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ORIGINAL ARTICLE

Urinary 1H NMR metabolomics profile of Italian citizens exposed to background
levels of arsenic: a (pre)cautionary tale

Emanuela Loccia , Luigi Isaia Leccab, Roberto Pirasa , Antonio Notoa , Ilaria Piliab , Ernesto d’Alojaa and
Marcello Campagnab

aDepartment of Medical Sciences and Public Health, Legal Medicine Section, University of Cagliari, Cittadella Universitaria di Monserrato,
Monserrato, Cagliari, Italy; bDepartment of Medical Sciences and Public Health, Occupational Health Section, University of Cagliari, Cittadella
Universitaria di Monserrato, Monserrato, Cagliari, Italy

ABSTRACT
Objectives: Arsenic is a toxic metal ubiquitous in the environment and in daily life items. Long-term
arsenic exposure is associated with severe adverse health effects involving various target organs. It
would be useful to investigate the existence of metabolic alterations associated with lifestyle and/or
with the environment. For this purpose, we studied the correlation between urinary arsenic levels and
urinary proton nuclear magnetic resonance spectroscopy (1H NMR) metabolomics profiles in a non-
occupationally nor environmentally arsenic exposed general population.
Methods: Urine samples were collected from 86 healthy subjects. Total and non-alimentary urinary
arsenic (U-naAs) levels, namely the sum of arsenite, arsenate, monomethylarsonate and dimethylarsi-
nate, were measured and 1H NMR analysis was performed. Orthogonal Projection to Latent Structures
was applied to explore the correlation between the metabolomics profiles and U-naAs levels.
Results: Despite the extremely low U-naAs levels (mean value ¼ 6.13 ± 3.17mg/g creatinine) of our
studied population a urinary metabolomics profile related to arsenic was identified.
Conclusion: The identified profile could represent a fingerprint of early arsenic biological effect and
could be used in further studies as an indicator of susceptibility, also in subjects exposed to a low
arsenic dose, with implications in occupational health, toxicology, and public health.
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Introduction

Arsenic (As), a naturally occurring element abundant in the
earth crust, is a toxic metal ubiquitous in the environment
(Nearing et al. 2014). Many As compounds can dissolve in
water, thus, As contamination of groundwater is a major con-
cern for public health. Humans are exposed to As through
ingestion of contaminated water and food, smoking, occupa-
tional and environmental pollution (National Research Council
(U.S.), Subcommittee on Arsenic in Drinking Water, 1999).

Long-term As exposure is associated with severe adverse
health effects involving various target organs. It can increase
the risk of chronic diseases such as diabetes, cardiovascular
disorders, hypothyroidism, and neoplastic diseases (such as
skin, lungs, bladder, liver, and kidneys cancers) (Liu et al.
2002, Navas-Acien et al. 2008, Kuo et al. 2015, Zheng et al.
2015). Arsenite (iAsIII), arsenate (iAsV), and two organic forms
containing trivalent As, namely monomethylarsonate (MMA)
and dimethylarsinate (DMA), are commonly considered haz-
ardous for animal and human health (Nearing et al. 2014).
Inorganic As is classified by the International Agency for
Research on Cancer as a carcinogen (Group 1) for bladder,
lung, and skin, while DMA and MMA are classified as possibly
carcinogenic for humans (Group 2B) (IARC Working Group on

the Evaluation of Carcinogenic Risks to Humans, 2012). The
mechanism of damage is not fully understood and seems to
involve biological pathways implicated in oxidative stress,
DNA fragmentation, gene expression, induced apoptosis, and
deregulation of ion channels (Alamolhodaei et al. 2015).

Due to the severity of As related adverse health effects
and to the large number of worldwide exposed subjects, the
study of its toxicity still represents a topic of particular con-
cern for public and occupational health. Recently, the
National Health and Nutrition Examination Survey reported
on the effect of the Environmental Protection Agency max-
imum contaminant level on As exposure in the USA from
2003 to 2014, showing that the lowering of As threshold
level from 50 to 10 mg/L in public water system was directly
correlated with the decrease in urinary DMA levels in the
general USA population (Nigra et al. 2017). This decrease,
actually achievable by several means (Ali et al. 2011, Ali et al.
2011, Ali et al. 2014, Ali 2018), was discussed in light of the
new 2006 threshold values challenged by the recent pro-
posal of deregulation for contaminant levels in drinking
water advanced by the USA administration (Landrigan 2017).

In this context, the knowledge of early subclinical effects
related to As exposure could help to better understand the

CONTACT Marcello Campagna mcampagna@unica.it Department of Medical Sciences and Public Health, Occupational Health Section, University of
Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, 09042, Italy
Emanuela Locci is responsible for statistical design and analysis.
� 2019 Informa UK Limited, trading as Taylor & Francis Group

BIOMARKERS
2019, VOL. 24, NO. 8, 727–734
https://doi.org/10.1080/1354750X.2019.1677777

http://crossmark.crossref.org/dialog/?doi=10.1080/1354750X.2019.1677777&domain=pdf&date_stamp=2019-11-09
http://orcid.org/0000-0003-0237-4228
http://orcid.org/0000-0002-0239-5523
http://orcid.org/0000-0003-3538-0050
http://orcid.org/0000-0003-2834-5652
https://doi.org/10.1080/1354750X.2019.1677777
http://www.tandfonline.com


complex toxicological mechanisms that may produce damage
to human health, and, as a consequence, could contribute to
the identification of health-based exposure limits both for work-
ers and for the general population, and, moreover, for health
surveillance programmes monitoring (Alessio et al. 2007).

A new approach in the study of metals toxicology is rep-
resented by metabolomics which, by means of the quali-
quantitative analysis of low molecular weight metabolites
within a cell, tissue, or biological fluid, gives a global holistic
overview of the metabolic status of an organism in response
to various stimuli, such as disease, genetic variation, environ-
mental, occupational, and lifestyle factors (Dunn et al. 2011,
Campagna et al. 2016, Vermeulen 2017). As-induced metabo-
lomic perturbations have been observed in animal models as
a consequence of long term and acute high dose exposure
(Wei et al. 2009, Huang et al. 2013, Garc�ıa-Sevillano et al.
2014a, 2014b, Wang et al. 2014). Several recent studies
reported on the use of metabolomics to investigate the
effect of long-term exposure to low doses of As on the bio-
logical profile of environmentally or occupationally exposed
individuals (Shen et al. 2013, Dudka et al. 2014, Zhang et al.
2014, Garc�ıa-Sevillano et al. 2015, Laine et al. 2017).
Metabolomics studies are commonly performed on urine
samples, due to the ease of their collection and to the possi-
bility of a direct correlation between urinary As levels and
the As-exposure metabolomics signature.

Due to the widespread presence of As in nature and in
daily life items, it would be useful to identify possible meta-
bolic alterations merely associated with lifestyle and/or with
the environment to be considered as subclinical early bio-
logical effects.

The aim of this study was to investigate whether general
background As exposure may affect the urinary metabolomics
patterns in a human cohort living in a non-contaminated area
and without occupational exposure to As. For this purpose,
we studied a population group that represents what it is nor-
mally considered as a non-exposed control group, using
Proton Nuclear Magnetic Resonance (1H NMR)-based metabo-
lomics to study the correlation between urinary metabolomics
profiles and urinary non-alimentary As (U-naAs) levels, which
is the sum of all As hazardous forms, namely arsenite (iAsIII),
arsenate (iAsV), MMA, and DMA.

Clinical significance

� Chronic As exposure has a pathogenic concentration-
related activity. Urinary As concentration is employed as a
biomarker of exposure.

� Epidemiological studies provided data on the severe
adverse health effects of high As levels in drinkable water,
but data on low/very low dose exposure are still lacking.

� Studies focussing on ‘personalized’ susceptibility may con-
firm, or exclude, a putative causal role of a lifelong As
exposure in the onset or development of diseases in
which its causative role has been already proven.

� Urinary metabolomics profile seems to be useful to moni-
tor, at individual level, the biological effects of low/very
low As exposure, even in a preclinical scenario.

Materials and methods

Study population and sample collection

The study protocol was notified to the Independent Ethical
Committee of the Azienda Ospedaliero-Universitaria of
Cagliari. All participating subjects provided written informed
consent prior to participation. A cross-sectional study was
performed collecting data during the annual workplace
health surveillance programme conducted by the
Occupational Medicine Department of the University of
Cagliari, Italy, from October 2014 to December 2014. Eighty-
six healthy male workers, the overall workforce of a logistic
support company for safety in communication and flight
were enrolled (Figure 1). Only male workers were recruited
since no female subjects were present in this specific work-
place. All subjects were in force from at least three years and
they all agreed to participate in the study. Demographic data
and lifestyle information, including age, Body Mass Index
(BMI), alcohol intake, smoking habits, physical recreational
activity, and health history were recorded for each

Figure 1. Flow chart from eligible subjects to the analysed study population.
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participant. Furthermore, clinical parameters, including systolic
and diastolic pressure, heart rate, glycaemia, alanine amino-
transferase (ALT), aspartate aminotransferase (AST), gamma-
glutamyl transferase (GGT), serum and urine creatinine were
recorded. Exclusion criteria were the existence of chronic path-
ologies and the detection of drugs metabolites in urine that
can generate an alteration of spectra. During the annual work-
place health surveillance, first-morning urine samples were
collected from fasted subjects, mixed with sodium azide
0.01% (NaN3, Sigma-Aldrich, Milan, Italy), in order to avoid
bacterial growth, and immediately stored at �80 �C.

Urinary as levels detection

Urinary concentrations of total (U-tAs) and non-alimentary As
(U-naAs), the latter corresponding to the sum of total inor-
ganic ions (iAsIII and iAsV), MMA and DMA, were determined
using a Varian Spectra AA300 Atomic Absorption
Spectrophotometer, following a previously reported method
(Subramanian 1989). U-tAs and U-naAs calibration lines were
obtained by using standard in matrix of Institut National de
Sant�e Publique, Quebec, Canada. Detection limits were as
follows: U-tAs¼ 0.50 mg/L and U-naAs¼ 0.40mg/L. The results
were adjusted for urine creatinine.

1H NMR sample preparation and
analysis

For 1H NMR analysis, 1mL of thawed urine was centrifuged
at 12,000 rpm for 10min at 4 �C. 630 lL of the supernatant
were mixed with 70 mL of a 1.5M phosphate buffer solution
(pH 7.4) in D2O (99.9%, Cambridge Isotope Laboratories Inc.,
Tewksbury, MA) containing the internal standard sodium
3-(trimethylsilyl)propionate-2,2,3,3,-d4 (TSP, 98 atom % D,
Sigma-Aldrich, Milan, Italy) at a 0.59mM final concentration,
and 650 mL of the obtained solution were transferred into a
5mm NMR tube.

1H NMR experiments were performed using a Varian
UNITY INOVA 500 spectrometer operating at 499.839MHz for
proton (Agilent Technologies, Santa Clara, CA). 1H NMR spec-
tra were recorded using a 1D-NOESY pulse sequence for
water suppression with a mixing time of 1ms and a recycle
time of 3.5 s. Spectra were acquired at 300 K with a spectral
width of 6000Hz, a 90� pulse, and 128 scans. Before Fourier
transformation, the Free Induction Decays (FID) were zero-
filled to 64 K and an exponential weighting function was
applied with a line-broadening factor of 0.5 Hz. All spectra
were imported in the MestReNova software (version 9.0;
Mestrelab Research S.L., Santiago de Compostela, Spain),
phased, and baseline corrected. Chemical shifts were referred
to the TSP single resonance at 0.00 ppm. Assignment of NMR
resonances was based mainly on literature data (Bouatra
et al. 2013). In this phase, ten subjects were excluded due to
the detection of drug metabolites in urine. Thus, the analysis
was conducted in a selected population of 76 subjects.

Statistical data analysis

1H NMR spectra were reduced into consecutive integrated
spectral regions (bins) of equal width (0.02 ppm) from 0.72 to
9.4 ppm. The spectral region between 4.52 and 6.20 ppm was
excluded from the analysis because it showed artefacts aris-
ing from water signal suppression and broad urea resonance.
Bins corresponding to drug signals (mannitol and paraceta-
mol) were also removed in all the spectra. In order to minim-
ize the effects of variable concentration among different
samples, the integrated area within each bin was normalized
to a constant sum of 100 for each spectrum. A total of 270
variables (bins) that represent the spectral profile for each
sample were obtained. Multivariate statistical data
analysis was performed by SIMCA 13 (Umetrics, Umea,
Sweden). The unsupervised principal component analysis
(PCA) was used to detect outliers and recognize particular
trends in the collected data. The supervised Projection to
Latent Structures (PLS) regression and its Orthogonal (OPLS)
implementation (Eriksson et al. 2013) were applied to model
the effect of U-naAs on the urinary metabolome. The model
quality was evaluated based on the residuals (R2X, R2Y) and
the model predictive ability parameter (Q2Y) determined
through the default leave 1/7th out cross-validation. Models
were further validated through the permutation test on the
response (500 random permutations), satisfying the following
conditions: Q2Y(cum) and R2Y(cum) for the original model
should be larger than all the results for the permuted mod-
els, and the y-intercept of the Q2Y(cum) should be negative.
PLS-VIP-based selection was applied to select the most
important variables in data modelling. Prior to performing
the analysis, the spectral data were mean centred and
Pareto scaled.

Clinical data and urinary As were expressed as
mean± standard deviation (SD) or median and interquartile
range (IQR), in case of normality violation. The
Kolmogorov–Smirnov test was applied for normality analysis
of the parameters. Spearman correlation tests were used to
determine the strength of the relationships between U-naAs
and demographic, lifestyle, and clinical variables. Bonferroni
correction was used for multiple comparisons adjustment
and a p-value of 0.005 was considered as the cut-off point
for statistical significance. Data analysis was performed by
GraphPad Prism 6.0 (GraphPad Software, La Jolla, CA).

Results

The demographic and lifestyle characteristics and the clinical
parameters of the selected study population are reported in
Table 1. All subjects involved in the study were healthy
individuals.

Total As (U-tAs) and non-alimentary As (U-naAs) concen-
trations were measured for all participants, and are reported
in Table 2. U-naAs represents the sum of iAsIII, iAsV, MMA,
and DMA, which are the major metabolites present in urines
after exposure to inorganic As, and are commonly deter-
mined to assess occupational or environmental exposure.
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In our study group, U-naAs was significantly correlated
with U-tAs (p< 0.0001), while no significant correlations were
observed with age, BMI, HR, systolic and diastolic blood pres-
sure, glycaemia, AST, ALT, GGT, serum creatinine, smoking,
and alcohol intake.

1H NMR experiments were performed on all the urine
samples. Several low molecular weight metabolites were
identified, including amino acids, organic acids, small organic
compounds, osmolytes, and sugars. After the exclusion of
ten subjects for the aforementioned reasons, spectral data of
selected subjects were submitted to multivariate statistical
analysis. At first, an exploratory unsupervised PCA was per-
formed in order to investigate the sample characteristics and
visualize trends and outliers. The first two principal compo-
nents (PCs) accounted for 31% of the variance. In the PCA
score scatter plot of the urine samples, no strong outliers
neither sample clustering associated with U-naAs were
observed (Figure 2).

A supervised OPLS model was then applied to study any
As-related metabolic modifications. Specifically, 1H NMR
spectral data were correlated with U-naAs as the outcome.
Figure 3(a) shows the OPLS score plot where urine samples
with increasing U-naAs values are located along the predict-
ive component (x-axis). The quality of the model was eval-
uated on the basis of the fitness ability (R2Y¼ 0.69) and the
prediction ability (Q2Y¼ 0.59). The model was further vali-
dated performing the permutations test on the correspond-
ing PLS model (n¼ 500 permutations, y-intercept of the
Q2Y(cum) ¼ �0.357; Figure 3(b)). The variable importance
on the projection (VIP) value of each variable was calculated

to evaluate its contribution to the model. Based on PLS-VIP
selection (using the threshold VIP > 1), 51 variables contrib-
uted the most to data modelling and can be considered as
the urinary metabolomics signature correlated with U-naAs
levels. Figure 3(c) shows the loading column plot of the var-
iables (i.e. the urinary metabolites) along the predictive

Table 2. Urinary arsenic concentration (mg/g creatinine) of the study population.

Mean (SD) Min 25% tile Median 75% tile Max

U-tAs 34.13 ± 42.91 2.44 10.90 17.46 37.85 270.0
U-naAs 6.13 ± 3.17 1.31 3.85 5.34 7.73 17.33

Urinary arsenic concentrations were corrected with creatinine values to compensate variations in urine dilution.

Figure 2. PCA score scatter plot with samples sized according to the U-naAs
value; the bigger the symbol, the higher the U-naAs (very small ¼ 1st, small ¼
2nd, medium ¼ 3rd, large ¼ 4th quartile).

Table 1. Demographic, lifestyle, and clinical parameters of the study population.

n (%) Median (min–max) Mean (SD)

Demographic data
Age (years) 37 (20–63) 37.74 (11.3)
BMI (kg/m2) 24.8 (20.1–35.2) 25.13 (2.63)
Smoking
Never 36 (47%)
Past 21 (28%)
Current 15 (20%)
Missing 4 (5%)

Alcohol intake
0 unit 21 (28%)
1 unit 27 (36%)
2 units 23 (30%)
Missing 5 (6%)

Clinical data
Heart rate (f/m) 64 (44–88) 64 (11.71)
Systolic blood pressure (mm Hg) 120 (100–160) 123.19(12.14)
Diastolic blood pressure (mm Hg) 80 (60–110) 77.67 (9.44)
Glycaemia (mg/dL) 87.5 (59–134) 89.14 (11.32)
AST (UI/L) 23 (14–211) 27.81 (22.37)
ALT (UI/L) 21 (8–103) 27.12 (17.88)
GGT (UI/L) 20 (8–136) 27.24 (21.45)
Serum creatinine (mg/dL) 1.02 (0.05–1.60)
Urine creatinine (mg/dL) 1.30 (0.2–3.1)
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component, which are correlated with U-naAs levels and
listed in Table 3. In particular, trimethylamine N-oxide
(TMAO), taurine, citrate, hippurate, dimethylamine (DMA),
acetate, 3-hydroxy-butyrate, cis-aconitate, acetone, 3-

hydroxy-isovalerate, and 2-oxoglutarate are positively corre-
lated with U-naAs levels, whereas creatinine, lactate, N-ace-
tyl-groups, glutamine, choline and its derivatives are
negatively correlated.

Figure 3. OPLS model with U-naAs as the outcome. (a) Score scatter plot with the samples coloured on the basis of the U-naAs interquartile values (blue ¼ 1st,
light blue ¼ 2nd, green ¼ 3rd, red ¼ 4th quartile). (b) Permutation test of the corresponding PLS model (n¼ 500 random permutations). (c) Loading column plot
of variables (spectral data, metabolites) along the predictive component t[1].
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Discussion

Animal and human studies performed on individuals exposed
either too high or low As dose showed a response at a
molecular level to this toxic stress, with alteration of the
metabolite content in the organisms, that is mainly due to
impaired energy production and ion regulation. Our purpose
was to evaluate whether As may affect particular metabolic
pathways inducing perturbation of specific urinary metabo-
lites also at a very low dose of exposure.

The median values of U-tAs and U-naAs in the study sam-
ple were 17.46 and 5.34 mg/g creatinine, respectively. These
values are comparable with those expected in Italian general
population (Societ�a Italiana Valori di Riferimento 2005), and
lower than the levels detected in similar studies conducted
in non-occupationally exposed populations, where the
median values were 40.03 and 27.6 mg/g creatinine for U-tAs
and U-naAs, respectively (Zhang et al. 2014).

Our results showed a correlation between the global urin-
ary metabolic profile and U-naAs concentration, even if this
latter is extremely low (Table 3). Most of the identified
metabolites were amino acids and organic acids that play
important roles in various biochemical processes. Some of
them showed a positive trend, i.e. they increase with increas-
ing U-naAs, while others showed an opposite trend. The
decreasing trend of choline with increasing U-naAs levels
associated with the opposite behaviour of some of its major
metabolites, such as DMA and TMAO, suggest disturbances
in choline metabolism that may be related to As-induced
membrane toxicity (Huang et al. 2013). The observed
increase of taurine urinary levels with increasing U-naAs may
suggest its active role against oxidative damage related to
As exposure, since taurine plays a critical role in anti-inflam-
mation, osmoregulation, stabilization of cell membranes, and
protects from oxidative stress (Garc�ıa-Sevillano et al. 2014a,
2014b). This mechanism was already proposed in response
to toxic substances such as lead and cadmium (Garc�ıa-
Sevillano et al. 2014a). The observed decrease of urinary lac-
tic acid with increasing U-naAs, together with the increase of
TCA cycle intermediates (namely citric, cis-aconitic, and
a-ketoglutaric acid), suggests a shift of pyruvate metabolism
towards the formation of acetyl-CoA. The excess of acetyl-
CoA can be further converted to acetate and ketone bodies.
These results are consistent with previous reports showing
that high levels of citrate in liver, kidney, and plasma are
related to As exposure (Garc�ıa-Sevillano et al. 2014a).

Moreover, a positive correlation of acetate with As and other
metals has been repeatedly reported in the literature, and
proposed as a biomarker of exposure (Huang et al. 2013,
Garc�ıa-Sevillano et al. 2015). Increased hippurate urinary lev-
els are indicative of oxidative stress following As exposure,
as reported in a previous study on a Chinese population
screened for environmental As exposure (Zhang et al. 2014).

The overall urinary metabolomics profile described here is
consistent with the one identified in a rat model treated
with realgar (a medicament that contain over 90% of tetra-
arsenic tetrasulfide) (Wei et al. 2009), where perturbation of
TCA cycle together with increased TMAO, taurine, ketone
bodies, and choline, and decreased hippurate and lactate
levels, were correlated to As exposure. Similar modifications
have also been described in a neonatal population delivered
by women living in areas with elevated As levels in drinking
water (BEAR cohort), and related to prenatal As exposure
(Laine et al. 2017).

To the best of our knowledge, this is the first metabolo-
mics study on the effects of background As exposure on the
metabolism of an Italian population. Our results, in agree-
ment with previous reports, provide evidence for the exist-
ence of a metabolomics profile associated with urinary As
levels even in a non-exposed population. We have identified
a metabolic pattern of early biological effect and/or of sus-
ceptibility that could be very useful in further screening of
the general population. Furthermore, our results suggest a
possible causative role of As even at extremely low levels on
the alteration of some metabolic pathways. This aspect is
remarkable considering the lack of a precise hazardous
threshold for As exposure, particularly for carcinogenesis
(Abernathy et al. 1996, Cohen et al. 2016), and enforces the
questionability of safe As exposure limits. This issue repre-
sents a particular concern in As exposure scenario, due to
the large number of exposed individuals worldwide and to
the severity of As related adverse health effects. In this per-
spective, the identification of early biological effect bio-
markers may enlighten new insights in exposed populations
(even to low or very low dose) so to achieve personalized
risk assessment, and to adopt preventive strategies, based
on the hypothesis of a continuum of effects from an early
detectable effect towards subclinical and clinical manifesta-
tions as already shown in the behaviour of several toxic met-
als (Alessio et al. 2007). Accordingly, preventive actions
aimed at reducing the critical concentration (Ali et al. 2011,
2014, Ali 2018), being it the one able to cause the earliest
alteration in the most sensitive cells, will protect more effect-
ively the entire organism. If an association between internal
dose increase and early effects appearance may be postu-
lated, the progression of the former, being responsible for
wider and wider alterations to various target organs, may
pave the path for subclinical damages up to an overt clinical
intoxication.

The lack of information on the precise adverse effects
induced by the critical dose, the knowledge of early bio-
logical effects on a target organ, and the large number of
exposed subjects have to be considered, applying the pre-
cautionary principle, enough to identify an As threshold

Table 3. List of metabolites correlated to U-naAs levels obtained from the
OPLS loading plot.

Directly correlated Inversely correlated

TMAO Creatinine
Taurine Lactate
Citrate N-acetyl groups
Hippurate Glutamine
DMA Choline and its derivatives
Acetate
3-Hydroxy-butyrate
cis-Aconitate
Acetone
3-Hydroxy-isovalerate
2-Oxoglutarate

732 E. LOCCI ET AL.



value. In the last century, the failure in applying this
approach, such as for tetraethyl lead in gasoline, misled
health policy makers, causing severe health consequences
for the general population.

Some limitations affect our findings. First, we focussed
only on the cumulative value of U-naAs (represented by the
pool of inorganic As, MMA and DMA, which are the only
pathological species reported in literature). Furthermore, our
sample was limited being the experiment designed as a
proof of concept, but despite this, the 1H NMR approach
allowed us to identify a metabolomics profile related to early
subclinical effects and/or critical effects related to back-
ground As in non-exposed healthy individuals. Moreover,
urinary As was only measured in male subjects at a single
time point and not in a longitudinal way. This approach may
be justified by our principal interest, which was to investi-
gate the possible effects of background As exposure in a
real-world scenario, and by the explorative nature of this
study. Finally, the lack of a control group is justified by the
unfeasibility to collect samples from urinary As-free
individuals.

Conclusion

The main result of our study is the suggestion of a metabo-
lomics effect of background As exposure on the human urin-
ary profile. Intriguingly, the main metabolites involved in the
early body response are the same described either in the
animal models of high dose As exposure and in the environ-
mental exposed human beings, suggesting a common path-
way activation to As in a dose-independent way. If these
preliminary results will be confirmed by analysing a wider
sample or by performing a longitudinal analysis, a major con-
cern may arise from the choice of a legal definition of a ‘safe’
As threshold level in the environment. The history of the
delays in appropriate risk management policies should lead
to strongly consider the precautionary principle in the defin-
ition of As exposure limit values, even if the international
political trend seems to privilege a ‘no-threshold’ approach.

Further studies are warranted in order to increase the
knowledge of As toxicology by means of ‘omics’ sciences by
studying the association between As-related metabolic pat-
terns alterations and early subclinical adverse health effects
in selected national cohorts and/or in target organs.
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