault-locating algorithms
using current only,” IEEE Transactions on Power Delivery, vol. 27, no. 3,
pp. 1144–1153, July 2012.

[92] D. Carta, P. A. Pegoraro, S. Sulis, M. Pau, F. Ponci, and A. Monti, “A com-
pressive sensing approach for fault location in distribution grid branches,”
in 2019 International Conference on Smart Energy Systems and Technolo-
gies (SEST), Sep. 2019, pp. 1–6.

[93] M. Stanbury and Z. Djekic, “The impact of current-transformer satura-
tion on transformer differential protection,” IEEE Transactions on Power
Delivery, vol. 30, no. 3, pp. 1278–1287, June 2015.

[94] “ALTEA CVS-24-I-WB data sheet,” Altea Solutions, Amsterdam,
Netherlands. [Online]. Available: http://www.alteasolutions.com/pdf/
Technical%20specifications%20CVS-24-I-WB%20Altea.pdf

[95] “ABB KEVCD A data sheet,” ABB. [Online]. Available:
https://search-ext.abb.com/library/Download.aspx?DocumentID=

95

http://www.alteasolutions.com/pdf/Technical%20specifications%20CVS-24-I-WB%20Altea.pdf
http://www.alteasolutions.com/pdf/Technical%20specifications%20CVS-24-I-WB%20Altea.pdf
https://search-ext.abb.com/library/Download.aspx?DocumentID=1VLC000588%20Rev%20.%20en&LanguageCode=en&DocumentPartId=&Action=Launch
https://search-ext.abb.com/library/Download.aspx?DocumentID=1VLC000588%20Rev%20.%20en&LanguageCode=en&DocumentPartId=&Action=Launch
https://search-ext.abb.com/library/Download.aspx?DocumentID=1VLC000588%20Rev%20.%20en&LanguageCode=en&DocumentPartId=&Action=Launch


REFERENCES

1VLC000588%20Rev%20.%20en&LanguageCode=en&DocumentPartId=
&Action=Launch

[96] IEC, “Instrument transformers - Part 2: Additional requirements for cur-
rent transformers,” Standard IEC 61869-2, 2012.

96

https://search-ext.abb.com/library/Download.aspx?DocumentID=1VLC000588%20Rev%20.%20en&LanguageCode=en&DocumentPartId=&Action=Launch
https://search-ext.abb.com/library/Download.aspx?DocumentID=1VLC000588%20Rev%20.%20en&LanguageCode=en&DocumentPartId=&Action=Launch
https://search-ext.abb.com/library/Download.aspx?DocumentID=1VLC000588%20Rev%20.%20en&LanguageCode=en&DocumentPartId=&Action=Launch
https://search-ext.abb.com/library/Download.aspx?DocumentID=1VLC000588%20Rev%20.%20en&LanguageCode=en&DocumentPartId=&Action=Launch


List of Figures

1.1 Unit spheres for `p norms with p = 1, p = 2, and p =∞. . . . . . 3
1.2 Best approximation of a point by using a one-dimensional sub-

space obtained with different norms [4]. . . . . . . . . . . . . . . 4
1.3 Graphic representation of convex property for norm `1 and ` 1

2
. . 4

2.1 Test grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Harmonic detection - Case 1: forcing loads L3 and L4, harmonic

order under analysis h = 3. . . . . . . . . . . . . . . . . . . . . . 33
2.3 Harmonic detection - Case 1: forcing loads L3 and L4, harmonic

order under analysis h = 9. . . . . . . . . . . . . . . . . . . . . . 35
2.4 Harmonic detection - Case 2: forcing loads L4 and L5, harmonic

order under analysis h = 3. . . . . . . . . . . . . . . . . . . . . . 36
2.5 Harmonic detection - Case 2: forcing loads L4 and L5, harmonic

order under analysis h = 5. . . . . . . . . . . . . . . . . . . . . . 37
2.6 Harmonic detection - Case 3: forcing loads L3, not for the har-

monic order under analysis, and L4, harmonic order under anal-
ysis h = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Harmonic detection - Case 3: forcing loads L3, not for the 5-th
harmonic order, and L4, harmonic order under analysis h = 3. . . 40

2.8 Harmonic detection - Case 3: forcing loads L3, not for the 5-th
harmonic order, and L4, harmonic order under analysis h = 7. . . 40

2.9 Harmonic detection - Case 4: forcing loads L3 and L4, with L2
and L5 forcing at 10% harmonic order under analysis h = 3. . . . 41

2.10 Harmonic detection - Case 4: forcing loads L3 and L4, with L2
and L5 forcing at 10% harmonic order under analysis h = 7. . . . 42

3.1 Grid examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 TVE approximation. . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Test grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Fault on branches, source model. . . . . . . . . . . . . . . . . . . 64

97



LIST OF FIGURES

3.5 Example grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 Case 4 with uncertainties, 3 phase-to-ground faults - Fault on line

4-5, contribution of node 5 to the fault. . . . . . . . . . . . . . . 74
3.7 Case 4 with uncertainties, 3 phase-to-ground faults - Fault on line

3-4, contribution of node 4 to the fault. . . . . . . . . . . . . . . 75
3.8 Case 5, percentage of fault detection for different POWs. . . . . . 82
3.9 Case 3, considering 3 phase-to-ground faults, percentage of fault

detection for different POWs. . . . . . . . . . . . . . . . . . . . . 84

98



List of Tables

2.1 Compatibility levels for individual harmonic voltages in low e
medium voltage networks, from [49] . . . . . . . . . . . . . . . . 19

2.2 Planning levels for individual harmonic voltages in medium volt-
age networks, from [49]. . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Accuracy Requirements for Voltage and Current Measurements [59] 29
2.4 Nominal Loads Configuration . . . . . . . . . . . . . . . . . . . . 30
2.5 Harmonic Load Configuration . . . . . . . . . . . . . . . . . . . . 31
2.6 Harmonic current emission limits from [49], extended with 3rd

and 9th harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Case 1, Absolute Means and Standard Deviations of current mag-

nitude estimation errors for Loads L3, L4 and L5, harmonic under
analysis h = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Case 1, Percentage of occurrence of source detection, with ref-
erence to three post-detection threshold levels, harmonic order
under analysis h = 5 . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.9 Case 1, Percentage of occurrence of source detection, with ref-
erence to three post-detection threshold levels, harmonic order
under analysis h = 7 . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Case 1, Percentage of occurrence of source detection, with ref-
erence to three post-detection threshold levels, harmonic order
under analysis h = 9 . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Case 1, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L3, L4 and L5, harmonic under
analysis h = 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.12 Case 2, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L4 and L5, harmonic under
analysis h = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.13 Case 2, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L4 and L5, harmonic under
analysis h = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

99



LIST OF TABLES

2.14 Case 3, Percentage of occurrence of source detection for Loads
L2, L3, L4, and L5, harmonic under analysis h = 5 . . . . . . . . 39

2.15 Case 3, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L3, and L4, harmonic under
analysis h = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.16 Case 4, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L2, L3, L4, and L5; harmonic
under analysis h = 3 . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.17 Case 4, Absolute Means and Standard Deviations of current mag-
nitude estimation errors for Loads L2, L3, L4, and L5; harmonic
under analysis h = 7 . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Accuracy requirements for voltage transformers [80] . . . . . . . 53
3.2 PMUs Maximum Accuracy Limits . . . . . . . . . . . . . . . . . 55
3.3 Accuracy classes and maximum TVE for the uncertainty scenarios 56
3.4 Nominal Loads Configuration. . . . . . . . . . . . . . . . . . . . . 57
3.5 Pi-Model Configuration. . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Percentages of fault detection, without uncertainties, all nodes

monitored and POW = 0° . . . . . . . . . . . . . . . . . . . . . . 58
3.7 Measurement placement in the different Test Cases . . . . . . . . 58
3.8 Case 1, POW = 0°- Percentages of fault detection . . . . . . . . 59
3.9 Case 1, POW = 30°- Percentages of fault detection . . . . . . . . 59
3.10 Case 1, POW = 60°- Percentages of fault detection . . . . . . . . 60
3.11 Case 1, POW = 90°- Percentages of fault detection . . . . . . . . 60
3.12 Case 2, POW = 0°- Percentages of fault detection . . . . . . . . 60
3.13 Case 2, POW = 30°- Percentages of fault detection . . . . . . . . 61
3.14 Case 2, POW = 60°- Percentages of fault detection . . . . . . . . 61
3.15 Case 2, POW = 90°- Percentages of fault detection . . . . . . . . 61
3.16 Case 3, POW = 0°- Percentages of fault detection . . . . . . . . 62
3.17 Case 3, POW = 30°- Percentages of fault detection . . . . . . . . 62
3.18 Case 3, POW = 60°- Percentages of fault detection . . . . . . . . 62
3.19 Case 3, POW = 90°- Percentages of fault detection . . . . . . . . 62
3.20 Case 4, POW = 0°- Percentages of fault detection . . . . . . . . 63
3.21 Case 4, POW = 30°- Percentages of fault detection . . . . . . . . 63
3.22 Case 4, POW = 60°- Percentages of fault detection . . . . . . . . 63
3.23 Case 4, POW = 90°- Percentages of fault detection . . . . . . . . 64
3.24 Case 1 without uncertainties - branch fault detection . . . . . . . 67
3.25 Case 4 without uncertainties - branch fault detection . . . . . . . 68
3.26 Case 1 without uncertainties - node current injection contributions 69
3.27 Case 2 without uncertainties - node current injection contributions 69

100



LIST OF TABLES

3.28 Case 3 without uncertainties - node current injection contributions 70
3.29 Case 4 without uncertainties - Node current injection contributions 70
3.30 Identification of faults on branches, uncertainty scenarios . . . . 71
3.31 Case 1 with uncertainties - Branch fault detection . . . . . . . . 71
3.32 Case 2 with uncertainties - branch fault detection . . . . . . . . . 72
3.33 Case 3 with uncertainties - Branch fault detection . . . . . . . . 72
3.34 Case 4 with uncertainties - Branch fault detection . . . . . . . . 73
3.35 Case 4 with uncertainties, 3 phase-to-ground faults - Branch fault

detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.36 Accuracy requirements for measurement purpose current trans-

formers [96] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.37 Accuracy requirements for protection purpose current transform-

ers [96] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.38 Uncertainty Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 78
3.39 Impact of branch current - Measurement placement test cases . . 79
3.40 Case 1 with measurement uncertainties S + D . . . . . . . . . . . 79
3.41 Case 2 with measurement uncertainties . . . . . . . . . . . . . . . 80
3.42 Case 3 with measurement uncertainties . . . . . . . . . . . . . . . 80
3.43 Case 4 with measurement uncertainties . . . . . . . . . . . . . . . 81
3.44 Case 5 with measurement uncertainties . . . . . . . . . . . . . . . 81
3.45 Case 6 with measurement uncertainties . . . . . . . . . . . . . . . 83

101



Acronyms

BOMP Block-Orthogonal Matching Pursuit

BPDN Basis Pursuit with Denoise

CS Compressive Sensing

CSHD Compressive Sensing Harmonics Detector

CT Current Transformer

DSO Distribution System Operator

FL Fault Location

FLISR Fault Location, Isolation and Supply Restoration

HHS Heavy Hitters on Steroids

HSE Harmonic Source Estimation

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

LBOMP Load Block-Orthogonal Matching Pursuit

LPCT Low Power Current Transformers

LPVT Low Power Voltage Transformer

LV Low Voltage

MC Monte Carlo

MV Medium Voltage

102



Acronyms

NP non-deterministic polynomial acceptable problems

NSP Null Space Property

OMP Orthogonal Matching Pursuit

PMU Phasor Measurement Unit

POW Phase of Waveform

PQ Power Quality

REF Reference

RIP Restricted Isometry Property

RTDS Real Time Digital Simulator

SE State Estimation

STD Standard

THD Total Harmonic Distortion

TVE Total Vector Error

UTC Coordinated Universal Time

VT Voltage Transformer

WLS Weighted Least Square

103


	Introduction
	Compressive Sensing
	Norm definitions
	General theory
	Null Space
	Spark
	Mutual Coherence

	Restricted Isometry Property
	Measurement Bounds
	Mutual Coherence

	Recovery of a sparse vector
	Sparse representation algorithms
	Convex optimization algorithms
	Combinatorial algorithms
	Greedy algorithms - OMP and BOMP


	Harmonic Source Estimation
	State of the Art
	Modellization
	Single harmonic based detector
	Multiple harmonics based detector
	Measurement uncertainties

	Test and Results
	Conclusions

	Fault Location
	State of the Art
	Fault Model
	Impact of Measurement Accuracy
	Tests and Results

	Fault on branch
	Tests and Results

	Impact of branch current measurements
	Tests and Results

	Conclusions

	Conclusions
	References
	List of Figures
	List of Tables
	Acronyms

