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“We live on a placid island of ignorance in the midst of black seas of infinity, and it was

not meant that we should voyage far.”

H. P. Lovecraft



Abstract

This thesis is concerned with the analysis of common features and distinguishing traits

of algebraic structures arising in the sharp as well as in the unsharp approaches to quan-

tum theory both from an order-theoretical and an algebraic perspective. Firstly, we

recall basic notions of order theory and universal algebra. Furthermore, we introduce

fundamental concepts and facts concerning the algebraic structures we deal with, from

orthomodular lattices to e↵ect algebras, MV algebras and their non-commutative gener-

alizations. Finally, we present Basic algebras as a general framework in which (lattice)

quantum structures can be studied from an universal algebraic perspective.

Taking advantage of the categorical (term-)equivalence between Basic algebras and

 Lukasiewicz near semirings, in Chapter 3 we provide a structure theory for the lat-

ter in order to highlight that, if turned into near-semirings, orthomodular lattices, MV

algebras and Basic algebras determine ideals amenable of a common simple description.

As a consequence, we provide a rather general Cantor-Bernstein Theorem for involutive

left-residuable near semirings.

In Chapter 4, we show that lattice pseudoe↵ect algebras, i.e. non-commutative gener-

alizations of lattice e↵ect algebras can be represented as near semirings. One one side,

this result allows the arithmetical treatment of pseudoe↵ect algebras as total structures;

on the other, it shows that near semirings framework can be really seen as the common

“ground” on which (commutative and non commutative) quantum structures can be

studied and compared.

In Chapter 5 we show that modular paraorthomodular lattices can be represented as

semiring-like structures by first converting them into (left-) residuated structures. To

this aim, we show that any modular bonded lattice A with antitone involution satisfying

a strengthened form of regularity can be turned into a left-residuated groupoid. This

condition turns out to be a su�cient and necessary for a Kleene lattice to be equipped

with a Boolean-like material implication.

Finally, in order to highlight order theoretical peculiarities of orthomodular quantum

structures, in Chapter 6 we weaken the notion of orthomodularity for posets by introduc-

ing the concept of the generalized orthomodularity property (GO-property) expressed

in terms of LU -operators. This seemingly mild generalization of orthomodular posets

and its order theoretical analysis yields rather strong applications to e↵ect algebras, and

orthomodular structures. Also, for several classes of orthoalgebras, the GO-property

yields a completely order-theoretical characterization of the coherence law and, in turn,

of proper orthoalgebras.
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Introduction

The significant direction of research aimed at exploring algebraic properties of quantum

structures grew up in the “cradle” of the so-called logico-algebraic approach to Quan-

tum Theory (QT). This tradition, having as its starting point the famous paper by G.

Birkho↵ and J. von Neumann “The logic of quantum mechanics” (1936) [5], finds its

roots in the idea according to which physical theories are significantly characterized by

their abstract mathematical structure. In other words, it develops in a tradition of con-

ceptual analysis of physical explanations in which the ideal is to characterize questions

of theoretical relevance so sharply that they admit of formally precise answers which

can be found by a deep understanding of physics’ mathematical machinery (cf. [79, p.

VIII]).

One of the aspects of QT which has attracted the most general attention, is the novelty

of the logical notions which it presupposes. It asserts that even a complete mathemat-

ical description of a physical system ⌃ does not in general enable one to predict with

certainty the result of an experiment on ⌃. Therefore, it clashes with the essentially

predictive nature of classical mechanics. An exhaustive and deep discussion on the his-

tory and development of quantum theory can be found e.g. in [79].

For a long time, orthomodular lattices have been considered as abstract algebraic repre-

sentatives of the logic of quantum experimental propositions. Their concrete mathemat-

ical counterpart is given by ortholattices of closed subspaces of Hilbert spaces. However,

later on it was recognized that this framework needed to be revised. In fact, according

to Mackey’s axiomatization of QT (see [91]), joins (i.e. disjunctions in the corresponding

logic) need not exist provided the elements in question are not orthogonal (see below).

For this reason, orthomodular posets were defined with the aim of faithfully formalizing

event structures of quantum mechanical systems (see e.g. [3, 87] for a detailed account).

This class of orthoposet has been deeply studied in the so called sharp approach to QT.

In spite of the large amount of researches on the subject, some doubts concerning the

relevance of orthomodular lattices for the algebraic investigation of quantum mechanics

arose when it was discovered that the lattices of projection operators on Hilbert spaces

do not generate the whole variety of orthomodular lattices (see e.g. [33]). This shows

1
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that there are equational properties of event-state systems that cannot be captured by

the proposed mathematical abstraction. Moreover, in [77] it has been shown that ortho-

modular posets are not strictly tied to the algebraic properties of Hilbert spaces. In fact,

they are strongly related to decompositions of algebras and sets, since in general the set

of pairs of “factor” equivalence relations on a set A carries quite naturally the struc-

ture of an orthomodular poset. This result seems to limit the extent of the celebrated

Amemiya-Araki-Piron Theorem ([1]) stating that the lattice C(V) of closed subspaces

of a normed vector space V is orthomodular if and only if V is metrically complete. It

proves indeed that the source of orthomodularity cannot be recognized in the particular

properties of Hilbert spaces. Therefore, it would not be too far from truth concluding

that orthomodularity should be considered an accident rather than the substance of the

lattice of quantum properties.

During the last years, alternative approaches have appeared. Let us mention e.g. the

so-called weakly orthomodular and dually weakly orthomodular lattices [24] which are

able to capture e.g. the order theoretical properties of the lattice of closed subspaces

(which need not be orthomodular) of a finite dimensional vector space over a finite field.

A di↵erent formal counterpart of the set of quantum events has been suggested within

the unsharp approach to quantum theory by e↵ect algebras [47] and quantum MV-

algebras (see e.g. [58]) that ensure the algebraic treatment of quantum e↵ects, namely

linear bounded self-adjoint operators on a Hilbert space satisfying the Born’s rule. These

structures have been the subject of increasing and intensive inquiries. In particular, spe-

cial attention has been paid to the problem of providing a “basis for deciding precisely

when and exactly how an experimental, observational, or operational situation, either

real or idealized and either practical or contrived, gives rise to events, questions, propo-

sitions, or observables that can be regarded as fuzzy or unsharp and that are represented

by elements of an e↵ect algebra” (see [49, p. 2]). An answer has been provided in 2001

by D.J. Foulis and S. Gudder who introduced D-models with parameters ([49, p.18 ]).

These “toy” models are aimed at interpreting e↵ect algebras as logics of propositions

concerning (fuzzy) events related to the calibration of measuring devices for quantum

experiments. Roughly speaking, in this framework e↵ects are representatives of sets of

statements (events) of the form “the real measure of the observable A ranges over the

Borel set � with probability distribution �� and the measured value obtained by the

measuring device D ranges over � with probability distribution ��”. Therefore, studies

on e↵ect algebras can be framed within the so-called stochastic approach to quantum

mechanics. During the last years, several e↵orts have been made in order to capture the

logic of e↵ect algebras. However, several di�culties have been encountered. In fact, the

canonical order (CO) induced by the Born’s rule (see [33, Cap. 4]) on the set E(H) of
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e↵ects on a Hilbert space H does not ensure that meets and joins of elements always

exist. In fact, a general result by S. Gudder states that any Hilbert space H of dimension

n � 2 yields an e↵ect algebras E(H) which is proper i.e. it is neither lattice-order nor

lattice-orderable via Dedekind-MacNeille completion of its underlying poset. Therefore,

there is no hope of finding a semantics of connectives for e↵ect algebras which general-

izes properly the orthomodular case. In order to cope with this problem, lattice e↵ect

algebras have been introduced. Interestingly enough, these structures turn out to be

deeply related to MV algebras and, in general, residuated structures (see e.g. [112, 31])

since they are pastings of MV (e↵ect) algebras (see Chapter 2).

In [59, 60] paraorthomodular lattices, i.e. regular bounded lattices with an antitone

involution satisfying the paraorthomodular law have been introduced. They are indeed

a natural generalization of the lattice ordering on closed subspaces of a Hilbert space to

the whole class of e↵ects by means of the so-called spectral ordering introduced by M.P.

Olson in 1971 [103]. Such an approach capture an important order theoretical property

of quantum structures, i.e. paraorthomodularity (see [59] and Chapter 2). This notion

turns out to be a cross-cutting concept in quantum structures framework. However, at

the best of our knowledge, it is still an open problem if it might be considered as a

distinguishing trait of algebras of (quantum) events.

In spite of the large amount of research on quantum structures and their multiple rela-

tionships with many-valued logics, there had never been a serious e↵ort in producing an

unifying theory until the very beginning of the 21st century. In particular, basic algebras

were introduced as a general framework in which lattice e↵ect algebras, orthomodular

lattices and MV algebras can be put under a same formal umbrella by observing that

any of the aforementioned structures induce an underlying lattice which can be equipped

with sectional antitone involutions ([21]). One of the most fruitful obtainments yielded

by the theory of basic algebras is in that it allows to establish connections between

quantum structures and residuation theory. In fact, it has been shown that any basic

algebra can be made into a (partially) residuated lattice-ordered groupoid. This result

establishes novel connections between quantum algebras and the algebraic semantics of

substructural logics (see [54] for details). Moreover, as residuated lattices are strongly

related to semirings, basic algebras can be converted into near semirings with involution

([6]). This result allows indeed a smooth arithmetical treatment of basic algebras as well

as it links them to structures of prominent importance for applications (see e.g. [64]).

This thesis is concerned with exploring common as well as distinguishing traits of quan-

tum structures and MV algebras. In particular, taking advantage of the semiring-like
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counterpart of basic algebras, i.e.  Lukasiewicz near-semirings, we will provide a gen-

eral structure theory, i.e. a complete description of kernels of homomorphisms. It

will be clear that albeit e.g. orthomodular lattices and MV algebras have di↵erent

order theoretical as well as algebraic properties, their ideals are amenable of a com-

mon description. As an application, we will obtain a rather general proof of the alge-

braic Cantor-Bernstein-Schroeder Theorem for involutive near semirings which can be

equipped with a left-residuated operation. This result generalizes several achievements

in orthomodular lattices, MV algebras and Basic algebras theories. Subsequently, we

will extend the semiring approach to non-commutative lattice-ordered generalizations of

e↵ect algebras, i.e. lattice pseudo e↵ect algebras. This fact will suggest the possibility

of considering near-semirings as the common “ground” of algebras arising in contexts

which are seemingly di↵erent and unrelated. Furthermore, we will address the problem

of representing paraorthomodular lattices as near semirings. To this aim, we will study

su�cient and necessary conditions for a paraorthomodular lattice to be converted into

a partially residuated structure. Then, taking advantage of those results, we extend the

Cantor-Bernstein Theorem to modular and distributive lattices with an antitone invo-

lution satisfying a strenghtened form of regularity.

In the last chapter of this work, we will generalize orthomodular posets by developing

the theory of GO-posets, namely orthoposets enjoying the generalized orthomodular-

ity property. More precisely, GO-posets might be regarded as complemented posets in

which l.u.b.’s of pairs of mutually orthogonal elements need not exist. Moreover, they

satisfy a poset version of the orthomodular law expressed by means of the LU -operators

(see [32]). We will provide a Dedekind-Birkho↵-type theorem for GO-posets by charac-

terizing forbidden configurations under which the generalized orthomodularity property

fails. Surprisingly enough, this result will yield the celebrated Greechie’s theorems as

corollaries (cf. [3]). In fact, It will turn out that the absence of loops of order three

is equivalent to the GO-property. Finally, we will put in good use the GO-machinery

in order to provide a completely order-theoretical characterization of the coherence law

for some classes of e↵ect algebras. As the semiring like approach allows to capture the

common algebraic traits of quantum structures, the generalized orthomodular posets

framework will shed a new light upon characterizing properties of structures arising in

the sharp and unsharp approaches to quantum theory.



Chapter 1

Mathematical Background

In this chapter, basic facts, definitions and notations concerning mathematical tools and

structures having a relevant role in this thesis will be recalled.

1.1 Basics on set theory and order theory

In what follows, we assume the reader has knowledge of basic set theoretical and arith-

metical notions. We will work in the framework of standard set theory, since no further

assumptions are needed.

As regards notation, we will employ customary symbols denoting basic set-theoretical

operations and relations, i.e. ; for the empty set, ✓ for inclusion, ⇢ (sometimes denoted

by () for proper inclusion, \ and [ for intersection resp. union of sets. Moreover, if A

and B contain the same elements, we will write A = B.

Given a (countable or uncountable) non-empty set of indexes I and an indexed fam-

ily {Ai : i 2 I} (or {Ai}i2I) of sets we denote (assuming the Axiom of Choice) by

⇧i2IAi the Cartesian product of the Ai’s and and we denote its elements (I-tuples)

as (a0, a1, ..., an, ....) or (ai : i 2 I). If I = {0, 1, ..., n} we will denote ⇧i2IAi by

A0 ⇥ A1 ⇥ ... ⇥ An. Moreover, if Ai = Aj , for any i, j 2 I, we will write AI (An, if

I = {0, 1, ..., n}), in order to simplify the above notation and we put A0 = {;}.
If A is a set and B ✓ AI (with I countable or uncountable), we say that B is an I-ary

relation over A. Moreover, if R ✓ AI is an I � ary relation over A and B ✓ A, we will

indicate by R � BI the set of I � tuples whose entries are in B.

If {Ai : i 2 I} is an indexed family of sets, we indicate as
S

i2I Ai (
T

i2I Ai) the set {a :

a 2 Ai, for some i 2 I} ({a : a 2 Ai, for any i 2 I}). Moreover, if A is a set, we denote

with }(A) the power-set of A, i.e. the set of all its subsets. Finally, if X ✓ }(A), then
S
X = {a 2 A : a 2 B, for some B 2 X} and

T
X = {a 2 A : a 2 B, for any B 2 X}.

5
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Functions (mappings) from a set A to a set B will be denoted by f, g, h, ... and e.g.

f : A ! B. Composition of functions will be denoted, following the standard notation,

i.e. if f : A ! B and g : B ! C we will write g � f : A ! C (shortly gf) to designate

the composition of f and g. Moreover, if C ✓ A and f : A ! B, we will denote by

f � C the mapping g : C ! B such that g(x) = f(x), for any x 2 C. Finally, we call

the pre-image f�1(X) of f with respect to X ✓ B, the set {x 2 A : f(x) 2 X}.
Moreover, if B ✓ A and R ✓ AI , we denote by R � BI the set of I-tuples in R with

entries in B. Furthermore, if n = 2, then (a0, a1) 2 B ✓ A2 is said to be an ordered pair

and B a binary relation over A. The following definition summarizes basic properties of

binary relations on sets.

Definition 1.1. Let A be a set and R ✓ A2 a binary relation over A. Then R is

(O1) reflexive, provided that (a, a) 2 R, for any a 2 A;

(O2) symmetric, if (a, b) 2 R implies (b, a) 2 R for any a, b 2 A;

(O3) transitive, if (a, b), (b, c) 2 R, then (a, c) 2 R for any a, b, c 2 A;

(O4) anti-symmetric, if (a, b), (b, a) 2 R implies a = b, for any a, b 2 A;

(O5) connected, if for any a, b 2 A, one has (a, b) 2 R or (b, a) 2 R.

Given a binary relation R ✓ A2, R is said to be

• a pre-order provided that R satisfies (O1) and (O3);

• a partial order, if it satisfies (O1), (O3) and (O4);

• a total order, if it is a partial order satisfying (O5);

• an equivalence relation, if it satisfies (O1)� (O3).

It is customary denoting pre- (partial, total) orders by ,-,...etc. Moreover, equivalence

relations will be often designated by v,⌘ or ✓,�, �, ...etc.

Given a set A, a, b 2 A and an equivalence relation v over A, we will write a v b

for saying that (a, b) 2v, we set a/ v= {b 2 A : a v b} (or [a]v) for the equivalence

class of a modulo v and A/ v= {a/ v: a 2 A} for the quotient of A modulo v. It is

well known that equivalence relations over A are into one-to-one corrispondence with

partitions, being the latter familiesX ✓ }(A) such that
S
X = A and, for any B,C 2 X,

B \ C = ;.
If A is a set and  a partial ordered over A, we will call the pair A = (A,A) a partially

ordered set (a poset, for short) and A the universe of . Moreover, if A is a poset and

B ✓ A, then putting B=A� B2, we call B = (B,B) a sub-poset of A.
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Example 1.1. Let A = {a, b, c, d}. We can represent di↵erent partial orders over A by

Hasse diagrams as e.g. in Fig. 1.1 and 1.2.

c

b d

a

(1.1)

b d

c

a

(1.2)

The above graphs must be read as follows: for any x, y 2 A, put x  y if x = y or there

exists a bottom-up path of arcs connecting x to y.

Since partially ordered sets will be ubiquitously employed, we further explore their

structure and properties in the next section.

1.1.1 Partially ordered sets

in this section we summarize basic facts and notions concerning partially ordered sets

that will be crucial for the understanding of subsequent chapters.

Definition 1.2. Given a partially ordered set A = (A,), then A is said to be

(a) bounded, if it admits a largest upper bound and a least lower bound, namely there

are elements usually denoted by 0 resp. 1 such that, for any x 2 A, 0  x and

x  1;

(b) a chain, if  is a total order;

(c) lattice-ordered, provided that any pair of elements a, b 2 A has a least upper bound

(l.u.b.) and a greatest lower bound (g.l.b.) denoted by a_A b resp. a^A b, namely

an element c resp. d such that, for any e 2 A, e � a, b implies c  e resp. e  a, b

implies e  d.

Elements x, y in a poset are said to be comparable whenever x  y or y  x hold true,

otherwise they will be said uncomparable and we denote this fact by x||y.
If a posetA = (A,) is lattice-ordered, then it is said to be a lattice. Moreover, ifX ✓ A

admits an upper bound and a lower bound, then it is said to be bounded. Finally, if X
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has a l.u.b. (g.l.b.), then it will be denoted by
W

AX (
V

AX). Whenever the context

will be clear, we will omit unnecessary supscripts.

Besides lattices, an important class of posets is represented by the so-called semilattices.

Definition 1.3. A poset A = (A,) is said to be a

• meet-semilattice (^-semilattice) provided that any pair of elements in A has a

g.l.b.;

• join-semilattice (_-semilattice) if any pair of elements in A has a l.u.b. .

Definition 1.4. Let A = (A,) be a lattice. Then A is

(i) conditionally complete, if whenever X is upper (lower) bounded then
W
X (

V
X)

exists, for any X ✓ A;

(ii) complete, if
W
X and

V
X exist, for any X ✓ A.

An important example of complete lattice is given by the next lemma. Let Eq(A) be

the set of equivalence relations on a set A.

Lemma 1.5. The poset Eq(A), with ✓ as the partial ordering, is a complete lattice.

Obviously, any complete lattice is bounded. Moreover, it can be easily proven that a

lattice A is complete if and only if
W
X exists, for any X ✓ A. Clearly, any chain is a

lattice but not the other way around. In fact, the poset in Fig. 1.1 is a lattice which

is not a chain, since b and d are uncomparable elements. For a lattice-ordered poset A,

c

b d

a

Figure 1.1

an element a 2 A is compact if whenever
W
X exists for some X ✓ A and a 

W
X

,then a 
W
Y for some finite Y ✓ X. We say that A is compactly generated provided

that every element in A is the l.u.b. of compact elements. A lattice is algebraic if it is

complete and compactly generated.

Among mappings from a partially ordered set A to a partially ordered set B, one can

find order preserving functions.
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Definition 1.6. Let A = (A,) and B = (B,) be partially ordered sets and f : A !
B a mapping. We say that f is

• an order homomorphism (order anti-homomorphism), if for any x, y 2 A, one has

x A y implies f(x) B f(y) (x A y yields f(y) B f(x));

• an order embedding (order anti-embedding), if it is an order homomorphism (order

anti-homomorphism) such that, for any x, y 2 A, one has also f(x) B f(y)

implies x A y (f(x) B f(y) implies y A x);

• an order automorphism (order anti-automorphism), if it is an order embedding

(order anti-embedding) which is onto.

In what follows and in the rest of this thesis, order (anti-)homomorphisms will be denoted

as �, , ...etc.

Given a bounded poset (A,, 0, 1) with B ✓ A, we denote by

U(B) ={a 2 A : 8b 2 B(b  a)}

L(B) ={a 2 A : 8b 2 B(a  b)}

the upper and the lower set of B, respectively. In order to ease notation, if A,B are

sets, we will just write U(A,B) and L(A,B) for U(A [ B) and L(A [ B), respectively.

In what follows, for M ✓ A, UM (X), LM (X) will stand for the upper and lower sets of

X in M , respectively. In any poset (A,), with C,B ✓ A, the following properties hold

(see e.g. [32]):

Lemma 1.7. (i) If C ✓ B, then U(B) ✓ U(C) and L(B) ✓ L(C);

(ii) U(L(U(B))) = U(B) and L(U(L(B))) = L(B);

(iii) U(B [ C) = U(B) \ U(C) and L(B [ C) = L(B) \ L(C);

(iv) a  b is equivalent to U(b) ✓ U(a), which is equivalent to L(a) ✓ L(b).

A moment’s reflection shows that a = b if and only if U(a) = U(b) if and only if

L(a) = L(b), and that U(L(a)) = U(a), L(U(a)) = L(a). Moreover, if
W
B exists in

(A,), then U(B) = U(
W

B) and if
V
B exists in (A,), then L(B) = L(

V
B).

It is well known that given a bounded poset A, its Dedekind-MacNeille completion will

be the complete bounded lattice

DM(A) = (DM(A),^DM(A),_DM(A), {0}, A),



Chapter 1. Mathematical Background 10

such that DM(A) = {X ✓ A : L(U(X)) = X}, X ^DM(A)Y = X \Y and X _DM(A)Y =

L(U(X,Y )), for any X,Y 2 DM(A). When no danger of confusion will be impending,

we will omit unnecessary supscripts. Any poset A can be embedded into DM(A) by

the order homomorphism �DM(A) : A ! DM(A) such that x 7! L(x), for any x 2 A.

Moreover, �DM(A) is a join- and meet- dense embedding. This means that any element

in DM(A) is the supremum and the infimum of (images of) elements in A. In other

words, for any a 2 DM(A), there exist X,Y ✓ A such that a =
WDM(A) �DM(A)(X) =

VDM(A) �DM(A)(Y ). The interested reader may refer to [123] for further details. A poset

(A,) will be called distributive if it satisfies the LU -identity :

U(L(x, y), z) = U(L(U(x, z), U(y, z))) = U(L(U(x, z) [ U(y, z))),

which is equivalent to

L(U(x, y), z) = L(U(L(x, z), L(y, z))),

see [32] for further details. Let us recall that a poset (A,) is said to be modular in

case, for all a, b, c 2 A:

if a  b, then L(U(a, L(b, c))) = L(U(a, c), b),

or, dually,

if a  b, then U(L(b, U(a, c))) = L(U(b, c), a).

Many well known partially ordered structures of prominent importance for logic and

mathematics are often equipped with operations on their universes which interact with

their characterizing order. In particular, in this thesis we will deal with posets with an

antitone involution.

Definition 1.8. A poset with antitone involution (an involution or involutive poset, for

short) is a structure A = (A,,0 ) such that

(i) (A,) is a partially ordered set, and

(ii) 0 : A ! A is a unary operation over A (cf. Subsection 1.2.1) such that

x  y implies y0  x0 and (x0)0 = x, for any x, y 2 A,

i.e. it is an order anti-automorphism which is its own inverse.

Moreover, if A is bounded and 0 satisfies L(x, x0) = {0} and U(x, x0) = {1} for any

x 2 A (we call it a complementation), then A is said to be an orthoposet.
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Given an involution poset A and x, y 2 A, if x  y0 then we call {x, y} a pair of

orthogonal elements, written x ? y.

It is clear that, if an involution poset A has a least lower bound 0, then it has also a

greatest lower bound, since for any x 2 A one has x  00. We will denote a bounded

involutive poset A as (A,,0 , 0, 1). Moreover, if A is an involution poset (orthoposet)

which is a lattice, then we will call it an involution lattice (ortholattice).

Definition 1.9. Let A = (A,,0 ) be an involutive poset. A sub-poset B of A is said

to be a sub-involutive poset if x 2 B implies x0 2 B, for any x 2 A. Moreover, if A is

bounded, then B is a bounded involution sub-poset of A if it contains 0.

Definition 1.10. Let A = (A,,0 , 0, 1) be an orthoposet. A sub-poset B of A is a

sub-orthoposet if it is a bounded involutive sub-poset of A.

Note that if A is an orthoposet and B a sub-orthoposet of A, then LB(x, x0) = {0} and

UB(x, x0) = {1}, for any x 2 B. Therefore, B is an orthoposet as well. This remark

motivates Definition 1.10.

Example 1.2. Consider the real interval [0, 1] and the unary operation 0 such that

x0 = 1 � x. It can be easily seen that ([0, 1],,0 , 0, 1) where  is the natural order on

the real line, is a bounded involutive chain.

Example 1.3. Let A = ({0, 1, b, z, c, u, b0, z0, c0, u0},,0 , 0, 1) be the bounded involution

poset depicted in Fig. 1.2. It can be directly verified it is an orthoposet which is not a

lattice.

1

b z c0

u0

u

c z0 b0

0

Figure 1.2

Definition 1.11. Let A and B be bounded involutive posets, and � : A ! B an order

homomorphism Then � is an ortho-homomorphism (ortho-embedding, ortho-isomorphism)

if the following hold:
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(a) � is 0�preserving, i.e. for any x 2 A, one has �(x0A) = �(x)0B.

(b) �(0A) = 0B

Let us introduce the following notation, for any subset B of an involution poset A:

B0 = {b0 : b 2 B}.

It is well known (see e.g. [33] for details.) that ifA is an involution poset, then DM(A) is

complete bounded involution lattice by putting, for any X 2 DM(A), X 0DM(A) = L(X 0).

Moreover, if A is also an orthoposet, then DM(A) is a complete ortholattice ([92]).

Orthoposets as well as ortholattices will play a central role in this work and they will be

furtherly investigated in subsequent sections. Moreover, from now on, we will deal only

and exclusively with bounded involution posets (lattices). Therefore, we will safely call

them simply involution posets (lattices).

1.2 Universal algebra and lattice theory

In this section we will deal with the basic machinery that will be heavily employed for the

development of our arguments in subsequent chapters. The interested reader is referred

to [11] for an exhaustive textbook on the subject.

1.2.1 Basic tools of Universal algebra

Given a non-empty set A, an n-ary operation over A is a function f : An ! A. We call

n the arity (rank) of f . Moreover, if n = 0, then f is uniquely determined by its image

f(;) and therefore it can be identified with a distinguished element of A.

A language (type) of algebras is a set ⌫ of function symbols indexed by a non-negative

integer n. A member fn 2 ⌫ is said to be an n-ary function symbol. The subset of all n-

ary function symbols of ⌫ is denoted by ⌫n. Any finite language ⌫ will be identified with

the n-tuple of arieties of its elements listed in decreasing order, e.g. if ⌫ = {f2
0 , f

2
1 , f

1
2 , f

0
3 }

then we identify ⌫ with the 4-tuple (2, 2, 1, 0). For ⌫ a given language of algebras, an

algebra A of type ⌫ is an ordered pair (A, ⌫) where A is a nonempty set and ⌫ is a family

of operations on A, indexed by the language ⌫ such that in correspondence with each

n-ary function symbol f 2 ⌫ there is an n-ary operation fA on A. The set A is called

the universe of A = (A, ⌫) and the fA’s are called the fundamental operations of A. If

⌫ is finite, say ⌫ = {f1, ..., fn}, we often write (A, f1, ..., fn) for (A, ⌫).

Any algebra can be axiomatized by identities. In accordance with the algebraic literature,
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in this thesis we will denote by ⇡ or, alternatively, by =, that two expressions name the

same object.

Before discussing some of the algebras that will be employed in this work, it will be

useful introducing the notion of subalgebra.

Let A and B be algebras of the same type. We say that B is a subalgebra of A if B ✓ A,

every fundamental operation of B is the restriction of the corresponding operation of A,

i.e. for any operation fn of A, fB = f � Bn. Note that if A has nullary operations, B

contains them as well. We will write B  A if B is a subalgebra of A. Moreover, we call

B ✓ A simply a subuniverse of A if for any a1, ..., an 2 B, one has fA(a1, ..., an) 2 B

for any n-ary operation on A.

If A is an algebra and X ✓ A, we call the smallest subalgebra of A containing X, i.e.

the intersection of all subalgebras containing X (which is provably again a subalgebra),

the subalgebra generated by X.

Definition 1.12. A groupoid is an algebra A = (A, ·) of type (2), i.e. it can be seen as

a set A closed under a binary operation ·.

Definition 1.13. Let A = (A, ·) be a groupoid. Then A is said to be

• commutative (or abelian), if it holds that

(A1) x · y ⇡ y · x

• associative, if it satisfies the identity

(A2) (x · y) · z ⇡ x · (y · z)

• idempotent, if it satisfies

(A3) x · x ⇡ x.

Definition 1.14. A call an algebra A = (A, ·, e) of type (2, 0) such that (A, ·) is a

groupoid

• unital if it satisfies

(A4) x · e ⇡ x ⇡ e · x,

i.e. e is both a right and left neutral element with respect to ·;

• a groupoid with 0, if it satisfies

(A5) x · 0 ⇡ 0 ⇡ 0 · x.
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If a groupoid A satisfies (A2), then it is said to be a semigroup. Moreover, if it satisfies

also (A3) then it is also a monoid.

Well known examples of algebras are the following

Example 1.4. A group A is an algebra (A, ·,�1 , e), of type (2, 1, 0) such that (A, ·, e)
is a monoid and it holds that

(A6) x · x�1 ⇡ e ⇡ x�1 · x.

As usually, if a group A is commutative, we employ the additive notation, i.e. we

replace · by + and �1 by �. Moreover, it is customary denoting the neutral element of

a (abelian) group A by 1 (0).

Example 1.5. A ring A is an algebra (R,+, ·, 1, 0) of type (2, 2, 1, 0), which satisfies

the following conditions:

(i) (R,+,�, 0) is a commutative group,

(ii) (R, ·) is a semigroup,

and the following identities hold true:

(A7) x · (y + z) ⇡ (x · y) + (x · z),

(A8) (x+ y) · z ⇡ (x · z) + (y · z).

1.2.2 Fundamentals of lattice theory

In this subsection we will recall basic definitions and facts concerning lattices (see Defi-

nition 1.2(c)) in their algebraic formulation. It will turn out that many order-theoretical

properties can be axiomatized in terms of simple identities.

Definition 1.15. A lattice L is an algebra (L,^,_) of type (2, 2) which satisfies

(L1a) x ^ x ⇡ x

(L2a) x ^ (y ^ z) ⇡ (x ^ y) ^ z

(L3a) x ^ y ⇡ y ^ x

(L4a) x ^ (x _ y) ⇡ x

(L1b) x _ x ⇡ x

(L2b) x _ (y _ z) ⇡ (x _ y) _ z

(L3b) x _ y ⇡ y _ x

(L4b) x _ (x ^ y) ⇡ x
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Any subalgebra of a lattice will be called a sublattice. Moreover, is easily seen that, given

a lattice L = (L,^,_), both (L,^) and (L,_) are commutative idempotent semigroups.

is is not di�cult to verify that Definition 1.15 and Definition 1.2(c) are indeed equivalent.

In fact, given a lattice L, putting x  y, if x ^ y = x, then (L,) turns out to be a

lattice-ordered poset. Viceversa, if we have a lattice ordered poset L, putting, for any

x, y 2 L, x ^ y = c (x _ y = d) where c is the g.l.b. of x and y (d is the l.u.b. of x and

y), then (L,^,_) satisfies the above axioms.

Definition 1.16. A lattice L = (L,^,_) is said to be:

• distributive, if it satisfies

(L5) x ^ (y _ z) ⇡ (x ^ y) _ (x ^ z);

• modular, if it holds that

(L6) x  y implies x _ (y ^ z) ⇡ y ^ (x _ z)

It can be proven that any distributive lattice is also modular. Moreover, It is not di�cult

to see that, since reversing the order induced by a lattice yields again a lattice, then if

a lattice identity holds, of course its dual (i.e. the identity obtained by replacing ^ by

_ and viceversa) holds as well. In light of the above definitions and considerations, it

is now clear the meaning of the LU -identities characterizing distributive and modular

posets in Subsection 1.1.1: a poset A is distributive (modular) if its elements satisfy

distributivity (modularity) in DM(A).

The next theorem is well known.

Theorem 1.17. Let L be a lattice. Then:

• L is modular if and only if it does not contain N5 as a sublattice;

• L is distributive if and only if it does not contain neither N5 nor M5 as its sublat-

tices.

a

b c d

e

(M5)

a

b c

d

e

(N5)
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We say that a lattice L satisfies the join infinite distribution property if, for any {a}[X ✓
L, if

W
X exists than it holds that

a ^
_

X =
_

x2X
(a ^ x). (JID)

Proposition 1.18 (Exercise 4.20, [65]). Let L be a distributive algebraic lattice. Then

L has the (JID).

Finally, we give some definitions in the algebraic framework of some structures that we

have already encountered in Subsection 1.1.1.

Definition 1.19. A bounded lattice L is an algebra (L,^,_, 0, 1) of type (2, 2, 0, 0) such
that

• (L,^,_) is a lattice

and the following are satisfied:

• x ^ 0 ⇡ 0;

• x _ 1 ⇡ 1.

Definition 1.20. An involution lattice is an algebra (L,^,_,0 , 0, 1) of type (2, 2, 1, 0, 0)
such that

• (L,^,_, 0, 1) is a bounded lattice;

• It holds that

(I1) x0 _ y0 ⇡ (x ^ y)0 (the De Morgan law), and

(I2) (x0)0 ⇡ x.

Moreover L is an ortholattice if 0 is a complementation (cf. Definition 1.8), i.e. it holds

that x ^ x0 = 0 and x _ x0 = 1.

It is a simple exercise verifying that any unary operation on a lattice satisfying conditions

of Definition 1.20 is an antitone involution in the sense of Definition 1.8.

We close this subsection by defining a class of algebras which will play a crucial role in

the next chapters.

Definition 1.21. A Boolean algebra B is a distributive ortholattice.
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Example 1.6. The ortholattices depicted below are prototypical examples of Boolean

algebras.

1 = 00

0 = 10

(B2)

1 = 00

a a0

0 = 10

(B4)

1 = 00

a0 b0 c0

c b a

0 = 10

(B8)

Facts and definitions concerning Boolean algebras which will be expedient for the devel-

opment of our discussions will be provided whenever necessary in subsequent chapters.

The interested reader may refer to [61] for a nice dissertation on the subject.

1.2.3 Congruences, homomorphisms and products

In this subsection we will recall basic universal algebraic tools that will be crucial for

the development of our arguments.

Let A and B be algebras of the same type ⌫. An homomorphism � : A ! B is a

mapping from A to B which is “operation-preserving”, namely for any fn 2 ⌫ one has

�(fA(a1, ..., an)) = fB(�(a1), ...,�(an)).

We call a homomorphism � : A ! B an embedding if it is injective. Moreover if � is

an onto homomorphism then B is said to be an homomorphic image of A. An injective

and surjective homomorphism is an isomorphism, written A ⇠= B.

Lemma 1.22. If � : A ! B is an embedding, then �(A) is a sub-universe of B.
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A crucial notion in universal algebra is the concept of congruence. Given an algebra A of

type ⌫, an equivalence relation ✓ over A is a congruence whenever it has the compatibility

property, i.e. for any fn 2 ⌫ and ai✓bi (1  i  n), we have fA(a1, ..., an)✓fA(b1, ..., bn).

In what follows, Con(A) stands for the set of congruence relations on A.

Example 1.7. Let � : A ! B be an homomorphism. Then ker(�) = {(a, b) 2 A2 :

�(a) = �(b)} is a congruence relation on A. It will be called the kernel of �.

We will call the congruence class of an element a 2 A a coset.

Let A be an algebra and (Con(A),✓) the poset of its congruences under ✓. It can be

seen that Con(A) is a lattice where meets consist of intersections of congruences and

joins are the generated congruences, namely the smallest congruences containing the

given ones.

Let us denote by {(x, x) : x 2 A}, the identity congruence, by �, and the universal

relation by r. A little thought shows that they are the bottom and the top element in

Con(A), respectively.

Theorem 1.23. Con(A) = (Con(A),✓,�,r) is a complete sublattice of Eq(A) =

(Eq(A),✓,�,r) (cf. Lemma 1.5).

Moreover, we have the following

Lemma 1.24. For an algebra A, Con(A) is an algebraic lattice.

Let us now introduce quotient algebras. Given an algebra A of type ⌫ and ✓ 2 Con(A),

the quotient algebra A/✓ of A modulo ✓ is the algebra having the quotient set A/✓ as

universe and operations defined as follows: for any fn 2 ⌫,

fA/✓(a1/✓, ..., an/✓) = fA(a1, ..., an)/✓.

Let A be an algebra and ✓ 2 Con(A). Then the map ⌘✓ : A ! A/✓, defined by

⌘✓(a) = a/✓ is called the natural map. when no danger of confusion will be impending,

we will omit unnecessary subscripts.

Lemma 1.25. Let A be an algebra and ✓ 2 Con(A). Then the natural map ⌘ : A ! A/✓

is an onto homomorphism.

The above lemma has an important consequence: it allows us to prove that any ho-

momorphism can be “factorized” in terms of the composition of an embedding and the

natural map.

Theorem 1.26. Let � : A ! B an homomorphism. Then there exists an embedding

 : A/✓ ! B such that � =  � ⌘.
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Other relevant constructions in universal are direct products of families of algebras of

the same type.

Let A1 and A2 be algebras of the same type. The direct product of A1 and A2, written

A1⇥A2 is the algebra having as universe the cartesian product A1⇥A2 and operations

defined as follows: for any fn 2 ⌫

fA1⇥A2((a1, b1), ..., (an, bn)) = (f(a1, ..., an), f(b1, ..., bn)),

for any a1, ..., an 2 A1 and b1, ..., bn 2 A2. The above construction can be easily general-

ized to families of algebras of arbitrary cardinality. We will denote by ⇧i2IAi the direct

product of the family {Ai}i2I .
We call the (onto) homomorphism ⇡i : ⇧i2IAi ! Ai assigning to any I-tuple its i-th

coordinate, is often called a projection function.

Let A be an algebra and ✓, � 2 Con(A). We denote by ✓ � � the composition of ✓ and �,

i.e. the congruence obtained by taking the transitive closure of ✓ [ �.
If ✓1, ✓2 2 Con(A) and ✓1 � ✓2 = ✓2 � ✓1, we say that ✓1, ✓2 permute. It can be seen that,

if a pair of congruences ✓ and � in Con(A) permute, then ✓ _ � = ✓ � �.
A congruence ✓ 2 Con(A) is said to be a factor congruence if there exists ✓⇤ such that

✓ \ ✓⇤ = �, ✓ � ✓⇤ = ✓⇤ � ✓, ✓ _ ✓⇤ = r.

We call {✓, ✓⇤} a pair of complementary factor congruences. Moreover, it can be seen

that factor congruences are strictly related to the decomposition of algebras. In fact, we

have the following

Theorem 1.27. Let A be an algebra and (✓, ✓⇤) a pair of factor congruences on A.

Then A ⇠= A/✓ ⇥A/✓⇤.

We say that an algebra A is directly indecomposable if the only pair of factor congruences

on A is {�,r}.

Theorem 1.28. Every finite algebra is the direct product of directly indecomposable

algebras.

Therefore, any finite algebra can be represented in terms of a direct product of “simpler”

algebras.

Theorem 1.28 can be generalized by introducing the notion of subdirect irreducibility.

We start by defining subdirect products.

Given a family {A}[{Ai}i2I of algebras of the same type, we say that A is a subdirect

product of the Ai’s if
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• A  ⇧i2IAi;

• ⇡i(A) = Ai, for any i 2 I.

An embedding � : A ! ⇧i2IAi is subdirect if �(A) is a subdirect product of the Ai.

Finally, we say that an algebra A is subdirectly irreducible if for any subdirect embedding

� : A ! ⇧i2IAi,

there exists i 2 I such that ⇡i � � : A ! Ai is an isomorphism.

It can be seen that subdirect irreducibility is a stronger form of direct indecomposability.

Theorem 1.29. Any subdirectly irreducible algebra is directly indecomposable.

Moreover, subdirect irreducibility can be characterized in terms of properties of congru-

ence lattices.

Theorem 1.30. An algebra A is subdirectly irreducible if A is trivial or there is a

minimum congruence in Con(A)� �.

Finally, we can state one of the most important theorems of universal algebra stating

that any algebra can be represented as a subdirect product of directly indecomposable

algebra. This shows that subdirect irreducible algebras are the very building blocks of

algebras.

Theorem 1.31. Every algebra A is isomorphic to a subdirect product of subdirectly

irreducible algebras (which are homomorphic images of A).

1.2.4 Varieties and congruence properties

One of the main research topics in universal algebra is the study of closure properties of

classes of algebras of the same type. We recall some of the basic so-called class operators.

Let C and A be a class of algebras and an algebra, respectively. Then:

A 2 I(C), if A is isomorphic to some element in C;
A 2 H(C), if A is an homomorphic image of some member in C;
A 2 S(C), if A is a subalgebra of some member in C;
A 2 P(C), if A is a direct product of some family of members in C;
A 2 Ps(C), if A is a subdirect product of some family of elements in C.
We say that a class C is closed under the a class operator O if O(C) ✓ C. Moreover, we

call a variety a class of algebras of the same type which is closed under direct products,

subalgebras and homomorphic images. Denoting byV(C) the smallest variety containing

C, we can now recall the first important result of this subsection:
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Theorem 1.32. Let C be a class of algebras of the same type. Then V(C) = HSP(C).

We say that a class of algebras is equational if it is closed with respect to satisfying a

given class of equations.

Theorem 1.33. A class of algebras C is a variety if and only if it is an equational class.

Thus, any variety can be “axiomatized” by means of a given (finite or infinite) set of

identities. The examples of algebras already treated in Subsection 1.2.1 and 1.2.2 obvi-

ously form a variety.

An interesting direction of research in Universal Algebra is the study of the properties

of congruence lattices of algebras. We say that an algebra A is congruence-permutable

if any pair ✓1, ✓2 2 Con(A) of distinct congruences on A permute. Moreover, it is

congruence-distributive (congruence-modular) if its congruence lattice is distributive

(modular), and it is said to be arithmetical if it is both congruence-distributive and

permutable. Finally, we say that an algebra A is congruence regular if any congruence

is uniquely determined by any of its cosets, i.e. for any ✓, � 2 Con(A), one has that if

a/✓ = a/�, for some a 2 A, then ✓ = �. A variety V is congruence-distributive (modu-

lar, permutable, regular) if each member in V has this property as well. The following

proposition will be useful in Chapter 3.

Proposition 1.34 (Theorem 1, [127]). For any variety V the following conditions are

equivalent:

1. For any A 2 V each reflexive relation having the compatibility property is symmet-

ric;

2. For any A 2 V each reflexive relation having the compatibility property is transi-

tive;

3. For any A 2 V each reflexive relation having the compatibility property is a con-

gruence of A;

4. V is congruence permutable.

For sake of completeness, we close this subsection by listing some theorems showing that

the congruence lattice of an algebra A enjoys certain properties whenever the latter al-

lows the definition of certain terms by means of compositions of fundamental operations.

This fact suggests that there indeed are deep connections between congruences and prop-

erties of algebras.

Recall that a variety V satisfies an identity t ⇡ s if any of its members does.
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Theorem 1.35. Let V be a variety. V is congruence-permutable i↵ there exists a term

p(x, y, z) such that V satisfies the identities

p(x, x, y) ⇡ y and p(x, y, y) = x.

Theorem 1.36. A variety V is congruence-distributive i↵ there is a finite n and terms

p0(x, y, z), ..., pn(x, y, z) such that V satisfies the following identities:

pi(x, y, x) ⇡ x, for (0  i  n);

p0(x, y, z) ⇡ x;

pn(x, y, z) = z;

pi(x, x, y) ⇡ pi+1(x, x, y) (for i even)

pi(x, y, y) ⇡ pi+1(x, y, y) (for i odd).

Theorem 1.37. A variety V is arithmetical i↵ there is a term m(x, y, z) such that V

satisfies

m(x, y, x) ⇡ m(x, y, y) ⇡ m(y, y, x) = x.

Theorem 1.38. A variety V is congruence regular if and only if there exists a set of

ternary terms ti(x, y, z) with 1  i such that

ti(x, y, z) = z for any i if and only if x = y.

Having the basic algebraic tools ready at hand, in the next chapter we will recall fun-

damentals of quantum structures.



Chapter 2

Quantum structures and their

generalizations

In this chapter we first recall basic facts and definitions concerning quantum structures,

i.e. orthomodular lattices, orthomodular posets, e↵ect algebras and paraorthomodular

lattices. We will pay attention to the concrete models they are abstraction of. To this

aim, we will often make reference to algebras of linear bounded self adjoint operators

of a complex separable Hilbert space. An introductory textbook on the mathematics of

Hilbert spaces can be found in [129]. A friendly introduction to quantum structures can

be found instead in [33]. It will turn out that many of the aforementioned structures

can be neatly described in terms of their block structure, i.e. as pastings of Boolean

algebras. Furthermore, we will highlight their order theoretical common features as well

as their algebraic distinguishing traits.

Subsequently, we focus on lattice extensions of e↵ect algebras and their non-commutative

generalizations, i.e. lattice pseudoe↵ect algebras. In passing, we will mention their

multiple connections with partially ordered groups theory. Furthermore, we will recall

basic facts concerning MV algebras and pseudo-MV algebras as algebraic counterparts

of (non-commutative) infinite-valued logics. Finally, we will introduce basic algebras

as a common framework in which both lattice e↵ect algebras and MV algebras can be

represented.

23
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2.1 Orthomodular lattices and posets

2.1.1 Orthomodular lattices

In 1936, G. Birkho↵ and J. von Neumann identified the “logic of quantum properties”

as the set C(H) of closed subspaces of a Hilbert space H which is into one-to-one corre-

spondence with the set ⇧(H) of projectors on H. ⇧(H), under the order induced by ✓
on C(H), turns into the ortholattice

⇧(H) = (⇧(H),^,_,? ,O, I),

with operations defined as follows, for any P1, P2 2 ⇧(H):

• P1 ^ P2 = PC1\C2 ;

• P1 _ P2 = PhC1[C2i;

• P? = PC? ;

• I,O are the identity resp. the null operators.

where PC is meant to be the projection on the subspace C, hC1 [ C2i is the subspace

generated by C1 and C2 and C? is the subspace orthogonal to C, i.e. C? = {� 2
H : h�| i = 0, for any  2 C}. ⇧(H) turns out to be an (even modular, in the

finite-dimensional case) atomic and complete orthomodular lattice, i.e. an ortholattice

satisfying, for any P,Q 2 ⇧(H), the orthomodular law

P  Q ) Q = (P _ (Q ^ P?)).

We are now ready to provide an abstract definition of the above structure.

Definition 2.1. An orthomodular lattice A is an ortholattice (A,^,_,0 , 0, 1) satisfying
the orthomodular law, i.e. for any x, y 2 A

x  y implies y = x _ (y ^ x0) (OL)

Observe that OL can be equivalently replaced by the identity

(x ^ y) _ ((x ^ y)0 ^ x) ⇡ x.

Therefore, since they constitute an equational class, by Theorem 1.33, orthomodular

lattice (OMLs) form a variety. We denote by OML the variety of orthomodular lattices
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and by OL the variety of ortholattices. OMLs can be algebraically characterized in

several ways.

Theorem 2.2. Let A 2 OL. The following conditions are equivalent:

1. A is orthomodular;

2. for all a, b 2 L, a ^ ((b ^ a) _ a0)  b;

3. for all a, b 2 L, a _ b = ((a _ b) ^ b0) _ b;

4. for all a, b 2 L, if a  b and a0 ^ b = 0, then a = b;

5. for all a, b 2 L, if a  b, then there exists c 2 L such that a  c0 and b = a _ c.

Moreover, as for modular and distributive lattices (see Theorem 1.17), they are capable

of a complete lattice-theoretical characterization.

Theorem 2.3. Let A be an ortholattice. Then A is orthomodular if and only if it does

not contain a subalgebra isomorphic to B6.

1

a0 b

b0 a

0

B6

(2.1)

It is worth noticing that Theorem 2.3 depends on the equivalence between items (1) and

(4) in Theorem 2.2. This remark will be useful in subsequent sections.

Evidently, every distributive ortholattice, i.e. any Boolean algebra (see Definition 1.21),

is orthomodular. The simplest example of a non-distributive orthomodular (modular)

lattice is MO2 in figure (2.2).

1

a b b0 a0

0

(2.2)
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Looking closely at the above figure one might have realized that MO2 can be seen as the

“gluing” of two four-elements Boolean algebras, namely {a, a0, 0, 1} and {b, b0, 0, 1} (see

Example 1.6) along their common Boolean subalgebra on {0, 1}. Surprisingly enough,

it turns out that any orthomodular lattice can be seen as the “pasting” of Boolean

algebras. More precisely, they are the pasting of their maximal Boolean subalgebras, as

it will be clear in the next subsection.

Remark 2.4. Any orthomodular lattice is the union of its maximal Boolean subalgebras

called blocks. In fact, if A is an OML and x 2 A, the set {0, x, x0, 1} is a Boolean

subalgebra. Since any chain of Boolean subalgebras is, of course, a Boolean subalgebra,

by Zorn’s Lemma, x 2 B, for some block B  A.

2.1.2 Orthomodular posets

Any statistical physical theory involves notions that are often taken as primitives: states,

observables and probabilities. A state w can be seen as an abstract object which sums

up observer’s informations concerning a set of preparations of a given physical entity.

An observable A is a physical quantity that can be measured on a given state w. Finally,

a probability measure is a function assigning to any triple (w,A,�), where � is a Borel

set, a value in the interval [0, 1]. We denote by S, O, B(R), the set of states, the set of

observables, and the Borel �-algebra over the real line, respectively.

Intuitively, a probability measure p assigns to any A 2 O and � 2 B(R) a real number

representing the probability that the measure of A on a state w lies in �.

To any statistical physical theory T we can associate a suitable class of triples (S,O, p)

called state-observable-probability systems.

A special class of observables is represented by the so-called events. Any event A is

characterized by the condition

for any w 2 S, p(w,A, {0, 1}) = 1. (*)

Roughly speaking, any event is an observable which can be assume, given a state w, only

two values: 0 and 1. The importance of such observables rests on the fact that, under

Mackey’s axiomatization of orthodox QT, any statement like “the value of the physical

quantity A lies in �” can be adequately represented by a 0 � 1 valued observable. In

fact, standing to Mackey’s axioms, for any Borel function (see e.g. [33]) f : R ! R and

A 2 O, there exists B 2 O such that for any w 2 S, � 2 B(R), one has

p(w,B,�) = p(w,A, f�1(�)).
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B can be seen to be uniquely determined, so we put B = f(A). Moreover, since any

characteristic function �� is a Borel function, for any A 2 O,� 2 B(R), there exists, by
(*), an observable ��(A) which is an easy exercise verifying to be an event. Moreover,

by the above equality, it follows that

p(w,��(A), {1}) = p(w,A,�).

A moment’s reflection shows that ��(A) corresponds to the event “the measure of the

physical quantity A lies in �”. In fact, the above equality tells us nothing but the

probability for a measure on A to be lying in � is equal to the probability that the

statement “the measure of A lies in �” is true.

Of course, any event E can be represented in this way. We have indeed E = ��{1}(E)

(it follows by [33, Lemma 2.2.1], cf. [33, Lemma 2.2.3]). Therefore, the class of events,

that we denote by Ev, is the mathematical representative of the whole set of statement

concerning measures on physical quantities. Now, if we consider mw : Ev ! [0, 1] such

that mw(x) = p(w, x, {1}), then putting, for any A,B 2 Ev,

E  F whenever for any w 2 S,mw(E)  mw(F ),

Ev = (Ev,) turns out to be a partial order. The intuitive meaning of  is the following:

an event F is greater than E if, for any physical state w, the probability that F occurs

in w is greater than the probability that E occurs in w.

Moreover, if we consider O = �;(E) and I = �R(E), for some event E, then, since

mw(�;(E)) = 0 and mw(�R(E)) = 1, for any w 2 S, we have that Ev = (Ev,,O, I)

is a bounded poset. Finally, if for any E = ��(B) 2 Ev, we consider ��c(B) (where

�c = R��), namely the event representing the statement “the value of B does not lie in

�”, then it can be easily verified (see [33, Lemma]) that mw(��c(B)) = 1�mw(��(B)).

Thus, the mapping 0 : E = ��(B) ! ��c(B) turns out to be an antitone involution.

Therefore, Ev = (Ev,,0 ,O, I) is an involution poset. Moreover, it can be seen that Ev is

also an orthoposet. Finally, one shows that any countable set {En}n2N ✓ Ev of pairwise

orthogonal elements has a l.u.b. in Ev under  and for any E,F 2 Ev

E  F implies F = E _ (E0 ^ F ),

i.e. Ev satisfies the orthomodular law (see [33, Theorem 2.2.9]). It is worth briefly

discussing what does the join of a family of pairwise orthogonal events mean in Ev. As a
consequence of one of the axioms of Mackey system (cf. [33, p.44]), for any set {En}n2N
of pairwise orthogonal elements, there exists an A 2 O and a Borel set � such that, for
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any w,

p(w,A,�) =
1X

n=0

p(w,En, {1}).

Clearly, the event “the measure of A lies in �” can be represented as the event ��(A).

A little thought shows that such event represents the statement “at least one among the

pairwise disjoint events E0, E1, ... occurs”. ��(A) is the join of the En’s.

The structure Ev = (Ev,,0 ,O, I) is called orthomodular poset which in the case dis-

cussed above is also �-orthocomplete, namely the join of countable sets of pairwise

orthogonal elements always exists. We are now ready to give an abstract definition of

the structures we are dealing with in this subsection.

Definition 2.5. An orthomodular poset A is an orthoposet (A,,0 , 0, 1) such that

(i) x  y0 implies x _ y exists;

(ii) x  y0 implies y = x _ (y ^ x0).

Let us observe that, from the fact that a  b = b00, we obtain that a _ b0 exists, and so

(a _ b0)0 = a0 ^ b exists. Since a  a _ b0, then also a _ (a _ b0)0 = a _ (a0 ^ b) exists.

This shows that equation in (ii) is correctly formulated. Moreover, it is easily seen that,

since 0 is an antitone involution, then (ii) is self-dual, i.e. one has also

x  y implies x = y ^ (x _ x0).

From now on, given an involution poset A and x, y 2 A, we say that x and y are

orthogonal (written x ? y) provided that x  y0.

Lemma 2.6. Let A = (A,,0 , 0, 1) be an orthomodular poset. Then for any x, y 2 A

(i) x  y implies there exists z 2 A such that x ? z and y = x _ z;

(ii) x  y and x0 ^ y = 0 implies x = y.

It is reasonable asking if, like orthomodular lattices, orthomodular posets can be seen

as “pastings” of Boolean algebras as well. Moreover, we can see that

Remark 2.7. Reasoning as in Remark 2.4, it can be shown that orthomodular posets are

unions of their maximal Boolean subalgebras, namely their blocks.

In order to provide an answer to the above question we introduce the notion of pasting

of Boolean algebras.

Definition 2.8. A pasted family of Boolean algebras is a family F of Boolean algebras

such that, for each A,B 2 F , A 6= B:
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(i) A 6✓ B;

(ii) A\B is a Boolean subalgebra of both A and B on which the operations of A and

B coincide;

(iii) For any x 2 A \B, there exists C 2 F such that [0, x]A [ [0, x0]B ✓ C.

Definition 2.9. Let F be a pasted family of Boolean algebras and consider A =
S

F .

On A we define the relation A such that, for any x, y 2 A, x A y if there exists B 2 F
such that x B y. Moreover, for any x 2 A, put x0A = x0B, for some B 2 F . Note

that, if x 2 B \ C, then by (ii) x0B = x0C. Thus, 0 is well defined. We call the triple

AF = (A,,0 , 0, 1) the pasting of F .

Lemma 2.10. Let F be a pasted family of Boolean algebras. Then AF = (A,,0 , 0, 1)

is an orthoposet.

Roughly speaking, one can see that a pasting of a non empty pasted family of Boolean

algebras F is an orthoposet obtained by “gluing” each other members of F along a

common Boolean subalgebra.

One might ask when does the pasting of a pasted family of Boolean algebras F yields

an orthomodular poset. Surprisingly enough, we can characterize those pastings which

are indeed orthomodular posets.

Definition 2.11. Let F be a family of Boolean algebras. An n-cycle in F is a sequence

of pairs ((A0, a0), . . . , (An, an)) of (non necessarily distinct) algebras in F , and of (non

necessarily distinct) elements ai 2 Ai \ Ai+1, ai 6= 0, so that ai�1 ? ai, and [0, ai]Ai =

[0, ai]Ai+1 (indices modulo n).

Theorem 2.12. [36] Let L be the pasting of a family F of Boolean algebras. L is an

ortomodular poset if and only if for every 3-cycle ((A0, a0), (A1, a1)(A2, a2)) there is a

Boolean algebra B such that a0, a1, a2 2 B.

Actually, we can prove something more. One can show that any orthomodular poset is

a pasting of Boolean algebras

Theorem 2.13 (Theorem 3 , [113]). Any orthomodular poset is the pasting of its blocks.

It is worth noticing that, in its first formulation due to Dichtl ([36]), the definition of

pasting was quite di↵erent. In fact, it employed the notion of astroid.

Definition 2.14. An astroid (C0,C1,C2,C3) for m is a 4-cycle ((C1,mi))3i=0 such that

m0 = m = m2 and m1 = m0 = m3 hold.

Dichtl’s original definition was the following:
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Definition 2.15. A pasted family of Boolean algebras is a family F of Boolean algebras

such that, for each A,B 2 F , A 6= B:

(a) (i)� (ii) of Definition 2.8 hold;

(b) if m 2 A \B, then there exists an astroid (C0,A,C2,B) for m.

It can be proven that Definition 2.15 and Definition 2.8 are indeed equivalent. Since,

at the best of our knowledge, the literature on the topic does not contain any explicit

proof of this fact, we provide one below.

Proposition 2.16. Let F be a family of Boolean algebras satisfying (i) � (ii) of Defi-

nition 2.8. Then the following are equivalent:

1. F satisfies (iii) of Definition 2.8;

2. F satisfies (b) of Definition 2.15.

Proof. (2) implies (1). Suppose that C0,C2 2 F and m 2 C0\C2. Then there exists an

astroid (C0,C1,C2,C3) for m. Note that [0,m]C0 = [0,m]C0 and [0,m0]C2 = [0,m0]C1 .

Therefore, C1 is the desired C such that [0,m]C0 [ [0,m0]C2 ✓ C.

(1) implies (2). Let m 2 C0 \ C2. By (1) there exist C1 2 F such that [0,m]C0 [
[0,m0]C2 ✓ C1, and C3 such that [0,m]C2 [ [0,m0]C0 ✓ C3. Now, let us suppose by way

of contradiction that there exists z 2 [0,m]C1 � [0,m]C0 . Since m 2 C1 \ C0, we have

that there exists D 2 F such that [0,m]C0 [ [0,m0]C0 ✓ [0,m]C1 [ [0,m0]C0 ✓ D. Since

by (ii) D\C0 is a subalgebra of D and C0 on which operations coincide, one has, for any

c 2 C0: c = c^ 1 = c^ (m_m0) = (c^m)_ (c^m0) 2 D. Thus, it follows that C0 ( D,

against the assumption (i), a contradiction. Therefore we conclude [0,m]C0 = [0,m]C1 .

Similarly we prove that [0,m0]C1 = [0,m0]C2 , [0,m
0]C0 = [0,m]C3 and [0,m]C2 = [0,m]C3 .

Hence, our conclusion follows.

In light of the above proposition, exploiting properties of Boolean algebras we have the

following

Remark 2.17. Let F be a pasted family of Boolean algebras. Then for any pair of blocks

A,B 2 F such that m 2 A \ B there exists C 2 F such that C ⇠= [0,m]A ⇥ [0,m0]B.

Note that in any Boolean algebras A, if m 2 A then the interval [0,m]A can be regarded

itself as a Boolean algebra.

Since any orthomodular lattice is also an orthomodular poset, Theorem 2.13 allows us

to understand the “structure” of orthomodular lattices by shedding some light on the

relationships between the blocks they are built of.
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2.1.3 E↵ect algebras and Orthoalgebras

As we have seen in Subsection 2.1.2, given a state-observable-probability system (S,O, p),

the set of quantum events Ev naturally forms an orthomodular poset under the order

induced by p. However, in Hilbert spaces framework there are operators which can be

thought as events although they are not projectors. In fact, for a (finite or infinite-

dimensional) Hilbert space H, if we consider the set E(H) of linear bounded self-adjoint

operators “satisfying” the Born rule, i.e. such that, for any A 2 E(H), for any ⇢ 2 D(H)

(the set of density operators on H),

Tr(⇢A) 2 [0, 1]

(where Tr is the trace operator) then it can be considered as a set of events as well. We

call these operators e↵ects. E(H) is of significance in representing unsharp measurements

or observations on a physical system, and e↵ect-valued measures play an important role

in stochastic quantum mechanics (see [39] for a general account).

Note that such approach extends those that have been already investigated in the previ-

ous subsections. In fact, E(H) extends ⇧(H) properly, since now we consider operators

like e.g. (1/2)I also. In light of the above considerations, the question if such (“fuzzy”)

events are capable of being treated algebraically naturally emerges.

It is well known that E(H) can be partially ordered by putting

E c F i↵ 8⇢ 2 D(H), T r(⇢E)  Tr(⇢F ),

where, for any E 2 E(H) and ⇢ 2 D(H), Tr(⇢E) can be read as “the probability that

the event E occurs in state ⇢”. We call the above order the canonical order (CO).

Moreover, note that, under c, the null operator O and the identity operator I behave

as the bottom and the top element, respectively.

Now, let we define a partial sum � on E(H) such that

for any E,F 2 E(H), (E � F ) exists i↵ E + F 2 E(H),

(where + is the matrix sum) and an unary operation ? such

E? = I� E.

It is easily seen that ? is an orthocomplementation with respect to �, i.e. for any

E 2 E(H) one has E � E? = I. Moreover, ? is an antitone involution on the poset

induced by the canonical order.
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� is said to be an orthosum over E(H), since it can be proven that

(E � F ) exists i↵ E c F
?,

i.e. � is defined for pairs of orthogonal elements.

Finally, we see that c can be characterized algebraically. In fact, one has

E c F i↵ there exists G 2 E(H) such that E �G = F.

The (partial) algebra E = (E(H),�,? ,O, I) is called a Hilbert e↵ect algebra.

E↵ect algebras were discussed in 1994 by Foulis and Bennett in [47], and independently

introduced, under the name of weak orthoalgebras, by Giuntini and Greuling in 1989

[57]. Since then, they constitute a fruitful direction of research which has brought to

several achievements, from the axiomatization of unsharp logics of quantum mechanics

[33] to deep algebraic investigations. For an extensive account on these obtainments the

reader is referred to Dvurecěnskij and Pulmannová’s monograph [39].

Definition 2.18. A structure A = (A,�, 0, 1) is called an e↵ect algebra if 0, 1 are two

distinguished elements and � is a partially defined binary operation on A that satisfied

the following:

1. a� b = b� a, if a� b is defined;

2. a� (b� c) = (a� b)� c, if the expressions on either side is defined;

3. for any a 2 A, there is a unique b 2 A such that a� b = 1;

4. if 1� a is defined, then a = 0.

We will call an orthoalgebra any e↵ect algebra with no isotropic element, i.e. with no

element x 6= 0 such that x  x0.

By item (3) of the above definition, any element a of an e↵ect algebras A has exactly one

orthocomplement. Thus we can define a total operation 0 : a 7! a0 which turns out to be

an antitone involution (see [47, Theorem 2.4.]). Moreover, an interesting consequence of

the unicity of orthocomplements is the following:

Proposition 2.19. For any e↵ect algebra A the following condition is satisfied, for any

x, y 2 A:

x  y and x0 ^ y = 0 imply x = y. (2.3)
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Proof. Note that if condition 2.3 is not satisfied, then the underlying lattice ofA contains

a sublattice isomorphic to B6 (see Theorem 2.3).

1

x0 y

y0 x

0

(2.4)

Since x � y, then x� y0 is defined. Moreover, since 0 is an antitone involution we have

that 1 = x _ y0  x� y0. Hence y0 is an orthocomplement for x. Therefore x0 = y0 and

x = y, a contradiction.

Although the definition of e↵ect algebras looks elementary, these structures are endowed

with several rather remarkable features.

Lemma 2.20. Let A be an e↵ect algebra. Then it satisfies, for any a, b 2 A

x  y implies x� (x� y0)0 = y (EOL)

Proof. See [47, Theorem 2.4].

We call the condition (EOL) the e↵ect orthomodular law.

Theorem 2.21. Let A be an e↵ect algebra and a, b, c 2 A with a, b ? c. Then

(i) a� c  b� c implies a  b;

(ii) a� c = b� c implies a = b,

i.e. the cancellation laws hold.

It is easy to notice several a�nities between e↵ect algebras and partially ordered Abelian

groups (see e.g. [63]). In fact, we have the following:

Theorem 2.22. Let G = (G,+,�, 0) be a partially ordered Abelian group 0 6= u 2 G+,

where G+ stands for the positive cone of G. Defining, for any x, y 2 G, x� y = x+ y,

if x+ y 2 [0, u], and x0 = u� x, then the structure ([0, u],�,0 , 0, u) is an e↵ect algebra.
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We call e↵ect algebras which are intervals in partially ordered Abelian groups interval

e↵ect algebras.

Among e↵ect algebras, orthoalgebras play an important role in the foundation of quan-

tum mechanics. Indeed, many e↵ect systems in a Hilbert space can be regarded as

orthoalgebras, if adequately equipped with a suitable notion of orthogonality (see e.g.

[57]).

It is easily seen that, since they cannot contain isotropic elements, orthoalgebras satisfy

the identities x^ x0 ⇡ 0 and x_ x0 ⇡ 1, i.e. their induced poset is an orthoposet. More-

over, it can be shown that they are a proper generalization of orthomodular posets. In

fact, let A = (A,,0 , 0, 1) be an OMP. Let we define, for any x, y 2 A, x� y = x _ y, if

x  y0 and undefined, otherwise. Then it can be seen that (A,�, 0, 1) is an orthoalgebra.

However, there are orthoalgebras which are not orthomodular posets, i.e. they cannot

be obtained by some OMP by means of the aforementioned procedure.

Example 2.1. There exist orthoalgebras which are proper, i.e. they cannot be obtained

by an OMP as above. In fact, the Wright Triangle, whose Greechie diagram ([47]) is

depicted in display (6.17), is the smallest orthoalgebra which is not an OMP.

•

• •

• • •

(2.5)

We call orthoalgebras which are not OMP’s proper. Intuitively, an orthoalgebraA is said

to be proper if there exists a pair of elements x, y 2 A such that x ? y (thus x ^ y = 0)

but x _ y does not exist. Generalizing the orthoalgebraic case we define proper e↵ect

algebras as follows.

Definition 2.23. An e↵ect algebra A = (A,�, 0, 1) is said to be proper if there exists

a pair of elements x, y 2 A such that x ? y, x ^ y exists but x _ y is not defined.

Moreover, we have a complete characterization of OMP’s in the framework of e↵ect

algebras. In fact, it turns out that an e↵ect algebra is an OMP if and only if it satisfies

the coherence law.

Proposition 2.24 (Theorem 5.3, [47]). An e↵ect algebra A is an OMP if and only if

it satisfies the coherence law, i.e. for any x, y, z 2 A

If x� y, x� z, y � z are defined, then (x� y)� z exists. (CL)
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Moreover, we are able to characterize those e↵ect algebras which are indeed orthoalge-

bras.

Theorem 2.25 (Theorem 5.1, [47]). For an e↵ect algebra A, the following conditions

are mutually equivalent:

(i) A is an orthoalgebra;

(ii) If x, y 2 A with x ? y, then x� y is a minimal upper bound for x and y in A;

(iii) x ^ x0 = 0, for any x 2 A;

(iv) The mapping 0 : x 7! x0 is an orthocomplementation with respect to _.

Since orthoalgebras generalize orthomodular posets, one might ask if they can be seen

as pastings of Boolean algebras as well. Firstly, we note that:

Remark 2.26. Any orthoalgebra is the union of its maximal Boolean subalgebras, i.e.

its blocks.

Moreover, we have the following

Lemma 2.27 (Proposition 7.3, [97]). The pasting of a pasted family of Boolean algebras

F (cf. Definition 2.9) is an orthoalgebra.

The orthoalgebra depicted in Example 2.1 is a prototypical example of pasting in the

sense of Definition 2.9. In fact it is the “gluing” of three 8-elements Boolean algebras

along three 4-elements Boolean subalgebras.

One might ask if a converse of Lemma holds true as well. Unfortunately, the answer is

negative since the intersection of two blocks of an orthoalgebra need not be a Boolean

subalgebra (see [99]). Therefore, we need to introduce a more general notion of pasting.

Definition 2.28. Le F be a family of Boolean algebras such that, for all A,B in F ,

(PF1) A \ B is the universe a suborthoalgebra of both A,B in which the operations

coincide;

(PF2) 8x 2 A \B 9C 2 F ([0, x]A [ [0, x0]B ✓ C).

We call F an o-pasted family of Boolean algebras

In order to introduce a suitable notion of o-pasting of Boolean algebras we need the

following
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Theorem 2.29 ([99]). Let F be a family of orthoalgebras that satisfies the following

conditions for all distinct A,B in F :

(P1) 1A = 1B;

(P2) if x�Ay = z and B contains at least two of x, y, z, then x, y, z 2 B and x�By = z;

(P3) if (x �A y) �B z is defined, then there is a C in F such that (x �C y) �C z =

(x�A y)�B z.

Let us set P =
S

C2F C, and define a partial operation � on P as follows: x� y = z if

and only if there is a C 2 F such that x �C y = z. Moreover, define 1 = 1C, 0 = 0C.

Then, P = (P,�, 0, 1) is an orthoalgebra.

Definition 2.30. The orthoalgebra P = (P,�, 0, 1) of Theorem 2.29 is called the o-

pasting of F .

We can finally prove the following

Theorem 2.31 ([99]). Let F be a family of Boolean algebras such that, for all A,B

in F ,

(PF1) A \ B is the universe of a suborthoalgebra of both A,B in which the operations

coincide;

(PF2) 8x 2 A \B 9C 2 F ([0, x]A [ [0, x0]B ✓ C).

Then, the assumption of Theorem 2.29 are satisfied and the o-pasting P of F is an

orthoalgebra. Furthermore, each orthoalgebra can be obtained in this way from the family

of its blocks.

The above theorem completely characterizes orthoalgebras in terms of pastings of their

maximal Boolean subalgebras.

2.1.4 Paraorthomodular lattices

As it has been pointed out above, e↵ect algebras induce posets which are not, in general,

lattices, since the canonical order induced by the Born’s rule (see [33, Cap. 4]) on

the set E(H) of e↵ects on a Hilbert space H does not ensure that meets and joins of

elements always exist. Therefore, in [59, 60] paraorthomodular lattices, i.e. regular

bounded lattices with an antitone involution satisfying the paraorthomodular law have

been introduced.
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Definition 2.32. An involution lattice A = (A,^,_,0 , 0, 1) is said to be paraorthomod-

ular if the following conditions are satisfied, for any x, y 2 A:

P1 x ^ x0  y _ y0 (regularity);

P2 x  y and x0 ^ y = 0 implies x = y (paraorthomodularity).

The importance of these structures rests on the fact that they represent a natural gen-

eralization of the lattice ordering on closed subspaces of a Hilbert space to the whole

class of e↵ects by means of the so-called spectral ordering.

A (bounded) spectral family on a separable Hilbert space H with set ⇧(H) of projection

operators is a map M : R ! ⇧(H) such that:

a. For any �, µ 2 R, if �  µ, then M(�)  M(µ) (monotonicity);

b. For any � 2 R, M(�) =
V

µ>�
M(µ) (right continuity);

c. There exist �, µ such that, for any ⌘ 2 R, one has

M(⌘) =

8
<

:
O, if ⌘ < �

I, if ⌘ � µ.

Any self adjoint linear operatorA ofH can be uniquely “decomposed” asA =
R1
�1 xdM(x),

where the integral is meant in the sense of Riemann-Stieltjes norm-converging sums (see

[119, cap. 1]). Now, we can introduce the spectral ordering on the set of e↵ects E(H) of

H defining, for any E,F 2 E(H),

E s F i↵ MF (x)  ME(x), for any x 2 R. (SO)

s turns out to di↵er from (CO). In fact, the condition

E s F i↵ F � E �s O

need not be satisfied (see [103]). Moreover, the order induced by (SO) naturally turns

E(H) into a (conditionally) complete bounded lattice. Finally, setting 0 as E0 = I�E, for

any E 2 (H), E(H) becomes a paraorthomodular lattice. Therefore, under the spectral

ordering, the whole set of e↵ects is amenable of lattice theoretical analysis.

We remark that several varieties of involution lattices of prominent importance for math-

ematical logic are indeed paraorthomodular.

Proposition 2.33. Any modular involution lattice satisfying regularity is paraortho-

modular.
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Proof. It follows by noticing that any modular lattice cannot contain B6 as its sublattice

(cf. Theorem 2.3).

Distributive and regular involution lattices are called Kleene lattices while their non-

necessarily-distributive generalizations are often denoted in the literature as pseudo-

Kleene lattices. They will play an important role expecially in Chapter 5.

It is worth highlighting that paraorthomodular lattices are not, in general, ortholattices,

since the identity x ^ x0 ⇡ 0 is no longer assumed (cf. e.g. Example 5.1). Therefore, in

this much more general context, the paraorthomodularity condition is no longer equiv-

alent to the orthomodular law since the latter implies that x ^ x0 ⇡ 0 holds. In fact, by

x  1, one has that 1 = (x _ (x0 ^ 1)) = (x _ x0), i.e. x ^ x0 = 0.

2.1.5 Lattice e↵ect algebras and Lattice Pseudoe↵ect algebras

Obviously, proper e↵ect algebras (see Definition 2.23) are neither lattice-ordered nor

completable via Dedekind-MacNeille completion [110]. In fact, they need not be (join-,

meet-) densely embeddable into an e↵ect algebra whose underlying poset is a complete

lattice (cf. Subsection 1.1.1).

Due to their widespread application in logic and the foundation of quantum mechanics

(see e.g. [51, 50]), and their multiple connections with algebraic structures of prominent

relevance in abstract algebraic studies, lattice e↵ect algebras represent a fruitful and

increasing field of inquiry.

Definition 2.34. An e↵ect algebra A is a lattice e↵ect algebra if the partial order

induced by � is a lattice.

Since lattice operations are always defined, they will be included in the type. Thus, any

lattice e↵ect algebra A will have the form A = (A,^,_,�, 0, 1).

Clearly, any orthomodular lattice can be turned into a lattice e↵ect algebra and, by The-

orem 2.25 (ii), it is easily seen that any lattice ordered orthoalgebra is an orthomodular

lattice.

Interestingly enough, lattice e↵ect algebra are capable of being described by means of

their block structure. Infact, a celebrated result by Z. Riečanová ([112]) states that any

lattice e↵ect algebra is the union of its blocks, i.e. maximal subalgebras which are MV

algebras (see Section 2.2). Some techniques for constructing lattice e↵ect algebras start-

ing from MV algebras and lattice e↵ect algebras can be found in [128]. Nevertheless, at

the best of our knowledge, the above achievements have been only partially extended to

the general case of e↵ect algebras. Indeed, the problem of finding a complete character-

ization of e↵ect algebras in terms of blocks is still open.
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Pseudoe↵ect algebras were introduced in 2001 by A. Dvurečenskij and T. Vetterlein

([40]) in order to provide a non-commutative generalization of e↵ect algebras.

Definition 2.35. A structure A = (A,�, 0, 1), with � a partial binary operation, and

0, 1 constant functions, is a pseudoe↵ect algebra if, for all a, b, c 2 A, the following

conditions are satisfied:

(E1) a�b and (a�b)�c are defined i↵ so are b�c and a�(b�c), and (a�b)�c = a�(b�c);

(E2) there is exactly one d 2 A, and exactly one e 2 A such that a� d = e� a = 1;

(E3) if a� b exists, then there are elements c, d 2 A such that c� a = a� b = b� d;

(E4) if 1� a or a� 1 exists, then a = 0.

In view of condition (E2), with a slight notational abuse, we may define two comple-

mentation operations ⇠,� on a pseudoe↵ect algebra A by requiring that, for any a 2 A,

a� a⇠ = 1 = a� � a. (EC)

Therefore, we will freely consider a pseudoe↵ect algebra as a structure in the language

(�,⇠ ,� , 0, 1), where � is a partial binary operation, ⇠,� are unary operations, and 0, 1

are constants such that conditions (E1),(EC),(E3) and (E4) are satisfied. Moreover, for

notational clarity, since � is associative, we will omit unnecessary parentheses, when-

ever possible. Finally, it is perhaps worth recalling that, if the partial operation � is

commutative, then the structure in question is indeed an e↵ect algebra [40, Proposition

1.3].

As for e↵ect algebras, it is possible to introduce a partial order on a pseudoe↵ect algebra

A by setting, for any x, y 2 A:

x  y if there exists z 2 A such that x� z = y (2.6)

Moreover, by (E3), the order is readily seen to be two-sided, i.e. for any pseudoe↵ect

algebra A if x  y in A then there exists z such that z � x = y. It is not di�cult to

see that the induced poset is upper (lower) bounded by 1 (0) and the unary operations
⇠ and � are antitone although not necessarily involutive, i.e. one has x  y implies

y⇠  x⇠ and y�  x� (see Chapter 4) but x⇠⇠ ⇡ x (x�� ⇡ x). Finally, given a

pseudoe↵ect algebra A, if the order induced by � is a lattice then A is said to be a

lattice pseudoe↵ect algebra.

One of the interesting aspects of pseudoe↵ect algebras is that they can be put into

relationship with well studied structures like partially ordered groups (see e.g. [41] for

details).
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Example 2.2 (Definition 2.1, [40]). Consider a (not necessarily Abelian) partially or-

dered group G = (G,, ·,�1 , e). We call an element u 2 G+ (cf. Theorem 2.22) a

strong unit if, for any g 2 G, there exists n 2 N such that u�n  g  un, where

xn = (...(((x · x) · x)...) (x�n = (...(((x�1 · x�1) · x�1)...)) n-times. For any element

x 2 [e, u]G+ consider the element x� = u · x�1 and x⇠ = x�1 · u. Then, putting for any

x, y 2 [e, u]G+ x� y = x · y, whenever x · y 2 [e, u], the structure ([e, u]G+ , ·,⇠ ,� , e, u) is

provably a pseudoe↵ect algebra called interval pseudoe↵ect algebra.

Moreover, it has been proven that pseudoe↵ect algebras satisfying RDP1, namely a

weaker form of the Riesz decomposition property are categorically equivalent to partially

ordered groups with strong unit satisfying RDP1. We refer the reader to [41] for details.

2.2 MV algebras, pseudo-MV algebras, Basic algebras

In this section we recall basic notions related to MV algebras and their generalizations.

2.2.1 MV algebras and pseudo-MV algebras

MV algebras were introduced by C.C. Chang in 1958 as an algebraic counterpart of the

infinite-valued  Lukasiewicz logic. In what follows we provide the definition and a very

few facts concerning MV algebras. The interested reader is referred to [13] for overviews

and deep investigations on the subject.

An MV-algebra A is an Abelian monoid (A,�, 0) equipped with an operation ¬ such

that ¬¬0 ⇡ x, x� ¬0 = ¬0 and the so-called  Lukasiewicz identity holds:

¬(¬x� y)� y ⇡ ¬(¬y � x)� x (LI)

Moreover, it can be proven that ¬(¬x� y)� y = x _ y.

The standard example of an MV-algebra is given by the real unit interval [0, 1] equipped

with the operations ¬x = 1 � x and x � y = min(1, x + y). It is easily seen that

the structure so defined is, under the natural order on the real interval [0, 1], a totally

ordered involution lattice with an order-preserving binary operation. We call the interval

[0, 1] equipped with operations as above the standard MV algebra. Although simple, this

structure enjoys quite strong and interesting properties. In fact, Chang’s completeness

theorem ([13, Theorem 2.5.3]) states that the above algebra generates the whole variety

of MV algebras. This means that any equation is valid in [0, 1] if and only if it is valid

in any MV algebra.
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Definition 2.36. An MV algebra is an algebra A = (a,�,¬, 0) of type h(2, 1, 0) satis-
fying the following equations:

(MV1) (x� y)� z ⇡ x� (y � z);

(MV1) x� y ⇡ y � x;

(MV1) x� 0 ⇡ x;

(MV1) ¬¬x ⇡ x;

(MV1) x� 1 ⇡ 1, where 1 = ¬0;

(MV1) ¬(¬x� y)� y ⇡ ¬(¬y � x)� x.

Given an MV algebra A, if we put x  y if and only if ¬x � y = 1, then it turns out

that  is a partial (lattice-) order. Moreover, ¬ is an antitone involution with respect

to . One might have noticed that the class of MV algebras has several a�nities with

lattice e↵ect algebras. In fact, any MV algebra is a lattice e↵ect algebra by letting � be

defined for orthogonal elements only.

A famous theorem by C.C. Chang completely characterizes MV algebras as subdirect

products of MV chains (i,e. totally ordered MV algebras).

Theorem 2.37. Any MV algebra A is the subdirect product of MV chains.

Clearly, since any totally ordered lattice is distributive and, of course, distributivity

is preserved under direct products, subalgebras and onto homomorphisms, the lattice

subreduct of any MV algebra is distributive. Finally, we recall the following famous

theorem by D. Mundici

Theorem 2.38 ([13]). Any MV algebra A is isomorphic to the interval [0, u] of some

lattice ordered group with strong unit u.

As pseudoe↵ect algebras generalize e↵ect algebras, pseudo-MV algebras represent a non-

commutative generalization of MV algebras. Pseudo-MV algebras were introduced by

Georgescu and Iorgulescu in [55], and independently considered, under a di↵erent name,

by Rach̊unek in [106]. For them, Dvurecěnskij proved in [37] that any pseudo-MV

algebra is always an interval in a unital (not necessarily Abelian) lattice ordered group

(G, u).

Definition 2.39. A pseudo-MV algebra is an algebra A = (A,�,�,� ,⇠ , 0, 1) of type

(2, 2, 1, 1, 0, 0) satisfying the following equations:
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(M1) (x� y)� z = x� (y � z);

(M2) x� 0 = 0� x = x;

(M3) x� 1 = 1� x = 1;

(M4) 1⇠ = 1� = 0;

(M5) (x� � y�)⇠ = (x⇠ � y⇠)�;

(M6) x� (x⇠ � y) = y � (y⇠ � x) = (x� y�)� y = (y � x�)� x;

(M7) x� (x� � y) = (x� y⇠)� y;

(M8) x�⇠ = x⇠� = x.

It turns out that (cf. [55, Proposition 1.13])

x� (x� � y) = y � (y� � x) = (y � x⇠)� x = (x� y⇠)� y.

Let us note that in any pseudo-MV algebra � and � are inter-derivable.

x� y = (y� � x�)⇠ = (y⇠ � x⇠)�. (2.7)

Moreover, in every pseudo-MV algebra a partial order is term-definable (see [55, Propo-

sition 1.10]) by setting

x  y i↵ x� � y = 1. (2.8)

It is well known that this partial order is indeed a lattice ordering, whose infima and

suprema are defined as follows:

(i) x _ y = x� (x⇠ � y) = y � (y⇠ � x) = (x� y�)� y = (y � x�)� x;

(ii) x ^ y = x� (x� � y) = y � (y� � x) = (x� y⇠)� y = (y � x⇠)� x.

Since pseudo-MV algebras will be the subject of subsequent chapters, we postpone an

analysis of arithmetical properties of these structures when it will be needed.

2.2.2 Basic Algebras

Basic algebras were introduced in [21] by I. Chajda, R. Halaš and J. Kühr with the aim

of providing a common generalization of orthomodular lattices and MV algebras. These

structures grant a basic tool for discerning quantum structures and algebras arising in the

framework of many-valued logics by simple additional conditions. Moreover, it represent
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an environment in which the above mentioned structures can be put into relationship

from an arithmetical as well as from a structural perspective.

Definition 2.40. A basic algebra is an algebra A = (A,�,¬, 0) satisfying the following

identities:

B1 x� 0 = x;

B2 ¬¬x = x;

B3 ¬(¬x� y)� y = ¬(y � ¬x)� x;

B4 ¬(¬(¬(x� y)� y)� z)� (x� z) = 1 (where ¬0 = 1).

In any basic algebras the order defined by x  y if and only if ¬x � y = 1 is a lattice

order, whose corresponding join and meet are defined as

x _ y = ¬(¬x� y)� y and x ^ y = ¬(¬x _ ¬y).

It can be proven that the lattice induced by a basic algebra A is upper (lower) bounded

by 1. Furthermore, the mapping a : x 7! ¬x� a is an antitone involution on the section

[a, 1].

Definition 2.41. A bounded lattice with sectional antitone involution A is a system

(A,^,_, {a}a2A, 0, 1) such that:

• (A,^,_, 0, 1) is a bounded lattice

• For any a 2 A the operation a is an antitone involution on the interval [a, 1], i.e.

for any x 2 A it holds that (xa)a ⇡ x and x  y implies ya  xa.

Theorem 2.42 (Theorem 2.5, [21]). Let A be a basic algebra. Then

L(A) = (A,_,^, {a}a2A, 0, 1)

is a bounded lattice with sectional antitone involutions.

Theorem 2.43 (Theorem 2.6, [21]). Let L = (A,^,_, {a}a2A, 0, 1) be a bounded lattice

with sectional antitone involutions. Then the algebra A(L) = (L,�,¬, 0),where x� y :=

(x0 _ y)y and ¬x = x0, is a basic algebra.

A little thought shows that every MV-algebra is a basic algebra, indeed, a commutative

basic algebra. For the converse, it has been shown that any commutative basic algebra

whose underlying lattice is complete is a complete MV algebra, but this does not hold
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in general. Indeed there exist examples of infinite commutative basic algebras which are

not MV algebras (see [8] for details)

Theorem 2.44 (Theorem 5, [21]). A basic algebra is an MV algebra if and only if it is

associative, i.e. it satisfies

x� (y � z) ⇡ (x� y)� z

It is worth observing that, also in the general framework of basic algebras, we can still

define a notion of block.

Definition 2.45 (Definition 3.15, [21]). Given a basic algebra A = (A,�,¬, 0), we say

that a non-empty subset B ✓ A is a block if B is a maximal set with the property that

x� y = y � x for all x, y 2 B; in other words, a block is a maximal set whose elements

pairwise commute.

By Zorn’s lemma each element a 2 A is contained in a block of A, hence every basic

algebra is the set-theoretical union of its blocks.

In light of the above considerations, one might wonder if, as for the orthomodular case,

any block of a basic algebra A is a subalgebra. Surprisingly enough, we have the

following.

Theorem 2.46 (Theorem 7.9, [21]). For every basic algebra A = (A,�,¬, 0), the fol-

lowing are equivalent:

1. Every block of A is a subalgebra that is an MV algebra;

2. A is a lattice e↵ect algebra.

Thus, among basic algebras, lattice e↵ect algebras can be characterized as “unions” of

MV algebras which are indeed maximal subalgebras of mutually commuting elements.

Moreover, it can be proven something more:

Theorem 2.47 (Corollary 7.10, [21]). If A = (A,�,¬, 0) is a finite basic algebra, then

the following are equivalent:

1. Every block of A is a subalgebra of A;

2. A is a lattice e↵ect algebra.

This result might suggest that the distinguishing trait of quantum structures strongly

relies on the notion of pasting. However, to the best of our knowledge, the problem as
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to wether Theorem 2.46 can be generalized to basic algebras of arbitrary cardinality has

not been solved yet.

Clearly, orthomodular lattices, MV algebras and lattice e↵ect algebras satisfy the paraortho-

modularity condition (see Definition 2.32). However, this no longer holds when we con-

sider the whole variety of Basic algebras.

Example 2.3. Let us consider the Basic algebra A depicted below.

� 0 1 a b c d

0 0 1 a b c d

1 1 1 1 1 1 1

a a 1 a b 1 c

b b 1 a b 1 1

c c 1 1 1 c d

d d 1 b 1 c d

(2.9)

Clearly, A does not satisfy the paraorthomodularity condition, since its underlying lattice

is an instance of B6.

1 = 00

a = d0 c = b0

b = c0 d = a0

0 = 10

(2.10)

As it has been pointed out in the previous subsections, the paraorthomodularity con-

dition is a cross-cutting concept in quantum structures and in the wider context of

“events algebras”, i.e. the algebraic structures aimed at capturing the algebraic prop-

erties of events. Hence, it is worth asking if there are varieties of proper basic algebras

(i.e. basic algebras which are neither MV algebras nor lattice e↵ect algebras) fulfilling

the paraorthomodularity condition. If such algebras exist, then we could conclude that

paraorthomodularity is quite independent from particular properties of the aforemen-

tioned structures.

Of course, any basic algebra having an underlying distributive lattice, e.g. weakly mono-

tone basic algebras ([10, Lemma 4.2]), are “paraorthomodular”. However, there are

basic algebras which are neither, in general, weakly monotone, nor lattice e↵ect alge-

bras, whose underlying involution lattice still have the paraorthomodularity property.
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In fact, we close this subsection by showing that any basic algebra A satisfying the sim-

ple condition (A) below has the paraorthomodularity property. Moreover, as for weakly

monotone basic algebras (see [10, Theorem 4.6]) the set S(A) = {a 2 A : x ^ ¬x = 0}
of “sharp” elements of A forms a Boolean sub(involution)lattice of the underlying in-

volution lattice naturally induced by A. Therefore, the only OMLs satisfying (A) are

Boolean algebras. Since, OMLs can be thought, in basic algebras framework, as a sub-

variety of lattice e↵ect algebras (see [21]), we conclude that lattice e↵ect algebras do not

satisfy (A) as well. Finally, Example 2.4 shows that there are non-distributive basic al-

gebras which still satisfy the aforementioned condition. Thus, basic algebras introduced

in Proposition 2.48 represent a proper generalization of distributive basic algebras.

Proposition 2.48. Let A be a basic algebra. If A satisfies the condition

(x _ ¬x) ^ y ⇡ (x ^ y) _ (¬x ^ y), (A)

then:

1. A satisfies the paraorthomodularity condition;

2. S(A) forms a sub(involution)lattice of the involutive lattice reduct of A;

3. S(A) is a Boolean algebra.

Proof. As regards (1), just note that if x  y and x0^y = 0, then y = 1^y = (x_x0)^y =

(x ^ y) _ (x0 ^ y) = (x ^ y) = x. For (2), if x 2 S(A), then ¬x 2 S(A) as well. Now,

suppose that x^¬x = 0 and y ^¬y = 0. One has x = (y _¬y)^ x = (x^ y)_ (x^¬y).
Similarly, it follows that y = (xy) _ (¬x ^ y). Thus y _ ¬y = ¬y _ (xy) _ (¬x ^ y) and

x _ ¬x = ¬x _ (x ^ y) _ (x ^ ¬y). Thus, 1 = ¬y _ (xy) _ (¬x ^ y) _ ¬x _ (x ^ y) _
(x ^ ¬y) = (x ^ y) _ ¬(x ^ y). We conclude that S(A) is closed under ^ and, since ¬
is an antitone involution, our claim is proved. Finally, we observe that S(A) contains 0

and 1 and, of course it is a paraorthomodular ortholattice, by (1)� (2). Hence, S(A) is

an orthomodular lattice, by Theorem 2.3. By general considerations on orthomodular

lattices ([3]), since for any x, y 2 S(A), one has x = x ^ (y _ ¬y) = (x ^ y) _ (x ^ ¬y),
we conclude that S(A) is a Boolean sublattice of A.
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Example 2.4. Consider the the basic algebra A depicted below.

� 0 1 a b c

0 0 1 a b c

1 1 1 1 1 1

a a 1 1 b c

b b 1 a 1 c

c c 1 a b 1

(2.11)

Note that A satisfies (A) but it is neither distributive nor regular.

1 = 00

a = a0 b = b0 c = c0

0 = 10

(2.12)



Chapter 3

On the structure theory of Basic

Algebras as near semirings

As it has been observed in Chapter 2, quantum structures as well as MV algebras have

several distinguishing traits e.g. they have di↵erent types, operations which can be total

or partial, induced orders which can be lattices or just posets...etc. Nevertheless, they

enjoy several common features both from an order theoretical and an algebraic perspec-

tive.

In order to capture similarities among classes of algebras, it is a common practice in

mathematics trying to find a su�ciently abstract framework in which seemingly dif-

ferent algebraic structures can be put under a common umbrella. As we have seen in

Subsection 2.2.2, basic algebras provide a su�ciently powerful machinery in which most

of the structures we are dealing with in this thesis can be embedded into. In fact, ortho-

modular lattices, lattice e↵ect algebras, and MV algebras, can all be regarded as proper

subvarieties of basic algebras.

A classical field of inquiry in abstract algebra is structure theory, i.e. the systematic

study of kernels of homomorphisms, e.g. filters and ideals, and more generally congru-

ences in classes of algebras. The importance of such a direction of research is given by

the multiple relationships that the features of these objects might entertain with the

general algebraic properties of structures they arise from. In particular, some varieties

of algebras have ideals and filters which are into one-to-one correspondence with congru-

ences. Therefore, an in-depth analysis of the former carries precious information about

the latter.

Semirings were introduced by Vandiver [125] in 1934. In more recent times they have

been deeply studied, especially in relation with applications. For example semirings have

been used to model formal languages and automata theory (see [43]), and semirings over

48
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real numbers, the so-called ((max,+)-semirings) have been fruitfully employed in idem-

potent analysis. A nice monograph on the subject is [62].

Recently, connections between semirings and infinite-valued logics algebraic semantics

have been studied by Belluce, Di Nola and Ferraioli who have introduced MV semirings

which turn out to be equivalent, as a category, to MV algebras [2]. The development of

this theory has yielded several achievements and applications e.g. to automata theory

([56]). Moreover, semirings have received attention from logicians community due to

their connections with residuation theory and, in particular, with residuated lattices,

i.e. the algebraic counterpart of substructural logics. In fact, any residuated lattice

can be turned into a semiring. Therefore, studies on semiring-like structures have been

expedient for investigating the connections between structures arising in several, often

di↵erent fields of logic and algebra (see e.g. [82]).

A semiring-like approach has been carried on by S. Bonzio, I. Chajda and A. Ledda

in [6] for basic algebras. In fact, exploiting the notion of near semiring introduced by

Länger and Chajda in [29, 30], they have shown that basic algebras are categorically

equivalent, more precisely, term equivalent to the so called  Lukasiewicz near semirings.

These results suggest that, besides their theoretical meaningfulness, basic algebras might

led to fruitful applications.

Clearly, any sub-variety of basic algebras can be framed within the context of  Lukasiewicz

near semirings. Thus, orthomodular lattices and their extensions as well as MV algebras

can all be interpreted as semiring-like structures (with involution) satisfying further ax-

ioms. A natural question arises: is it possible to develop a general structure theory for

near semirings in order to capture the “unifying” traits of quantum and many-valued

logics algebras? Fortunately, the answer turns out to be yes. In fact, since  Lukasiewicz

near semirings are congruence regular, i.e. every congruence is completely determined

by its 0-coset (its kernel, see Subsection 1.2.4), their structure is amenable of a smooth

description. Therefore, a general theory can be developed by asking if kernels might be

characterized set-theoretically, namely if a notion of ideal that properly matches with

congruences can be introduced.

In light of the above considerations, in this chapter we define a notion of ideal for

 Lukasiewicz near semirings. It will turn out that these objects can be neatly charac-

terized by means of sets closed under certain term operations. In particular, in case an

element e is central (i.e. it generates an ideal corresponding to a factor congruence, cf.

below and Chapter 1) then the ideal it generates is amenable of a neat order-theoretical

characterization: it corresponds to the interval [0, e]. Although the notion of centrality

is easily captured in the variety of involutive idempotent integral near semiring and

 Lukasiewicz near semiring, this concept yields rather strong properties. Indeed, by
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virtue of this characterization, in the last section of this chapter, we propose a rather

comprehensive algebraic version of the Cantor-Bernstein theorem for left-residuable in-

volutive idempotent integral near semirings. It seems to us that this theorem implies

a fairly general fact: even if an algebra is not a lattice (involutive idempotent integral

near semirings, in general, need not be lattices, but semilattices) its inner structure is

captured by means of the intervals [0, e] (which are indeed ideals in  Lukasiewicz near

semirings!), with e a central element. This theorem subsumes analogous results for the

structures we are dealing with in this thesis.

3.1 Basic algebras as semiring-like structures

In this section we define  Lukasiewicz near semirings by recalling basic results from [6].

Definition 3.1. A near semiring is an algebra A = (A,+, ·, 0, 1) of type (2, 2, 0, 0) such
that

(i) (A,+, 0) is a commutative monoid;

(ii) (A, ·, 1) is a groupoid satisfying x · 1 = x = 1 · x (a unital groupoid);

(iii) (x+ y) · z = (x · z) + (y · z);

(iv) x · 0 = 0 · x = 0.

The algebra A is said to be idempotent if it satisfies

(v) x+ x = x;

and integral if it satisfies

(vi) x+ 1 = 1.

For brevity sake, since no danger of confusion will be possible, with a slight abuse of

language, by near semiring (semiring) we will mean idempotent integral near semiring

(semiring). An extensive guide to the bibliography on semirings is in G lazek’s mono-

graph [64].

In case A is idempotent, it can be seen that the reduct (R,+) is a join semilattice, whose

partial ordering A will be called the induced order of R. A moment’s reflection shows

that 0 is its least element. From now on, for notational clarity, whenever no danger of

confusion is impending we will omit unnecessary superscripts.
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Definition 3.2. An involutive near semiring (briefly, ◆-near semiring) is an algebra

A = (A,+, ·,↵ , 0, 1) of type h2, 2, 1, 0, 0i such that

(i) the reduct (A,+, ·, 0, 1) is an involutive idempotent integral near semiring;

(ii) (A, ·, 1) is a groupoid satisfying x · 1 ⇡ x ⇡ 1 · x (a unital groupoid);

(iii) x↵↵ ⇡ x;

(iv) if x  y, then y↵  x↵.

A ◆-near semiring semiring is a  Lukasiewicz near semiring if it satisfies the following

further condition:

(vii) (x · y↵)↵ · y↵ ⇡ (y · x↵)↵ · x↵.

Let us remark that in any ◆-near semiring one has that 0↵ = 1. Furthermore, it is easily

seen that, since x  x + y (by (i)), it follows that (x + y)↵  x↵ (by (vi)). Hence, we

have that

(x+ y)↵ + x↵ = x↵. (viii)

For notational clarity, whenever it’s possible, we will omit the symbol “·” and use jux-

taposition: by xy we mean x · y.

Theorem 3.3 (Theorem 5, [6]). If A = (A,�,¬, 0) is a basic algebra, then the structure

R(A) = (B,+, ·,↵ , 0, 1), where x+y, x·y and x↵ are defined by ¬(¬x�y)�y, ¬(¬x�¬y),
¬x, and 1 = ¬0, respectively, is a  Lukasiewicz near semiring.

Hence, any basic algebra can be converted into a  Lukasiewicz near semiring. However,

we can also prove that any  Lukasiewicz near semiring can be turned into a basic algebra

showing that these structures are indeed term equivalent.

Theorem 3.4 (Theorem 4, [6]). If A is a  Lukasiewicz near semiring, then the structure

B(A) = (A,�,↵ , 0), where x� y is defined by ((x↵ · y) · y↵)↵ is a basic algebra.

Moreover, it can be proven (see [6, Theorem 6]) that the mapping R assigning to any

basic algebra a  Lukasiewicz near semiring and B of the above theorem are mutually

inverses, i.e. if A is a  Lukasiewicz near semiring resp. B is a basic algebra, one has

R(B(A)) = A and B(R(B)) = B, respectively. Therefore, basic algebras are into one-

to-one correspondence with  Lukasiewicz near semirings.

The following result is Lemma 3 in [6]. It will be useful for the development of our

arguments.
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Proposition 3.5. In any  Lukasiewicz near semiring the following identities hold:

(a) xx↵ ⇡ x↵x ⇡ 0;

(b) x+ y ⇡ ((x · y↵)↵ · y↵)↵.

A  Lukasiewicz semiring A is a  Lukasiewicz near semiring such that the reduct (A, ·, 1)
is a monoid.

Proposition 3.6. Let A be a  Lukasiewicz near semiring whose multiplication is as-

sociative. Then multiplication is also commutative, and therefore A is a commutative

 Lukasiewicz semiring.

Thus we can conclude that in any  Lukasiewicz semiring the groupoidal operation · is
commutative and right distributive: the equation z · (x+ y) = (z · x)+ (z · y) is satisfied.
In other words, the reduct (A,+, ·, 0, 1) is a semiring.

As basic algebras correspond to  Lukasiewicz near semirings, MV algebras match with

 Lukasiewicz semirings. In fact, since MV algebras are nothing but commutative and

associative basic algebras, their near semiring “companions” enjoy the same properties.

3.2 Ideals in  Lukasiewicz near semirings

 Lukasiewicz near semirings are arithmetical, i.e. congruence distributive and permutable.

[6, Theorem 8]. Moreover, they are also congruence regular (see [6, Theorem 7], Subsec-

tion 1.2.4). A fortiori, every congruence ✓ is fully specified by its kernel [0]✓. Therefore,

it seems quite reasonable to wonder whether this class could be amenable of a smooth

set-theoretical characterization. With this aim in mind we introduce the following defi-

nition:

Definition 3.7. Let A be a  Lukasiewicz near semiring. A set I ✓ A is called an ideal

if 0 2 I and the following conditions hold:

(I1) if ab↵ 2 I and b 2 I, then a 2 I;

(I2) if a↵b, b↵a 2 I, then (ac)↵ · (bc), (ca)↵ · (cb) 2 I, for any c 2 A.

Let us observe that, setting c = b↵ in condition (I2) we immediately obtain

(I3) if a↵b, b↵a 2 I, then ab↵ 2 I.
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We will denote by Con(A) and Id(A) the sets of congruences and ideals of A, respec-

tively.

Let us observe that, for any congruence ✓ on a  Lukasiewicz near semiring A, and any

a 2 A, [a]✓ is convex. In fact, if c 2 [a]✓ and a  b  c, then b = a + b✓c + b = c. The

following lemma characterizes, for every congruence, the relative kernel. It can be seen

that, for any  Lukasiewicz near semiring A, the following facts hold true.

Lemma 3.8. If ✓ 2 Con(A), then a✓b if and only if a↵b, b↵a 2 [0]✓.

Proof. If a✓b, then a↵b✓b↵b = 0, and dually for b↵a. Conversely, if a↵b, b↵a 2 [0]✓, then

if (a↵b)↵✓0↵ = 1, and so (a↵b)↵b✓1b = b, and dually (b↵a)↵a✓a. But then, b✓(a↵b)↵b =

(b↵a)↵a✓a.

It turns out that, for any congruence ✓, the coset [0]✓ is an ideal.

Theorem 3.9. If ✓ 2 Con(A), then [0]✓ 2 Id(A).

Proof. It is clear that 0 2 [0]✓. For (I1), if ab↵ 2 [0]✓ and [b]✓ = [0]✓, then [0]✓ =

[ab↵]✓ = [a]✓[b↵]✓ = [a]✓[b]↵✓ = [a]✓[0]↵✓ = [a]✓[1]✓ = [a]✓. Finally, for condition (I2),

if a↵b, b↵a 2 [0]✓, again by Lemma 3.8, a✓b. Hence, ac✓bc and ca✓cb. Therefore, by

Lemma 3.8, (ac)↵(bc)✓0 and (ca)↵(cb)✓0.

Conversely,

Theorem 3.10. If I 2 Id(A), then the relation ✓(I), defined for all a, b 2 A by

a✓(I)b , a↵b, b↵a 2 I, (3.1)

is a congruence on A, and [0]✓(I) = I.

Proof. Reflexivity and symmetry are straightforward. As regards transitivity, suppose

that a↵b, b↵a, b↵c, c↵b 2 I, then, by condition (I2), (c↵a)↵(c↵b), (c↵b)↵(c↵a) 2 I. So,

by condition (I3), (c↵a)(c↵b)↵ 2 I. Because c↵b 2 I, from condition (I1), c↵a 2 I. By

assumption, and condition (I3) a↵↵b↵, b↵↵a↵ 2 I. From condition (I2) we obtain that

(a↵c)↵(b↵c) 2 I and (b↵c)↵(a↵c) 2 I. By (I3), (a↵c)(b↵c)↵ 2 I. Now, b↵c 2 I, and so

by (I1) a↵c 2 I. As regards the operations, it is straightforward from (I2) and (I3),

respectively, that · and ↵ are preserved. From this fact we have that, if a✓(I)b, then

a+ c = ((a · c↵)↵ · c↵)↵✓(I)((b · c↵)↵ · c↵)↵ = b+ c, by Proposition 3.8. Finally, if a 2 I,

then 1a = 0↵a 2 I and a↵0 = 0 2 I, and so a 2 [0]✓(I). Conversely, if a 2 [0]✓(I), then

a↵0, 0↵a = 1a = a 2 I, which proves that I = [0]✓(I).
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As mentioned above,  Lukasiewicz near semiring A whose multiplication operation is

associative can be converted into an MV algebra and viceversa. Hence, it seems to

us that it could be of some interest wondering how the notion of ideal, in the general

setting of  Lukasiewicz near semirings, would specify to the case of  Lukasiewicz semirings.

Actually, for a  Lukasiewicz semiring A, we have that:

Corollary 3.11. A set I ✓ A such that 0 2 I is the kernel of some congruence ✓ if

and only if it satisfies conditions (I1) and (I2) of Definition 3.7. Moreover, I = [0]✓(I),

where ✓(I) is as in condition (3.1) in Theorem 3.10.

Furthermore, one can easily prove that ideals in  Lukasiewicz semirings can be defined in

the same way they are defined in the case of commutative semirings. In fact, the next

proposition shows that for  Lukasiewicz semirings one has a finite basis of ideal terms.

Proposition 3.12. Let A = (A,+, ·,↵ , 0, 1) be a  Lukasiewicz semiring. Then I ✓ A is

an ideal if and only if the following conditions hold:

(i) 0 2 I;

(ii) a, b 2 I implies a+ b 2 I;

(iii) a 2 I implies a · c = c · a 2 I, for any c 2 A.

Proof. Let I be and ideal in A. We only need to prove that conditions (ii) and (iii) are

satisfied. Let a 2 I. One has that 0 = c(aa↵) = (ca)a↵ = (ac)a↵ 2 I. Hence, by (I1), it

follows that ac 2 I. So condition (iii) holds. Now, assume that a, b 2 I. By condition

(iii), we obtain that (a + b)a↵ = 0 + ba↵ 2 I, so (I1) yields (a + b) 2 I. Thus, (ii) is

proved. Conversely, if (i)-(iii) hold, it is easily seen that (I1) and (I2) are satisfied. In

fact, suppose that ab↵, b 2 I. By (iii) ab 2 I, hence by (ii) ab↵+ab = a(b↵+b) = a·1 2 I.

Finally, assuming that a↵b, b↵a 2 I, one has by condition (iii) and Definition 3.2(viii)

that (ac)↵(bc) = ((ac)↵c)b = ((c↵a↵)↵a↵)b = (c↵a↵)↵(a↵b) 2 I.

Let A be a  Lukasiewicz near semiring. Hence, a straightforward verification proves that

the structure hId(A),^,_, {0}, Ai is a complete lattice under the set-theoretic ordering

with operations I ^ J = I \ J and I _ J = hI [ Ji (i.e, the least ideal containing both

I and J). In what follows, we will call this structure the ideal lattice of A. Moreover,

the one-to-one correspondence between Id(A) and Con(A) stated by Theorems 3.9 and

3.10 is, in fact, an isomorphism.

Theorem 3.13. The ideal lattice of A is isomorphic to Con(A). Hence, Id(A) is an

algebraic and distributive lattice.
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Proof. Let f : Id(A) ! Con(A) be the mapping defined by f(I) = ✓(I). By Theorems

3.9 and 3.10, f is a bijection, and its inverse g : Con(A) ! Id(A) is g(✓) = [0]✓. Now,

it should only be proved that f is an homomorphism. Clearly, f(I \ J) = ✓(I)\ ✓(J) =
f(I) ^ f(J). Now we show that f(I _ J) = f(hI [ Ji) = ✓(hI [ Ji) = ✓(I) _ ✓(J). By

Lemma 3.8, we have that (a, b) 2 ✓(I) _ ✓(J) if and only if a↵b, b↵a 2 [0]✓(I)_✓(J). Note

that, by congruence permutability (cf. page 56), a↵b 2 [0]✓(I)_✓(J) if and only if there is

a c such that

a↵b✓(I)c✓(J)0.

Therefore, again by Lemma 3.8 and Theorem 3.10:

(a↵b)↵c, c↵(a↵b) 2 I and c 2 J.

Therefore, by (I3), (a↵b)c↵ 2 I. Then, by condition (I1), we have that a↵b 2 hI[Ji, and
by symmetry b↵a 2 hI [ Ji. For the other inclusion, note that I, J ✓ [0]✓(I)_✓(J). Hence

hI [ Ji ✓ [0]✓(I)_✓(J). Therefore, by Theorem 3.10, ✓(hI [ Ji) ✓ ✓(I) _ ✓(J). Then, it

turns out that f(I) _ f(J) = ✓(I) _ ✓(J) = ✓(hI [ Ji). Hence f is an isomorphism.

Finally, since Con(A) is both distributive (see [6]) and, of course, algebraic, Id(A) is a

distributive and algebraic lattice.

It might be useful to emphasize that the result above is, in fact, an explicit proof of a

general result due to H.P. Gumm and A. Ursini. In fact, [73, Corollary 1.9] proves that

a variety V, equipped with a constant 0, is ideal determined (namely, for any A 2 V
there is a one to one correspondence between Con(A) and Id(A)) if and only if V is

0-regular and there exists a binary term s(x, y) such that

V |= s(x, x) = 0 and V |= s(0, x) = x.

Thus, since  Lukasiewicz near semirings are congruence regular, putting s(x, y) = x↵y,

they are an ideal determined variety. Futhermore, it can be easily seen that the previous

result provides a rather concise description of the ideals of the form hI [ Ji with I, J 2
Id(A). Let

[I]✓(J) = {a 2 A|(a, i) 2 ✓(J) for some i 2 I},

for any I, J 2 Id(A). In any  Lukasiewicz near semiring A, we can prove:

Proposition 3.14. For any I, J 2 Id(A):

hI [ Ji = [I]✓(J).
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Proof. If a 2 hI [ Ji, then a 2 [0]✓(I)_✓(J) and there exists k < ! such that

a✓(I)c1✓(J)c2✓(I)...ck✓(J)0.

Since  Lukasiewicz near semirings are congruence permutable, one has that there exists

c 2 A such that a✓(J)c✓(I)0. Thus, hI [ Ji ✓ [I]✓(J). Conversely, if a 2 [I]✓(J), then

a✓(J)i✓(I)0 for some i 2 I. Hence, a 2 [0]✓(J)_✓(I) = hI [ Ji.

As we have mentioned, Id(A) is algebraic with {0} and A its least and the greatest

element, respectively. Moreover, since Id(A) ⇠= Con(A) and Con(A) is distributive (see

above), we can conclude that it has the infinite join distributive property, by Proposition

1.18. It means that, for any ideal J 2 Id(A), and an arbitrary family of ideals {I�}�2�,
it holds that

J \
_

{I� |� 2 �} =
_

{J \ I� |� 2 �}. (3.2)

From this fact, we can deduce that:

Theorem 3.15. The ideal lattice Id(A) of any  Lukasiewicz near semiring A is pseudo-

complemented.

Proof. Let J 2 Id(A) and consider the set

SJ = {I 2 Id(A)|J \ I = {0}}.

Clearly, SJ 6= ;, since it contains {0}. By equation (3.2), we have that:

J \
_

SJ = J \
_

{I 2 Id(A)|J \ I = {0}} =
_

{J \ I|J \ I = {0}} =
_

{0} = {0}.

In other words,
W
SJ is the greatest ideal I in Id(A) such that J \I = {0}, which means

that it is the pseudocomplement of J .

In what follows, if I 2 Id(A), we denote the pseudocomplement of I by I⇤.

Let A be a  Lukasiewicz near semiring. For any a 2 A, we indicate by I(a) the principal

ideal generated by a, i.e. the least ideal of Id(A) that contains a.

Our next task will be to provide a full description of the principal ideals of Id(A), for

any  Lukasiewicz near semiring A. As it has been pointed out above, the variety of

 Lukasiewicz near semirings is congruence-permutable. The witnessing Mal’cev term is

the following

p(x, y, z) = ((x · y↵)↵ · z↵) + ((z · y↵)↵ · x↵))↵. (3.3)
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By Proposition 1.34, every reflexive binary relation on A having the compatibility prop-

erty with respect to operations of A is a congruence on A. In particular, for any pair

(a, b) 2 A2, the least reflexive relation having the compatibility property, say R(a, b), is

the principal congruence ✓(a, b), generated by a, b in A.

By Theorem 3.9, it follows that the ideal which is the 0-coset of ✓(a, 0) is the least ideal

containing a, namely I(a). Recall that by a unary polynomial p(x) we mean a unary

term-function tA(x, e1, e2, ..., en) where t is a n+1-ary term and e1, ..., en 2 A. Now, as

shown in [15], one has that (c, d) 2 R(a, b) if and only if there exists a unary polynomial

p(x) on A such that c = p(a) and d = p(b). Hence, b 2 I(a) if and only if (b, 0) 2 ✓(a, 0).

Upon denoting by Pol1(A) the set of all unary polynomials of A, it follows directly that:

Theorem 3.16. For any a 2 A,

I(a) = {p(a)|p 2 Pol1(A) with p(0) = 0}.

It is easily noticed that when dealing with a  Lukasiewicz semiring A, since + is idempo-

tent and due to the associativity and commutativity of · (cf. [6, Theorem 2]), polynomials

in one variable on A must be necessarily of the form

p(x) = xb+ c, for b, c 2 A. (3.4)

Now, according to the reasoning above, it is also required that p(0) = 0. Therefore, c

in condition (3.4) must be 0, and then we directly infer that the description of principal

ideals in a  Lukasiewicz semiring A can be simplified as follows:

Corollary 3.17. For any a 2 A,

I(a) = {a · c|c 2 A}.

3.3 Central elements and decompositions

The aim of this section is discussing the notion of centrality in the variety of ◆-near

semirings. This discussion will be relevant for the structure theory of  Lukasiewicz near

semirings, since it provides a rather neat description of principal ideals generated by

central elements, as well as for the application that the description of central elements

has in the proof of a Cantor-Bernstein type theorem that we will propose in section 6.1.

This section is based on the ideas developed in [114] and [90] on the general theory of

Church algebras.
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The notion of Church algebra is based on the simple observation that many well-known

algebras, including Heyting algebras, rings with unit and combinatory algebras, possess

a ternary term operation q and term definable nullary operations 0, 1, satisfying the

equations:

q(1, x, y) ⇡ x and q(0, x, y) ⇡ y.

The term operation q simulates the behaviour of the if-then-else connective and, surpris-

ingly enough, these rather simple conditions determine quite strong algebraic properties.

An algebra A of type ⌫ is a Church algebra if there are term definable constants 0A, 1A 2
A and a term operation qA such that, for all a, b 2 A,

qA
�
1A, a, b

�
= a and qA

�
0A, a, b

�
= b.

A variety V of type ⌫ is a Church variety if every member of V is a Church algebra with

respect to the same term q (x, y, z) and the same constants 0, 1.

Following the seminal work of D. Vaggione [124], we say that an element e of a Church

algebra A is central if the congruences ✓(e, 0), ✓(e, 1) form a pair of factor congruences

on A. A central element is said to be nontrivial if it di↵ers from 0 and 1. We denote

the set of central elements (the centre) of A by Ce(A).

Setting

x ^ y = q(x, y, 0), x _ y = q(x, 1, y) x⇤ = q(x, 0, 1)

we recall a general result for Church algebras:

Theorem 3.18. [114] Let A be a Church algebra. Then

Ce(A) = hCe(A),^,_,⇤ , 0, 1i

is a Boolean algebra which is isomorphic to the Boolean algebra of factor congruences of

A.

If A is a Church algebra of type ⌫ and e 2 A is a central element, then we define

Ae = (Ae, ge)g2⌫ to be the ⌫-algebra defined as follows:

Ae = {e ^ b : b 2 A}; ge(e ^ b) = e ^ g(e ^ b), (3.5)

where b denotes the n-tuple b1, ..., bn and e ^ b is an abbreviation for e ^ b1, ..., e ^ bn.

In any Church algebra, central elements are amenable of a neat description as follows:
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Theorem 3.19. If A is a Church algebra of type ⌫ and e 2 A, the following conditions

are equivalent:

(1) e is central;

(2) for all a, b,2 A and for all a, b 2 An:

a) q(e, a, a) = a,

b) q(e, q(e, a, b), c) = q(e, a, c) = q(e, a, q(e, b, c)),

c) q(e, f(a), f(b)) = f(q(e, a1, b1), ..., q(e, an, bn)), for every f 2 ⌫,

d) q(e, 1, 0) = e.

By [90, Theorem 4], we obtain the following theorem:

Theorem 3.20. Let A be a Church algebra of type ⌫ and e be a central element. Then:

1. For every n-ary g 2 ⌫ and every sequence of elements b 2 An, e^g(b) = e^g(e^b),
so that the function he : A ! Ae, defined by he(b) = e ^ b, is a homomorphism

from A onto Ae.

2. Ae is isomorphic to A/✓(e, 1). It follows that A ⇠= Ae ⇥ Ae⇤ for every central

element e, as in the Boolean case, under the mapping f(a) 7! (he(a), he⇤(a)).

This facts will be expedient in the context of ◆-near semirings. Indeed, they are a Church

variety [114, Definition 3.1].

Lemma 3.21. The class of ◆-near semirings is a Church variety, with witness term

q(x, y, z) = (x · y) + (x↵ · z).

Proof. Direct computation.

A straightforward interpretation of items a)–d) of Theorem 3.19 in our framework im-

mediately provides that, given a ◆-near semiring A, the operations ^,_,⇤ in the Boolean

algebra Ce(A) coincide with ·,+,↵, respectively (cf. [6, Proposition 3]).

Lemma 3.22. If e is central in a ◆-near semiring A, and a, b 2 A, then,

1. e · e = e (idempotency);

2. e · a = a · e (commutativity);
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3. (e · a) · b = a · (e · b) (associativity).

Proof. In this proof we will freely use Theorem 3.19 and Lemma 3.21.

(1) e = q(e, 1, 0) = q(e, 1 · 1, 0 · 0) = q(e, 1, 0) · q(e, 1, 0) = e · e.
(2) e ·a = q(e, 1, 0) ·q(e, a, a) = q(e, 1 ·a, 0 ·a) = q(e, a ·1, a ·0) = q(e, a, a) ·q(e, 1, 0) = a ·e.
(3) (e·a)·b = q(e, a, 0)·q(e, b, b) = q(e, a·b, 0) = e·(a·b) = q(e, a, a)·q(e, b, 0) = a·(e·b).

In  Lukasiewicz near semirings conditions (a)-(d) in Theorem 3.19 translate as follows:

a) is trivially satisfied, by Lemma 3.22. For condition b),

(e · c) + (e↵ · ((e · b) + (e↵ · a))) = (e · c) + (e↵ · a);

and

(e · c) + (e↵ · a) = (e · ((e · c) + (e↵ · b))) + (e↵ · a).

As regards condition c), if f is the constant 0 or 1, then clearly (e · 1)+ (e↵ · 1) = 1, and

(e · 0) + (e↵ · 0) = 0. If f is +,

(e · (b1 + b2)) · (e↵ · (a1 + a2)) = ((e · b1) + (e↵ · a1)) + ((e · b2) + (e↵ · a2)).

In case f is ·,

(e · (b1 · b2)) + (e↵ · (a1 · a2)) = ((e · b1) + (e↵ · a1)) · ((e · b2) + (e↵ · a2)).

In case f is ↵,

(e · a↵) + (e↵ · b↵) = ((e · a) + (e↵ · b))↵.

Finally, condition d) is obviously satisfied by any element in a  Lukasiewicz near semir-

ings.

As we have already seen in section 4.1, Theorem 3.16 provides a full description of princi-

pal ideals generated by elements of a  Lukasiewicz near semiring. Moreover, generalizing

the Boolean case, central elements produce a direct decomposition of these algebras. Due

to this fact, in what follows we will see that the ideals generated by central elements can

be described easily.

Definition 3.23. Let A = (A,+, ·,↵ , 0, 1) be a  Lukasiewicz near semiring and I, J 2
Id(A). I, J form a pair of factor ideals if and only if

I \ J = {0} and I _ J = A.
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By the fact that Id(A) and Con(A) are the universes of two isomorphic algebraic dis-

tributive lattices, it is direct to verify that I, J form a pair of factor ideals if and only if

✓(I) and ✓(J) form a pair of factor congruences.

Upon recalling that, for a 2 A, the interval [0, a] corresponds to the set {x|x  a}, from
the last notion introduced, the following theorem is obtained.

Theorem 3.24. Let e be a central element of a  Lukasiewicz near semiring A = (A,+, ·,↵ , 0, 1).
Then I(e) = [0, e].

Proof. By Theorem 3.20, e is central if and only if, for any a 2 A, the mapping f : A !
[0, e]⇥ [0, e↵], defined by f(a) 7! (he(a), he↵(a)), is a direct decomposition of A. Let ✓1

and ✓2 be the factor congruences associated to ker(⇡2 � f) and ker(⇡1 � f), respectively,
where ⇡i (i 2 {1, 2}) is the natural projection map. We denote by Ii (i = 1, 2) these

kernels. Then, e 2 I1 and e↵ 2 I2. Thus, I(e) ✓ I1 = [0, e] and I(e↵) ✓ I2 = [0, e↵].

Hence, I(e) \ I(e↵) = {0}. It is clear that, for a central element e, one has that

1 = e + e↵ 2 I(e) _ I(e↵). So I(e) _ I(e↵) = A. Hence, I(e) and I(e↵) form a pair of

factor ideals with I(e) ✓ I1, I(e↵) ✓ I2. Since I1 and I2 are factor ideals, we have that

I(e) = I1 = [0, e].

A few basic results about the pseudocomplements are subsumed in the following lemma.

Lemma 3.25. Let A = (A,+, ·,↵ , 0, 1) be a  Lukasiewicz near semiring, I, J 2 Id(A)

and a 2 A. Then:

1. I ✓ I⇤⇤;

2. If I ✓ J , then J⇤ ✓ I⇤;

3. I⇤ = I⇤⇤⇤;

4. (I, I⇤) is a pair of factor ideals if and only if I _ I⇤ = A;

5. (I(a), I(a↵)) is a pair of factor ideals if and only if

I(a↵) = I(a)⇤ and I(a) _ I(a↵) = A.

Proof. (1), (2), (3) and (4) are straightforward. For (5), if (I(a), I(a↵)) is a pair of

factor ideals, obviously I(a) _ I(a↵) = A. Now, clearly I(a↵) ✓ I(a)⇤. Furthermore, if

b 2 I(a)⇤, then b = 0 or b /2 I(a) and b 2 I(a↵) for I(a) _ I(a↵) = A. In any case one

has b 2 I(a↵). The converse follows immediately.
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Let us now briefly elaborate on the previous results. Consider a  Lukasiewicz near semir-

ing A = (A,+, ·,↵ , 0, 1), and let Skel(Id(A)) be the skeleton of Id(A), namely

Skel(Id(A)) = {I⇤|I 2 Id(A)}.

By a theorem due to V. Glivenko, later proved in its full generality by O. Frink (see

e.g. [65]), since (by Theorems 3.13 and 3.15) Id(A) is an algebraic pseudocomplemented

lattice, it turns out that Skel(Id(A)) is a Boolean lattice bounded by the trivial ideals {0}
and A. With a slight abuse of language, we may identify the skeleton with the Boolean

algebra Skel(Id(A)) = hSkel(Id(A)),^,_,⇤ , {0}, Ai where, for any I, J 2 Skel(Id(A)), ^
is \, _ is defined by I _ J = (I⇤ ^ J⇤)⇤. Trivially, for any I 2 Skel(Id(A)), I and I⇤

form a pair of complementary factor ideals.

Now, by Theorem 3.10, if I, I⇤ 2 Skel(Id(A)), then I = [0]✓(I) and I⇤ = [0]✓(I⇤). By

I _ I⇤ = A one obviously has that ✓(I) _ ✓(I⇤) = r and I ^ I⇤ = {0} implies that

✓(I) ^ ✓(I⇤) = �.

Conversely, if (✓, ✓0) is a pair of complementary factor congruences, then their 0-cosets,

say I and J , respectively, form a pair of complementary factor ideals. Indeed, it is easily

seen that I = J⇤ and J = I⇤.

In fact, by Lemma 3.25, one has that I ✓ I⇤⇤ and J ✓ J⇤⇤. Hence, I⇤⇤ _ J⇤⇤ = A.

Moreover, since I and J form a pair of complementary factor ideals, one has I ✓ J⇤

and J ✓ I⇤. Thus, by (2) of Lemma 3.25, I⇤⇤ ✓ J⇤ implies that if x 2 I⇤⇤ and x 6= 0,

then x 2 J⇤ and x /2 J⇤⇤. Hence, one has that I⇤⇤ ^ J⇤⇤ = {0} and, by the unicity

of complements in Skel(Id(A)), we can conclude that I⇤⇤ = J⇤ and J⇤⇤ = I⇤. In fact,

suppose ex absurdo that x /2 J and x 2 J⇤⇤. Hence, x /2 J⇤ = I⇤⇤ and x /2 I. So I ✓ J

and since I \J = {0} this is a contradiction. This implies that J = J⇤⇤ = I⇤. Similarly,

J⇤ = I. Then, we can conclude that there is a one-to-one correspondence between

pairs of complementary factor ideals in Skel(Id(A)) and pairs of complementary factor

congruences in Con(A).

Since A is congruence-distributive (see [6]) one has that the sublattice of Con(A)

that contains all pairs of complementary factor congruences on A, that we denote by

Con(A)F, is Boolean. Exploiting the same mapping f of Theorem 3.13, one can easily

observe that Skel(Id(A)) ⇠= Con(A)F.

Finally, by Theorem 3.7 in [114] one has that Con(A)F ⇠= Ce(A), where Ce(A) is

the Boolean lattice of central elements of A. In particular, it shows that the map

e 7! ✓(e, 0) is a bijective correspondence between Ce(A) and Con(A)F. Moreover, for

any e, d 2 Ce(A), the elements e↵, e ^ d, e _ d are central and naturally associated
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with the factor congruences ✓(e, 1) = ✓(e↵, 0), ✓(e, 0) \ ✓(d, 0) and ✓(e, 0) _ ✓(d, 0),

respectively. Hence, for any pair of complementary factor congruences (✓, ✓0) one has

that (✓, ✓0) = (✓(e, 0), ✓(e↵, 0)), for some e 2 Ce(A).

Summarizing the observations above, we have that Skel(Id(A)) coincides with the Boolean

lattice of pairs of complementary factor ideals (I, I⇤) in Id(A)2, which are nothing but

0-cosets of pairs of complementary factor congruences of the form (✓(e, 0), ✓(e↵, 0)), for

an element e in Ce(A). Thus, it directly follows that

Skel(Id(A)) = {I(e)|e 2 Ce(A)}

and by Theorem 3.24, I⇤ = [0, e], for some e 2 Ce(A).

3.4 A Cantor-Bernstein-type Theorem for ◆-near semirings

We close this chapter with an application of the theory of central elements to ◆-near

semirings. Namely, we propose a version of the Cantor-Bernstein Theorem for join �-

complete left-residuable ◆-near semirings with �-complete algebras of central elements.

More specifically, for a ◆-near semiring A, if {ai}i2I , such that |I|  �, then
W

i2I ai

exists, and Ce(A) is a �-complete Boolean algebra. This result was first shown in [117]

(see also [120]) for Boolean algebras and subsequently extended to MV-algebras (with

Boolean elements), orthomodular lattices, and other classes of algebras enjoying suit-

able properties, such as having an underlying lattice structure (see [34], [53]). Since

 Lukasiewicz near semirings generalize the notion of MV-algebra, it is natural to won-

der whether a version of the Cantor-Bernstein Theorem could be widened for weaker

structures, like ◆-near semirings.

Definition 3.26. Let A = (A,+, ·,↵ , 0, 1) be an ◆-near semiring. We say that A is

left-residuable if for any x 2 A there exists a mapping fx : A ! A such that, for any

y, z 2 A,

y · x  z i↵ y  fx(z).

Upon recalling that central elements commute with any other element (cf. Lemma 3.22),

in order to prove the main result of this section, we start with the following

Lemma 3.27. Let A be a left-residuable ◆-near semiring, and e 2 Ce(A), and a, b 2 A.

1. if a  e, then ae = a;

2. eb = e ^ b;
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3. if {ai}i2N ✓ A, then

e ^ (⌃n2Nan) = ⌃n2N (e ^ an).

Proof. (1) If a  e, then ae↵  ee↵ = 0, because e is central. Therefore, ea = ea +

0 = ea + e↵a, because e↵ commutes and so ae = ea = (e + e↵)a = 1a = a, because

e+ e↵ = e _ e↵ = 1.

(2) First, observe that be  b, e, by [6, Lemma 1]. If a  e, b, then a + e = e and

b+ a = b. Note that eb+ a = eb+ ea, by the previous item, and eb+ ea = e(b+ a) = eb,

because e is central and therefore commutes. Consequently, a  eb = e ^ b.

(3) One has ⌃n2Man ^ e = (⌃n2Man · e), by item 2. Now, clearly an · e  (⌃n2Nan) · e.
Moreover, if an ·e  c, n 2 N , one has an  fe(c); so, ⌃n2Nan  fe(c) and (⌃n2Nan)·e 
c. We conclude that (⌃n2Nan) · e = ⌃n2Man ^ e = ⌃n2N (an ^ e).

When there is no confusion possible, we will use · and ^ (+ and _) as synonyms,

respectively. The following lemma completes the results of the previous lemma.

Lemma 3.28. Let A,B be a left-residuable join �-complete near semirings and � : A !
B an isomorphism. Then,

1. if a 2 Ce(A), then �(a) 2 Ce(B);

2. if a 2 Ce(A), then � � [0, a] is isomorphic to [0, �(a)];

3. if {ai}i2N ✓ Ce(A),
W

n2N an = 1, and for i 6= j ai^aj = 0, then A is isomorphic

to ⇧n2N [0, an].

Proof. (1) and (2) are straightforward. (3) let {ai}i2N be a family of central elements

with the required properties. Let us call � the map from A to ⇧n2N [0, an] defined, for

a 2 A, by a 7! (a ^ ai : i 2 N). Clearly, if i 6= j, then, in case b  ai, aj , we have

that b  ai ^ aj = 0. Thus, [0, ai] \ [0, aj ] = {0}, which implies injectivity. Clearly,

�(1) = �(
W

n2N an) = (ai : i 2 N). Let (bi : i 2 N). Then, �(
W

i2N bi) = ((
W

i2N bi)^ai :

i 2 N) = (
W

i2N bi ^ ai : i 2 N) = (bi : i 2 N). The fact that � preserves the operations

directly follows from general results on central elements in a Church algebra [114].

We now have all the elements required for proving our main theorem. Recall that, given

a near semiring A and a 2 Ce(A), the interval [0, a] is an algebra whose operations are

the same as in A although adequately “constrained” to the considered subset of A (see

Theorem 3.20).
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Theorem 3.29. Let A = (A,+, ·,↵ , 0, 1) and B = (B,+, ·,↵ , 0, 1) be left-residuable

join �-complete ◆-near semirings, such that Ce(A) and Ce(B) are �-complete Boolean

algebras. If A ⇠= [0, b] and B ⇠= [0, a] with b 2 Ce(B) and a 2 Ce(A), then A ⇠= B.

Proof. Let � : A ! [0, b] and � : B ! [0, a] be isomorphisms with a 2 Ce(A) and

b 2 Ce(B). Without loss of generality, we can safely assume that 0 < a, b < 1. We

recursively define, as in the proof of [34, Theorem 4.1], the following pair of infinite

sequences:

v0 = 1 u0 = 1

vn+1 = �(un) un+1 = �(vn).

Since 1 2 Ce(A) \ Ce(B) and �,� are isomorphisms, one has, by Lemma 3.28(1), that

un 2 Ce(B) and vn 2 Ce(A) for any n 2 N . Indeed, by induction on n, we obtain

that vn = �(un�1) = �(�(vn�2)). Since � � � is still an isomorphism, a straightforward

application of the induction hypothesis yields vn 2 Ce(A). Similarly, un 2 Ce(B).

Furthermore, it can be seen that

v0 > v1 > ... > ... and u0 > u1 > ... > ... .

In fact, by induction on n, one has that v0 = 1 + v1 = 1 (since any ◆-near semiring is

integral). Hence, v0 � v1. Now, suppose that vk + vk+1 = vk for any k < n. It can be

seen that vn + vn+1 = �(un�1) + �(un) = (� � �)(vn�2 + vn�1) = (� � �)(vn�2) = vn.

Similarly, un + un+1 = un, for any n 2 N . Clearly, vn � vn+1 (un � un+1) follows from

the injectivity of � (�).

Indeed, since Ce(A) and Ce(B) are �-complete Boolean algebras (see Theorem 3.18),

we can define the following

v1 =
^

n2N
vn and u1 =

^

n2N
un.

Recall that, by Lemma 3.27(2), since all vn, n 2 N , are central, we obtain that
V

n2N vn =
Q

n2N vn. Similarly for un, n 2 N .

Moreover, a simple computation proves that �(v1) = �(
V

n2N vn) =
V

n2N �(vn) =
V

n2N un+1 = u1 as well as �(u1) = v1. We define the following

en = vn ^ v↵n+1 and dn = un ^ u↵n+1.

Let us note that �(en) = �(vn ^ v↵
n+1) = �(vn) ^ �(vn+1)↵ = un+1 ^ u↵

n+2 = dn+1.

Similarly, �(dn) = en+1. Now, it is easily seen that en�1 = v↵n and dn�1 = u↵n for any



Chapter 3. The structure theory of  Lukasiewicz near semirings 66

n 2 N+. Indeed, since the latter case can be handled similarly, we prove the former. We

have that e0 = v0 ^ v↵1 = 1 · v↵1 = v↵1 . Suppose that ek�1 = v↵
k
for any k < n. We obtain

that en�1 = vn�1^v↵n = (v↵
n�1)

↵^v↵n = (vn�2·v↵n�1)
↵·v↵n = (v↵

n�2+vn�1)·v↵n , by centrality

and De Morgan laws, and then v↵
n�2 ·v↵n+vn�1 ·v↵n = v↵n+vn�1 ·v↵n = (vn�1+1) ·v↵n = v↵n .

Hence: _

n2N+

en�1 =
_

n2N+

v↵n = (
^

n2N+

vn)
↵ = v↵1

as well as _

n2N+

dn�1 = u↵1.

Thus, we have that v1 _ (
W

n2N en) = 1 and u1 _ (
W

n2N dn) = 1. Furthermore, let us

note that em ^ en = 0 and dm ^ dn = 0 for any n 6= m. In fact, suppose without loss

of generality that m > n. It can be verified that em ^ en = vm ^ v↵
m+1 ^ vn ^ v↵

n+1 =

(vm ^ vn+1)^ v↵
m+1 ^ vn ^ v↵

n+1 = 0. The latter case can be handled similarly. Moreover,

a little thought shows that v1 ^ en = 0 as well as u1 ^ dn = 0, for any n 2 N .

Finally, a direct application of Lemma 3.28 yields

A ⇠= [0, v1]⇥ [0, e0]⇥ [0, e1]⇥ · · ·⇥ . . .

and

B ⇠= [0, u1]⇥ [0, d0]⇥ [0, d1]⇥ · · ·⇥ . . . .

Recall that �(v1) = u1 and �(en) = dn+1 as well as �(dn) = en+1, for any n 2
N . Hence, by Lemma 3.28, we obtain that [0, e1] ⇠= [0, �(e1)] = [0, d1], [0, en] ⇠=
[0, �(en)] = [0, dn+1] and [0, dn] ⇠= [0,�(dn)] = [0, en+1]. Thus, in general, we have that

A ⇠= B.

By virtue of Definition 3.2, Theorem 3.24 and the definition of Ae, with e 2 Ce(A) (see

3.5), if A and B are  Lukasiewicz near semirings, then they can be regarded as trivial

principal ideals [0, 1] (generated by 1 2 Ce(A)\Ce(B)) of Id(A) and Id(B), respectively,

Hence, we conclude the following:

Corollary 3.30. Let A and B be join �-complete  Lukasiewicz near semirings such that

Ce(A) and Ce(B) are �-complete Boolean algebras. Then, A ⇠= B if and only if there

are central elements a 2 Ce(A) and b 2 Ce(B) such that A ⇠= I(b) and B ⇠= I(a).

Proof. Suppose that there are central elements a 2 Ce(A) and b 2 Ce(B) such that

B ⇠= I(a) and A ⇠= I(b), respectively. By Theorem 3.24, it follows that I(a) = [0, a] as
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well as I(b) = [0, b]. Hence, Theorem 3.29 ensures that A ⇠= B. Conversely, if A ⇠= B,

then, upon noticing that 1 is the greatest element in any  Lukasiewicz near semiring, and

it is also central, we have that A ⇠= [0, 1B] = B and viceversa.

Theorem 3.29 states something that, in our opinion, is interesting: the “structure” of a

 Lukasiewicz near semiring A is already contained in nuce in each of its intervals [0, e],

where e 2 Ce(A). Moreover, it is worth observing that an abstract proof of this re-

sult can be given by exploiting results in [52] where categorical su�cient and necessary

conditions for the Cantor-Bernstein Theorem to be proven for a variety of algebras are

given. However, we have included a completely algebraic proof of this fact in order to

highlight the algebraic properties of  Lukasiewicz near semirings it depends on.

In this chapter we have shown that a general structure theory for quantum algebras

and MV algebras can be given within the framework of  Lukasiewicz near semirings.

Therefore, one could ask if the aforementioned formal machinery can be applied to

non-commutative generalizations of quantum algebras and many-valued logics algebras.

Providing an answer to the above question will be indeed the aim of the next chapter.



Chapter 4

Non-commutative lattice

quantum structures as near

semirings

In the previous chapter we discussed the structure theory for quantum and MV algebras

in the common framework of  Lukasiewicz near semirings. In what follows, we extend

the semiring approach to non-commutative generalizations of lattice e↵ect algebras and

MV algebras, namely lattice pseudoe↵ect algebras and pseudo-MV algebras. To this

aim, we define near pseudoe↵ect semirings and generalized  Lukasiewicz semirings.

Such perspective has two fundamental advantages. On one hand it allows the repre-

sentation of pseudo e↵ect algebras as total algebras. On the other, it grants a very

simple axiomatization of pseudo-MV algebras which yields, in turn, a rather straight

as well as clean explanation of their relationship with pseudoe↵ect algebras. In fact,

we will provide an alternative proof of [41, Theorem 8.7 and Proposition 8.15(�) and

(�)] showing that any generalized  Lukasiewicz semiring is a near pseudoe↵ect semiring

(Theorem 4.20). Finally, by simple considerations, we will conclude that the class of

gl-semirings is a proper subclass of near-p semirings (see Theorem 4.22).

4.1 Representing pseudoe↵ect algebras as near semirings

Recall by Chapter 2 that a pseudoe↵ect algebra A is a structure A = (A,�, 0, 1) satis-

fying axioms (E1)� (E4) of Definition 2.35. In what follows, since for any pseudoe↵ect

algebra A and a 2 A, a is uniquely right(left)-complemented, we will denote its right

(left) complement by a⇠ (a�).

68
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Let us recall some basic facts on pseudoe↵ect algebras that will be expedient for the

development of our arguments.

Proposition 4.1 (Lemma 1.4, [40] ). Let A be a pseudoe↵ect algebra. Then, for a, b, c 2
A the following conditions are satisfied:

(i) a� 0 = 0� a = a;

(ii) if a� b = 0, then a = b = 0;

(iii) 0⇠ = 0� = 1 and 1⇠ = 1� = 0;

(iv) a�⇠ = a = a⇠�;

(v) if a� b = a� c, then b = c, and if b� a = c� a, then b = c;

(vi) a� b = c i↵ a = (b� c⇠)� i↵ b = (c� � a)⇠.

It is worth noticing that in this framework unary complementations, albeit non involu-

tive, are still antitone.

Lemma 4.2 (Lemma 1.6 [40]). Let A be a pseudoe↵ect algebra. Then, for a, b, c, d 2 A:

(i) a  b i↵ b�  a� i↵ b⇠  a⇠;

(ii) if a� b exists, and c  a, d  b, then c� d exists;

(iii) a� b exists i↵ a  b� i↵ b  a⇠;

(iv) if b� c exists, then a  b i↵ a� c exists and a� c  b� c;

(v) if c� b exists, then a  b i↵ c� a exists and c� a  c� b.

The next proposition explains the relationship between � and the induced lattice order.

Proposition 4.3 (Lemma 1.7 [40]). Let A be a lattice pseudoe↵ect algebra.

(i) If c� (a _ b) exists, then c� a and c� b exist, and

(c� a) _ (c� b) = c� (a _ b).

If (a _ b)� c exists, then a� c and b� c exist, and

(a� c) _ (b� c) = (a _ b)� c.
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(ii) If c� a and c� b exist, then c� (a ^ b) exists and

(c� a) ^ (c� b) = c� (a ^ b).

If a� c and b� c exist, then (a ^ b)� c exists, and

(a� c) ^ (b� c) = (a ^ b)� c.

We now prove an easy lemma providing an useful characterization of the operation � in

every pseudoe↵ect algebra.

Lemma 4.4. Every pseudoe↵ect algebra satisfies the equations

(a� (a� b)⇠)� � a = a� b and b� ((a� b)� � b)⇠ = a� b (CD)

Proof. By Proposition 4.1(vi), we can see that (a� (a� b)⇠)� � a = a� b is equivalent

to (a � (a � b)⇠)� = (a � (a � b)⇠)�, which trivially holds true. Analogously for the

second equation.

Let us remark that equations (CD) can equivalently substitute condition (E3) in Defi-

nition 2.35, simply take (a� (a� b)⇠)�, ((a� b)� � b)⇠ as c, d, respectively, in (E3).

If A is a lattice pseudoe↵ect algebra, then it can be seen that full De Morgan laws hold.

Indeed, for any a, b 2 A:

a⇠ _ b⇠ = (a ^ b)⇠ and a� _ b� = (a ^ b)�. (DM)

In fact, a routine verification shows that, if a⇠, b⇠  c, then c�  a⇠� = a, c�  b⇠� =

b. Therefore, c�  a^b, and so (a^b)⇠  c�⇠ = c, i.e. (a^b)⇠ = a⇠_b⇠. Analogously,

we have that (a _ b)⇠ = a⇠ ^ b⇠ and (a _ b)� = a� ^ b�.

Lemma 4.5. Let A be a lattice pseudoe↵ect algebra and set

x · y = ((x⇠ ^ y)� y⇠)�.

Then,

(i) “·” is defined everywhere in A;

(ii) x · y = 0 i↵ x� y exists;

(iii) x · y = 0 i↵ y  x⇠ i↵ x  y�.
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Proof. (i) a · b is defined if (a⇠ ^ b) � b⇠ is defined. By Lemma 4.2(iii), this happens

whenever a⇠ ^ b  b⇠� = b, which is always the case.

(ii) If a · b = 0, then (a⇠ ^ b)� b⇠ = 1. Therefore, by Proposition 4.1(vi),

b⇠ = (1� � (a⇠ ^ b))⇠ = (0� (a⇠ ^ b))⇠ = (a⇠ ^ b)⇠.

We obtain that b = b⇠� = (a⇠ ^ b)⇠� = a⇠ ^ b, i.e. b  a⇠. This, by Lemma 4.2(iii),

implies that a� b is defined. If a� b is defined, then b  a⇠. Thus,

a · b = ((a⇠ ^ b)� b⇠)� = (b� b⇠)� = 1� = 0.

(iii) Straightforward.

From Lemma 4.5, the following corollary easily follows.

Corollary 4.6. If A is a lattice pseudoe↵ect algebra, and a  b� in A, then a � b =

(a� · b�)⇠.

Proof. Let a  b� in A. Then, by Lemma 4.2(iii), a � b exists. So, by Lemma 4.5, we

have that

(a� · b�)⇠ =((a�
⇠ ^ b�)� b�

⇠
)�

⇠

=((a ^ b�)� b�
⇠
)�

⇠

=(a� b�
⇠
)�

⇠

=(a� b)�
⇠

=a� b

and so our claim follows.

We are now ready to state, and prove, our first result:

Theorem 4.7. Let A be a lattice pseudoe↵ect algebra. Upon setting

x · y = ((x⇠ ^ y)� y⇠)�,

the structure

P(A) = (A,_, ·, 0, 1)

is a near semiring.
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Proof. Evidently, (A,_, 0) is an idempotent commutative monoid and a _ 1 = 1. As

regards condition (ii),

a · 1 =((a⇠ ^ 1)� 1⇠)�

=((a⇠ ^ 1)� 0)�

=(a⇠ � 0)�

=a⇠�

=a.

The fact that 1 · a = a holds can be proven similarly. For equation (iii), (a _ b) · c =

(((a_ b)⇠ ^ c)� c⇠)� = ((a⇠ ^ b⇠ ^ c)� c⇠)�, which exists by Lemma 4.5(i). And then,

((a⇠ ^ b⇠ ^ c)� c⇠)� =(((a⇠ ^ c) ^ (b⇠ ^ c))� c⇠)�

=(((a⇠ ^ c)� c⇠) ^ ((b⇠ ^ c)� c⇠))�,

because both (a⇠ ^ c) � c⇠ and (b⇠ ^ c) � c⇠ are defined by Lemma 4.2(iii), and then

[40, Lemma 1.7(i)] applies. Thus,

(((a⇠ ^ c)� c⇠) ^ ((b⇠ ^ c)� c⇠))� = ((a⇠ ^ c)� c⇠)� _ ((b⇠ ^ c)� c⇠)�

=(a · c) _ (b · c).

Finally, for equation (iv), it can be seen that

a · 0 = ((a⇠ ^ 0)� 0⇠)� = (0� 0⇠)� = (0� 1)� = 1� = 0,

and also

0 · a = ((0⇠ ^ a)� a⇠)� = ((1 ^ a)� a⇠)� = (a� a⇠)� = 1� = 0.

Let us observe that, in general, not every near semiring can be regarded as a lattice

pseudoe↵ect algebra. In order to see this, we need some additional requirements.

Definition 4.8. A near pseudoe↵ect semiring (near-p semiring) is an algebra R =

(R,+, ·, f, g, 0, 1) of type (2, 2, 1, 1, 0, 0) such that the reduct (R,+, ·, 0, 1) is an idempo-

tent near semiring, and f, g are operations on R such that the following conditions are

fulfilled:

(P1) f(0) = 1 and f(1) = 0;
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(P2) y  x i↵ g(x)  g(y) i↵ f(x) · y = 0 i↵ f(x)  f(y) i↵ y · g(x) = 0;

(P3) f(g(x)) = g(f(x)) = x;

(P4) g(x) · g(y) = 0 and g(x · y) · g(z) = 0 i↵ g(y) · g(z) = 0 and g(x) · g(y · z) = 0;

(P5) if g(x) · g(y) = 0 and g(x · y) · g(z) = 0, then x · (y · z) = (x · y) · z;

(P6) if x  f(y), then f(x) · f(y) = f(f(x) · g(f(x) · f(y))) · f(x) = f(y) · g(f(f(x) ·
f(y)) · f(y));

(P7) if x  y, then there is a z such that f(z) · f(x) = f(y), and z  f(x);

where  is the induced order.

Let us remark that, in general, in a near-p semiring the product “·” need not be asso-

ciative. However, it can be seen that any near-p semiring is lattice ordered. In fact,

an easy check shows that a meet operation ^ can be defined, using De Morgan laws,

by x ^ y = g(f(x) _ f(y)), where the join is defined as + (cf. page 50). Actually, if

z  x, y, then, by antitonicity, f(x), f(y)  f(z). Therefore, f(x) _ f(y)  f(z), and so

g(f(x) _ f(y)) � g(f(z)) = z. Again, a brief reflection shows that the lattice reduct is

bounded below and above by 0 and 1, respectively. Moreover, g(f(1)) = 1 = g(0) and

g(f(0)) = 0 = g(1).

We are now going to provide a characterization of pseudoe↵ect algebras in terms of

near-p semirings.

Theorem 4.9. Let A be a lattice pseudoe↵ect algebra. Upon setting x · y = ((x⇠ ^ y)�
y⇠)�, the structure

P(A) = (A,_, ·,� ,⇠ , 0, 1)

is a near-p semiring.

Proof. From Theorem 4.7, we have that the reduct (A,_, ·, 0, 1) is an idempotent near

semiring. Upon setting f(x) = x� and g(x) = x⇠, we now show that conditions (P1)–

(P7) hold true as well. (P1) follows directly from Proposition 4.1(iii). (P2) follows from

Lemma 4.2(i), Proposition 4.1(iv) and Lemma 4.5(iii). That x⇠� = x�⇠ = x follows

directly from Proposition 4.1(iv). As regards (P4), if x⇠ · y⇠ = 0, then, by Lemma

4.5(ii), x⇠�y⇠ exists and x ·y = ((x⇠^y)�y⇠)� = (x⇠�y⇠)�, because x⇠  y⇠� = y

(see Lemma 4.5(iii)). From the fact that (x · y)⇠ · z⇠ = 0, it follows that (x · y)⇠ � z⇠

exists, by Lemma 4.5(ii), and it is equal to (x⇠ � y⇠) � z⇠. Then, by (E2), y⇠ � z⇠
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and x⇠ � (y⇠ � z⇠) both exist. Again from Lemma 4.5, we derive that y⇠ · z⇠ = 0 and

x⇠ · (y⇠ � z⇠) = 0. Then, by Corollary 4.6,

0 = x⇠ · (y⇠ � z⇠) = x⇠ · (y⇠� · z⇠�)⇠ = x⇠ · (y · z)⇠ = g(x) · g(y · z).

The converse holds symmetrically.

As regards (P5), if x⇠ · y⇠ = 0 and (x · y)⇠ · z⇠ = 0, then, building on the proof for

(P4), one has that

(x · y) · z =((x⇠ � y⇠)�
⇠ � z⇠)�

=((x⇠ � y⇠)� z⇠)�

=(x⇠ � (y⇠ � z⇠))�

=x · (y · z).

For (P6), if x  y�, then

(x�(x� · y�)⇠)� · x� =(x� · (x� y))
� · x�

=((x� · (x� y))� x)� (Corollary 4.6)

=((x� (x� y)⇠)� � x)�

=(x� y)� (condition (CD))

=x� · y�

by Proposition 4.1(iv). Note that (x� · (x� y))� x is defined, since

(x� · (x� y)) =((x�⇠ ^ (x� y))� (x� y)⇠)
�

=((x ^ (x� y))� (x� y)⇠)�

=(x� (x� y)⇠)�  x�,

by Proposition 4.1(iii), the definition of , the fact that x� (x�y)⇠ is exists by Lemma

4.2(iii) and the antitonicity of �.

Similarly, again by (CD) and Corollary 4.6, we have that

y� · ((x� · y�)�y�)
⇠
=y�((x� y)�

� · y�)
⇠

=y� · ((x� y)� � y)

=(y� · ((x� y)� � y)
⇠�

)⇠
�

=(y � ((x� y)� � y)
⇠
)
�

=(x� y)� = x� · y�
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(P7) If x  y, then there is a z such that z�x = y. Therefore, by Lemma 4.5(ii) and (iii),

z  x�. Hence, z� · x� = ((z�⇠ ^ x�)� x�⇠)� = ((z ^ x�)� x)� = (z� x)� = y�.

As a converse of the previous result, the next theorem shows that any near-p semiring

can be turned into a lattice pseudoe↵ect algebra.

Theorem 4.10. Let R = (R,+, ·, f, g, 0, 1) be a near-p semiring, and  its induced

lattice order. Then the structure

E(R) = (R,�, g, f, 0, 1)

is a lattice pseudoe↵ect algebra whose order coincides with , where

x� y = g(f(x) · f(y)) is defined in case x  f(y).

Proof. (E1) Suppose x�y and (x�y)�z are defined. Then, x  f(y), and x�y  f(z).

So, by (P2) and (P3), g(f(x)) · g(f(y)) = 0 and g(f(x) · f(y)) · g(f(z)) = 0. Therefore,

by (P4), g(f(y)) · g(f(z)) = 0 and g(f(x)) · g(f(y) · f(z)) = 0. This means that y  f(z)

and x  f(y) · f(z) = f(g(f(y) · f(z))). Hence, y � z and x � (y � z) are defined and

(x�y)�z = x� (y�z), by (P4) and (P5). The converse implication is straightforward.

We now prove (E2). Immediately, it can be seen that g(x)  g(x) implies that x·g(x) = 1,

and x  x implies that f(x) · x = 0. Then, g(f(x) · f(g(x))) = x � g(x) = 1. On the

other hand, since f(f(x)) · f(x) = 0, then g(f(f(x)) · f(x)) = f(x)� x = 1. As regards

uniqueness, suppose x�k = 1. Hence, x  f(k) and g(f(x)·f(k)) = 1 and f(x)·f(k) = 0.

So, f(k)  x and f(k) = x, namely k = g(x). Finally, assuming that k�x = 1, k = f(x)

follows by a similar argument.

For (E3), suppose that x� y is defined. Then, x  f(y). Thus, applying (P6),

x� y =g(f(x) · f(y))

=g(f(f(x) · g(f(x) · f(y))) · f(x))

=(f(x) · g(f(x) · f(y)))� x.

Note that (f(x)·g(f(x)·f(y)))�x is defined. Indeed, by (P6) and x  1 implies x·z  z,

one has that x  f(y) implies f(x)·f(y) = f(f(x)·g(f(x)·f(y)))·f(x)  f(x). Now, the

fact that f(x) ·f(y)  f(x) implies that x  g(f(x) ·f(y)) = f(g(g(f(x) ·f(y)))). Hence,
x  f(g(g(f(x) · f(y)))), making use of (P6) as above. Then, x  f(g(g(f(x) · f(y))))
implies that f(x) · g(f(x) · f(y)) = f(x) · f(g(g(f(x) · f(y))))  f(x). Thus, from the

previous reasoning, whenever x  f(y) we have proven that f(x) · g(f(x) · f(y))  f(x),



Chapter 4. Pseudoe↵ect algebras as near semirings 76

namely (f(x) · g(f(x) · f(y)))� x exists. Furthermore, one has that

x� y =g(f(x) · f(y))

=g(f(y) · g(f(f(x) · f(y)) · f(y)))

=g(f(y) · f(g(g(f(f(x) · f(y)) · f(y)))))

=y � g(g(f(f(x) · f(y)) · f(y)))

and y � g(g(f(f(x) · f(y)) · f(y))) is defined because f(f(x) · f(y))  1 implies that

f(f(x) · f(y)) · f(y)  1 · f(y), and then y = g(f(y))  g(f(f(x) · f(y)) · f(y)) =

f(g(g(f(f(x) · f(y)) · f(y)))).

As regards (E4), suppose that 1 � x is defined. Then, 1  f(x). Consequently, x  0,

i.e. x = 0. Dually, if x� 1 is defined, then x  f(1) = 0, and again x = 0.

We now show that x R y if and only if x E(R) y. If x R y, then, by (P7), there is

a z 2 R such that f(z) · f(x) = f(y) and z  f(x). So, g(f(z) · f(x)) = z �E(R) x =

g(f(y)) = y, i.e. x E(R) y. Conversely, suppose that x E(R) y. Then, since in

pseudoe↵ect algebras the order induced by the operation � is two-sided (cf. page ??),

there exists a z 2 R such that z �E(R) x = y. So, g(f(z) · f(x)) = y. The fact that

f(z) R 1 implies that f(z) · f(x) R 1 · f(x), then f(z) · f(x) = f(y) R f(x).

Therefore, by antitonicity, g(f(x)) = x R y = g(f(y)). In conclusion, the orders

x R y and x E(R) y coincide, and then, because R is lattice ordered, E(R) is a lattice

pseudoe↵ect algebra.

Finally, we can state, as a corollary, that the correspondences above are indeed mutually

inverse.

Corollary 4.11. If A, R are a lattice pseudoe↵ect algebra and a near-p semiring, re-

spectively, then

1. A = E(P(A));

2. R = P(E(R)).

Proof. Clearly, unary operations and constants are all preserved by both compositions

P � E and E � P. Moreover the lattice orders E(P(A)) and P(E(R)) coincide, by virtue

of the last part of the proof of Theorem 4.10.
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(1) Let A be a lattice pseudoe↵ect algebra. If x�A y is defined, then x A y�, that is

x  f(y) in P(A). Therefore, x�E(P(A)) y is defined and

x�E(P(A)) y =g(f(x) ·P(A) f(y))

=g(f((g(f(x)) ^ f(y))�A g(f(y))))

=(x ^ f(y))�A y

=(x�A y) ^ (f(y)�A y)

=(x�A y) ^ 1

=x�A y.

Note that this result rests on Proposition 4.3(ii).

(2) If R is a near-p semiring, then

x·P(E(R))y =((x
⇠ ^ y)�E(R) y⇠)�

=((x
⇠ ^ y)� ·R y⇠�)⇠

�

=(x
⇠ ^ y)� ·R y

=(x⇠� _ y�) ·R y

=(x _ y�) ·R y

=(x ·R y) _ (y� ·R y)

=(x ·R y) _ 0

=x ·R y.

4.2 Semiring representation of pseudo-MV algebras

The notion of generalized  Lukasiewicz semiring was introduced by A. Kadji, C. Lele and

J.B. Nganou in [84] as a natural semiring counterpart of pseudo-MV algebras. In fact,

they observed that any pseudo-MV algebra A has an underlying semiring reduct which

entertains several relationships with the fundamental operations on A.

Proposition 4.12 (Proposition 2.1, [84]). Let A = (A,�,�,� ,⇠ , 0, 1) be a pseudo MV-

algebra and R(A) = (A,+, ·, 0, 1). Then R(A) is an additively idempotent semiring

satisfying:

(i) x · y = 0 i↵ y  x� i↵ x  y⇠;

(ii) x+ y = ((x⇠ · y)⇠ · x⇠)� = (x⇠ · (y · x�)⇠)�;
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(iii) (y⇠ · x⇠)� = (y� · x�)⇠;

where x+ y = x _ y, x · y = x� y, and x  y i↵ x� � y = 1.

However, although their construction is interesting, we found that their results can

be refined by streamlining the number of axioms (cf. [84], p. 3) to a simple and

rather natural condition. Then, in what follows, we outline an alternative one-axiom

characterization of gl-semirings showing how the main arithmetical properties of these

structures readily derive from our simple axiomatization, and then we propose a proof,

in semirings’ framework, of Dvurečenskij and Vetterlein ([41]) results stating that pseudo

MV- algebras can be regarded as a proper subvariety of pseudoe↵ect algebras.

Note that Proposition 4.12 strongly relies on the distributivity of � over _.

Proposition 4.13 (Proposition 1.16, [55]). Let A be a pseudo-MV algebra. Then, for

any {x} [ {yi}i2I ✓ A,

x� (
_

i2I
yi) =

_

i2I
(x� yi) and (

_

i2I
yi)� x =

_

i2I
(yi � x),

whenever
W

i2I yi exists.

We are now ready to re-state the notion of generalized  Lukasiewicz semiring.

Definition 4.14. A generalized  Lukasiewicz semiring (gl-semiring ) is an algebra R =

(R,+, ·,� ,⇠ , 0, 1) of type (2, 2, 1, 1, 0, 0) such that the reduct (R,+, ·, 0, 1) is a semiring,
� and ⇠ are unary operations satisfying x+y = y implies x�+y� = x� and x⇠+y⇠ = x⇠,

and the following equations are satisfied:

x+ y = ((x⇠ · y)⇠ · x⇠)� = (x⇠ · (y · x�)⇠)�. (4.1)

This rather concise definition yields quite strong properties. First, it is possible to verify

that the structure (R,), where

x  y i↵ x+ y = y, (4.2)

is a bouded poset. In fact, it is clearly transitive and antisymmetric and item (9) of the

next lemma shows that it is also reflexive. Since 0 is the neutral element with respect

to the addition and by integrality, proved in (8), any gl-semiring induces a poset with

a least and a greatest element. Hence, � and ⇠ can be seen as order-reversing unary

operations.

Some of the items in the next lemma can be found also in [84, Lemma 2.2]. However,

for reader’s convenience, we provide new proofs for any of them.
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Lemma 4.15. Every gl-semiring satisfies the following conditions:

1. 0 = (0⇠ · 0⇠)�;

2. 1 = (0⇠⇠ · 0⇠)�;

3. 0⇠ = 1;

4. 0 = 1�;

5. 0⇠� = 1�;

6. 1�⇠ = 1;

7. 1 = 1⇠�;

8. x+ 1 = 1;

9. x = x+ x;

10. x = x⇠�;

11. 1⇠ = 0;

12. 0� = 1;

13. 0⇠⇠ = 0;

14. 0�⇠ = 0;

15. x⇠ · x = 0;

16. (x⇠ · y)⇠ · x⇠ =

(x+ y)⇠ = x⇠ · (y · x�)⇠;

17. (x · x�)⇠ · x� = x�;

18. x · x� = 0;

19. x = x�⇠.

Proof. (1) 0 = 0 + 0 = ((0⇠ · 0)⇠ · 0⇠)� = (0⇠ · 0⇠)�.
(2) 1 = 0 + 1 = ((0⇠ · 1)⇠ · 0⇠)� = (0⇠⇠ · 0⇠)�.
(3) Using item (2),

0⇠ = 0⇠ + 0 = (0⇠⇠ · (0 · 0⇠�)⇠)� = (0⇠⇠ · 0⇠)� = 1.

(4) 0 = (0⇠ · 0⇠)� = (1 · 1)� = 1�, by items (1) and (3).

(5) Items (3) and (4) imply that 0⇠� = 1� = 0.

(6) Items (4) and (3) imply that 1�⇠ = 0⇠ = 1.

(7) Using item (3),

1 = 1 + 0 = (1⇠ · (0 · 1�)⇠)� = (1⇠ · 0⇠)� = (1⇠ · 1)� = 1⇠�.

(8) x+ 1 = 1 + x = (1⇠ · (x · 1�)⇠)� = (1⇠ · 0⇠)� = (1⇠ · 1)� = 1⇠� = 1, by items (4),

(3) and (7).

(9) by item (8) one has that 1+1 = 1, hence by distributivity it follows that (1+1) ·x =

1 · x, namely x+ x = x.

(10) See the proof of item (7).

(11) Note that 1⇠ = 1⇠ + 1⇠ = (1⇠⇠ · (1⇠ · 1⇠�)⇠)� = (1⇠⇠ · 1⇠⇠)�. Now, using item

(10), (x⇠ ·x�⇠)� = (x⇠ · (1 ·x�)⇠)� = x+1 = 1. Putting x = (1⇠⇠ ·1⇠⇠), one has that

1 = ((1⇠⇠ · 1⇠⇠)⇠ · (1⇠⇠ · 1⇠⇠)�⇠)�; since 1⇠ = (1⇠⇠ · 1⇠⇠)�, substituting we obtain

that 1 = ((1⇠⇠ · 1⇠⇠)⇠ · 1⇠⇠)� = 1⇠ + 1⇠⇠ = 1⇠⇠, because 1⇠  1 and ⇠ is antitone.

Thus, 1⇠ = 1⇠⇠� = 1� = 0.

(12) follows by items (7) and (11).
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(13) 0⇠⇠ = 1⇠ = 0, by items (3) and (11).

(14) From items (12) and (11), one has 0�⇠ = 1⇠ = 0.

(15) As in (11), we have 1 = (x⇠ · x�⇠)�. Replace x by x⇠ · (x · x�)⇠. Then,

1 = ((x⇠ · (x · x�)⇠)⇠ · (x⇠ · (x · x�)⇠)�⇠)� = ((x⇠ · (x · x�)⇠)⇠ · x⇠)� = x+ (x · x�)⇠,

since (x⇠ · (x · x�)⇠)� = x+ x = x, by item (9). Replacing x by x⇠, by item (10), we

have that 1 = x⇠ + (x⇠ · x⇠�)⇠ = x⇠ + (x⇠ · x)⇠ = (x⇠ · x)⇠, by x⇠ · x  x and ⇠ is

order reversing. So, x⇠ · x = 0.

(16) First, let us observe that item (15) implies that x�⇠ + x = x+ x�⇠ = (x⇠ · (x�⇠ ·
x�)⇠)� = x⇠� = x. So,

(x+ y)⇠ + ((y⇠ · x)⇠ · y⇠) = ((y⇠ · x)⇠ · y⇠)�⇠ + ((y⇠ · x)⇠ · y⇠) = (y⇠ · x)⇠ · y⇠.

Hence, (x+ y)⇠  (y⇠ · x)⇠ · y⇠. Conversely, by item (3), (10), (15) and distributivity,

it follows that

(x+ y)⇠ + ((y⇠ · x)⇠ · y⇠) =((x+ y)⇠⇠ · (((y⇠ · x)⇠ · y⇠) · (x+ y)⇠�)⇠)�

=((x+ y)⇠⇠ · (((y⇠ · x)⇠ · y⇠) · (x+ y))⇠)�

=((x+ y)⇠⇠ · ((((y⇠ · x)⇠ · y⇠) · x) + (((y⇠ · x)⇠ · y⇠) · y))⇠)�

=((x+ y)⇠⇠ · (((y⇠ · x)⇠ · (y⇠ · x)) + ((y⇠ · x)⇠ · (y⇠ · y)))⇠)�

=((x+ y)⇠⇠ · 1)�

=(x+ y)⇠.

The second equality follows similarly. In fact, from the previous reasoning, we have

(x + y)⇠  x⇠ · (y · x�)⇠. Now, note that (by (15), (3) and (10)) x + (y · x�)⇠ · y =

(x⇠ · ((y · x�)⇠ · (y · x�))⇠)� = (x⇠ · 0⇠)� = x⇠� = x. Hence, by (15) and the

distributivity of · over +, it follows that x⇠ · (y · x�)⇠ · y = 0 + x⇠ · (y · x�)⇠ · y =

x⇠ · x + x⇠ · (y · x�)⇠ = x⇠ · (x + (y · x�)⇠ · y) = x⇠ · x = 0. Furthermore, since any

element is under the unit and · preserves the order in both arguments, we have that

(y · x�)⇠ · x  x implies that x⇠ · (y · x�)⇠ · x  x⇠ · x = 0, namely x⇠ · (y · x�)⇠ · x = 0.

Thus, it is easily seen that

(x+ y)⇠ + (x⇠ · (y · x�)⇠) =((x+ y)⇠⇠ · ((x⇠ · (y · x�)⇠) · (x+ y)⇠�)⇠)�

=((x+ y)⇠⇠ · ((x⇠ · (y · x�)⇠) · (x+ y))⇠)�

=((x+ y)⇠⇠ · ((x⇠ · (y · x�)⇠ · x) + (x⇠ · (y · x�)⇠ · y))⇠)�

=((x+ y)⇠⇠ · 0⇠)�

=((x+ y)⇠⇠ · 1)�

=(x+ y)⇠.

The identity clearly follows from the definition of the induced order. (17) Note that,

by (9) and (16), we have x⇠ = (x + x)⇠ = x⇠ · (x · x�)⇠. Now, by (16), (9), (15) and

(12), one has x+ (x · x�)⇠ = ((x⇠ · (x · x�)⇠)⇠ · x⇠)� = (x⇠⇠ · x⇠)� = 1. Thus, again
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by (16), we compute

x+ ((x · x�)⇠ · x�)⇠ = ((x⇠ · ((x · x�)⇠ · x�)⇠)⇠ · x⇠)�

= (((x+ (x · x�)⇠)⇠)⇠ · x⇠)�

= (1⇠⇠ · x⇠)�

= x,

namely ((x·x�)⇠ ·x�)⇠  x and by antitonicity of �, x�  ((x·x�)⇠ ·x�)⇠� = (x·x�)⇠ ·
x�. Furthermore, since (x · x�)⇠  1 (by item (8)), it follows that (x · x�)⇠ · x�  x�,

namely x� = (x · x�)⇠ · x�.

(18) By items (10), (17), (15) and (12), one has

((x�⇠⇠ · (x · x�)⇠)⇠ · x�⇠⇠)� =x�⇠ + (x · x�)⇠

=(x�⇠⇠ · ((x · x�)⇠ · x�⇠�)⇠)�

=(x�⇠⇠ · ((x · x�)⇠ · x�)⇠)�

=(x�⇠⇠ · x�⇠)� = 1.

Setting a = x�, b = x, we obtain that ((a⇠⇠ · (b · a)⇠)⇠ · a⇠⇠)� = 1. Let us note that

(a⇠⇠ · (b ·a)⇠)⇠ ·a⇠⇠ = (a⇠+(b ·a)⇠)⇠ = (b ·a)⇠⇠, by (16) and antitonicity. Therefore,

1 = (b · a)⇠⇠� = (b · a)⇠, and then (b · a)⇠� = b · a = 1� = 0 (items (10) and (12)),

namely x · x� = 0.

(19) By the previous item, (10) and (3) we have that x�⇠ + x = (x�⇠⇠ · (x · x�)⇠)� =

x�⇠⇠� = x�⇠. Therefore, by the definition of the induced order, x  x�⇠. Finally, it

follows that x+ x�⇠ = (x⇠ · (x�⇠ · x�)⇠)� = x (by item (15), (3) and (10)).

The items of the next lemma are taken in [84] as axioms.

Lemma 4.16. Let R be a gl-semiring. Then, the following conditions are satisfied:

1. x · y = 0 i↵ y  x� i↵ x  y⇠;

2. (x⇠ · y⇠)� = (x� · y�)⇠.

Proof. (1) Clearly, by Definition 4.14 and Lemma 4.15, y  x� i↵ x  y⇠. On the one

hand, suppose x  y⇠. Note that:

1 = x+ 1 (Lemma 4.15(8))

= ((x⇠ · 1)⇠ · x⇠)� (Def. 4.14)

= (x⇠⇠ · x⇠)�.
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Upon setting x = y�, by Lemma 4.15(19), we have that 1 = (y�⇠⇠ · y�⇠)� = (y⇠ · y)�.
And so, by Lemma 4.15(11),(19), 0 = 1⇠ = (y⇠ · y)�⇠ = y⇠ · y � x · y.
On the other hand, if x · y = 0, then

y + x� = x� + y (Def. 4.14)

= ((x�⇠ · y)⇠ · x�⇠)� (Def. 4.14)

= ((x · y)⇠ · x)� (Lemma 4.15(19))

= (0⇠ · x)�

= (1 · x)� (Lemma 4.15(3))

= x�.

Therefore, y  x�.

(2) Let us remark that the statement “z  (x� · y�)⇠ implies z  (x⇠ · y⇠)�” is

equivalent, by the previous item, to “z · (x� · y�) = 0 implies (x⇠ · y⇠) · z = 0”. In turn,

by associativity of ·, item (1) and Lemma 4.15, this is equivalent to “z · x�  y implies

y⇠ · z  x”. Thus, we have that z · x�  y implies y⇠ · z · x�  y⇠ · y, which implies

that (y⇠ · z) · x� = 0, and so, by the previous item and Lemma 4.15, y⇠ · z  x�⇠ = x.

The converse inequality is proved dually.

By virtue of Lemma 4.15, it follows that the structure (R,, 0, 1), where  is defined

by condition (4.2), is a bounded lattice, with x _R y = x + y, x ^R y = (x� + y�)⇠ =

(x⇠ + y⇠)� (cf. [84, Lemma 2.2(v)]).

Now, let R be a gl-semiring . Upon setting, for all x, y 2 R,

x� y = (y� · x�)⇠ = (y⇠ · x⇠)� and x� y = x · y,

it is possible to prove that

Theorem 4.17. The structure A(R) = (R,�,�,� ,⇠ , 0, 1) is a pseudo-MV algebra.

Proof. See [84, Proposition 2.3].

LetR(A) be the gl-semiring associated to the pseudo MV-algebraA (cf. [84, Proposition

2.5]). The previous theorem yields the following

Corollary 4.18. If A, R are a pseudo-MV algebra and a gl-semiring, respectively, then

1. A = A(R(A));
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2. R = R(A(R)).

Proof. See [84, Proposition 2.5]

Finally, we close this chapter recalling that, by Dvurečenskij and Vetterlein [41], any

pseudo-MV algebra can be regarded as a lattice pseudoe↵ect algebra. In fact, in what

follows, we propose an alternative proof of [41, Theorem 8.3 and Theorem 8.7].

With this aim in mind, we start with the following technical lemma.

Lemma 4.19. Let R = (R,+, ·,� ,⇠ , 0, 1) be a gl-semiring. Then, the following equa-

tions hold:

(i) (x⇠ · y)� · x� = x� · (y · x�)�;

(ii) (x⇠⇠ · y)� · x = (y� · x�)⇠ · y�;

(iii) x · (y · x)� = (y� · x�)⇠ · y�.

Proof. (i) Just note that ((x⇠ ·y)� ·x�)⇠ = ((x⇠ ·y)⇠ ·x⇠)� = x+y = (x⇠ ·(y ·x�)⇠)� =

(x� · (y · x�)�)⇠ by Lemma 4.16(ii). Then, the identity follows by Lemma 4.15(10). As

regards (ii), by commutativity and the definition of +, repeatedly applying Lemma

4.16(ii), we compute ((x⇠⇠ · y)� · x)⇠ = ((x⇠⇠ · y)� · x⇠�)⇠ = ((x⇠⇠ · y)⇠ · x⇠⇠)� =

x⇠ + y = ((y⇠ · x⇠)⇠ · y⇠)� = ((y⇠ · x⇠)� · y�)⇠ = ((y� · x�)⇠ · y�)⇠. The conclusion

follows by Lemma 4.15(10). Finally, (iii) derives from item (i) replacing x by x⇠ and

then applying (ii).

Theorem 4.20. Any gl-semiring is a near-p semiring.

Proof. Let R = (R,+, ·,� ,⇠ , 0, 1) be a gl-semiring. Then, putting g(x) = x� and

f(x) = x⇠, we show that (R,+, ·, f, g, 0, 1) is a near-p semiring. Since any integral

idempotent semiring is also an integral, idempotent, bounded, near-semiring, we just

need to show that (P1)-P(7) of Definition 4.8 hold. (P1)-(P3) are straightforward and

(P5) holds trivially. As regards (P4), assume that g(x) · g(y) = 0 and g(x · y) · g(z) = 0.

Hence, x� · y� = 0 and (x · y)� · z� = 0. By Lemma 4.16(1), it follows that x�  y and

(x ·y)�  z. Thus z⇠  x ·y  y and y�  z. So, another application of Lemma 4.16(1)

yields 0 = y� ·z� = g(y)·g(z). Furthermore, note that (y ·z)⇠ ·y = ((y�⇠ ·z)⇠ ·y�⇠)�⇠ =

(y� + z)⇠ = z⇠ and z⇠  (x · y) implies z⇠ · (x · y)� = 0. By Lemma 4.19(iii), one has

x� = x��⇠ = (x�� + y�)⇠ = ((x��⇠ · y�)⇠ · x��⇠)�⇠ = (x� · y�)⇠ · x� = y · (x · y)�.
Therefore, we compute (y · z)⇠ · x� = (y · z)⇠ · (y · (x · y)�) = z⇠ · (x · y)� = 0, namely

(by Lemma 4.16(1)) x�  (y · z) and x� · (y · z)� = 0.
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For the converse, suppose that g(y) · g(z) = 0 and g(x) · g(y · z) = 0. Hence, we have

x� · (y · z)� = 0 and y� · z� = 0, namely x�  y · z  y and y�  z. We readily

obtain that x� · y� = 0 . Let us note that y · (x · y)� = x�, (y · z)⇠ · x� = 0 and

(y · z)⇠ · y = z⇠ (by Lemma 4.16 and Lemma 4.19(iii)). Therefore, 0 = (y · z)⇠ · x� =

(y · z)⇠ · (y · (x · y)�) = ((y · z)⇠ · y) · (x · y)� = z⇠ · (x · y)�. Thus, by Lemma 4.16(1),

from the fact that z⇠ · (x · y)� = 0 we have that (x · y)�  z, namely (x · y)�z� = 0.

As regards (P6), we must show that if x  y⇠, then x⇠ · y⇠ = (x⇠ · (x⇠ · y⇠)�)⇠ · x⇠ =

y⇠ · ((x⇠ · y⇠)⇠ · y⇠)�. Now, the first equality immediately follows by the definition of

the sum: ((x⇠ · (x⇠ · y⇠)�)⇠ · x⇠)� = x+ (x⇠ · y⇠)� = (x⇠ · y⇠)�. The second equality

follows similarly by noticing that (y⇠ · ((x⇠ ·y⇠)⇠ ·y⇠)�)� = y+(x⇠ ·y⇠)� (by a simple

application of Lemma 4.16(2)). Finally, (P7) is straightforward: just note that if x  y,

then x+ y = y and (x⇠ · y)⇠ · x⇠ = y⇠ and clearly (x⇠ · y)  x⇠.

Corollary 4.21. Let A be a pseudo MV-algebra. Then E(R(A)) is a lattice pseudoe↵ect

algebra.

Proof. By Corollary 4.18, Theorem 4.20 and Theorem 4.10.

Conversely, it is not di�cult to provide condition(s) under which a near-p semiring can

be turned into a gl-semiring.

Theorem 4.22. A near-p semiring A is a gl-semiring if and only if for any x, y 2 A,

there exists a unique z such that

f(y) · f(z) = f(x _ y) and f(x ^ y) · f(z) = f(x).

In fact, let A be a near-p semiring. By [41, Theorem 8.7 and Proposition 8.15(�) and

(�)], a lattice pseudoe↵ect algebra B is a pseudo MV-algebra if and only if its elements

are pairwise compatible (cf. [126, Theorem 4.8]), namely for any x, y 2 B one has

(x _ y)/y = x/(x ^ y),

where (x _ y)/y and x/(x ^ y) are (unique, cf. [40, Lemma 1.4(v)]) elements in B such

that ((x _ y)/y) � y = x _ y and (x/(x ^ y)) � (x ^ y) = x (cf. [41, Definition 8.5]).

Hence, by Theorem 4.10, since any pseudo-MV algebra is a gl-semiring, under suitable

translations into our framework, we readily have that R(E(A)) is a gl-semiring if and

only if for any x, y 2 A, there exists a unique z satisfying the conditions of the above

theorem, namely x and y are compatible in E(A).

Although its proof is straightforward, the previous remark emphasizes an interesting
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relationship between the structures we have dealt with in this chapter.

Finally, as it might have been noticed, near-p semirings do not form a variety since they

are not defined by means of equations. Therefore, in our opinion, solving the following

problem might yield a relevant achievement, since it would make pseudoe↵ect algebras

amenable of universal algebraic investigations:

Problem 1. Do near-p semirings admit a finite basis of axioms?

If yes,

Problem 2. Which properties does the variety of near-p semirings enjoy?



Chapter 5

Paraorthomodular lattices,

residuation and near semirings

In Chapter 3 it has been shown that basic algebras, which represent a “unifying” frame-

work in which lattice e↵ect algebras as well as orthomodular lattices can be interpreted

into, are amenable of a smooth structural analysis if converted into  Lukasiewicz near

semirings. Subsequently, in Chapter 4, we have seen that lattice pseudoe↵ect algebras

as well as pseudo-MV algebras can be described in a semiring-like fashion by means of

near-p semirings. As it has been pointed out in Chapter 2, the aforementioned algebraic

structures satisfy the paraorthomodular condition. Therefore, a natural question arises:

may paraorthomodular lattices be represented as near-semirings?

Actually, if we would have been able to interpret paraorthomodular lattices into basic

algebras framework, i.e. as bounded lattices with sectional antitone involutions, then

we would have been done. Unfortunately, the next example shows this is not the case.

Example 5.1. Consider the distributive paraorthomodular lattice depicted in Fig. 5.1.

Let us suppose, by way of contradiction, it can be equipped with sectional antitone invo-

lutions and let us consider the interval [b, 1]. If xb = 1, for x 2 {a, a0, b0}, then x = b,

which is impossible. Similarly, we prove that xb 6= b. Now, if b0b = b0, then a  b0b

implies b0 = b0bb  ab and ab = b0, i.e. a = b0b = b0, a contradiction. Thus one has

b0b 2 {a, a0}. If b0b = a, then ab = b0. Since, a0  ab, we conclude that a  a0b. If a0b = a,

then a0 = ab = b0. Thus a0b = b0 and a0 = b0b = a, again a contradiction. Similarly, we

conclude that b0b 6= a0. Therefore, the above paraorthomodular lattice cannot be converted

into a basic algebra.

Thus, in order to turn paraorthomodular lattices into near-semirings, we must go an-

other way.

86
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1 = 00

b0

a a0

b

0 = 10

Figure 5.1

In this chapter, we show that paraorthomodular lattices of a certain sort can be con-

verted into near-semirings by “going through” the theory of left-residuated `-groupoids.

In other words, we will show that, under certain conditions, a parorthomodular lattice A

can be equipped with binary operations ⇤,! such that (x⇤a, a ! x) forms a residuated

pair, for any a 2 A.

The above approach has two advantages: on one hand, it will allow us to frame paraortho-

modular lattices, basic algebras, and lattice pseudoe↵ect algebras in a same theoretical

“environment”. On the other, it will provide conditions granting a paraorthomodu-

lar lattice to be equipped with a (partially) residuated material implication operation.

Therefore, we will conclude that, under certain conditions, paraorthomodular lattices

can be thought as logics in their own right.

5.1 Material implication in Kleene, modular and paraortho-

modular lattices

Since 1930s, the class of ortholattices (see e.g. [5]) and, subsequently, orthomodular

lattices and posets were introduced as “quantum logics”. Therefore, a natural question

raised: “Is the quantum logic really a logic?”. The debate as to whether OMLs can be

regarded as logics in their own right commenced since the seminal paper [81] by Jauch

and Piron appeared in 1970. According to their ideas further developed by R. Greechie

and S. Gudder in [68, 69], the lattice of closed subspaces of a Hilbert space does not

admit an algebraic counterpart of the modus ponens inference scheme, namely it cannot

be equipped with a conditional operation by means of which such a deductive scheme

can be incorporated.
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Neverthless, G.M. Hardegree stated that any orthomodular lattice A allows the defini-

tion of a privileged term-operation ([76]), the so-called Sasaki hook !s, by putting, for

any a, b 2 A:

a !s b = a0 _ (a ^ b). (Sasaki hook)

Surprisingly enough, it reflects all the essential traits of the Boolean horseshoe. In fact,

it satisfies the following minimal implicative conditions [76, pp. 165-166]:

N1 x ^ (x !s y)  y;

N2 x0 ^ (y ! x)  y0;

N3 x ^ y0  (x !s y)0.

Moreover, if we define, for any a, b 2 A

a� b = b ^ (b0 _ a), (Sasaki projection)

then we have (see [25, 27])

x� y ! z i↵ x  y !s z.

In view of the above discussion, due to the prominent importance of paraorthomodular

lattices for the logico-algebraic approach to QT, it is worth asking if they can be regarded

as logics in their own right. In other words, one might wonder if paraorthomodular lat-

tices can be equipped with a residuated material implication operation playing the same

role of the Sasaki hook in orthomodular lattices.

In the framework of structures arising in alternative approaches to quantum theory, sev-

eral achievements have been obtained in [24] for weakly orthomodular and dually weakly

orthomodular lattices. Interesting results can be found e.g. in [22, 9, 50, 7] for e↵ect

algebras and lattice e↵ect algebras. In this chapter, we will see that modular paraortho-

modular lattices (cf. Proposition 2.33) satisfying a strenghtened form of regularity (see

Definition 2.32) can be organized into left-residuated structures.

Let us introduce the notions that will be expedient for our purpose.

Definition 5.1. An algebra A = (A,^,_,�,!, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a

left-residuated `-groupoid if:

(i) (A,^,_, 0, 1) is a bounded lattice;

(ii) x� 1 = x = 1� x, for any x 2 A;
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(iii) x� y  z if and only if x  y ! z (left-residuation), for any x, y, z 2 A.

If (A,�) is also a semigroup, then A is an integral bounded left-residuated lattice. Fi-

nally, it is easily seen that, if � is also commutative, then A is an integral bounded

commutative residuated lattice (cf. [54]).

Given a modular involution lattice A, let us define the operations the following opera-

tions, for any x, y 2 A:

x� y =

8
<

:
0, if x  y0

y ^ (x _ y0), otherwise.
(5.1)

x ! y =

8
<

:
1, if x  y

x0 _ (x ^ y), otherwise.
(5.2)

The next lemma proves that ! and � are indeed interdefinable.

Lemma 5.2. Let A = (A,^,_,0 , 0, 1) be a bounded lattice with antitone involution.

Define x� y and x ! y as in (5.1) resp. (5.2). Then, x ! y = (y0 � x)0.

Proof. If x 6 y, i.e. y0 6 x0, then (y0 � x)0 = (x ^ (x0 _ y0))0 = x0 _ (x ^ y) = x ! y. If

x  y, then y0  x0 and (y0 � x)0 = 00 = 1 = x ! y.

Proposition 5.3. Let A = (A,^,_,0 , 0, 1) be a bounded modular lattice with antitone

involution. Then, defining ! and � as in (5.2) resp. (5.1), one has for any x, y 2 A:

(1) x  y if and only if x ! y = 1.

(2) x  y0 if and only if x� y = 0.

Proof. As regards (1), suppose by way of contradiction that x ! y = 1 but x 6 y. Then

x0 _ (y ^ x) = 1. Since x0  y0 _ x0, by Proposition ?? and (??) we have x0 = x0 _ y0,

that is y0  x0, i.e. x  y, a contradiction.

(2). If x� y = 0, then (x� y)0 = 1, i.e. by Lemma 5.2 y ! x0 = 1 and (by (1)) y  x0.

We conclude that x  y0, since 0 is an antitone involution.

It was shown in [26] that every bounded complemented modular lattice A can be orga-

nized into a left-residuated `-groupoid (A,^,_,�,!, 0, 1) by putting x�y = (x_y0)^y

and x ! y = x0 _ (x^ y) without any regard if the complementation 0 is or is not an an-

titone involution. On the contrary, we can show that if A = (A,^,_,0 , 0, 1) is a modular

lattice with an antitone involution which is not a complementation, then the previous
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prescription for � and ! does not convert A into a left-residuated `-groupoid. In fact,

consider the modular lattice M3 with an antitone involution defined as visualized in Fig.

5.2.

1 = 00

a = b0 b = a0 c = c0

0 = 10

Figure 5.2

Taking x� y = (x_ y0)^ y and x ! y = x0 _ (x^ y), one has that a� c = (a_ c0)^ c = c

but a 6 c ! c = c _ c0 = c. However, if we ask that the modular lattice in question

satisfies one more condition which is, as it will be clear later, a strengthened form of

regularity, we are able to define the operations � and ! in such a way that the resulting

algebra is a left-residuated `-groupoid. In particular, we will be concerned with modular

involution lattices satisfying the following condition:

x 6 y0 implies (x ^ y) _ (x ^ x0) = (x ^ y) _ (y ^ y0). (*)

Observe that, given a modular involution lattice A satisfying (⇤), then the converse of

this condition holds provided that, given x, y 2 A, x _ x0 6= y _ y0.

Lemma 5.4. Let A = (A,^,_,0 , 0, 1) be a modular involution lattice and x, y 2 A. If

x _ x0 6= y _ y0, then (x ^ y) _ (x ^ x0) = (x ^ y) _ (y ^ y0) implies x 6 y0.

Proof. Suppose that (x ^ y) _ (x ^ x0) = (x ^ y) _ (y ^ y0) and x  y0. We compute

(x ^ y) _ (x ^ x0) =((x ^ x0) _ y) ^ x

=((x _ y) ^ x0) ^ x = x ^ x0.

Similarly, we can show that (x ^ y) _ (y ^ y0) = y ^ y0. Hence x _ x0 = y _ y0, a

contradiction.

The next lemma will be expedient for proving that modular involution lattices satisfying

(⇤) can be endowed with a left-residuated product.

Lemma 5.5. Let A = (A,^,_,0 , 0, 1) be a bounded modular lattice with antitone in-

volution satisfying (⇤). Then, x 6 y and (x _ y) ^ (x _ x0) 6= (x _ y) ^ (y _ y0) imply

y  x.
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Proof. Suppose that x 6 y, y 6 x, and (x _ y) ^ (x _ x0) 6= (x _ y) ^ (y _ y0). If

y  x0, then x _ y 6= x _ y, a contradiction. Thus y 6 x0. If x0 6 y, then, by (⇤),

(x0^y0)_(x^x0) = (x0^y0)_(y^y0), i.e. (x_y)^(x_x0) = (x_y)^(y_y0). Contradiction.
It follows that x0  y. By y 6 x, one has that (y ^ x0) _ (x ^ x0) = (y ^ x0) _ (y ^ y0).

Hence, x0 � (y ^ y0) and x ^ x0 � (y ^ y0). Moreover, by x0  y, one has x ^ x0  y and

x 6 y (by (⇤)) implies that (x ^ y0) _ (x ^ x0) = (x ^ y0) _ (y ^ y0), i.e. y0 _ (x ^ x0) = y0.

Thus, x ^ x0  y0 and x ^ x0  y ^ y0. x ^ x0 � y ^ y0 and y ^ y0 � x ^ x0 jointly imply

x ^ x0 = y ^ y0. Contradiction. Hence, y  x.

Corollary 5.6. Let A = (A,^,_,0 , 0, 1) be a bounded modular lattice with antitone

involution satisfying (⇤). Then, x 6 y and (x ^ y) _ (y ^ y0) 6= (x ^ y) _ (x ^ x0) imply

y  x.

Proof. By our hypotheses it follows that y0 6 x0 and (x0_y0)^(y_y0) 6= (x0_y0)^(x_x0).
By Lemma 5.5, we have x0  y0, namely y  x.

Theorem 5.7. Let A = (A,^,_,0 , 0, 1) be a bounded modular lattice with antitone

involution satisfying (⇤). Put x � y and x ! y as in (5.1) resp. (5.2). Then, R(A) =

(A,^,_,�,!, 0, 1) is a left-residuated `-groupoid.

Proof. By the assumption, (A,^,_, 0, 1) is a bounded lattice. Now, if x 6= 0, then x 6 10

and x� 1 = 1^ (x_ 10) = x = x^ (1_x0), since 1 6 x0. If x = 0, then 0� 1 = 0 = 1� 0,

by definition.

Let us prove left-adjointness. Suppose that x  y ! z. If x  y0, then clearly x�y = 0 
z. If x 6 y0 and y 6 z then x�y = y^(x_y0)  y^((y ! z)_y0) = y^((y0_(y^z))_y0) =
(y ^ z)_ (y ^ y0), by modularity. If y 6 z0,then (y ^ z)_ (y ^ y0) = (y ^ z)_ (z ^ z0)  z,

by (⇤) and we conclude x � y  z. Now, let us suppose that y  z0. We show that

(y^z)_ (y^y0) = (y^z)_ (z^z0) holds as well. In fact, assume by way of contradiction

that (y ^ z) _ (y ^ y0) 6= (y ^ z) _ (z ^ z0). By y 6 z and Corollary 5.6, one has z  y.

However, x  y ! z implies x  y0_(y^z) = y0_z = y0, against our assumption x 6 y0.

We conclude that (y ^ z)_ (y ^ y0) = (y ^ z)_ (z ^ z0) and, reasoning as above, we have

that x� y  z. Finally, if y  z, then x� y  y ^ ((y ! z) _ y0) = y ^ (1 _ y0) = y  z.

Thus, in each case, x  y ! z implies x� y  z.

Now, assume that x� y  z, x 6 y0 and y 6 z. If (x_ y0)^ (y _ y0) = (x_ y0)^ (x_ x0)
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we compute

y ! z =y0 _ (y ^ z)

�y0 _ (y ^ (x� y))

=y0 _ (y ^ (y ^ (x _ y0)))

�(x _ y0) ^ (y _ y0)

=(x _ y0) ^ (x _ x0) � x,

by modularity. Otherwise, suppose that (x _ y0) ^ (y _ y0) 6= (x _ y0) ^ (x _ x0). Thus,

one has (x _ x0) 6= (y _ y0). By Lemma 5.5, it follows that y0  x.

If x 6 y, then if (x _ y) ^ (x _ x0) = (x _ y) ^ (y _ y0), by x0  y and y0  x, it follows

that (x_x0) = (y_ y0), a contradiction. Moreover, if (x_ y)^ (x_x0) 6= (x_ y)^ (y_ y0)

then, by Lemma 5.5, y  x. Hence, x� y = y ^ (x _ y0) = y  z, again a contradiction.

Therefore, we conclude that x 6 y is impossible.

If x  y, then x�y = y^(x_y0) = x^y = x  z. Hence, x  y0_(y^z) = y ! z. Thus,

if x 6 y0 and y 6 z, in each possible case one has that x� y  z implies x  y ! z.

If x  y0, i.e. x� y = 0, and y 6 z, then y ! z = y0 _ (z ^ y) � y0 � x. Finally, if y  z,

then y ! z = 1 and obviously x  y ! z. Hence, in each case, it follows that x� y  z

if and only if x  y ! z.

Note that the converse of Theorem 5.7 does not hold in general. In fact, consider the

modular (non-distributive) involution lattice A = ({x, x0, z, 0, 1},^,_,0 , 0, 1) displayed

in Fig. 5.3.

1 = 00

x z = z0 x0

0 = 10

Figure 5.3

� 0 x z x0 1

0 0 0 0 0 0

x 0 x z 0 x

z 0 x 0 x0 z

x0 0 0 z x0 x0

1 0 x z x0 1

! 0 x z x0 1

0 1 1 1 1 1

x x0 1 x0 x0 1

z z z 1 z 1

x0 x x x 1 1

1 0 x z x0 1
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An easy check shows that the above involution lattice does not satisfy (⇤). Nevertheless,

it can be organized into a left-residuated `-groupoid.

Example 5.2. Consider the Kleene lattice depicted in Figure 5.1. A routine check shows

that it is a bounded modular lattice satisfying (⇤). We can define � and ! as in (5.1)

resp. (5.2) given by the following tables of operations:

� 0 a b a0 b0 1

0 0 0 0 0 0 0

a 0 0 0 0 a a

b 0 0 0 0 0 b

a0 0 0 0 a0 a0 a0

b0 0 a 0 a0 b0 b0

1 0 a b a0 b0 1

! 0 a b a0 b0 1

0 1 1 1 1 1 1

a a0 1 a0 a0 1 1

b b0 1 1 1 1 1

a0 a a a 1 1 1

b0 b a b a0 1 1

1 0 a b a0 b0 1

It is worth noticing that, as a left-residuated `-groupoid, it is commutative and associa-

tive. Hence, it is a bounded integral commutative residuated lattice which is distributive.

It is reasonable to ask if condition (⇤) of Theorem 5.7 can be dropped. Unfortunately,

the answer is negative. In fact, the next example shows the existence of a modular

involution lattice which is even a pseudo-Kleene lattice but it does not satisfy (⇤). It

will be clear that � and ! cannot be defined as above.

Example 5.3. Consider the bounded involution lattice A = ({a, b, c, a0, b0, c0, 0, 1},^,_,0 , 0, 1)
depicted in Figure 5.4. A straightforward verification shows that it is modular and reg-

ular.

1 = 00

b0 c0 a0

b c a

0 = 10

Figure 5.4

A does not satisfy (⇤), since c0 6 b0 but (c0 ^ c) _ (c0 ^ b) = c _ b = c0 6= b = b _ 0 =

(b0 ^ b) _ (b ^ c0). Note that A cannot be turned into a left residuated groupoid as in

Theorem 5.7 or 5.17, since e.g. b0� c0 = c0^ (b0_ c) = c but b0 6 c = c_ (c^ c0) = c0 ! c.
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5.2 Properties of modular lattices with antitone involution

In this section we investigate basic properties of bounded modular lattices with antitone

involution satisfying (⇤). It will turn out that the above condition can be expressed in

a simpler form. We start with the following

Lemma 5.8. Let A = (A,^,_,0 , 0, 1) be a modular involution lattice satisfying (⇤).

Then, for any x, y 2 A, x ^ x0  y or y ^ y0  x.

Proof. If (⇤) hold, then A can be turned into a left-residuated `-groupoid by Theorem

5.7. If x  y, then obviously x ^ x0  y. Otherwise, suppose that x 6 y. Hence,

x ! y = x0 _ (x ^ y). If x ^ y 6 x0, then by (x ! y) � x  y, one has that x ^ ((x0 _
(x ^ y)) _ x0) = x ^ (x0 _ (x ^ y)) = (x ^ y) _ (x ^ x0)  y. Thus, (x ^ x0)  y. If

x ^ y  x0, then x  x0 _ y0. By y0 6 x0, if (x0 _ y0) ^ (x _ x0) = (x0 _ y0) ^ (y _ y0), then

(x _ x0) = (x0 _ y0) ^ (y _ y0) and (x _ x0)  (y _ y0). A moment reflection shows that

y^y0  x. If (x0_y0)^ (x_x0) 6= (x0_y0)^ (y_y0), then, by Lemma 5.5, one has x0  y0

and y  x. Hence, y ^ y0  x.

Now, we are going to formulate simpler conditions equivalent to (⇤).

Theorem 5.9. Let A = (A,^,_,0 , 0, 1) be a modular involution lattice. The following

are equivalent:

(1) A satisfies (⇤);

(2) For any x, y 2 A it holds that x 6 y0 implies x ^ x0  y;

(3) For any x, y 2 A, if x||y, then x ^ x0 = y ^ y0.

Proof. (2) ) (1). Suppose that x 6 y0. Then x ^ x0  y (by (2)) and x ^ x0  x ^ y.

Similarly, by y 6 x0 it follows that y ^ y0  x ^ y and (x ^ y) _ (x ^ x0) = x ^ y =

(x ^ y) _ (y ^ y0).

(1) ) (2). Suppose that (⇤) holds and, by way of contradiction, that (2) is not satisfied.

Then, there exist x, y 2 A such that x 6 y0 but x ^ x0 6 y. By Lemma 5.8, y ^ y0  x.

By (⇤), one has that (x^ y)_ (x^ x0) = (x^ y)_ (y ^ y0), i.e. (x^ y) = (x^ y)_ (x^ x0)

and (x ^ x0)  y, a contradiction.

(2) ) (3). By x 6 y it follows that x ^ x0  y0. Moreover, by y 6 x, i.e. x0 6 y0, one

has that x^x0  y. So, we obtain that x^x0  y ^ y0. By a symmetrical argument, one

concludes that y ^ y0  x ^ x0. Hence, y ^ y0 = x ^ x0.
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(3) ) (2). Assume that x 6 y0 but x^x0 6 y. If y0  x, then x^x0  y, a contradiction.

Hence we have that y0 6 x. By hypothesis it follows that x ^ x0 = y ^ y0, again a

contradiction. Thus, one has that x ^ x0  y.

It is easily seen that any bounded lattice satisfying (⇤) is regular but not the other

way around (see Fig. 5.3). Therefore, (⇤) can be regarded as a strengthened form of

regularity. It is worth noticing that, in any modular involution lattice A satisfying (⇤),

{x ^ x0 : x 2 A} [ {x _ x0 : x 2 A} forms a linearly ordered sub-algebra of A.

The next proposition shows that if a bounded modular involution lattice satisfying (⇤)

has a fixed point with respect to 0, then it must be a chain.

Proposition 5.10. Let A = (A,^,_,0 , 0, 1) be a bounded modular lattice satisfying (⇤).

If there exists a 2 A such that a = a0 (a is a fixed point), then A is linearly ordered.

Proof. Let x, y 2 A be such that x 6 y. By (⇤) one has x^ x0  y0. Let we consider the

following cases:

1. a  x. Therefore, x0  a = a0  x (by antitonicity) and x0  y0, i.e. y  x;

2. a 6 x. We have a  x0 (by (⇤)). Since x 6 y, one has y0 6 a, i.e. a 6 y and a  y0,

again by (⇤). Therefore y  y0. By y0 6 x0, (⇤) ensures that y = y ^ y0  x.

Proposition 5.11. Let A be a bounded modular lattice with antitone involution satis-

fying (⇤). Then, for any x, y 2 A, x ^ x0  y ^ y0 or y ^ y0  x ^ x0.

Proof. If x ^ x0 and y ^ y0 are incomparable, then by Theorem 5.9 (3) we have that

(x^x0) = (x^x0)^(x_x0) = (x^x0)^(x^x0)0 = (y^y0)^(y^y0)0 = (y^y0)^(y_y0) = (y^y0),
a contradiction.

In what follows we will refer to any of the equivalent conditions stated in Theorem 5.9

by (⇤) as well.

Remark 5.12. The class of bounded (even distributive) modular lattices with an antitone

involution satisfying (⇤) is not an equational class. In fact, let we consider the three-

elements Kleene lattice D3 in Fig. 5.5. Clearly, D3 satisfies (⇤). However, in D3
3 one

has (x, x, x) 6 (0, 1, 1) but (x, x, x) ^ (x, x, x)0 = (x, x, x) 6 (1, 0, 0) = (0, 1, 1)0. Thus,

bounded modular lattices with antitone involution satisying (⇤) do not form a variety.

However, it is worth noticing that, since (⇤) can be expressed by a positive universal

formula, it is preserved by subalgebras and quotients.
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1 = 00

x = x0

0 = 10

Figure 5.5

Note that the bounded modular lattice with an antitone involution described in Example

5.2 satisfies the following further condition, for any x, y 2 A such that x 6= 1:

x 6 y implies (x _ y) ^ (x _ x0) = (x _ y) ^ (y _ y0). (**)

The next proposition represents an analogue of Theorem 5.9 for (⇤⇤).

Proposition 5.13. Let A = (A,^,_,0 , 0, 1) be a modular involution lattice satisfying

(⇤). The following are equivalent:

(1) A satisfies (⇤⇤);

(2) For any x, y 2 A, if x 6 y and x 6= 1, then x  y _ y0.

Proof. (2) ) (1). Let us suppose that x 6= 1 and x 6 y. By (⇤) one has that x^x0  y0,

i.e. y  x _ x0 and x _ y  x _ x0. Moreover, by (2), one has that x  y _ y0 and

x _ y  y _ y0. Hence, y _ y0 = x _ x0 and (x _ y) ^ (x _ x0) = (x _ y) ^ (y _ y0).

(1) ) (2). Suppose that there exist x, y 2 A such that x 6= 1, x 6 y and x 6 y _ y0. By

(⇤) one has that x^ x0  y0 and y  x_ x0. Hence x_ y  x_ x0. Moreover, by (⇤⇤) one

has that (x_y)^(x_x0) = (x_y) = (x_y)^(y_y0), i.e. x  y_y0, a contradiction.

Actually, we can show that bounded lattices with antitone involution satisfying (⇤) and

(⇤⇤) have a very specific lattice structure.

Proposition 5.14. Let A = (A,^,_,0 , 0, 1) be a modular involution lattice satisfying

(⇤). Then, A satisfies (⇤⇤) if and only if, for any x, y 2 A � {0, 1}, x _ x0 = y _ y0.

Consequently, (⇤⇤) holds in A if and only if A is either an ortholattice or there exists

an atom a 2 A such that for any x 2 A� {0, 1}, x ^ x0 = a.

Proof. Suppose that (⇤⇤) holds and let x, y be elements inA � {0, 1}. If x  y, then

obviously x  y _ y0 and x 6 y implies (by (⇤⇤)) x  y _ y0 as well. By repeating

the same argument for x0, one has that x _ x0  y _ y0. Symmetrically, it follows that
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y_ y0  x_x0. Hence, y_ y0 = x_x0. If there exists x 2 A� {0, 1} such that x^x0 = 0,

then A is an ortholattice. Otherwise, suppose that for any x 2 A � {0, 1}, x ^ x0 6= 0.

Put x ^ x0 = a. Since, for any x 6= 0 one has that 0 6= a  x, it follows that a is an

atom. The converse of the statement is trivial.

One might ask if it is possible to prove an analogue of Theorem 5.7 assuming (⇤⇤) instead

of (⇤). Indeed, the next lemma shows this is not the case.

Lemma 5.15. Let A = (A,^,_,0 , 0, 1) be a modular involution lattice satisfying (⇤⇤).

Then, R(A) = (A,^,_,�,!, 0, 1), where � and ! are defined as in (5.1) resp. (5.2),

is a left-residuated `-groupoid if and only if (⇤) holds.

Proof. (() follows directly from Theorem 5.7. As regards ()), let us assume that (⇤)

does not hold. Hence, there exist x, y 2 A such that x 6 y0 but (x ^ y) _ (x ^ x0) 6=
(x^y)_ (y^y0). If x  y, then x 6= x_ (y^y0), i.e. y^y0 6 x. Moreover, by modularity,

x � y = y ^ (x _ y0) = x _ (y ^ y0). Note that x  y0 _ x = y0 _ (x ^ y) = y ! x, since

y  x would imply x = y. Hence, x � y = x _ (y ^ y0)  x, by left residuation. So,

y ^ y0  x, a contradiction. We conclude that x 6 y and y0 6 x0. Clearly, y0 6= 1 and,

by (⇤⇤), we have that (x0 _ y0) ^ (x _ x0) = (x0 _ y0) ^ (y _ y0). Since 0 is an antitone

involution, we conclude that (x ^ y) _ (x ^ x0) = (x ^ y) _ (y ^ y0), a contradiction.

The next example reveals the existence of bounded modular lattices with antitone invo-

lution satisfying (⇤) but not (⇤⇤) which can be organized into a left-residuated `-groupoid.

Example 5.4. Consider the involution lattice

A = ({0, x, y, x0, y0, 1},^,_,0 , 0, 1)

depicted in Fig. 5.6. If we define � and ! as in Theorem 5.7, then we have the following

tables:
� 0 x y x0 y0 1

0 0 0 0 0 0 0

x 0 x y y0 0 x

y 0 y y 0 0 y

y0 0 y0 0 0 0 y0

x0 0 0 0 0 0 x0

1 0 x y y0 x0 1

! 0 x y x0 y0 1

0 1 1 1 1 1 1

x x0 1 y y0 x0 1

y y0 1 1 y0 y0 1

y0 y y 1 1 y 1

x0 x 1 1 1 1 1

1 0 x y y0 x0 1

Note that A can be regarded as a left-residuated `� groupoid. Moreover, a little thought

shows that A satisfies (⇤) but (⇤⇤) does not hold. In fact, one has that x 6 y but

(x _ y) ^ (x _ x0) = x 6= y = (x _ y) ^ (y _ y0).
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1 = 00

x

y

y0

x0

0 = 10

Figure 5.6

5.3 Distributive lattices with antitone involution

It is worth asking if, given a distributive involution lattice A = (A,^,_,0 , 0, 1), putting
x � y = x ^ y and x ! y = x0 _ y, it is possible to convert A into a bounded integral

commutative residuated lattice as for Boolean algebras. Unfortunately, this is not the

case. In fact, it is well known that in distributive involution lattices (see e.g. [45]) the pair

(^,!) is not necessarily residuated, as shown in the next example. It is worth asking

if, given a bounded distributive lattice with antitone involution A = (A,^,_,0 , 0, 1),
putting x � y = x ^ y and x ! y = x0 _ y, it is possible to convert A into a bounded

integral commutative residuated lattice as for Boolean algebras. Unfortunately, this is

not the case. In fact, it is well known that in a Kleene lattice A the pair (x^ y, y ! x),

where x ! y = x0 _ y, for any x, y 2 A, need not be residuated (see e.g. [45]), as shown

in the next example.

Example 5.5. Consider the Kleene lattice A depicted in Fig. 5.7. If we define x ! y =

x0_y and x�y = x^y, for any x, y 2 A, one has b^c = a  c but b 6 c ! c = c0_c = c.

However, the next result shows that, for distributive lattices with an antitone involution

satisying (⇤), the definition of � and ! as in (5.1) resp. (5.2) can be semplified.

Lemma 5.16. Let A = (A,^,_,0 , 0, 1) be a distributive involution lattice satisfying (⇤).

Then, the following hold:

(1) x 6 y0 implies y ^ (x _ y0) = x ^ y;
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1 = 00

a0 d0

b0 c = c0 b

d a

0 = 10

Figure 5.7

(2) x 6 y implies x0 _ (y ^ x) = x0 _ y.

Proof. As regards (1), assume x 6 y0. Hence, y ^ (x _ y0) = (y ^ x) _ (y ^ y0) =

(y ^ x) _ (x ^ x0) = y ^ x, since (⇤) implies that x ^ x0  y.

(2). Assume that x 6 y. Thus, we have x0 _ (y ^ x) = (x0 _ y) ^ (x _ x0) = x0 _ y, since

(⇤) implies that x ^ x0  y0, i.e. y  x _ x0.

We can now show that, for a distributive involution lattice A, (⇤) is not only a su�cient

but also a necessary condition for A to be turned into a bounded integral commutative

residuated lattice. This yields a complete characterization of those Kleene lattices which

can be equipped with a material Boolean-like implication.

Theorem 5.17. Let A = (A,^,_,0 , 0, 1) be a bounded distributive lattice with antitone

involution satisfying (⇤). Define x � y = x ^ y if x 6 y0, and x � y = 0 otherwise.

Furthermore, put x ! y = x0 _ y, if x 6 y and x ! y = 1, otherwise. Then, R(A) =

(A,^,_,�,!, 0, 1) is a bounded integral commutative residuated lattice if and only if (⇤)

holds.

Proof. ((). In view of Lemma 5.16, since any distributive lattice is modular and the

definitions of � and ! coincide with those in the statement of Theorem 5.7, we conclude

that R(A) = (A,^,_,�,!, 0, 1) is a left-residuated `-groupoid. Moreover, � is com-

mutative. Hence, R(A) is indeed residuated. We only need to prove the associativity of

�. Let us distinguish several cases:

(a) If x�y = x^y, (x^y)�z = (x^y)^z, y�z = y^z, and x� (y^z) = x^ (y^z),

then clearly (x� y)� z = x� (y � z).
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(b) x � y = 0, i.e. x  y0. Then, (x � y) � z = 0. If y  z0, then (x � y) � z = 0 =

x� (y � z). Otherwise, let us note that x  y0 _ z0 = (y ^ z)0 and x� (y � z) = 0.

(c) If y � z = 0, i.e. y  z0, then x � (y � z) = 0 and by x ^ y  z0, one obtains in

each case the desired result.

Therefore, we can assume that x � y 6= 0 and y � z 6= 0, i.e. x 6 y0 and y 6 z0,

respectively.

(d) If x ^ y  z0, then, if (x _ y0) ^ (y _ y0) = (x _ y0) ^ (x _ x0), we have

z0 _ y0 �(x ^ y) _ y0

=(x _ y0) ^ (y _ y0)

=(x _ y0) ^ (x _ x0)

=x _ (y0 ^ x0) � x,

by distributivity, so associativity easily follows. Otherwise, suppose (x_ y0)^ (y _
y0) 6= (x _ y0) ^ (x _ x0). By Lemma 5.5, one has y0  x. Now, if x  y, then

x = x ^ y  z0  z0 _ y0. Hence, x� (y � z) = 0 = (x� y)� z. Suppose x 6 y. If

y 6 x, then by (⇤) and Theorem 5.9 we have that x ^ x0 = y ^ y0 and one obtains

(x _ y0) ^ (y _ y0) = (x _ y0) ^ (x _ x0), a contradiction. Hence, we must have that

y  x. So, by y = x^ y  z0, it follows that x� (y� z) = x� 0 = 0 = (x� y)� z.

(e) Finally, if x  y0_z0, then x^y  y^(y0_z0) = (y^y0)_(y^z0) = (z^z0)_(y^z0) 
z0, by (⇤), and again (x� y)� z = (x� y)� z.

()). Assume that R(A) = (A,^,_,�,!, 0, 1) is a bounded commutative residuated

lattice with operations defined as above, and suppose by way of contradiction that

x 6 y0 but x ^ x0 6 y. One has that (x ! (y0 � x))0  y. If y0  x0 then x  y and

x ^ x0  y, a contradiction. Hence we have that x ! (y0 � x) = x ! (y0 ^ x). Since

x  y0 ^ x contradicts our assumptions, we have that (x ! (y0 ^ x))0 = (x0 _ (y0 ^ x))0 =

(x^ x0)_ (x^ y)  y, by distributivity and the De Morgan law. Thus, x^ x0  y, again

a contradiction.

5.4 Modular involution lattices as ◆-near semirings

In light of the above arguments, we can now prove that any modular involution lattice

satisfying (⇤) can be turned into a ◆-near semiring (see Definition 3.2).
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Proposition 5.18. Let A be a left-residuated `-groupoid. Then, if {y} [ X ✓ A and
W
X exists, one has

(
_

X)� y =
_

x2X
(x� y).

Proof. Let x, y, z be elements in A. Assume that x  y. Observe that y � z  y � z

implies x  y  z ! (y � z). Thus we have x � z  y � z. We conclude that � is

left-monotonic. Now, clearly x� y  (
W
X)� y. Suppose that x� y  z, for any x 2 X.

thus
W
X  y ! z and our statement follows by left-adjointness.

It can be observed that, if A is a modular involution lattice satisfying (⇤), then x ! 0 =

x0 in R(A).

Proposition 5.19. Let A be a modular involution lattice satisfying (⇤) and R(A) its

associated left-residuated `-groupoid. Then, putting for any x 2 A, x↵ = x ! 0, ↵ is an

antitone involution.

Finally, we have the following

Theorem 5.20. Let A be a modular involution lattice satisfying (⇤). Then R(A) can be

turned into a ◆-near semiring S(A). Furthermore, if A is also distributive, then S(A)

is a semiring.

Proof. Put x _ y = x + y, x · y = x � y and x↵ = x ! z. Then (A,+, 0) is obviously

a integral idempotent commutative monoid, x · 1 = 1 · x = x holds by the definition

of left-residuated `-groupoid, (x + z) · y = c · y + z · y is ensured by Proposition 5.18,

and ↵ is an antitone involution by Proposition 5.19. Finally, observe that x� 0 = 0, by

x  00 = 1 and 0� x = 0 for 0  x0. As regards the “furthermore” part, note that if A

is distributive, then R(A) is a bounded integral commutative residuated lattice. Thus,

right distributivity is ensured.

Finally, we apply Theorem 5.20 in order to prove a Cantor-Bernstein type theorem for

modular involution lattices satisfying (⇤).

Let us observe that modular involution lattices form a Church variety (see Section 4.2)

as witnessed by the term

(x ^ y) _ (x0 ^ z).

Therefore, if A is a modular involution lattice satisfying (⇤), then R(A) is a Church

algebra as well with the same witnessing term (just exchange x0 with x ! 0). Clearly,

Ce(A) = Ce(R(A)) = Ce(S(A)). Hence, if Ce(A), as a Boolean algebra, is �-complete,

then so do Ce(R(A)) and Ce(S(A)). Moreover, in light of the above considerations, any
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modular involution lattice satisfying (⇤) is clearly left-residuable. Therefore we have the

following

Theorem 5.21. Let A and B be join �-complete modular involution lattices satisfying

(⇤). Moreover, let us suppose that Ce(A) and Ce(B) are �-complete Boolean algebras.

If A ⇠= [0, b] and B ⇠= [0, a] with b 2 Ce(B) and a 2 Ce(A), then A ⇠= B.

Proof. If A ⇠= [0, b] under and isomorphism �, and B ⇠= [0, a] under  , then R(A) ⇠=
[0, b]R(B) and R(B) ⇠= [0, b]R(A), respectively. In fact, if a �R(A) b = 0, then a  b0.

Therefore, since  is an involution lattice isomorphism, it follows that �(a)  �(b)0

and �(a) �R(B) �(b) = 0R(B) = �(a �R(A) b). Otherwise, suppose that a 6 b0 then

�(a) 6 �(b)0 and �(a�R(A) b) = �(b^ (a_ b0)) = �(b)^ (�(a)_�(b)0) = �(a)�R(B) �(b).

That �(a !R(A) b) = �(a) !R(B) �(b) can be proven similarly. So we conclude that

R(A) ⇠= [0, b]R(B). Similarly, we prove that R(B) ⇠= [0, b]R(A) under  . Now, it is

easily seen that S(A) ⇠= [0, b]S(B) and S(B) ⇠= [0, a]R(A). Since S(A) and S(B) are

left-residuable, Theorem 3.29 applies and we conclude that S(A) ⇠= S(B). Let � :

S(A) ! S(B) be the isomorphism. Note that �(a _ b) = �(a + b) = �(a) _ �(b) and

�(a↵) = �(a0) = �(a)↵ = �(a)0. Thus, since 0 is an antitone involution, we have also

�(a ^ b) = �(a) ^ �(b). Therefore � is an involution lattice isomorphism and we are

done.



Chapter 6

A general framework for

orthomodular structures

In the previous chapters, we abstracted from quantum structures and (pseudo-)MV al-

gebras, in order to find a su�ciently general environment in which common properties

of their structure can be easily captured. To that aim, we introduced  Lukasiewicz near

semirings as a semiring-like counterpart of basic algebras.

In what follows, our approach will be di↵erent. In fact, we set a general framework

in which orthomodular quantum structures (i.e. orthomodular posets, orthomodular

lattices and orthoalgebras, see e.g. [97]) can be studied from an order theoretical point

of view with the aim of understanding not only their common features but also their

distinguishing traits. In fact, we generalize the notion of orthomodularity for posets to

the concept of the generalized orthomodularity property (GO-property) by considering

the LU -operators (see Chapter 1). This seemingly mild generalization of orthomodular

posets yields rather strong applications to orthomodular structures and e↵ect algebras.

As a consequence, this approach will yield a completely order-theoretical characteriza-

tion of the coherence law for several classes of orthoalgebras.

It is well known that orthomodular structures are particular pastings of their Boolean

blocks. However, any pasting of Boolean algebras need not be either an orthomodular

lattice, or a orthomodular poset. Su�cient and necessary conditions, that specify the

block structure and pasting sets of orthomodular posets, were discussed by Greechie

and Rogalewicz [87], as well as, in the orthoalgebraic framework, by Navara [99] (see

Chapter 2).

In this chapter, we will weaken the notion of orthomodularity for posets by relaxing the

condition ensuring that joins of orthogonal pairs exist (see e.g. [32] and section 6.1),

103
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and then analyzing the order theoretical properties it determines. It will turn out that

orthomodular posets can be neatly characterized by means of the properties of ortho-

posets. In fact, it will be proven that any GO-poset A is orthomodular provided that

for any a, b 2 A, if a  b then there exists c ? a such that a _ c = b.

Furthermore, we will develop a general theory of configurations for GO-posets, and de-

termine those that characterize GO-posets and orthomodular posets with respect to

orthoposets and GO-posets, respectively. Surprisingly enough, these results will shine

a new light on Greechie’s celebrated Theorems. In fact, we will prove that, for atomic

amalgams of Boolean algebras, the GO-property is equivalent to the absence of loops of

order three. Moreover, we will also show that one of our forbidden configurations (see

display (6.6)) is the smallest orthoposet which does not contain the benzene ring (cf.

below) and whose Dedekind-MacNeille completion is not orthomodular.

Finally, we will widen our perspective to orthoalgebraic pastings of (not necessarily

finite) Boolean algebras. In this framework, we will characterize the order-theoretical

meaning of the coherence law for classes of orthoalgebras: tame and Riesz orthoalgebras.

In fact, it will be shown that tame and Riesz orthoalgebras are generalized orthomodular

if and only if they are not proper, i.e. they are indeed orthomodular posets.

6.1 The generalized orthomodularity property

Since 1990s, poset versions of well known algebraic structures were introduced with the

aim of putting into relationship their order-theoretical and algebraic properties, e.g. the

so-called Boolean orthoposets. Let us recall that an orthoposet A is Boolean in the sense

of Tkadlec and Klukowski [121, 89] if, for any a, b 2 A, a ^A b = 0 implies that a  b0.

An example of a Boolean poset which is not a lattice is depicted in figure (6.2). These

structures are well known for admitting a Dedekind-MacNeille completion (see Chapter

1) which is a Boolean algebra. Moreover, let us also observe that any Boolean orthoposet

is indeed distributive in the above sense, as the next lemma shows.

Lemma 6.1. An orthoposet A is distributive if and only if for a, b 2 A, whenever

a ^ b = 0, then a ? b.
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Proof. ()) If A is distributive, and a ^ b = 0, then

U(a0) = U(a0, 0)

= U(a0, L(a, b))

= U(L(U(a0, a), U(a0, b)))

= U(L(U(a0, b)))

= U(a0, b)

So, if a0  c, then b  c. Therefore, a0 � b. (() In [121, Theorem 4.2], it has been

shown that any Boolean orthoposet (in Tkadlec’ sense) admits a Dedekind-MacNeille

completion, which is a complete Boolean algebra. Therefore, the image of the orthoposet

A in its completion is distributive, i.e. it satisfies U(a, L(b, c)) = U(L(U(a, b), U(a, c))),

and then A will be distributive too.

As orthomodular lattices generalize Boolean algebras, we will weaken the notion of

Boolean orthoposet by introducing the concept of GO-poset.

Definition 6.2. A bounded poset A = (A,,0 , 0, 1) equipped with an antitone involu-

tion is said to have the generalized orthomodularity property (GO-property) if it satisfies

the following condition for any a, b 2 A:

a  b implies U(b) = U(a, L(b, a0)). (6.1)

From now on, posets fulfilling the GO-property will be called GO-posets. Furthermore,

condition (6.1) will be referred to as the GO-condition.

Many well known structures arising from sharp quantum theory naturally induce GO-

posets. In fact, it can be easily seen that orthomodular posets, and therefore intervals

in weak generalized orthomodular posets ([95],[104, Definition 1.5.12],[105]) enjoy the

GO-property. A straightforward verification shows that:

Remark 6.3. Orthomodular posets and orthomodular lattices enjoy the GO-property.

Indeed, we have that L(y, x0) = L(y^x0), and U(x^(y_x0)) = U(x, (y, x0)), thus Lemma

1.7 yields (6.1) immediately.

However, on the contrary, there are generalized orthomodular posets which are not

orthomodular posets, as the following example shows.

Example 6.1. Consider the poset A = (A,^,_,0 , 0, 1) depicted in figure (6.2). A

routine check shows that A is a GO-poset. However, it is not orthomodular. In fact,
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p  q0, but p _ q does not exists in A. Nonetheless, we still have that U(p, L(q0, p0)) =

U(p, {0, a, c0}) = {q0, 1} = U(q0), as required by condition (6.1).

1

c q0 p0 a0

b b0

a p q c0

0

(6.2)

The next lemma characterizes those GO-poset that are in point of fact orthomodular.

Lemma 6.4. Let A = (A,,0 , 0, 1) be a GO-poset. Then A is an orthomodular poset

if and only if for any a, b 2 A, a  b implies that there exists c 2 A such that a ? c and

U(b) = U(a, c).

Proof. The left-to-right direction follows by noticing that a  b implies U(b) = U(a_(b^
a0)) = U(a, b ^ a0). Conversely, suppose that a  b0. By hypothesis, there exists c 2 A

such that a  c0 and U(b0) = U(a, c). Therefore, by the GO-property it follows that

L(a0, b0) = L(a0) \ L(b0) = L(a0) \ L(U(b0)) = L(a0) \ L(U(a, c)) = L(a0, U(a, c)) = L(c),

since c  a0. Therefore a0 ^ b0 exists and so does a _ b.

The following result shows that a generalized formulation by means of upper and lower

sets of the De Morgan laws holds in any poset equipped with an antitone involution.

Lemma 6.5. Let A = (A,,0 ) be a poset equipped with an antitone involution, and

B ✓ A. Then,

U(B)0 = L(B0) and L(B)0 = U(B0).

Proof. Let a 2 U(B)0. Then, a0 2 U(B). Hence, for all b 2 B, b  a00 = a. So, a  b0, for

any b0 2 B0. Thus, a 2 L(B0). Conversely, if a 2 L(B0), then for all b0 2 B0, a  b0. So,

for all b 2 B, b  a00 = a. Hence, a 2 U(B)0. The second equality is proven similarly.

Remark 6.6. Let us observe that any GO-poset is indeed an orthoposet. In fact, suppose

that L(a, a0) 6= {0}. Then there is a non-zero b 2 L(a, a0). So, b0 2 U(a0, a), and therefore

b  b0. Applying the GO property, b  1 implies that {1} = U(1) = U(b, L(b0, 1)) =

U(b, b0) = U(b0). Consequently, b0 = 1, and then b = 0.
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As for orthomodularity, it can be seen that the GO-condition admits a dual definition.

Theorem 6.7. An orthoposet A = (A,,0 , 0, 1) has the GO-property if and only if it

satisfies the following, for all a, b 2 A:

if a  b then L(a) = L(b, U(a, b0)). (6.3)

Proof. Suppose a  b. Then, b0  a0. Therefore, U(b)0 = L(b0) = L(a0, U(b0, a)) =

L(a0, L(b, a0)0) = U(a, L(b, a0))0. Whence, U(b)00 = U(b) = U(a, L(b, a0)) = U(a, L(b, a0))00.

The converse direction can be shown dually.

The next lemma shows that distributive and modular orthoposets follow in the frame-

work of GO-posets.

Lemma 6.8. Every modular orthoposet enjoys the GO-property.

Proof. Straightforward.

This observation naturally leads to wonder whether every orthoposet is a GO-poset.

The next example answers this question in the negative, showing that the generalized

orthomodularity is a non-trivial property of orthoposets.

1

a0 e d0 b0

b d e0 a

0

(6.4)

Example 6.2. It is immediate to verify that the orthoposet in figure (6.4) is an ortho-

poset, however it does not fulfill the GO-condition. Indeed, b  a0, but U(b, L(a0, b0)) =

U(b, e) = {d0, a0, 1} 6= {a0, 1} = U(a0). Moreover, let us remark that this orthoposet

fulfills the condition

if x  y and U(x, y0) = {1}, then x = y. (6.5)

This condition is a poset-version of condition (P1) of Definition (2.32). If the structure

is a lattice, then it is, of course, an orthomodular lattice and the paraorthomodularity

condition is equivalent to orthomodularity (cf. Theorem 2.2). However, as this example

shows, this is not the case for the orthoposet in figure (6.4).
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6.2 Forbidden configurations of GO-posets

As modular and distributive ordered sets generalize modular and distributive lattices,

GO-posets extend the notion of orthomodular lattice. In [32], J. Rach̊unek and one of

the present author presented a generalized notion of the well known Dedekind-Birkho↵’s

type “forbidden configurations” for modular and distributive posets. Over the last fifteen

years, their results have stirred increasing attention from several scholars. In particular,

in [88] the concept of strong elements in posets was introduced and a characterization

of strong posets in terms of forbidden configurations was proposed, showing that many

classical results in lattice theory can be extended to posets. Those results were further

developed in [83], where several known forbidden configurations for lattices and are

generalized to posets, and in [118], in which 0-distributive lattices are taken into account.

Inspired by this research stream, in this chapter we present results on forbidden config-

urations in terms of strong subposets and LU -subposets. The arguments in this section

generalize to the framework of GO-posets (that need not be lattice-ordered or ortho-

modular, in general) the well known fact that an ortholattice is orthomodular if and

only if it does ot contain the so-called benzene ring as its sublattice.

First, let us discuss a rather technical lemma that will be expedient for the development

of our discourse.

Lemma 6.9. Let A = (A,,0 , 0, 1) be an orthoposet.

1. if B6 (figure (6.6)) is a subposet of A, and L(a0, b) = {0} in A, then A does not

have the generalized orthomodular property;

2. if B10 (figure (6.6)) is a subposet of A, and L(a0, b) ✓ L(u) in A, then A does not

have the generalized orthomodular property;

3. if B10⇤ (figure (6.7)) is a subposet of A, and U(a, b0) ✓ U(u) in A, then A does

not have the generalized orthomodular property.

Proof. (1) We have that a  b, but U(a, L(b, a0)) = U(a) 6= U(b). (2) It can be

seen that a  b, and, since L(a0, b) ✓ L(u), then U(u) ✓ U(L(a0, b)). So, U(u) =

U(a, u) ✓ U(a, L(a0, b)). Therefore u 2 U(a, L(a0, b)), but u /2 U(b). (3) Similarly,

a  b, but U(a, b0) ✓ U(u) implies L(u) ✓ L(U(a, b0)), which implies L(u, b) = L(u) ✓
L(U(a0, b), b). Theorefore, u 2 L(U(a0, b), b), but u /2 L(a).
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1

a0 b

b0 a

0

B6

1

a0 p0 u b

b0 u0 p a

0

B10

(6.6)

1

a0 u0 p0 b

b0 p u a

0

B10⇤

(6.7)

Let us observe that B10 and B10⇤ are order ortho-isomorphic. However, whenever it will

be expedient for readability, we will consider them separately.

Definition 6.10. Let A = (A,,0 , 0, 1) be an orthoposet. A set M ✓ A is said to be a

strong subposet if, for any a, b 2 M , UA(LM(a, b)) = UA(LA(a, b)) and LA(UM(a, b)) =

LA(UA(a, b)).

Combining Lemma 6.9 together with the notion of strong subposet, we can obtain an

alternative description of forbidden configurations for posets having the GO-property.

Lemma 6.11. Let A = (A,,0 , 0, 1) be an orthoposet. If A contains a strong subposet

isomorphic either to B6, or to B10, or to B10⇤, then A does not have the GO-property.

Proof. If A contains a strong subposet isomorphic to B6, then

UA(LA(a0, b)) = UA(LB6(a
0, b)) = UA(0) = A.

So {0} = LA(a0, b), and thenA does not fulfills the GO-condition by Lemma 6.9-(1). IfA

contains a strong subposet isomorphic to B10, then UA(LA(a0, b)) = UA(LB10(a
0, b)) =
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UA(p, 0), which implies that LA(a0, b) = LA(p) ⇢ LA(u), and then A does not have the

GO-property by Lemma 6.9-(2). If A contains a strong subposet isomorphic to B10⇤ ,

then LA(UA(a0, b)) = LA(UB10⇤ (a
0, b)) = LA(p0) = A, which implies that UA(a0, b) =

{1} ⇢ UA(u), and then A is not a GO-poset by Lemma 6.9-(3).

Taking up an idea from [32], let us now reintroduce, in the present context, the notion of

LU -subset of an orthoposet, which weakens the concept of strong subposet (cf. Lemma

6.13).

Definition 6.12. Let A = (A,,0 , 0, 1) be an orthoposet. A set M ✓ A is said to be

an LU -subset if the following conditions are satisfied, for a, b 2 M :

1. LM(a, b) = {0} if and only if LA(a, b) = {0};

2. if UM(a, b) = {1} if and only if UA(a, b) = {1}.

It is not di�cult to observe that the previous definition is partially redundant, for the

only if part of conditions (1) and (2) in Definition 6.12 are fulfilled by any poset. Let

us now show an easy technical lemma that will prove useful for the development of our

arguments.

Lemma 6.13. Let A = (A,,0 , 0, 1) be an orthoposet, and M ✓ A a strong subposet.

Then, M is an LU -subposet.

Proof. Let LM(a, b) = {0}. Then, LA(a, b) = LA(UA(LA(a, b))) = LA(UA(LM(a, b))) =

LA(UA(0)) = LA(A) = {0}. The second condition is proven similarly.

Let us remark that from [32, page 411], if M is a strong subset of a poset A, and

M is lattice ordered with respect to the same order, then M is a sublattice of A.

Moreover, if M ✓ A is a sublattice of A, it can be readily seen that M is also a

strong subset of A. Indeed, if M is a sublattice, it can be seen that UA(LM(a, b)) =

UA(LM(a^M b)) = UA(a^A b) = UA(LA(a^A b)) = UA(LA(a, b)). A similar argument

shows the remaining condition. It is also not complicate to verify by direct inspection

that if M is an LU -subset of A isomorphic to B6, then it is also a strong subset of A.

However, it may happen that an orthoposet A admits subposets isomorphic to B10 that

are not strong, as the orthoposet B14 (figure (B14)). In fact, the subposet M whose

universe is {1, a, b, u, p, p0, a0, b0, u0, 0} is isomorphic to B10, but h 2 LA(UA(a0, p0)) and
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h /2 LA(UM(a0, p0)). Similar counterexamples can be found for B10⇤ .

1

a0 h v0 u0 b

p0

p

b0 u v h0 a

0

(B14)

We are now ready to present the main result of this section, which is a kind of converse

of Lemma 6.11 in terms of LU -subposets.

Theorem 6.14. Let A = (A,,0 , 0, 1) be an orthoposet. If A is not a GO-poset, then

A contains an LU -subposet isomorphic either to B6, or to B10, or to B10⇤.

Proof. Let x < y, and x, y /2 {0, 1}. It can be seen that L(x0, y) ✓ L(y) implies that

U(L(y)) = U(y) ✓ U(L(x0, y)), and then U(x, y) = U(y) ✓ U(x, L(x0, y)). Let us assume

that U(y) ⇢ U(x, L(x0, y)). Preliminary, we observe that x0 k y. In fact, if y  x0, then

x < x0, thus x0 = 1 and x = 0, and if x0  y, then y = 1, a contradiction. We now

proceed through a case-splitting argument.

Case (1). U(y) = {y, 1} and L(x0, y) = {0}. Let us note that L(y0, x) = {0},
since L(y0) = {y0, 0}, and y0 k x, and dually U(y, x0) = {1}. Then the set M =

{1, x, y, x0, y0, 0} is an LU -subset isomorphic to B6.

Case (2). U(y) 6= {y, 1} and L(x0, y) = {0}. Then, let y, 1 6= z 2 U(y). Observe that

L(y, z0) = {0}, and also L(z0, x) = {0}, because x < y < z. Therefore, we are as in

figure (Case (2)).
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1

z x0

y y0

x z0

0

(Case (2))

So, the set M = {1, x, y, x0, y0, 0} is an LU -subposet isomorphic to B6. Case (3).

U(y) = {y, 1} and L(x0, y) 6= {0}. Then, let p 2 L(x0, y). By hypothesis, there is a

z 2 U(x, L(x0, y)) such that z /2 U(y). Let us observe that z 6= x; otherwise, since

p  x0, x  p0, and then, if x = z, p  z  p0. So, p  p0, implies that p0 = 1. Therefore,

because p was arbitrary, L(x0, y) = {0}, a contradiction. A few subcases are possible:

Case (3)(i). z k y. We are in the situation depicted in figure (Case (3)(i)).

1

x0 p0 z y

y0 z0 p x

0

(Case (3)(i))

In fact, we notice that U(x0, p0) = {1}. Indeed, if k � x0, p0, then, since x  p0,

1 = k � x, x0. Also, if k � z, p0, then, since z � p, we have that 1 = k � p, p0, i.e.

U(z, p0) = {1}, and U(x0, z) = {1}, since z > x. Consequently, L(p, z0) = {0} = L(x, z0).

Because U(y) = {y, 1}, U(z, y) = {1}. So, the set M = {1, x0, p0, z, y, x, p, z0, y0, 0} is

an LU -subset isomorphic to B10. Case (3)(ii). z < y. Under our hypotheses, and

the fact that U(z0, y) = {1}, since z0 > y0, we are in the situation depicted in figure
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(Case (3)(ii)).

1

x0 p0 y

z0 z

y0 p x

0

(Case (3)(ii))

Two further subcases are possible. Case (3)(ii)(a) L(y, z0) = {0}. Then, the subposet

M = {1, z0, y, y0, z, 0} is an LU -subset isomorphic to B6. Case (3)(ii)(b) L(y, z0) 6=
{0}. Thus, there is a u 2 L(z0, y), and so we are in the situation depicted in figure

(Case (3)(ii)(b)).

1

x0 p0 u0 y

z0 z

y0 u p x

0

(Case (3)(ii)(b))

In fact, L(y0, u) = {0}, since u < y, L(u, p) = {0}, since u < p0. Consequently, also

U(y, u0) = {1} = U(z0, u0) = U(u0, p0). So, the LU -subposetM = {1, x0, p0, u0, y, y0, u, p, x, 0}
is isomorphic to B10⇤ .
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Case (4) U(y) 6= {y, 1} and L(x0, y) 6= {0}. Hence, there is a z 2 U(y), y 6= z 6= 1, and

a p 2 L(x0, y), p 6= 0. Then, we are in the situation depicted in figure (Case (4)).

1

x0 p0 z

y0 y

z0 p x

0

(Case (4))

Let us notice that U(p0, z) = {1}, since p0 > z0, U(p0, x0) = {1}, since p0 > x, and clearly

U(y0, z) = {1} = U(x0, z). As a consequence, L(p, z0) = L(p, x) = L(p, y0) = L(y, z0) =

L(x, z0) = {0}. By hypothesis, there is a u 2 U(x, L(y, x0)), but u /2 U(y). Several cases

may arise in base of the position of u with respect to y. Case (4)(i) u k y. Then, we

are in the situation depicted in figure (Case (4)(i)).

1

x0 p0 u z

y0 y

z0 u0 p x

0

(Case (4)(i))

Let us notice that L(u0, p) = {0}, since p0 > u0, and U(u, p0) = {1}. Moreover, z 6 u,

because z > y and u k y. Few subcases are possible. Case (4)(i)(a) u < z. In this
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case, we are in the situation depicted in figure (Case (4)(i)(a)).

1

x0 p0 z

u

y0 y

u0

z0 p x

0

(Case (4)(i)(a))

Let us notice that U(x0, z) = {1}, since z > x, U(y0, z) = {1}, since y0 > z0, U(p0, x0) =

{1}, since p0 > x, U(p0, z) = {1}, since p0 > z0, L(x, y0) = {0}, since y0 < x0, and

L(x, z0) = {0}, since z0 < x0. Two degrees of freedom are now possible. Case

(4)(i)(a)(@0) L(y0, z) = {0}. Then, the set M = {1, y0, z, z0, y, 0} is an LU -subposet iso-

morphic to B6. Case (4)(i)(a)(@1) h 2 L(y0, z) 6= {0}. Reasoning as in case (3)(ii)(b),

we see that the set M = {1, y, z, p, p0, h, h0, y0, z0, 0} is an LU -subset isomorphic to B10⇤ .

Case (4)(i)(b) u k z. Then, we are in the situation depicted in figure (Case (4)(i)(b)).

1

x0 p0 u z

y0 y

z0 u p x

0

(Case (4)(i)(b))

In case U(u, z0) = {1}, then the set M = {1, x, z, u, p, x0, z0, u0, p0, 0} is an LU -subposet

isomorphic to B10. On the contrary, if 1 6= h 2 U(u, z0), then we have the following
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configuration (figure (6.8)):

1

h

x0 p0 u z

y0 y

z0 u0 p x

h0

0

(6.8)

Let us consider the configuration in figure (6.9):

1

x0 p0 h

z0 z

h0 p x

0

(6.9)

It can be seen that U(p0, h) = {1}, since p < h, U(p0, z) = {1}, since p0 > z0, U(p0, x0) =

{1}, since p0 > x0; dually L(p, h0) = L(p, z0) = L(p, z) = {0}. We may have two

subcases in base of the elements of L(z0, h). Case (4)(i)(b)(@0). L(z0, h) = {0}. The

subposet M = {1, z0, h, h0, z, 0} is an LU -subset isomorphic to B6. Case (4)(i)(b)(@1).

0 6= l 2 L(z0, h). Then, the setM = {1, x, h, l, p, x0, h0, l0p0, 0} is an LU -subset isomorphic

to B10. Case (4)(ii) u < y. Then, we have the following configuration (cf. figure
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(Case (4)(ii))):

1

x0 p0 z

u0 y

y0 u

z0 p x

0

(Case (4)(ii))

Consider the structure whose universe is the following ten-element setM = {1, x0, p0, z, u0, u, z0, p, x, 0}.
We have a few cases according with the position of L(u0, z). Case (4)(ii)(a) L(u0, z) =

{0}. Then, M = {1, z, u, z0, u0, 0} is an LU -subset isomorphic to B6. Case (4)(ii)(b)

0 6= l 2 L(u0, z). Then, we have the following configuration (figure (Case (4)(ii)(b))):

1

x0 p0 z

u0 l0 y

y0 l u

z0 p x

0

(Case (4)(ii)(b))

Consider the set M = {1, x, z, p, l, x0, z0, p0, l0, 0}. An easy check shows that M is an

LU -subposet isomorphic to B10⇤ .

Let us note that, even if by Lemma 6.11 an orthoposet containing an LU -subset isomor-

phic to B6 is not a GO-poset, there are orthoposets containing an LU -subset isomorphic

to B10 that are GO-posets (figure (B12)). In fact, B12 contains the subposet M whose
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universe is {1, a0, u, b, p0, b0, u0, p, a, 0} which is isomorphic to B10, but B12 has the GO-

property.

1

a0 v0 u b

p0

b0 u0 p v a

0

(B12)

We close this section by showing that B10 (see display (6.6)) has the rather interest-

ing property of being the smallest orthoposet which does not contain B6 and whose

MacNeille completion is not orthomodular.

Theorem 6.15. B10 (B10⇤) is the smallest orthoposet such that: (i) it does not contain

B6 as a sub-lattice; (ii) its MacNeille completion is not orthomodular.

Proof. As regards (ii), let us note that the Dedekind-MacNeille completion of B10 has

the form depicted below

1

a0 c p0 b

d d0

b0 p c0 a

0

(DM(B10))

It is easily seen that the set {0, 1, c, d, c0, d0} forms a sub-lattice isomorphic to B6. There-

fore, DM(()B10) is an ortholattice which is not orthomodular.

(i). Note that if A = (A,,0 , 0, 1) is a finite ortholattice, then DM(()A) ⇠= A. There-

fore if A does not admit an orthomodular Dedekind-MacNeille completion, then it must

contain itself a sub-lattice isomorphic to B6. Hence, A cannot be a lattice, so it must

contain at least a pair of uncomparable elements a, b 2 A having two distinct uncom-

parable upper bounds c, d. Thus, for cardinality reasons, |A| � 10 and we are in the

situation depicted below:
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1

c d a0 b0

a b c0 d0

0

(6.10)

Let us observe that the set {0, 1, d, b, d0, b0} forms a sub-lattice isomorphic to B6. More-

over, if c0  d and a  b0, an easy exercise shows that for any x, y 2 A, one has that

x ^ y = 0 implies x  y0. Therefore, A is a Boolean orthoposet and, by [121, Theorem

4.2], it follows that DM(A) is a Boolean algebra, contradicting our assumptions. So the

only possible cases are:

a. c0  d and a 6 b0. Thus, it is easily seen that A ⇠= B10;

b. a  b0 and c0 6 d. So, we have A ⇠= B10⇤ .

Summarizing the above considerations one has that an orthoposet A which does not

contain a sub-lattice isomorphic to B6 must have at least 10 elements. Moreover, if

it does not admit an orthomodular Dedekind-MacNeille completion, then it must be

isomorphic to B10 or B10⇤ . Hence our statement is proved.

6.3 Amalgams of Boolean algebras: applications to Greechie’s

Theorems

In the context of orthomodular posets, the first results using pasting techniques are to

be credited to R. Greechie, and date back to the second half of the sixties [66, 67]. In-

deed, he put the pasting technique to good use and came up with orthomodular posets

possessing no measures (“stateless logics”). Taking up these ideas, other scholars fruit-

fully ventured upon the construction of other “unconventional” orthomodular posets

[36, 115]. In particular, F. Schultz’ state space characterization [116], together with the

enlargement construction independent on centres, and state spaces by M. Navara and

his coauthors [100] brought significant contributions to the foundations of quantum me-

chanics. In addition, in the field of orthomodular lattices viewed as universal algebras,

pasting techniques had led to significant advancements and generalizations [94, 101] (see

also [99]).
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In this section we take advantage of the results of section 6.2 in order to obtain a

novel characterization of atomic amalgams of Boolean algebras (cf. [3, Chapter 4.4])

which represent a subclass of pastings already encountered in Chapter ?? (see Sub-

section 2.1.2, Definition 2.9). In particular, a development of our arguments will yield

Greechie’s celebrated Theorems as corollaries [66, 67], shedding, perhaps, some light

from a new perspective upon well developed algebraic tools.

For readability convenience, we now recall the main notions that will be used in this

section (for a specific account we refer the reader to [3, p. 142], and for a wide overview

to [?]). For any i 2 I 6= ;, with I a finite set, let Bi be a finite Boolean algebra. Suppose

that the following conditions are satisfied:

(a1) any Bi has cardinality at least 8;

(a2) for any i 6= j of I, Bi \ Bj is either {0, 1} or {0, a, a0, 1}, for some atom a, that

belongs to both Bi and Bj . In case Bi \ Bj = {0, a, a0, 1}, then the complement

of a coincides in both Bi and Bj and will be denoted by a0.

Then, the system B = (Bi : i 2 I), with universe
S

i
{Bi}i2I , is said to be an atomic

amalgam of the family {Bi}i2I . The elements of the set {Bi}i2I are called the initial

blocks of the amalgam. In what follows, the ordering in a block Bi will be denoted by

Bi , and the order in the amalgam will be the union of the orders in the block (see [3,

p.144]), more formally:

x  y if and only if x Bi y, for some Bi. (6.11)

We now recollect some well known results that will be of some importance for our

arguments.

Theorem 6.16. [3, Theorem 4.1] An atomic amalgam of Boolean algebras is an ortho-

complemented poset.

Proof. It follows directly by Lemma 2.10.

Theorem 6.17. [3, Theorem 4.4] Let B = (Bi : i 2 I) be an atomic amalgam of

Boolean algebras.

(i) If i 6= j, i, j 2 I, then Bi [ Bj is the universe of an orthomodular lattice which

is isomorphic to the amalgam pasting together the lattices (Bi,^,_) and (Bj ,^,_)
along the sublattice (Bi \Bj ,^,_).
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(ii) The poset (B,) is order-isomorphic to the amalgam pasting together the posets

S1 = (Bk,), k 2 I, S2 = (
S

i2I\{k}Bi,) along the subposet (Bk\
S

i2I\{k}Bi,).

In order to keep the notation as compact as possible, we will write “x l y” to express

that x is covered by y, i.e. x < y and there is no z such that x < z < y.

Lemma 6.18. [3, Lemma 4.5] If a l b holds in an atomic amalgam, then a l b holds

in every block Bi that contains both a and b. Conversely, if a l b holds in some initial

block Bi, then al b holds in the atomic amalgam.

Finally, let us introduce the last preliminary concept that will be required in this section:

the notion of atomic loop (cf. [3, p.150]).

Let n be an integer greater or equal to 3. We will say that the initial blocks B1 =

Bi1 , B2 = Bi2 , . . . , Bn = Bin , i1, i2, . . . , in 2 I, form an atomic loop of order n if and

only if the following conditions are satisfied:

(L1) for every i = 1, 2, . . . , n� 1, Bi \Bi+1 = {0, 1, ai, a0i}, where ai is an atom both in

Bi and Bi+1, moreover Bn \ B1 = {0, 1, an, a0n}, where an is an atom both in Bn

and B1.

(L2) Bi \Bj = {0, 1}, for all indices i 6= j not mentioned in condition (L1).

(L3) For any 1  i < j < k  n, Bi \Bj \Bk = {0, 1}.

Remark 6.19. [3, Remark 4.6] (A) by (L3), {0, 1} = Bi \ Bi+1 \ Bi+2 = (Bi \ Bi+1) \
(Bi+1 \Bi+2) = {0, 1, ai, a0i}\ {0, 1, ai+1, a0i+1}. This means that ai and ai+1 are always

distinct atoms. A completely analogous reasoning shows that any two atoms of a1, . . . , an

are distinct. This remark reveals the meaning of (L3).

We are now ready to state and prove the first result of this section. Interestingly enough,

this result ties the existence of an atomic loop of a certain order with the theory of GO-

posets. In particular, it shows that, in an atomic amalgam of Boolean algebras B, the

presence of an atomic loop of order 3 is bounded to the presence in B of a subposet

isomorphic to B10⇤ , one of the forbidden configurations of the theory of GO-posets that

have been discussed in section 6.2.

Lemma 6.20. An atomic amalgam B of Boolean algebras (Bi : i 2 I) contains an

atomic loop of order 3 if and only if it contains a subposet isomorphic to B10⇤ (see
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figure (6.12))

1

b0 u0 p0 a

a0 p u b

0

(6.12)

such that U(a0, b) ✓ U(u).

Proof. ()) Suppose that B contains an atomic loop of order 3. By its very definition

B1\B2 = {0, 1, a1, a01}, B2\B3 = {0, 1, a2, a02}, B3\B1 = {0, 1, a3, a03}, B1\B2\B3 =

{0, 1}, and, for 1  i  3, ai is an atom in its respective blocks. Let us now consider

the set {0, a1, a2, a3, a01, a02, a03, c, c0, 1}, where c = a1 _B1 a3, which is defined because

a1, a3 2 B1. Note that a1, a3 < a02, a1 < a03, and a3 < a01. Indeed, since a1 is an atom, if

a1 6< a02, then a1 _B2 a02 = 1, because a02 is a coatom. Therefore, since a1 is an atom, a1

is the complement of a02, and since B2 is Boolean, this means that a1 = a2. Likewise,

the other inequalities follow from analogous reasons. Now, let us observe that c 6= a02,

otherwise a02 2 B1 \B2 \B3, and so a02 = 1, which is absurd. If c Bi a
0
2, for 1  i  3,

two cases are possible.

(1) i = 1 and c B1 a02. Therefore, a
0
2 2 B1, and then a02 = 1, impossible.

(2) i 6= 1. Let us observe that 0l a1 l c. In fact, suppose that there is a b 2 B1 such that

a1lb  c = a1_B1 a3. Then, b = b^B1 (a1_B1 a3) = (b^B1 a1)_B1 (b_B1 a3) = a1_B1

(b^B1 a3) = a1 _B1 a3, since otherwise b = a1 _B1 (b_B1 a3) = a1 _B1 0 = a1, which is

impossible. Moreover, c < a02l1, because if c = a02, we would have that c 2 B1\B2\B3,

and so c = 1, absurd. Therefore, we have obtained that 0 l a1 l c < a02 l 1 in B, by

Lemma 6.18. And again by Lemma 6.18, c 2 B1 \ Bi for i = 2 or i = 3. But, c is

neither an atom, nor a coatom, nor 0, nor 1. A contradiction. Thus, c k a02.

We claim that M is the poset in figure (6.13)

1

c a0
2 a0

1 a0
3

a3 a1 a2 c0

0

(6.13)
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Now, suppose that there is a p 2 L(c, a03). Then, by construction, p Bi c and p Bj a
0
2,

for some i, j. But, independently from the fact that either i = j or i 6= j, p 2 Bi \Bj \
B1 \B3 = Bi \Bj \ {0, 1, a3, a03}, and a3 6= p 6= a03, on pain of contradiction. Therefore,

a1 = p, and so L(c, a03) = {0, a1}. Consequently, L(c, a03)0 = U(c0, a3) = {1, a01} ✓ U(a2).

(() For the converse direction, let us suppose that there is a subposet of B isomorphic to

B10⇤ so that U(a0, b) ✓ U(u), as in figure (6.12). Without any loss of generality, we may

assume that {0, 1, a, b, p, , a0, b0, p0} is a subset of B1. Since Lemma 6.9(3), and the fact

that U(a0, b) ✓ U(u), we have that B is not generalized orthomodular. Then, u /2 B1,

since B1 would not be Boolean. So, p Bi1
u0 and a0 Bi2

u0, with i1 6= i2, otherwise

M ✓ B1[Bi1 , which would not be an orthomodular lattice, contradicting Theorem 6.17.

Therefore, by condition (6.11), there are three distinct Boolean algebras B1,Bi1 ,Bi2

such that B1 \Bi1 = {0, 1, p, p0}, Bi1 \Bi2 = {0, 1, u, u0}, B1 \Bi2 = {0, 1, a, a0}, and
B1 \Bi1 \Bi2 = {0, 1}. This establishes our claim.

Taking advantage of Lemma 6.20, the next theorem characterizes completely those

atomic amalgam that are not orthomodular posets. This results is essential for our

arguments, in facts it reveal from a wider perspective the concealed facts upon which

Greechie’s results rely. Indeed, putting to good use our results on the forbidden con-

figurations in section 6.2, Theorem 6.21 will o↵er a general tool from which Greechie’s

First and Second Theorem derive.

Theorem 6.21. An atomic amalgam B of Boolean algebras (Bi : i 2 I) is not an

orhomodular poset if and only if it contains a subposet isomorphic to B10⇤ (see figure

(6.14))

1

a0 u0 p0 b

b0 p u a

0

(6.14)

such that U(a, b0) ✓ U(u).

Proof. (() Follows from Lemma 6.9(3).

()) Let us assume that B is not an orhomodular poset. The following cases may arise.

(1) x?y, i.e. x  y0, but x_B y does not exist. Ergo, there is a c 2 B such that c k x_B y,
but x, y  c. Since the definition of order in B (condition 6.11), without any loss of
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generality, we may assume that x, y 2 B1. By Lemma 6.18, x Bi1
c, and y Bi2

c, for
some i1, i2. Then, in case i1 = i2, we have the situation depicted in figure (6.15).

1

x _B y c x0 y0

y x c0 (x _B y)0

0

(6.15)

However, by Theorem 6.17, B1 [ Bi1 is the universe of an orhomodular lattice, a

contradiction. Therefore, i1 6= i2. So, B1 \Bi1 = {0, 1, y, y0}, Bi1 \Bi2 = {0, 1, c, c0},
and B1 \ Bi2 = {0, 1, x, x0}. Thus, since B contains an atomic loop of order 3, by

Lemma 6.20, B contains a subposet M isomorphic to B10⇤ so that U(a, b0) ✓ U(u).

(2) There are x, y 2 B such that x  y, but (x _B y0)0 _B x 6= y. Without any loss

of generality, we may assume that x, y 2 B1, and that (x _B y0)0 _B x exists, since

otherwise we are as discussed in case (1). Because B1 is Boolean, and so a fortiori an

orthomodular lattice, (x _B y0)0 _B x = c 6= y = (x _B1 y0)0 _B1 x. Then, we are in the

situation depicted in figure (6.16).

1

x0 x _B y0 c y

y0 c0 (x _B y0)0 x

0

(6.16)

Repeating exactly the same reasoning applied in case (1), we obtain a subposet M

isomorphic to B10⇤ that satisfies the required condition.

Taking advantage of the previous results, we can now state, as corollaries, Greechie’s

celebrated First and Second Theorem.

Corollary 6.22. [3, Greechie’s First Theorem 4.9] An atomic amalgam B of Boolean

algebras (Bi : i 2 I) is an orthomodular poset if and only if B does not contain an

atomic loop of order 3.
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Proof. Follows from Theorem 6.21.

Corollary 6.23. [3, Greechie’s Second Theorem 4.10] An atomic amalgam B of Boolean

algebras (Bi : i 2 I) is an orthomodular lattice if and only if B does not contain an

atomic loop of order 3 or 4.

Proof. The result substantially rests on Corollary 6.22 (see [3]).

Finally, a direct application of the results in this section yields the following:

Corollary 6.24. An atomic amalgam of Boolean algebras is a GO-poset if and only if

it is an orhomodular poset.

Proof. Straightforward.

Perhaps, a few words on the significance of Corollary 6.24 may be worth saying. In

fact, this results expresses the fact that, in the context of atomic amalgam of Boolean

algebras, the notions of orthomodular poset and GO-poset coincide. In other words,

there is no chance to go beyond the concept of orthomodular poset, starting from an

atomic amalgam of Boolean algebras. In other words, it is impossible to construct

an atomic amalgam of Boolean algebras, that satisfies the generalized orthomodularity

property, which is not an orthomodular poset at the same time.

6.4 E↵ect algebras and the GO-property

Making use of the techniques developed in section 6.2, we will prove that the GO-

condition, for orthoalgebras of a certain sort, i.e. e↵ect algebras with no isotropic

elements, corresponds exactly to orthomodularity. Hence, the only orthoalgebras sat-

isfying an even weaker orthomodularity condition, in its order theoretical sense, are

orthomodular posets. It will appear clear soon that the GO-property represents the

order-theoretical counterpart of the coherence law for e↵ect algebras. To the best of our

knowledge, these results are new and subsume under a unifying framework many well

known facts sparsely scattered in the literature [102, 110].

Let us briefly recall the basic machinery that will be employed in the next considerations.

We recall that any Boolean algebra is, obviously, an orthoalgebra if we set as orthosum

� the join of orthogonal elements in the underlying lattice. As customary, we will denote

the orhocomplement (cf. Definition 2.18) of an element x by x0. In any orthoalgebra a
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partial order is naturally defined stipulating that x  y if and only if there is a z so that

x� z = y. A suborthoalgebra M of an orthoalgebra L (see [109]) is a structure such that

- M ✓ L;

- 0L = 0M, 1L = 1M;

- 8x, y, z 2 L: (x� y = z& |{x, y, z} \M | � 2) ) {x, y, z} ✓ M ;

- 8x, y, z 2 M : x�M y = x�L y.

In case M is a suborthoalgebra which is Boolean, then we will refer to M as a Boolean

subalgebra of L. If M is maximal with respect to the property of being Boolean, then

we say that M is a block, and we denote by B(L) the collection of the blocks of L.

In order to maintain our arguments as smooth as possible, we now introduce the following

concept:

Definition 6.25. An orthoalgebra P will be called tame if, for distinct blocks Bi,Bj ,

and x, y 2 Bi [Bj , if x Bi[Bj y0, then x�P y = x�Bi[Bj y 2 Bi [Bj .

Let us remark that there are proper, in the sense that are not orthomodular posets,

orthoalgebras that are tame, e.g. the Wright Triangle (See Chapter ??), whose Greeche

diagram is depicted in display (6.17):

•

• •

• • •

(6.17)

The next technical lemma will be useful in proving Theorem 6.27, the main result of

this section.

Lemma 6.26. Let P be a tame orthoalgebra, and Bi,Bj be distinct blocks of P. Then,

1. C = (Bi [Bj ,�C,0C , 0C, 1C) is an orthoalgebra;

2. C is an orthomodular poset.

Proof. Set 0C, 0C, 1C as 0P, 0P, 1P, respectively. When possible, we will omit unnecessary

superscripts. Moreover, let us define:

x�C y =

8
<

:
x�P y, if x C y0;

not defined, otherwise.
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(1) Let us check that C is an orthoalgebra. Concerning commutativity, if x �C y is

defined, then x C y0, i.e. there is a u 2 Bi \ Bj so that x Bi u Bj y0. Therefore,

y Bj u0 Bi x0. Then, y �C x is defined. Hence, x�C y = x�P y = y �P x = y �C x.

Suppose that (x�C y)�C z is defined. Then, x C y0 and x�C y C z0. If {x, y, z} ✓
Bk, i 2 {i, j}, then the claim is straightforward. In case {x, y} ✓ Bi and z 2 Bj \ Bi,

then x �C y = x �P y. Also, we observe that y Bi x �C y C z0. So, there is a

u 2 Bi \ Bj such that y Bi x �C y Bi u Bj z0. By transitivity, y C z0, and then

y�C z = y�P z is defined. If y�C z 2 Bi, then by properties of orthoalgebras, since also

y 2 Bi, z 2 Bi, a contradiction. Therefore, y �C z 2 Bj , and so y 2 Bj . Consequently,

y 2 Bi\Bj . Let us also observe that, for some u 2 Bi\Bj , x Bi x�C y Bi u Bj z0.

Then x �C z is defined and it belongs to Bj . And so x 2 Bi \ Bj . Hence, because

x �P (y �P z) is defined, x P (y �P z)0. So, x C (y �C z)0 = (y �P z)0. We obtain

that

(x�C y)�C z = (x�P y)�P z

= x�P (y �P z)

= x�C (y �C z)

This establishes our first claim since the other possible case is treated similarly and the

other axioms that define orthoalgebras are trivially satisfied.

(2) Let p, q, r 2 C = Bi[Bj such that p�Cq, p�Cr, q�Cr are defined. We will show that

also (p�C q)�C r is defined. Therefore, by the coherence law (see [?, Theorem 5.3]) C

this would imply that is an orthomodular poset. If {p, q, r, } ✓ Bk with k 2 {i, j}, then
p�C q = p�P q = p_Bkq Bk r0. Therefore, p�C q Bk r0 and (p�C q)�C r is defined.

Now, without any loss of generality, let us suppose that {p, q} ✓ Bi and r 2 Bj r Bi.

Clearly, both Bi and Bj are Boolean subalgebras of P. Now, if p�P r 2 Bi, then r 2 Bi,

a contradiction. Thus we have p�P r 2 Bj and p 2 Bj . The same argument applies to

q. In conclusion, we have obtained that {p, q, r, } ✓ Bj , and so our claim is proved.

The next theorem completely characterize those tame orthoalgebras that are not ortho-

modular posets in terms of forbidden configurations induced by their blocks.

Theorem 6.27. A tame orthoalgebra P = (P,�,0 , 0, 1) is a GO-poset if and only if it

is an orthomodular poset.

Proof. For the non-trivial direction, let P be a tame orthoalgebra which is not an ortho-

modular poset. Thus, there exist a0, a1, a2 2 P such that a0�Pa1, a0�Pa2, a1�Pa2 are

defined but (a0�P a1)�P a2 is not, in other words the coherence law fails: (a0�P a1) 6
a02. In case a02  a0 �P a1, then by the minimality of a0 �P a1, and the fact that
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a0 ? a2, a1 ? a2, we have a0 �P a1 = a02 and (a0 �P a1) �P a2 = a02 �P a2 is defined.

Contradiction. Thus a0 �P a1 k a02. Moreover, since a0 and a1 are orthogonal, they are

contained in a common block A1 such that a0 �P a1 = a0 �A1 a1. So we are in the

situation depicted in figure (6.18).

1

a0 �A1 a1 a0
2 a0

1 a0
0

a0 a1 a2 (a0 �A1 a1)
0

0

(6.18)

We want to show that L(a0�A1 a1, a00) ✓ L(a02). Suppose that p 2 L(a0�A1 a1, a00) (see

figure (6.19)).

1

a0 �A1 a1 a0
2 p0 a0

1 a0
0

a0 a1 p a2 (a0 �A1 a1)
0

0

(6.19)

Two cases may arise.

(1) p 2 A1. Let us note that a0, a0 �A1 a1, a1 2 A1, and A1 is Boolean. We have also that

a0 A1 p0 and (a0�A1 a1)0 A1 p0. So, a01 = a0�A1 (a0�A1 a1)0 = a0_A1 (a0�A1 a1)0 
p0, and so p  a1  a02.

(2) p /2 A1. So, for distinct H,F 2 F , a00 �H p and a0 �A1 a1 �F p. By Lemma 6.26,

H [F is the universe of an orthomodular poset. So, p�H a0 = p_H[F a0  a0 �A1 a1

in P. Therefore, a0, p  p_H[F a0  a0 �A1 a1. Applying [97, Proposition 6.15], there

exists a C 2 F such that a0, p, p _H[F a0, a0 �A1 a1 2 C. By (PF1) and the notion of

suborthoalgebra, a0, a0 �H a1 = a0 �A1 a1 2 C \H implies that a1 2 C \H, and, a

fortiori, a1 2 C. Then a0, a1, a0�A1a1, p 2 C. We observe that a01 = a0�C(a0�Ca1)0 =

a0 _C (a0 �C a1)0  p0, because p  a00, (a0 �C a1). Then, p  a1, and consequently

p  a02.

Then, in both cases Lemma 6.9 applies, and our claim follows.
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Combining Theorem 6.27 together with Theorem 2.12, we obtain that, if P is the pasting

of a family F of Boolean algebras and it is tame, then

Corollary 6.28. P is a GO-poset if and only if for every 3-cycle ((A0, a0), (A1, a1)(A2, a2))

there is a Boolean algebra B such that a0, a1, a2 2 B.

Let us remark that a result analogous to Theorem 6.27 can be proved for the class of

Riesz orthoalgebras [35], i.e. those orthoalgebras that satisfy the Riesz decomposition

property : if x  y1 � . . .� yn then x = x1 � . . .� xn, where xi  yi, for 1  i  n.

Theorem 6.29. A Riesz orthoalgebra P = (P,�,0 , 0, 1) is a GO-poset if and only if it

is an orthomodular poset.

Proof. The proof is the same of Theorem 6.27, except for case (2), which can be proven

as follows. Suppose that there is a p  a0 �A1 a1, a00. Then, by the Riesz decomposition

property, there are b0, b1 such that p = b0 �A1 b1 and b0  a0, b1  a1. Note that

b0 2 L(a0, a00) = {0}, and so b0 = 0. Therefore, p = b1  a1  a02.

As a side remark, we observe that there are tame orthoalgebras that are not Riesz, for

example the Wright Triangle (see e.g. [33, Example 5.1.11]) in display (6.17).

Let us remark that from Theorem 6.27 (Theorem 6.29) it follows directly that a tame

(Riesz) orthoalgebra A is not an orthomodular poset if and only if it there are elements

a, b 2 A such that a� b is defined and a ^ b = 0, but a _ b is not defined. By its proof,

our result presents from a novel perspective Riecǎnová’s Theorem 2.2 in [111].

Proposition 6.30. Every atomic amalgam of Boolean algebras is tame.

Proof. LetBi,Bj be distinct blocks of an orthoalgebraA, which is an atomic amalgam of

Boolean algebras. Then, either Bi\Bj = {0, x, x0, 1}, with x an atom, or Bi\Bj = {0, 1}.
If x  y0 in Bi [Bj , then if x, y 2 Bi we have that x�A y = x_Bi y. Otherwise, if there

is a z 2 Bi \Bj such that x Bi z Bj y0, then z = x = y.

6.5 Open problems and future research

Finally, we close this chapter with five open problems.

Problem 3. The following questions seem to be relevant for the theory of GO-posets:
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1. Is it possible to define an appropriate notion of commutator in the context of

GO-posets?

2. If yes, is it the case that every GO-poset is the union of maximal suborthoposets

of pairwise commuting elements?

3. Is any maximal suborthoposet of pairwise commuting elements Boolean?

4. Is it possible to introduce a notion of “pasting” that generalizes the notion of

pasting of Boolean algebras [97]?

Problem 4. Are all orthoalgebras tame?

If all orthoalgebras are tame, then Theorem 6.27 would hold true for all orthoalgebras.

Since every GO-poset is an orthoposet (Remark 6.6), so any e↵ect algebra enjoying the

GO-property is an orthoalgebra, we would have, as an easy consequence of Theorem

6.27, Corollary 6.31, which would completely characterize all e↵ect algebras that are

orthomodular as posets in terms of the GO-property.

Corollary 6.31. An e↵ect algebra has the GO-property if and only if it is an orthomod-

ular poset.

Also, from Corollary 6.31 would follow directly that, in the context of e↵ect algebras,

the GO-condition is just equivalent to the coherence law [47, Theorem 5.3].

If not all orthoalgebras are tame, then:

Problem 5. Exhibit an example of an orthoalgebra which is generalized orthomodular,

but it is not an orthomodular poset.

Also,

Problem 6. Is it possible to express the generalized orthomodularity property within the

language of orthoalgebras?
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