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Abstract: Coastal retreat is a non-recoverable phenomenon that—together with a relevant 
proneness to landslides—has economic, social and environmental impacts. Quantitative data on 
geological and geomorphologic features of such areas can help to predict and quantify the 
phenomena and to propose mitigation measures to reduce their impact. Coastal areas are often 
inaccessible for sampling and in situ surveys, in particular where steeply sloping cliffs are present. 
Uses and capability of infrared thermography (IRT) were reviewed, highlighting its suitability in 
geological and landslides hazard applications. Thanks to the high resolution of the cameras on the 
market, unmanned aerial vehicle-based IRT allows to acquire large amounts of data from 
inaccessible steep cliffs. Coupled structure-from-motion photogrammetry and coregistration of data 
can improve accuracy of IRT data. According to the strengths recognized in the reviewed literature, 
a three-step methodological approach to produce IRTs was proposed. 
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1. Introduction 

Landslides are ubiquitous, yet complex phenomena. As agents of localized erosion, they play an 
important role in landform evolution [1], counterbalancing relief-building processes and shaping 
drainage networks and coastlines [2]. They also are a remarkable source of risk for human life and 
economic assets—a risk that is projected to rise as world population increases, economy expands, 
and changes in global climate become more striking [3,4]. 

Landslides are a prime process driving the erosion and retreat of coastal cliffs [5–7]. They 
commonly occur as rock-and-soil falls, slides, avalanches or, less frequently, as topples or flows. 
Falling rocks from eroding cliffs can be especially dangerous to anyone occupying areas at their base 
or in nearby beaches [8]. The lithology and geological structure of the cliff exert the strongest control 
on landslide occurrence under continued weathering [6]. 

Regardless of the material involved—whether it be rock, debris or soil—gravity is the primary 
driver of landslide movement. On the other hand, the interplay of predisposing and causative factors 
that defines the mechanisms of initiation—and to some extent, also the fate of the moving mass—is 
not easily discernible [9,10]. Consequently, predicting the occurrence and dynamics of a landslide 
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aiming at risk reduction is a highly complex task [11,12]. Landslide susceptibility is often assessed 
qualitatively, in a way entirely based upon the judgement of the person carrying out the analysis [13]. 
Recently, many efforts have been made to ensure a reduced level of subjectivity through novel rule-
based systems [14]. 

Part of the complexity inherent to the initiation mechanism of a landslide and its forecasting can 
be resolved if appropriate information on the geological, geometric, hydraulic, mechanical, thermal, 
chemical and biologic characteristics (often intrinsically coupled), of the potentially unstable mass 
can be acquired and tracked through time [15,16]. Landslide monitoring through remote sensing is a 
vast subject that has been widely discussed from multiple viewpoints, sometimes focusing on specific 
applications such as mapping/inventorying, tracing multi-hazard chains and early warning [17–21]. 
Remote sensing methodologies are sometimes utilized in combination, so as to better exploit 
technique-specific strengths and reduce inherent shortcomings [22–25]. 

Landslides that initiate in inaccessible areas—such as coastal cliffs—can pose higher risks 
because their characterization and monitoring in the field is difficult or simply not feasible. In this 
context, remote sensing is an invaluable tool [26,27]. Structure-from-motion (SfM) photogrammetry 
from ground-based stations and unmanned aerial vehicles (UAVs) [28–30] allows the acquisition of 
large amounts of data from inaccessible areas, aiding in the identification of past, current and 
potential landslide structures and associated geometries, processes and affected lithologies. UAV-
based SfM photogrammetry is particularly useful in steep cliffs, for which data acquisition from the 
ground is unfeasible, and sometimes the different points of view, gathered by these acquisitions, are 
not sufficient. Indeed, despite the high precision achievable, the main limitation of Terrestrial Laser 
Scanning (TLS) [31] for rock face monitoring are occlusions and shadowed areas that affect 
acquisition from faces with complex morphology. However, when applicable, TLS remains a solid 
technology that, coupled to methods for point-cloud-based deformation analysis [32], can produce 
very accurate results (see, e.g., [33]). 

In the last two decades, the growing interest in the use of UAVs for geohazard monitoring has 
led to new methods with high spatial resolution and temporal accuracy [34–37]. Data interpretation 
may be performed, for instance with deep learning convolutional neural networks (CNNs) which 
overcome uncertainties related to the subjectivity of expert knowledge detection [38]. UAVs can 
rapidly provide information to evaluate structural damage and perform preliminary impact 
assessments during post-disaster emergency responses [39,40], but they remain precious tools in all 
phases of disaster management—from prevention to recovery [41–44]. In fact, UAVs are well suited 
for updating or producing ex novo high-resolution maps of areas where other aerial or spaceborne 
techniques cannot be implemented because of adverse weather conditions, lack of timeliness or 
excessive cost [45,46]. Although weather conditions may also affect the UAVs acquisitions, the flight 
can be rescheduled quickly, assuring in most cases a successful mission for data collection. UAVs 
have several desirable characteristics as they can reach remote locations and perform monitoring 
operations at various spatial scales with high temporal frequency. Moreover, they are able to acquire 
images at low altitude (<150 m above ground) with multiple views angles—thus enabling three-
dimensional reconstructions—and they can be equipped with multiple sensors operating in different 
spectral ranges [22,47]. The availability of detailed spectral data promoted new approaches to 
characterize various geomaterials from their spectral signatures [48], providing both two-
dimensional (2D) surface mapping and three-dimensional (3D) body information (e.g., lithological 
units and landslides masses) [49–52]. 

The ongoing downsizing of thermal infrared (TIR) sensor apparatuses has allowed a relevant 
improvement of UAVs capability in acquiring data for evaluating the stability of coastal cliffs and 
their short-term evolution. Thus, TIR applications have gained increasing interest and attention in 
the hazards research literature in the last years. The bibliometric analysis has highlighted the 
geographical and temporal distribution of published works on this topic. Three main databases, 
Scopus (www.scopus.com), Web of Science—WoS (webofknowledge.com) and Google Scholar 
(scholar.google.com/) were interrogated using a string of three combined keywords: “infrared 
thermography AND landslide OR rockfall”. These databases contain bibliographical information on 
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books, articles and reviews, among others. Scopus and WoS feature only papers published in journals 
or conference proceedings of certified editors, whereas Google Scholar lists a variety of documents, 
including non-peer-reviewed technical reports. Hence, it can be used to understand the general trend 
of interest in a topic, more than the related scientific production. 

A growing interest around TIR applications has been recognized, even though the dedicated 
scientific production is still in its infancy. The searches in Scopus, WoS and Google Scholar, in fact, 
returned 18, 20 and >500 results, respectively (Figure 1). The Scopus and WoS queries returned results 
from 2012–2020, whereas the ones from Google Scholar date back to 1973. However, only some 
documents found in Google Scholar appeared to fit well in the topic, such as “infrared thermography 
in landslides context”, while others only matched the combination of words. Nonetheless, the 
analysis shows a positive trend in the three databases, with an increasing number of documents 
published in the last years. Moreover, the geographical distribution of the results from WoS showed 
that most of the papers were published by teams of researchers entirely based in Italy, while only a 
few resulted from collaborations of Italy based researchers with colleagues in other countries. 
Keywords co-occurrence analysis [53] showed that infrared thermography is strictly linked to 
landslide and hazard, highlighting a scientific interest on this matter. 

 
Figure 1. Number and year of publication of documents matching the keywords “infrared 
thermography AND landslide OR rockfall” in Scopus, Web of Science and Google Scholar databases. 

This review focuses, in particular, on algorithms and methods for the acquisition of 
geomechanical information from landslide-prone coastal cliffs in soil and rock using UAV-borne 
thermal infrared (TIR) sensors. By analyzing the recent literature, this study discusses the main issues 
related to the understanding of the thermal behavior of landslide-prone coastal cliffs—as it can be 
extracted from thermal data—and its correlation with geological features. Four main topics, that were 
identified as relevant for coastal cliff landslide investigations, will be examined: the type of geological 
and geomorphologic characteristics that can be inferred, the requirements in terms of thermal data 
acquisition by UAVs, the possible auxiliary data and co-registration, the processing effort and the 
expected accuracy. This study was proposed in the framework of the Project MAREGOT 
(MAnagement des Risques de l'Erosion cotière et actions de GOuvernance Transfrontalière—
“Managing the Risks of Coastal Erosion and Cross-border Governance Actions) funded under the 
Maritime Programme: 2014–2020 INTERREG V-A Italy–France (http://interreg-
maritime.eu/fr/web/maregot/projet). MAREGOT focuses on the joint prevention and management of 
the risks arising from coastal erosion in the Mediterranean area. A specific task, coordinated by the 
University of Cagliari (Italy), is dedicated to the assessment of cliff instability to understand the 
dynamics of erosive phenomena and coastlines, in relation to the geomorphologic and hydro-
dynamic characteristics of the coasts. 3D point clouds using digital photogrammetry, terrestrial laser 
scanner and a thermal camera on board of a UAV were created. This activity, aiming at studying the 
instability of coastal cliffs, enhanced the requirement of a shared and complete methodology for the 
acquisition and interpretation of thermal data collected by UAVs in coastal environmental conditions 
[54]. 
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The review is structured into the following sections: Thermal remote sensing techniques (Section 
2), TIR data acquisition by UAVs (Section 3), IRT capabilities in landslide hazards (Section 4), IRT 
approaches in coastal rocky cliffs hazards (Section 5) and methodological synthesis on the basis of 
the present knowledge (Section 6). 

2. Thermal Remote Sensing Techniques 

2.1. Thermal Infrared Domain 

Thermal infrared imagery is commonly used to characterize land surface temperature (LST) and 
sea surface temperature (SST). In Figure 2, an example of thermal nighttime image highlighting the 
thermal behavior of different land covers is shown. The main aim of the study in the figure was to 
propose the monitoring of dust storms using the highest possible number of moderate resolution 
imaging spectroradiometer (MODIS) acquisitions (day and night) to forecast the potential affected 
urban areas [55,56]. 

 

 
Figure 2. Moderate resolution imaging spectroradiometer (MODIS) data acquired during a dust 
storm in the Punjab province of Pakistan, along the boundary with India: (a) RGB optical data 
acquired daytime on 19/03/2011; (b) brightness temperature difference applied on nighttime imagery 
acquired on 19/03/2011 at 20:30 h; (c) classification of the image in b: in red, the relatively strong dust 
zone, in orange, the relatively weak dust zone, in yellow, the land and in blue, the sea and the clouds 
[55]. The red box in (b) and (c) represents the boundary of (a). 
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With the increasing spatial and spectral resolution of thermal sensors, a large number of 
applications have been developed, thereby demonstrating the potential of utilizing thermal imaging 
data in natural and anthropic environments. These applications span from the identification of 
thermal anomalies linked to forest fires or coal fires to the quantification of water pollution or 
moisture contents, but also to machinery performance or heat dispersion from buildings in urban and 
industrial contexts [57]. 

Table 1 compares the TIR domain with other major spectral regions exploited for Earth 
Observation. The TIR wavelength domain, considering the entire spectral emission and capability to 
detect this radiation, has been classified into different ranges [57,58]. According to [59], it extends 
from about 3 to 14 μm, a range which refers in particular to that of the emitted energy detectable by 
sensors in the remote-sensing domain. In this range, all wavelengths are not completely transmitted 
through the atmosphere because of the presence of carbon dioxide, ozone and water vapor that 
absorb energy at certain wavelengths. Water vapor and carbon dioxide absorb radiation at 2.5–3 μm 
and 5–8 μm [60]. Consequently, two main TIR ranges are used, i.e., the 3–5 μm and 8–14 μm ranges, 
which are referred to as the “atmospheric windows”. 

Table 1. Primary spectral regions used in remote sensing. The boundaries can vary [60]. 

Name Wavelength Range (μm) Radiation Source Surface Property of Interest 

Visible (V) 0.4–0.7 solar reflectance 

Near infrared (NIR) 0.7–1.1 solar reflectance 

Short wave infrared (SWIR) 
1.1–1.35 
1.4–1.8 
2–2.5 

solar reflectance 

Mid wave infrared (MWIR) 
3–4 

4.5–5 
solar, thermal reflectance, temperature  

Thermal infrared (TIR) 
8–9.5 
10–14 

thermal reflectance, temperature  

Microwave, radar 1 mm–1 m 
thermal (passive), 
artificial (active) 

temperature (passive), 
roughness (active)  

2.2. Interpreting Thermal Infrared Signals 

The interpretation of thermal data are based on the understanding of the physical processes 
enabling the energy transfer, such as radiation [59]. All objects at a temperature above absolute zero 
(0 K, −273.15 °C) continuously emit electromagnetic radiation. The Earth surface, with an ambient 
temperature of ~300 K, has a peak energy emission in the TIR region at ~9.7 μm [59]. Sensors 
responsive in the thermal wavelengths have the capacity to record the TIR radiation emitted by 
surfaces that absorb a large part of the incoming solar radiation [57]. This radiant energy results from 
the conversion of the internal kinetic energy at molecular level. The electromagnetic energy radiated 
from a source is termed radiant flux and is measured in watts [W]. The kinetic temperature of an 
object can be measured with a thermometer placed in direct contact with it, whereas the radiant 
temperature, i.e., the density of the radiant flux, can be remotely measured by devices that detect the 
electromagnetic radiation in the TIR wavelength region [59]. The latter is quantified in terms of 
radiance per unit of wavelength and is referred to as spectral radiance [61]. 

The radiant flux is regulated by the Stefan–Boltzmann law, which states that the radiant flux 
density emitted by an object is proportional to the fourth power of the object’s surface temperature, 
implying that a hotter object will radiate much more energy than a cooler one. This law is applicable 
to all wavelengths of emission. 

According to Wien’s displacement law, spectral radiant emissions show their peak wavelength 
at a shorter value with the temperature increasing: 
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𝜆 = 𝐴𝑇 (1) 

where 𝜆  is the wavelength of maximum spectral exitance, A is Wien’s constant (i.e., 2897.8 μm 
K) and T is the absolute kinetic temperature (K). 

Wien’s displacement law states that colder targets emit only a small amount of radiation 
compared to the hotter ones. This implies that thermal remote sensing at ambient temperature has to 
rely on small amounts of low-energy photons, which may be difficult to detect. Consequently, the 
spatial and spectral resolutions may have to be reduced when acquiring thermal data to ensure a 
reasonable signal-to-noise ratio. 

The spectral radiance can be calculated according to Planck’s function (Eq. 2), which states that 
the spectral radiance emitted by a blackbody at a temperature T and wavelength λ can be calculated 
as: 𝐿 𝑇 = 𝐶𝜆 𝑒𝑥𝑝 𝐶𝜆𝑇 − 1  (2) 

where C1 and C2 are constants, equal to 3.7413·108 W m -2 μm4 and 1.4388·104 μm K, respectively 
[61]. 

The radiant emissions, according to Eq. 1, can be detected by VNIR, SWIR, MIR and TIR sensors 
(Figure 3). 

 

Figure 3. Relationship between the spectral radiant emission and the temperature of emitting surfaces 
according to the wavelength. The Plank function and both the Stefan–Boltzmann and Wien 
displacement laws are represented. The portions of the spectrum are depicted (modified from [61]). 

The application of Planck’s function relies on the assumption that a hypothetical body (termed 
blackbody) adsorbs and re-emits all energy incident upon it. The electromagnetic radiation emitted 
by a blackbody at a given wavelength is therefore only a function of the blackbody’s absolute 
temperature, following Kirchhoff’s law. However, real objects are not perfect emitters or absorbers, 
thus Planck’s function is modified by an emission-efficiency factor, termed emissivity (𝜀). This is a 
function of the wavelength [60] and can be defined as: 𝜀 = 𝐹𝐹  (3) 

where Fr and Fb are the radiant fluxes from a real material and from a blackbody, respectively. 
As a consequence, a blackbody will have ε = 1, while all real materials ε < 1 (generally between 0.7–
0.95). In real materials, a high value of ε signifies that a large proportion of incident energy is absorbed 
and radiated back, while the opposite holds true for materials with low ε [59]. 
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The interaction between the incident radiant flux (irradiance) and an object results in three 
coefficients, measured by the ratio of reflected, absorbed and transmitted radiant fluxes and the 
irradiance, respectively: reflectance (ρ), absorbance (α) and transmittance (τ). 

Considering the principle of energy conservation, if for a blackbody, at a given wavelength, the 
emittance is equal to the absorbance, i.e.: 𝜀 = 𝛼  (4) 

so that the sum of α, ρ and τ equals 1 (as most objects are opaque and do not transmit), the 
following equation can be formulated: 𝜀 + 𝜌 = 1 (5) 

Using Eq. 5, the spectral emittance can be calculated from the reflectance, and vice versa. 
The relationship between the spectral radiant emission and temperature of the emitting surfaces 

is of particular interest, for instance, in volcanology, as the temperature of volcanic features varies in 
a wide range [62,63]. Through thermal remote sensing, volcanic activity and eruptions can be 
monitored and hazard assessments can be performed accordingly [64–66]. 

Using the emissivity, the Stefan–Boltzmann law can be rewritten as: 𝑇 = 𝜀 ⁄ ∗ 𝑇 𝜀 + 𝜌  (6) 

so that the radiant temperature (T(rad)) can be converted into kinetic temperature (T(kin)). 
Because ε<1 in real materials, from Eq. 6 it results that the remotely sensed T(rad) is always lower 

than the locally measurable T(kin) on the material’s surface. However, if the material’s ε is known, the 
real T(kin) can be calculated. For a first-order analysis, tabular data of emissivity for various materials, 
such as metals, nonmetals, common construction materials, minerals and rocks, water and vegetation 
can be used. However, the emissivity of a material is a function of temperature and surface geometry 
(also intended as surface finish, roughness), thus tabular data should only be used as a guide or for 
indicative comparative measures. The emissivity of the specific material under investigation should 
always be experimentally determined when absolute and detailed measurements are required 
[60,61]. 

Moreover, because the spectral emissivity changes according to the wavelength and angle of 
incidence [67], the emissivity spectra should be collected using multispectral and hyperspectral 
spectrometers either remotely and in a controlled environment. 

2.3. Remotely Sensed TIR Application in Geological Domains 

Recently, the expression “thermal infrared imagery” has been replaced with “infrared 
thermography” (IRT) [59]. A thermography is a map of surface temperature and is derived from TIR 
images. Thermal sensors detect the radiant energy emitted by the land surface. This energy is 
transmitted (not absorbed) through the atmosphere, but also emitted by the atmosphere itself. The 
remote-sensing interpretation of the land–atmosphere signal is complicated by this coupling, yet a 
thermography still allows the estimation of several environmental variables useful in Earth System 
Science modeling [68]. The emissivity is informative of the composition of the radiant surface, and is 
a fundamental parameter in atmospheric and energy-balance models, as it must be known alongside 
with the radiant temperature to establish the heat measure of the surface [69]. Starting from the TIR 
radiance recorded by the sensor, an apparent temperature or surface radiant temperature is assigned 
to each pixel. This process is based on the application of corrections for the effects of atmospheric 
radiance and TIR instrument sensor gains, offsets and sensitivities. As aforementioned, the surface 
radiant temperature is not only a function of the surface temperature, but also of the surface 
emissivity. Moreover, if the emissivity of the surface is known, the surface kinetic temperatures can 
be calculated using the relation among radiance, emissivity and temperature. The contribute of the 
emissivity are generally corrected by classifying the optical channels of an image into surface type 
classes and assigning an emissivity value to each class [57]. Some interesting results were obtained 
for urban areas by applying the Temperature and Emissivity Separation (TES) algorithm, originally 
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developed for the advanced spaceborne thermal emission and reflection radiometer (ASTER) 
spaceborne sensor [70] and used to provide an accurate emissivity map using data provided by the 
airborne hyperspectral scanner (AHS) [71]. Detailed emissivity correction is recommended to retrieve 
accurate values of surface temperature [72–75]. In [75], the main multichannel and single-channel 
algorithms to extract the LST and land surface emissivity (LSE) are discussed in detail. 

The mineral characterization from thermal spectra was first demonstrated in the 1960s in 
laboratory. The selective emission of thermal radiation from minerals, rocks and soils was exploited 
to identify mineral groups, such as silicates, carbonates, sulfates and phosphates [76]. The first 
multichannel thermal scanner for mapping geological units (the Dedalus 24-channel scanner) was 
developed in the late 1970s. Since the 1980s, TIR sensors have been utilized in different contexts, such 
as mining and tunneling, detection of hydrological features in karst watersheds, monitoring of 
geothermal activity, mapping of geomorphologic and sedimentary features of alluvial fans, 
agricultural soil analysis for moisture content and LST monitoring [77–83]. 

The first thermal sensor for remote-sensing acquisitions (the thermal infrared multispectral 
scanner, TIMS) was released in 1981 [84]. On the basis of the performance of these sensors, the 
possibility of developing a spaceborne sensor for multichannel thermal measurements within the 
Landsat program was considered [85]. The Jet Propulsion Laboratory (under a NASA contract), in 
collaboration with the Japanese Space Agency and the Ministry of Trade and Industry of Japan, 
developed and launched the advanced spaceborne thermal emission and reflection radiometer 
(ASTER) onboard of the Terra satellite in 1990 [86]. From this period on, the use of TIR remotely 
sensed data have found important applications in the geological domain for the recognition of 
minerals, especially in mining surveys [49,87,88]. ASTER can acquire 5 bands in the TIR domain (see 
Table 2), permitting to enhance the spectral components of minerals and apply complex algorithms 
for the processing of geological models. The ground sample distance (GSD) of these bands is 90 m 
(https://asterweb. jpl.nasa.gov/characteristics.asp). Several band ratios have been proposed to map 
mineral indices using ASTER bands. The ASTER team, for instance, proposed an empirical silica 
index using ASTER TIR bands [86]. 

Table 2. Thermal infrared (TIR) advanced spaceborne thermal emission and reflection radiometer 
(ASTER) bands with ground sample distance of 90 m. 

Band Spectral Range 

10 8.125–8.475 μm 

11 8.475–8.825 μm 

12 8.925–9.275 μm 

13 10.25–10.95 μm 

14 10.95–11.65 μm 

As all materials radiate energy at various TIR wavelengths, the temperature of an object can be 
measured both during daytime hours and during the night. This capability relates to the thermal 
inertia, a measure of the thermal response of a material to variations of its temperature. The thermal 
inertia depends on the thermal conductivity and specific heat capacity, and is proportional to the 
material density [59,73]. Soils and rocks with higher thermal inertia, such as sandstone and quartzite, 
tend to show smaller variations of surface temperature during a circadian solar heating cycle 
compared to materials with lower thermal inertia such as shale, gravel and pyroclastic covers. The 
thermal inertia cannot be measured by remote sensing directly, whereas it can be measured through 
field or laboratory tests. However, proxies such as the day–night difference of temperature (DT) and 
the Apparent Thermal Inertia (related to the albedo in the visible band), which are retrievable through 
remote sensing, have been successfully utilized for soil moisture monitoring [74]. 
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3. Thermal Data Acquisition by UAVs 

Remote-sensing sensors can be differentiated in terms of their spatial resolution, which 
constrains the field and scale of their application. Spaceborne remotely sensed imagery has an 
immense potential as an enabling tool for the generation of spatial maps. Spaceborne instruments 
provide an advantage for collecting data continuously and, in general, at regional scale, yet they still 
cannot match the spatial detail or temporal resolution achievable using airborne sensors. Aircrafts 
with adequate fight duration can map large areas even in a single flight mission. Interesting studies 
on the application of airborne TIR in urban areas to classify vegetation and soil moisture have been 
reported [89]. 

The flexibility of the surveying and the ability to reach inaccessible and hazardous areas such as 
active volcanoes has promoted the use of UAVs in the last years [90,91]. They can nowadays carry 
sensors for detailed surveys throughout moderate-sized areas while remaining compact and low-cost 
compared with manned aircrafts. UAVs combine the characteristics of short (and flexible) revisit time 
and high spatial resolution, thus they are well suited for detailed multitemporal observations [92,93]. 
Most of the advances in geomatics have indeed been achieved when relatively large areas could be 
mapped in the visible and NIR bands using compact cameras [94–96]. In a recent research, the 
combined use of IRT and UAVs [97] has made it possible to investigate frequent instability 
phenomena connected with weathering in steep tuff slopes. 

In proximal sensing, i.e., when UAV-mounted or ground-based cameras are employed, the GSD 
is a fundamental parameter for appropriate surveying, as the sensor-object distance controls the 
achievable resolution [98]. In fact, the thermal sensor registers an at-sensor radiance (𝐿  [W m-

2]) per each pixel, which is a function of the surface radiance (𝐿 ) and the attenuation by the 
atmosphere (𝐿 ) [99,100]: 𝐿 = 𝑡 · 𝐿 + 𝐿  (7) 

where 𝑡 is the atmospheric transmittance (dimensionless; 0 < 𝑡 < 1). 
Both 𝑡  and 𝐿  mainly depend on the atmospheric water content and the sensor-object 

distance [100]. It has been suggested that during the overfly of the airborne vehicle (as for spaceborne 
acquisitions), ground truth calibration may be appropriate to evaluate the sensor accuracy  [57,101]. 

In Table 3, the technical specifications of the thermal imaging cameras utilized in landslide 
studies discussed in this study are shown. These thermal cameras are equipped with detectors 
sensitive to IR radiation at 7–14 μm wavelength. The incoming radiation heats the detector and 
changes its electrical resistance, which is measured and converted into temperature values. Different 
thermal cameras have different pixel pitch, sensor resolution and radiometric resolution. 

The potential of UAV-based IRT mainly arises from the high resolution of the images, their low 
cost and portability [102]. The spatial image resolution is the highest at short distances. Common 
thermal imaging cameras have a geometric resolution (Instantaneous Field Of View-IFOV) ranging 
from 0.65 mrad to 2 mrad at 1 m distance, resulting in a ground resolution as high as 2x2 mm 
[103,104]. To analyze an entire slope, it is necessary to mount the thermal camera on a UAV in order 
to expand the FOV, and the resolution of the thermal imaging results in centimetric values [102]. 
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Table 3. Specifications of thermal cameras utilized in landslide studies cited in this study. 

Thermal cameras 
/ Parameters 

FLIR SC 
3000 

Therm 
Tracer 
Th1101 

FLIR 
P640 

FLIR 
B360 

FLIR 
B335 FLIR i7 

FLIR 
SC620 

TESTO 
885 

Spectral Range 
(μm) 

8–9 8–13 7,5–13 7.5–13 7.5–13 7.5–13 7.5–13 7.5–14 

Frame Rate 
(Hz) 

50/60 – 30 30 9–30 – 30 33 

Accuracy  
(+/− °C) 

1 – 2 2 2 2 2 2 

Data Format 
IMG, 
BMP 

– JPEG JPEG JPEG JPEG JPEG 
BMP, 
JPEG, 
PNG 

Sensor 
Resolution 

(dpi) 
320 × 240 – 640 × 480 320 × 240 320 × 240 120 × 120 640 × 480 640 × 480 

Radiometric 
Resolution 

(bit) 
8–14 – 14 – 14 – 14 – 

Thermal 
Sensitivity 

(Noise 
Equivalent 

Temperature 
Difference 

-NETD) (m K) 

20 50 60 60 50 100 40 30 

Focus – – – – auto absent – – 
Focal Length 

(mm) 
– – 8 – 18 – – – 

Weight (g) 3200 – 1700 880 880 340 1900 1570 
IFOV 

(mrad) 
1.1 2.2 0.65 1.4 2.59 3.7 1.3 1.7 

Publication [105] [106] [107] [108]  [109] [97,110] [111] 

3.1. Data Processing: Atmospheric Correction 

The kinetic temperature of an object, its emissivity and atmospheric effects control the intensity 
of the radiation detected by the thermal camera. Before the acquisition, specific camera settings are 
thus suggested to minimize measurement errors [112]. The recorded radiation is a function of the 
surface temperature of the object, but also depends on the radiation emitted by the atmosphere, 
which is higher when the air temperature is higher [113]. The camera automatically compensates 
multiples parameters, whereas some others need to be defined by the user in relation to the distance 
between the object and the sensor, namely: the reflected apparent temperature, the atmospheric 
transmission and the air temperature [67] (Figure. 4). 
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Figure 4. Paths of electromagnetic radiation: the relative size of the arrows indicates the proportion 
of energy transferred (modified from [114]). 

The reflected apparent temperature refers to the thermal radiation that originates from another 
body but is reflected by the object and recorded by the camera. It is especially significant when the 
emissivity is low [57]. 

As for the atmospheric transmission, common methodologies to account for this phenomenon 
in both single- and multichannel acquisitions from large distances have been described in the 
literature [115]. On the other hand, specific studies tackling atmospheric effects at short distances, 
which are relevant for IRT acquisitions from UAVs, are still limited, possibly because other 
environmental conditions, such as wind speed and humidity, are given priority in research as they 
can have a stronger influence on the measure [112]. Nonetheless, simulations of thermography 
acquisition during flights at different altitudes actually demonstrated that a lack of atmospheric 
correction can lead to important errors, even for short object-sensor distances [116]. Errors larger than 
4 K in conditions of high relative humidity and low air temperature were in fact evaluated at a 
distance of 150 m [116]. The application of the MODerate resolution atmospheric TRANsmission 
(MODTRAN) radiative model for the correction of atmospheric effects could reduce the Root Mean 
Square Error (RMSE) of the temperature evaluation to less than 1 K. In the model, the atmosphere 
could be treated as a single-layer medium with uniform conditions because the variability of 
atmospheric parameters could be neglected in the altitude range of the observations. 

The air temperature also influences the propagation of radiation. However, if the object-sensor 
distance is small and the flight altitude is less than 30 meters, the radiometric distortion caused by 
the atmosphere may be neglected [112]. In most studies entailing proximal sensing, the atmospheric 
effects were simply compensated by defining a single air temperature value in the camera settings 
[114]. 

3.2. Data Processing: Geometric Correction 

Optical remotely sensed images are commonly processed to obtain digital elevation models and 
orthophotos with very high resolution using photogrammetric techniques. Photogrammetry refers 
to the methodology of extracting three dimensional data from photographs [117]. The reconstruction 
of the 3D geometry of a rock cliff requires the use of images at large photo-scale that need to be 
collected in its proximity and at various points of view. As already mentioned, UAVs give the 
opportunity to collect such images. The other fundamental advance is provided by the Structure-
from-Motion (SfM) algorithms, that make the orientation and calibration of the camera fully 
automatic, without any a priori knowledge on the location of camera stations [30,118,119]. Thanks to 
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the Multi-view Dense Matching, once the mutual position of the camera poses is reconstructed, a 
detailed point cloud describing the surface of the recorded object can be automatically obtained. The 
model is also directly textured with the radiometric content of the images, opening to the use of 
virtual/augmented reality techniques that allow to carry out some analyses by simulating on site 
conditions (see, e.g., [120]). 

While the term SfM should refer to the image orientation phase only, it is now commonly used 
to address the whole photogrammetric process, especially in geosciences [121]. The 3D-point clouds 
generated in this process can be referred to a coordinate-system model using few ground control 
points (GCPs), which need to be laid out in the field and georeferenced using geodetic techniques 
(global navigation satellite system (GNSS) and total stations) before the UAV acquisition. It is 
essential that the GCPs are clearly recognizable in the overlapping images– an operation that is based 
on manual measurements unless coded targets of suitable size are used [122]. An alternative solution 
to the use of GCPs consists in the direct georeferencing of the adopted drone, that should be equipped 
with GNSS-RTK (real-time kinematic) sensors [123] or other types of precise positioning systems 
[124]. 

The SfM technique was used extensively to process optical (RGB) imagery, yet its applicability 
is not limited to it. Most software packages also allow for the processing of multi- and hyperspectral 
imagery, including thermal imagery [100,125–129]. Specifically, most acquisitions from commercial 
thermal cameras can be processed by using the same camera model as for optical images [94,117]. 

Thermal data are sometimes processed through SfM to generate orthophotos [100,130,131]. 
However, the limited pixel contrast in thermal images compared to RGB images often hinders the 
SfM processing [132–134]. In such cases, thermal maps can still be generated manually, by mosaicking 
the separate images individually georeferenced using GCPs. The number and distribution of GCPs 
have a direct influence on the resulting accuracy, being necessary at least three GCP per image, but 
preferably a higher number (e.g., at least six per image). Nonetheless, in various environments, the 
limited visibility of GCPs and the complexity of their measurement may pose major problems. For 
this reason, some authors proposed the concurrent acquisition of optical and thermal images. Optical 
data are used to reconstruct the surface geometry, but also to allow the extraction of those GCPs 
necessary for the orientation of each thermal image by using an integrated bundle adjustment [135]. 
Solutions for the integrated automatic processing of interspectral images has also been proposed [136] 
in order to obtain aligned outputs from optical and thermal data. 

The use of artificial GCPs can be necessary in thermal images as it is sometimes difficult to 
identify well-defined natural points. Aluminum sheets, which do not need power supply, are often 
utilized because of their sharp boundary in thermal images [137,138]. They reflect almost 90% of the 
thermal radiation in the atmosphere [139] and exhibit a low absorbed intensity, appearing dark in 
thermal images [137,140]. This way, even though thermal images have high blur and low contrast, a 
spatial accuracy similar to that of optical images can still be achieved. Sometimes, targets with 
different composition and colors are also used [112], while reference targets with known temperature 
are employed for radiometric calibration [141]. 

3.3. Auxiliary Data and Coregistration Processing 

In geological applications, thermal data can be used for the identification of landforms, 
lithologies and structural features. Optical and TLS sensors are widely used to map and monitor 
slope instabilities, and can be used in co-registration with data from other sensors, such as thermal 
sensors, to enhance the slope characterization [94,142–144]. Methodologies that incorporate object-
based image analysis (OBIA) with two machine learning (ML) methods, namely the multilayer 
perceptron neural network (MLP-NN) and random forest (RF), have been developed for landslide 
detection [145]. Data on distances, volumes, horizontal and vertical coordinates of objects can be 
extracted [146]. Photogrammetry from UAVs has been applied successfully to characterize rockfall 
movements [147–149]. 

The alignment of point clouds obtained from TLS and thermal data can be obtained by using 
GCPs, with similar drawbacks as in the case of coregistration of optical and thermal images. The 
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automatic fusion of thermal images and 3D models has been successfully exploited in the case of 
buildings, but its application to geological surfaces may be difficult because of their higher 
irregularity [124,150,151]. 

Other solutions have been based on the development of integrated sensors, which in general 
show low flexibility due to different acquisition geometry [152]. 

4. IRT Capabilities in Landslide Hazards 

IRT-based studies for landslide assessment began in the early 2000s, when high-resolution 
thermal cameras became available. In this context, IRTs were first performed from ground-based 
platforms in combination with TLS, geophysical investigations and traditional field surveys. TIR 
images overlapped to 3D models, generated from TLS surveys, are used for faster data interpretation 
and analysis [33]. The ability to record small variations in IR radiation has the advantage of extending 
the observation capability to a variety of processes which are sensitive to minor temperature 
variations. Therefore, in recent years, IRT has proven to be a strong tool for modeling the geological 
behavior of unstable rock masses [102,106,107,153–160]. 

With reference to thermal remote sensing in geological studies, as already discussed, one of the 
most interesting applications entails the use of multispectral TIR emissions to extract spectral 
properties of rocks from their emissivity spectra. Unfortunately, common thermal sensors mounted 
on UAVs only function in one or two thermal bands, limiting the ability to identify minerals and 
physical characteristics of the surfaces. Therefore, most of the applications of TIR data in geological 
hazard studies have focused on the mapping and monitoring of floods, landslides and coastal 
inundation hazards [161]. For landslide detection, high-resolution thermal cameras can provide high-
definition thermograms, supporting the identification of fractures, water and weathered areas [162] 
(Figure 5).  

Figure 5. Coastal cliff near Villaggio Nurra, Sassari, northwest Sardinia, Italy. (a) Optical data and (b) 
thermal data of the area in the dotted red box. The thermogram was acquired on 3rdAugust 2019 at 
18:00 h, including surface temperature profiles (°C). Technical specifications: DJI Zenmuse XT2, Dual 
4K, 12MP, 1/1.7″ active-pixel (CMOS) visual sensor and forward looking infrared (FLIR) Tau 2 
thermal sensor (resolution 640 x 512 pixels) lens 9 mm; UAV DJI Matrice 200; thermal sensitivity of 
<50 mK. The cliff is mainly made by: (a) Paleozoic low-grade metamorphites (gray rocks in the left 
half of the picture) with a pervasive cleavage; (b) Quaternary cross-stratified aeolian sandstones (light 
brown color in the down left side of the picture) that unconformable rest on the metamorphites; (c) a 
meter-thick, coarse slope talus (dark brown deposit in the central high side of the picture). Rockfall 
and toppling mainly affected the metamorphites, but the aeolian sandstones were also affected. High 
T pixels identify the less coherent rock mass, easily identifying the landslide body. Some low T pixels 
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inside the landslides body point out the occurrence of large blocks. In the still not collapsed 
metamorphites, high T pixels highlight fractures parallel to the metamorphic cleavage. 

More recently, sensors with even higher resolution have improved the estimation of 
geomechanical characteristics of rock slopes, supporting field surveying and laboratory testing 
[102,162]. It has been shown [67] that IRT can provide objective and quantitative information on 
anomalies and thermal variations in relation to differences of moisture in rock outcrops, which may 
lead to detachments. Water infiltration in rock masses, discontinuity networks, and debris covers 
may be identified by interpreting thermal anomalies [102]. Furthermore, multitemporal 
thermographic measurements, by operating in different lighting conditions, may achieve evaluations 
on the thermal efficiency of the rocks [106,158]. 

The analysis of rock mass features is an essential step to understand rockfall and toppling 
phenomena. Field methods to detect rock mass discontinuities follow the approaches described in 
[163,164]. The scanline method [164] is one of the field strategy to measure and describe rock mass 
features. Many studies have explored the relationship between mechanical properties and thermal 
behavior. For instance, it has been shown through laboratory analysis [109] that differences in 
porosity of intact volcanic rocks may control their cooling behavior. Recent research efforts are thus 
focusing on the thermal behavior of fractured rock masses and on the capacity of IRT to predict some 
geo-mechanical features on the basis of thermal anomalies of the discontinuities. 

As discussed in [67,107,165], thermal imaging systems can be useful in preliminary evaluations 
of discontinuity systems. It has been demonstrated that the presence of voids in the rock, due to its 
porosity or to rock failures, may be correlated to different values of emitted temperature. The 
temperature values during the heating and cooling phases have been used to correlate the trend of 
each specimen with the corresponding porosity value. One of the first studies exploiting thermal data 
for rock-mass description was carried out by Wu [106], who demonstrated the capacity of the 
different parts of a rock mass, with dissimilar structural and morphologic characteristics, to warm up 
and release heat in different ways. In the context of rockfalls, this technique was applied to a 
limestone underground mine in northern Spain to quantify the risk of rockfalls during mine 
exploitation [67]. 

A method based on the analysis of a series of thermal images (thermograms or thermographic 
images) acquired during rock-cliff cooling at night–time has been proposed by Zaragoza et al. [156] 
and implemented in MATLAB- MathWorks Inc. environment [166]. The authors motivated the data 
acquisition during rock cooling as direct sun heating would have induced high disturbance, with 
significant noises due to the relative position between the source and the facets of the surface. Even 
more, Guerin et al. [167] demonstrated that by repeating IRT surveys during cooling and heating 
phases, the thermal anomalies can be highlighted because they are strongly controlled by the degree 
of fracturing and weathering of the rock. Indeed, in coastal environment weathering for sea spray 
plays a more relevant role in downgrading mechanical quality of the rock mass than in inland 
environments. 

A 3D visualization is often beneficial for the accurate identification of structural characteristics. 
Ultimately, the reconstruction of the discontinuity networks allows to constrain the geological 
volumes of potentially unstable rock wedges, which is a necessary step for planning landslide risk 
reduction and monitoring measures [102]. This reconstruction is not always possible, as some 
characteristics of the rock mass are difficult to detect, yet IRT can be of great aid, as the high thermal 
contrast between the environment and the fractures can be exploited for their detection [159,167]. In 
fact, the air or water circulation in the open fractures allows to detect their temperature. With dry 
conditions, the temperature of the air in the fractures can be significantly higher than the surface air 
temperature, resulting in a significant heat flux anomaly from the rock [108]. The heating of a fracture 
is a function of its opening. In fact, very open fractures allow the passage of hot air flows, while tight 
or filled discontinuities exhibit much lower thermal intensity. Groundwater flow usually cools down 
fractured zone, particularly in the summertime. Both dry and wet condition produce thermal 
anomalies within the rock mass providing information on the degree of interconnection of the 
fractures and their persistence, which is often difficult to determine with direct field surveys [114]. In 
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coastal environment this difference is enhanced by the higher thermal range. Moreover, a correlation 
between the fracturing degree of the rock mass and the cooling behavior has been detected. A cooling 
rate index (CRI) has been proposed to identify one area with respect to another for its cooling capacity 
during a specific time window. According to the evidence, the index could be used as a tool to 
remotely detect the rock quality, as a linear correlation between CRI and jointing. In this way, 
preliminary estimates of the slope conditions could be done [114]. 

Depending on the time of the day in which the measurement is performed, the fracturing system 
emits higher or lower radiation than the intact rock. As the cooling of the rock mass depends by the 
temperature difference with the external environment, nocturnal analyses during the cooling phase 
have been considered to offer the best conditions for obtaining well-defined thermograms [57,114]. 
In fact, after the sunset, parasite radiation is absent and the temperature difference between the 
objects and air is the highest. Moreover, on daytime thermographic acquisitions, external radiation 
emitted by other bodies can cast shadows on the slope under investigation, producing a signal bias. 
Therefore, before an investigation, the rock mass exposure and the timing of the acquisition must be 
carefully evaluated [114]. In the analyzed literature, nighttime conditions proved to be the best for 
the definition of thermograms [107,114,160,168]. 

Soil slopes may also exhibit important temperature-dependent behaviors, not only in seasonally 
cold regions under freeze-thawing cycles, but also under thermal excursions typical of temperate 
areas or in response to extreme heating caused, for instance, by wildfires [169,170]. The amplitude of 
the thermal signal in the soil, driven by solar irradiance and surface air temperature oscillations, 
damps with depth considerably, so that circadian and seasonal oscillations typically penetrate only 
to depths of some decimeters or a few meters, respectively. However, specific conditions such as 
important sub vertical groundwater flows or the presence of open fractures may increase the 
penetration depth remarkably. Moreover, longer-period climate trends, such as the natural 
centennial variability and the anthropogenic climate change, may locally induce significant variations 
of temperature at larger depths in human time scales [171]. In landslide assessment, however, 
changes of temperature are generally only accounted for indirectly and changes in patterns and 
frequency of landslides in response to climate change are mostly attributed to variations in 
precipitation patterns [1,4], whereas field and experimental evidence of landslides directly activated 
by changes in soil temperature have indeed been reported [172,173]. 

The systematic overlooking of thermally induced processes relevant to soil slope stability 
originates from the fact that the mechanisms by which temperature affects the mechanical properties 
of soils are diverse and not completely understood. The behavior of soil slopes is controlled by the 
interplay of coupled hydro-mechanical processes, which are especially pronounced in clay-rich 
materials. Various studies have shown that variations of temperature may affect both the hydraulic 
and mechanical aspects of clay behavior [174]. The properties of water—flowing in the pores and 
adsorbed on the particle surface—are temperature-dependent, thereby affecting the way the soil 
responds to external loads. As water, air and soil particles have different thermal properties, changes 
of temperature can also alter pressures and stresses within the soil [175]. Loss of apparent cohesion 
can occur in unsaturated soils as temperature increases—driven by a loss of water retention 
capacity—and structural collapse has also been reported [176,177]. Various frameworks have been 
proposed to describe the thermo-hydro-mechanical behavior of soils. However, their application to 
land surface processes is still in its infancy, as tools for upscaling the constitutive relations to the slope 
and regional scales are being developed [178]. In this context, the availability of remotely sensed 
thermal data from IRT, coupled with soil-moisture information, vegetation coverage, land surface 
geometry and precipitation patterns, can be a precious tool for model development and validation, 
as well as an essential input in absence of densely distributed ground-based and borehole monitoring. 

5. IRT Approaches in Coastal Rocky Cliffs Hazards 

Coastal instability is generally related to the interaction of marine and gravitational processes as 
well as the accelerated weathering effects due to sea spray. For this reason, coastal cliffs can be 
considered vulnerable, given the connection with more parameters compared with inland landslides 
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[54,179–183]. Rockfalls occur commonly in high coasts, and they are among the faster landslide 
movements. These movements suffer from two principal factors: gravity and discontinuities 
distribution [184]. Additional movements along the coastal slopes can be recognized in the form of 
translational and rotational landslides in soil and debris. Due to their nature, damages in surrounding 
areas are highly possible. At the same time, rapid flows have the same potential as fast movements. 
Hard-rock coastal cliffs, e.g., granite, are often affected by weathering phenomena that lead to the 
formation of debris deposits in some portions of the slope, which could be mobilized as debris slides 
and flows. The evaluation of the magnitude of these landslide phenomena becomes fundamental in 
environmental management and hazard monitoring [5,6,185]. Collecting data and implement 
monitoring systems in coastal environments is a challenge, mainly where high cliffs with a steep cliff 
gradient are present. 

In recent years, investigation techniques on coastal landslides have been developed with the 
contribution of new remote sensing tools [179,182,186–191]. Currently, however, there are no well-
defined investigation protocols. Existing studies often do not follow uniform methodologies, mainly 
due to the lack of knowledge and complexity in collecting data on the processes that generate coastal 
erosion [181,185,192]. Principal applications of the IRT in coastal landslides hazard are aimed at 
detection of main discontinuities, main cavities, loosen/altered materials and identification of soil 
moisture and groundwater flows [162,168]. 

Even from large distances, it is possible to distinguish the volumes of landslide bodies thanks to 
thermal contrasts (Figure 5). Unstable areas can be recognized by processing thermal images taken 
at different irradiation moments during the day, thanks to the higher ability of the landslide body to 
transfer thermal energy compared to the surrounding rocks, due to the presence of an air circulation 
system inside the voids [102]. Through proximal sensing analysis, it has been demonstrated that it is 
possible to highlight the contrasts of thermal energy emitted between the fracturing system and the 
intact rock [158] and also to infer the main geotechnical parameters from cliff discontinuity set 
information according to the response in terms of surface thermal radiation. 

Thermal cameras coupled with UAVs can be advantageous in studying the stability of vertical 
cliffs, as they allow to keep multi-view acquisitions with respect to the object-sensor, with a 
consequently higher value of thermal radiation [102]. The reliability of IRT to the study of inaccessible 
areas as coastal cliffs is pointed out by Mineo [160]. 

An update of Pappalardo et al. [168] proved the possibility of determining source areas as rock 
wedges. The camera resolution is such that information on the fracturing system, due to the joints 
opening, can be provided at mm–cm scale. The contrasts between the discontinuity system and weak 
areas, probably underwent decompression phenomena after the initial wedge sliding can help to 
identify areas which would lead to retreat phenomenon of the slope. In their study, the results seem 
to be clearer in summer acquisitions [168]. 

The integration of thermography with ground-based interferometric synthetic aperture radar 
(GBinSAR) and TLS in coastal cliffs is discussed in [193], with reference to the stability analysis of a 
coastal cliff in southern Italy. In particular, IRT results show the detachments as areas with a 
concentration of thermal anomalies. These results suggest the need for an integrated approach of 
remote sensing techniques to propose the model of slope instability in complex areas like coastal 
cliffs, where the partial and side visibility may be considered the main issue. 

6. Methodological Synthesis and Conclusions 

A comparison among the relevant methods to characterize coastal cliffs affected by landslides is 
provided in Table 4. The factors (constraints) influencing the phases of the planning, the data 
collection, the data analysis and the results have been evaluated for each technique: Traditional field 
survey, TLS, photogrammetry and IRT. An evaluation of strengths and weakness of each method has 
been provided. 

Thermography with UAVs, integrated with TLS or photogrammetry data, compared to 
traditional field survey, proved to be a useful non-invasive technique in slope instability studies as 
evidenced in literature (see the Table 4). The potential of UAV thermography for coastal cliffs 
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characterization can be recognized in the production of rock mass images of medium/high resolution, 
in the low-cost and easy portability [110]. All the proposed techniques were proved to be useful for 
the reconstruction of the fracture network. Indeed, the higher spatial resolution of the data collected 
by TLS and photogrammetric techniques can be integrated by the capacity to characterize the 
geotechnical behavior of the rock mass. Weather conditions may affect the UAV’s flight and the TLS 
acquisitions. Moreover, considering the visibility of the objects, IRT at the latitude of northern 
hemisphere, is more effective in summer season. Due to higher solar radiation, the heating phase is 
faster than in winter, during the night the cooling phase is slower, and thermal anomalies are higher 
[114]. Using these data, geomechanical features (i.e., fractures network, RQD) and physical properties 
of rock masses (i.e., porosity, bulk density) may be correlated to thermograms [109]. 

Table 4. Comparison among different survey methods for coastal cliffs prone to landslides. 

PHASES Constraints Traditional 
field survey 

TLS Photogrammetry IRT 

Planning 

Cost-
Effectiveness Low cost High cost Low cost Low cost [102] 

Data Resolution 

High 
resolution 

(linear data) 
 

Very high 
resolution 

(3D-spatial data) 
 

High resolution 
(2D/3D-spatial data) 

 

Medium/ high 
resolution 

depending on 
object-sensor 
distance [110] 

Solar 
Illumination 

No influence No influence Highly dependent Strongly 
dependent 

Portability 
High 

portability 
Medium/ Low 

portability 
High 

portability 
High portability 

[106] 

Monitoring Quite 
impossible 

Possible, but 
with high costs 

and time 
Possible and fast Possible and fast 

Expected Results 
Local 

fractures 
network 

3D-fractures 
network 

(Orientation) 

3D-fractures 
network 

(Orientation) 

Behavior of the 
fractures [168] 

Data 
Collection 

Time-consuming 
for data 

acquisition 

High time-
consuming 

for wide 
areas 

Very slow 
acquisition 

Fast acquisition Fast acquisition 
[106] 

Accessibility 
(Distance Object-

Sensor) 

Issues to 
reach 

inaccessible 
areas 

A ground 
station is 
necessary 

Capable of reaching 
inaccessible areas 

Capable of 
reaching 

inaccessible areas 

Weather 
Conditions 

Partially 
limited 

Completely 
limited 

Partially or 
completely limited 

Partially or 
completely limited 

[114] 

Visibility Daytime Daytime Daytime Daytime and 
nighttime [107,114] 

Field of View Limited 
Potential 

occlusions 
Complete Complete 

Data 
analysis 

and Results 

Geomechanical 
Features 

Expert 
judgment, 
maps [194] 

Fracture 
network 

(roughness, 
orientation, 
opening). 

Point Cloud 

Fracture network 
(roughness, 

direction, opening). 
Ortophotos and 

Point cloud 

Classified fracture 
network, RQD 

correlation [168] 
Thermal images 

Physical 
Properties 

Limited areas 
of sampling 

None None 

Relationships 
between thermal 
data and porosity 
and bulk density 

[109] 
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On the basis of the methods discussed in the analyzed literature, an approach to produce IRTs 
is hereby proposed (Figure 6). The methodology consists of three main steps: planning, data 
collection and data analysis. 

The planning step comprises the analysis of the location, including the evaluation of accessibility 
issues. In this perspective, the orientation of the slope and UAV limitations (restricted airspace and 
logistic problems) have to be taken into account [165]. Moreover, nighttime acquisition should be 
considered, if achievable [107,109,154,168]. 

The data collection phase begins with the positioning of ground control points and the acquisition 
of their position [195]. At the same time, ambient-sensitive parameters such as object emissivity, path 
length, humidity and air temperature must be considered prior to the UAV flight [196]. If possible, 
auxiliary data as TLS and optical images should be acquired [193] 

In the data analysis phase, thermal data are managed through software tools. For instance, the 
FLIR tool is a software package that allows to visualize, edit, and perform radiometric calibrations 
[112]. The SfM can also be applied [122,156,197]. Performing mosaicking and georeferencing is 
possible in a GIS environment, combining thermal snapshots with digital photogrammetric data 
(DEM). The coupling of IRT with TLS allows to obtain 3D models capable of showing various 
properties of the slope comprehensively, generating orthophotos at the same time [102,198]. 

This review highlights that the application of thermal remote sensing to coastal landslides is a 
new, but promising field of study. The publications cited throughout the study can be considered as 
a guide to apply a correct approach, adapting the environmental conditions to the specific coastal 
cliffs’ domain. As shown in Table 5, most of the published studies entailed the use of a thermal camera 
mounted on a tripod for terrestrial acquisition. The literature on UAV-mounted cameras is still scarce. 
The main geological and morphologic features highlighted in these studies concerned the 
identifications of weathered areas and fracture networks, cavities and pseudo-karst caverns, recently 
collapsed areas, landslide bodies, as well as the evaluation of shallow inhomogeneities and moisture 
content patterns. Resolution of cameras on the market provide UAV-based IRT a likelihood of getting 
an accurate measurement of fracture patterns, thus being a valuable support to the in situ surveys in 
coastal steep area, where collecting samples and performing direct measurements are often 
impossible. Accuracy of data can be improved coupling UAVs-based SfM photogrammetry and IRT 
methods and implementing a coregistration data system. 

 
Figure 6. Synthesis of the three main steps to produce the final infrared thermographs (IRTs). 
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Table 5. Main topics covered in the literature and holding device used for the thermal infrared  
(TIR) camera. 

 Holding Device Topic 
Quattrocchi et al., 

1998 
[199] 

Airborne 
Thermal energy fluxes of different vegetation types in urban 

environment 

Ninomiya et al., 
2005 
[200] 

Spaceborne Detecting mineralogic or chemical composition of rocks 

Wu et al., 2005 
[106] 

Terrestrial Eroded caves inside a shotcreted slope 

Sheng et al., 2010 
 

Airborne Agriculture field coverage, black marker detection 

Teza et al., 2012 
[107] 

Terrestrial (120–
150 m) 

Shallow inhomogeneities, weathered rock cliff areas 

Martino and 
Mazzanti, 2014 

[193] 
Terrestrial 

Main joints, recent collapsed areas/detachments in a rock coastal 
cliff 

Baroň et al., 2014 
[108] 

Terrestrial and 
UAV 

Open cracks and zones of tension within rock slope instability, 
loosened rock zones, pseudo-karst caverns 

Mineo et al., 2015a; 
Pappalardo et al., 

2016 
[154], [165] 

Terrestrial 
(3 m) 

Geostructural features, fracturing degree, daytime temperature 
exchange of a rock slope 

Mineo et al., 2015b 
[160] 

Terrestrial 
Thermal contrast between vegetated portion, weathered and 

bare rock along an unstable slope 
Pappalardo et al., 

2017 
[201] 

Terrestrial Discontinuity system and fracture sectors of a rock wedge 

Frodella et al., 2017 
[102] 

Terrestrial and 
airborne 

Wedge fractures, erosional channels, scarps, earth flow ponds, 
seepage sectors, debris cones 

Fiorucci et al., 2018 
[111] 

Terrestrial 
Surficial temperature distribution on rock 

masses—thermal response of jointed rock-block—seasonal 
behavior differences 

Pappalardo et al., 
2018 
[161] 

Terrestrial 
Morphologic features, lithological differences, Landslides 

bodies 

Grechi and Martino 
2019 
[202] 

Terrestrial (20 m) 
Surficial temperature distribution of rock mass arch in terms of 

temporal and spatial evolution 

Frodella et al., 2020 
[203] 

Terrestrial (600 
m) 

Weathering rock areas: Moisture content connected to the 
ephemeral drainage network 
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