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Preface 

This dissertation faces the problem of the optimum design of steel truss arches subject to multiple 

load cases. 

Arches are one of the most ancient shape-resistant structures, widely used in both civil 

engineering and architecture. For instance, arches can be considered as purely compressed 

structures, provided that their “line of thrust” coincides with the centre line of the arch. The “line 

of thrust” is the locus of the points of application of the thrusts (internal forces or stress resultants) 

that must be contained within the cross-section of the arch in such a way that the arch transfers 

loads to the foundations through axial compressive stresses only. As a matter of fact, the more the 

“line of thrust” differs from the centre line of the arch, the larger the unfavourable bending 

moments that arise in the arch. In this regard, the Eddy’s theorem for arches states: 

“The bending moment at any section of an arch is proportional to the vertical intercept between 

the linear arch (or theoretical arch) and the centre line of the actual arch” 

where the “linear arch” corresponds to the “line of thrust” drawn for a given load. 

This is the reason why it is fundamental to pay close attention to the choice of the shape for an 

arch in order to minimize (or avoid when it is possible) unfavourable bending effects. Several 

analytical, graphical and physical methods are provided to find the optimal shape of a monolithic 

(single rib) arch subjected to a certain load case (i.e. the “funicular curve” for that load). However, 

if multiple load cases must be considered, it is not possible to find a proper optimal shape for an 

arch with single rib. In this case, the choice of truss arches with at least two chords becomes 

indispensable. 

Indeed, it has been demonstrated that structural optimization of in-plane truss arches with two 

chords subjected to a single load case leads to optimal solutions in which upper and lower chords 

tend to coincide with each other and with the “funicular curve” (i.e. the “line of thrust”) for that 

load. 

In light of the above, simultaneous shape and size optimization of steel truss arches with two 

arched chords linked each other through a bracing system (with variable Pratt-type pattern) has 

been performed for multiple load cases and different structural boundary conditions. Truss arches 

are effectively used in arch bridges, especially when the arch span exceeds 200 meters (five out of 

the six steel arch bridges with a span over 500 m are truss arch bridges). 
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For this purpose, a hybrid optimization routine integrating a parametric definition of the design 

problem, a metaheuristic optimization algorithm and a code for Finite Element Analysis (FEA) 

has been developed through a MATLAB program. 

Structural optimization aims to find the minimum (or the maximum) value of an objective 

function that must be defined as a function of several parameters, assumed as design variables of 

the optimization problem. Therefore, a preliminary parametric definition of the design problem 

was indispensable to select the design variables among all parameters involved in the problem. 

The proposed optimization method allows to simultaneously optimize a larger set of design 

variables, notwithstanding their large number and various nature (topology, shape and size, as 

well as continuous and discrete variables have been concurrently considered). 

In particular, the shape design variables have been chosen among the parameters defining the 

cubic parametric function of Rational Bézier Curves with four control points. Rational Bézier 

Curves are widely used in vector graphics to model smooth curves because they can be easily 

deformed by changing the position of control points or by varying its corresponding non-negative 

weight factors (whose values define the attraction level that the “control polygon” exerts on the 

curve). Third-degree Rational Bézier Curves have been chosen to optimize the shape of the arch 

chords because they can represent a wide family of curves (including conic curves), depending on 

a small number of parameters, thus allowing to assume a limited number of shape design 

variables. 

In so doing, in-plane truss arches with different span lengths and structural boundary conditions 

have been optimized for multiple load cases, only considering vertical loads (acting on the same 

plane as the arch), since in-plane arches are not suited to withstand out-of-plane loads. 

On the other hand, spatial arched trusses with two arched chords lying on different planes have 

been optimally designed for multiple loadings acting in different directions. In particular, a steel 

arched truss with a lower arched chord variably inclined in the 3D-space and a horizontal upper 

arched chord linked each other through a bracing system has been designed and optimized for 

three vertical load cases and a horizontal seismic action parallel to the upper chord plane.  

Thus, analysing the obtained results, useful suggestions for steel truss arch design have been 

deduced and presented in this dissertation. 
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Prefazione 

La presente tesi affronta il tema della progettazione ottimale di archi reticolari in acciaio soggetti 

a multiple combinazioni di carico. 

Gli archi sono tra i più antichi elementi strutturali cosiddetti “resistenti per forma”, ampiamente 

utilizzati tanto nell’Ingegneria Civile quanto nel campo dell’Architettura. 

Gli archi possono considerarsi strutture puramente compresse, purché la loro “curva delle 

pressioni” coincida con la linea d’asse dell’arco. La “curva delle pressioni” è definita come il luogo 

dei punti di applicazione delle “spinte” (delle azioni interne o delle risultanti degli sforzi) che deve 

essere contenuta all’interno della sezione trasversale dell’arco affinché l’arco sia in grado di 

trasferire i carichi esterni alle fondazioni tramite puri sforzi assiali di compressione. Di fatto, tanto 

più la “”curva delle pressioni” si discosta dalla linea d’asse dell’arco, quanto più si manifestano 

sfavorevoli momenti flettenti in esso. A tal proposito, il teorema di Eddy per gli archi afferma: 

“Il momento flettente agente in ogni sezione di un arco è proporzionale allo scostamento 

verticale tra “l’arco teorico” e l’asse reale dell’arco” 

In cui per “arco teorico” si intende la “curva delle pressioni” disegnata per un dato carico. 

Questa è la ragione per la quale è da ritenersi fondamentale prestare grande attenzione alla scelta 

della forma di un arco al fine di minimizzare (o evitare laddove possibile) sfavorevoli effetti 

flessionali. Sono svariati i metodi analitici, grafici e fisici disponibili per individuare la forma 

ottima di un arco monolitico (a singolo corrente) soggetto ad una data condizione di carico (ossia 

il “poligono funicolare” calcolato per quel dato carico). Tuttavia, se devono essere prese in 

considerazione differenti combinazioni di carico, non è possibile individuare una forma ottima da 

assegnare ad un arco con singolo corrente. In questo caso diventa infatti necessario considerare 

archi reticolari costituiti da almeno due correnti. 

È stato infatti dimostrato che l’ottimizzazione strutturale di archi reticolari a due correnti 

complanari soggetti ad una singola condizione di carico, condurrebbe a soluzioni ottime in cui i 

correnti inferiore e superiore tendono a coincidere l’uno con l’altro e con il “poligono funicolare” 

(la “curve delle pressioni”) calcolato per il carico considerato. 

Alla luce di quanto detto sinora, è stata effettuata la simultanea ottimizzazione di topologia, forma 

e dimensioni di archi reticolari in acciaio composti da due correnti ad arco interconnessi tramite 

un sistema di aste (con variabile configurazione di tipo Pratt) soggetti a multiple combinazioni di 

carico e differenti condizioni di vincolo. Gli archi reticolari sono efficacemente usati nei ponti ad 
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arco, in particolare nelle condizioni in cui la campata è maggiore di 200 metri (cinque dei sei ponti 

ad arco in acciaio con campata superiore a 500 metri sono supportati da archi reticolari). 

A tal scopo è stato opportunamente sviluppata una ibrida routine di ottimizzazione che incorpora 

la parametrica definizione del problema di progettazione, un algoritmo di ottimizzazione meta-

euristico, unitamente ad un codice per Analisi agli Elementi Finiti (FEA), all’interno di un 

programma implementato in ambiente MATLAB. 

L’Ottimizzazione Strutturale è finalizzata a trovare il minimo (o il massimo) valore di una 

funzione obiettivo, la quale deve essere definita in funzione di differenti parametri, assunti come 

variabili di progetto del problema di ottimizzazione. Pertanto, una preliminare definizione 

parametrica del problema di progettazione è indispensabile al fine di selezionare le variabili di 

progetto tra tutti i parametri coinvolti nel problema. Il metodo di ottimizzazione qui proposto 

permette di ottimizzare simultaneamente un unico set di tutte le variabili di progetto, nonostante 

l’ampio numero e l’eterogenea natura (variabili topologiche, di forma e dimensioni, nonché 

continue e discrete sono state contemporaneamente prese in considerazione) che le caratterizza. 

In particolare, le variabili di progetto di forma sono state scelte tra i parametri che definiscono 

una funzione parametrica di terzo grado di Curve Razionali di Bézier con quattro punti di 

controllo. Le Curve Razionali di Bézier sono ampiamente utilizzate nella grafica vettoriale per 

modellare curve di forma libera in quanto facilmente deformabili variando la posizione dei relativi 

punti di controllo o i dei corrispondenti fattori di peso non negativi (i cui valori definiscono il 

livello di attrazione che il “poligono di controllo” esercita sulla curva). Le Curve Razionali di 

Bézier di terzo grado sono quindi state adottate nell’ottimizzazione della forma dei correnti degli 

archi considerati in quanto capaci di rappresentare una vasta famiglia di curve (che include anche 

le coniche) dipendendo da un ridotto numero di parametri, permettendo quindi l’assunzione di 

un limitato numero di variabili di progetto di forma. 

Procedendo come descritto sopra, archi reticolari planari, caratterizzati da campate di differenti 

luci e da differenti strutturali condizioni al contorno, sono stati ottimizzati per multiple condizioni 

di carico, considerando soli carichi verticali (agenti nello stesso piano dell’arco), non essendo gli 

archi planari in grado di resistere a carichi agenti fuori dal piano. 

D’altro canto, archi reticolari spaziali aventi due correnti ad arco giacenti su differenti piani, sono 

stati ottimamente progettati per multiple combinazioni di carico agenti in differenti direzioni. In 

particolare, una trave reticolare curva avente corrente inferiore ad arco variabilmente inclinato 

nello spazio 3D e corrente superiore curvo giacente su un piano orizzontale interconnessi tramite 

un sistema di aste di irrigidimento, è stata opportunamente progettata e ottimizzata per tre 

combinazioni di carico verticali e un’azione sismica orizzontale parallela al piano del corrente 

superiore. 
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Dall’analisi dei risultati ottenuti, sono state quindi tratte utili indicazioni per la progettazione di 

strutture reticolari ad arco in acciaio, illustrate nel presente lavoro di tesi. 
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Chapter 1 

1. Introduction 

1.1 Subject and purposes of the thesis 

This dissertation faces the problem of the structural optimization of steel planar and spatial truss 

arches, for different boundary conditions and multiple load cases. The results of topology, shape 

and size optimization, simultaneously performed through an optimization macro-algorithm 

opportunely developed, have been presented and analysed in this work. 

The present research aims to demonstrate the importance of concurrently optimizing all design 

variables whose variation more significantly affects the optimal solutions of a design problem, 

notwithstanding their various nature (topology, shape and size) and potential large number, in 

order to guarantee a very high level of optimization in terms of both aesthetic and structural 

results. 

Further intent of this dissertation is also to highlight the pivotal role of parametric design in a 

structural optimization process, especially in its preliminary phase, to identify the design 

variables, to properly define their upper and lower bounds, parametrically define the geometry as 

a function of design variables and then formulate the considered optimization problem as 

function of them. 

The ultimate goal of this study is to deduce (from results obtained applying the proposed 

optimization strategy) useful suggestions and provide advantageous guidelines for the optimum 

design of steel arched trusses. 

1.2 Parametric design overview 

The term parametric originates from mathematics, meaning something expressed as function of 

parameters, constant or variable terms that determine the specific form of a function. 

Parametric design (Woodbury 2010) is a complex process that aims to define a design problem as 

a function of several parameters. For this purpose, the designer must establish the relationships 

between the parts of the project and define them as function of constant and variable parameters 

(i.e. as parametric equations). Indeed, parametric design requires a complex act of thinking since
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 it doesn’t lead to a single design solution (as the conventional design) but rather it leads to huge 

set of possible design solutions. Nowadays, the designers can benefit from advanced computer 

software and tools that implement standard Computer Aided Design (CAD) systems for 

parametric modelling. However, parametric modelling tools are just viable means for parametric 

design, as direct modelling techniques (e.g. standard CAD programs) are useful tools for 

conventional design. 

1.2.1 Parametric modelling techniques 

Contrary to what is believed, parametric modelling techniques appeared not so recently. Antoni 

Gaudí, one of the most known Spanish architects, considered as the greatest exponent of Catalan 

Modernism, started to design architecture by taking advantage of parametric catenary curves and 

parametric hyperbolic paraboloids at the end of the nineteenth century (Makert and Alves 2016). 

The upside-down model of church realized (Figure 1. 1) in 1898 by the Catalan architect is 

recognized to be one of the earliest examples of parametric modelling. In his design for the Church 

of Colònia Güell, he created a model of strings weighted down with birdshot to create complex 

vaulted ceilings and arches. 

 

Figure 1. 1 Physical inverted model for the Church of Colònia Güell built up by Antonio Gaudí 

By adjusting the position of the weights or the length of the strings he could see in real time how 

the shape of each arch changed and also how this change affected the shape of other arches 
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connected to it. As a matter of fact, Antoni Gaudi defined his model as function of several variable 

parameters as the weights of birdshots, the positions of the weights and the lengths of the strings, 

in order to easily consider various possible solutions during the (parametric) design process. In 

so doing, in accordance with Hooke’s law, by varying the parameters and inverting his models he 

could directly obtain different pure compression solutions, without manually solving 

mathematical parametric equations. 

The most important features of parametric modelling are: 

• Parametric modelling leads to flexible models; 

• In a parametric model, shapes change as soon as a dimension changes and it is possible to 

automate repetitive changes; 

• Attributes are interlinked automatically (by altering only one parameter, the other 

parameters get adjusted automatically); 

• Parametric modelling allows the designer to define entire classes of shapes instead of 

specific instances; 

• Existing data can be easily reused to create new designs. 

It is worth noting that, despite the many advantages provided by the parametric modelling, it is 

not possible to affirm that parametric modelling is better than direct modelling. Most probably, 

the best Computer Aided Design (CAD) strategy must include both modelling techniques. 

Nowadays there are many software choices and tools available in the market for parametric 

modelling, among which some of the best known are: 

• SOLIDWORKS 

• CATIA 

• CREOPARAMETRIC 

• GRASSHOPPER 

• AUTODESK REVIT 

• AUTODESK DYNAMO. 

SOLIDWORKS is used in mechanical design applications and is largely adopted in the plastics 

industry. 

CATIA (Computer Aided three-dimensional Interactive Application) was used by architect Frank 

Gehry to design some of his award-winning buildings such as the Guggenheim Museum Bilbao. 

CREOPARAMETRIC is part of a broader product development system developed by PTC. 

GRASSHOPPER is a graphical algorithm editor tightly integrated with Rhinoceros 3-D modelling 

tool. Grasshopper allows the designer to build a parametric model by means of a “graphical code” 
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of “components” and “parameters” (whose operation is clearly described in (Tedeschi, Wirz, and 

Andreani 2014). GRASSHOPPER is considered as a visual programming language. Its integration 

with Rhinoceros allows a perfect interconnection between parametric and direct modelling. 

AUTODESK REVIT is Building Information Modelling (BIM) software developed in response to 

the need for software that could create three-dimensional parametric models that include both 

geometry and non-geometric design and construction information. 

AUTODESK DYNAMO is also a visual programming tool properly developed for implementing 

Revit. 

1.3 Structural optimization overview 

Optimization techniques are effectively applied in scientific, economic and social fields. 

The term optimization (Garret N. Vanderplaats 1984) originated from the mathematical 

technique of finding the minimum or the maximum value of a function, called objective function, 

depending on  several parameters, called design variables. A common optimization problem can 

be formulated and generalized as follows: 

min𝐹(𝐱)   or   max𝐹(𝐱)               (1) 

Subject to 

𝐱𝑙 ≤ 𝐱 ≤ 𝐱𝑢               (2) 

in which (in Eq. (1)) 𝐱 = {𝐱1, … , 𝐱𝑗, … , 𝐱𝑛} is the design variable vector (the collection of n system 

parameters to be identified),  𝐱𝑙 = {𝐱1
𝑙 , … , 𝐱𝑗

𝑙 , … , 𝐱𝑛
𝑙 } and 𝐱𝑢 = {𝐱1

𝑢, … , 𝐱𝑗
𝑢, … , 𝐱𝑛

𝑢} are vectors of its 

lower and upper bounds (Eq. (2)), respectively. Solving an optimization problem means finding 

the best vector of design variables (i.e. the best solution) that minimizes or maximizes the 

objective function. Sometimes, the optimization problem is also subjected to some equality (Eq. 

(3)) and/or inequality (Eq. (4)) constraint functions, depending on design variables, as follows: 

ℎ𝑖(𝐱) = 0, 𝑖 = 1,…𝑚               (3) 

𝑔𝑗(𝐱) ≤ 0, 𝑗 = 1,… 𝑝              (4). 

Structural optimization is a peculiar branch of design optimization, motivated by the need of 

optimizing use of materials in mechanical and structural engineering, e.g. minimizing the 

quantity (its total volume or its weight) of the material needed to withstand loads or minimizing 

the structural compliance (i.e. maximizing the stiffness) of a system for given boundary 

conditions. 
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In the past, the search for more efficient structures was carried out through trial-and-error 

procedures. The recent advent of advanced structural optimization techniques, starting from 

innovative optimization algorithms to computer software and tools properly developed for this 

purpose, allowed to significantly save costs and obtain better results in optimum design process. 

 

Figure 1. 2 Flowchart of the standard routine of a structural optimization process 

In this regard, the flowchart in Figure 1. 2 schematises a standard optimization routine starting 

from a need of optimization. A parametric definition of the design problem is then indispensable 

to select a proper set of design variables and define the objective and constraint function(s) 

depending on chosen design variables. The choice of a proper optimization algorithm among all 

provided by the literature plays a crucial role in a structural optimization process (Clune 2013). 

The algorithm selection must be related to the nature of the optimization problem, depending, in 
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turn, on the number and nature of design variables (continuous or discrete, size, shape or 

topology), constraint functions (linear, nonlinear or convex, differentiable or nondifferentiable) 

and objective (none, single or multiple). Most optimization problems have single objective 

function. However, there are also cases characterized by none or multiple objective functions. For 

instance, “feasibility problems” aims to find values for design variables in accordance with several 

constraints but without any particular objective to optimize (“Types of Optimization Problems | 

NEOS” n.d.).  

Most structural optimization problems are constrained, i.e. subject to constraint functions that 

for instance limit stresses (strength constraints) or maximum deflections (serviceability 

constraints) in a structure, in accordance with mechanical properties (e.g. the allowable stress) of 

materials, as well as with stiffness and stability conditions of the structural system. 

Figure 1. 3 represents through very simple examples the most important big categories of 

structural optimization, whose differentiation is based on the nature of design variables 

(regardless of being discrete or continuous), as above mentioned: 

• Size optimization 

• Shape optimization (also known as geometry optimization) 

• Topology optimization. 

Of which each one will be more in detail described in the following sections §1.3.1, §1.3.2 and 

§1.3.3. 

It is worth noting that these formulations of the optimization problem could be integrated in a 

unique optimization process and performed one after the other (e.g. size optimization commonly 

follows the other optimization phases) or at the same time, thus formulating the optimization 

problem considering a unique set of all design variables, independently from their various nature. 

 

Figure 1. 3 Three categories of structural optimization: (a) Sizing optimization of a truss structure, (b) shape 
optimization and (c) topology optimization. The initial problems are shown on the left, whereas the 

optimal solutions are shown on the right (M P Bendsøe and Sigmund 2003) 
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1.3.1 Size optimization 

As before mentioned, in a multidisciplinary structural optimization process, size optimization is 

commonly performed after shape and topology optimization, since the sizing operation aims to 

find the optimal values of parameters defining the cross-sections of structural elements. 

In particular, in the case of size optimization of plates and shells, their constant or variable 

thickness can be adopted as design variable (or set of design variables), as shown in Figure 1. 4. 

In this regard, it is a common practice to optimize the variable thickness of thin shell roofs in 

order to improve their structural behaviour (mainly dependent on their shape) in terms of 

strength, stiffness and stability, ensuring a distribution of internal stresses as uniform as possible 

to avoid disadvantageous bending effects (Tomás and Martí 2010). 

On the other hand, in the case of size optimization of frame structures, the cross-sectional areas 

of members are usually assumed as design variables (Tejani et al. 2018; Afshar and Faramarzi 

2010; Wang, Zhang, and Jiang 2002). Rarely, single parameters characterizing element cross-

sections (e.g. the sides of box cross-sections or the diameters of circular cross-sections, as well as 

the thicknesses of hollow cross-sections) are assumed as design variables (Figure 1. 5), since such 

an approach would require a significant increase in the number of design variables. 

Furthermore, in order to reduce the needed number of size design variables, it is also a common 

practice to group the elements of frame structures into several groups, on the basis of their various 

structural functions or some geometrical considerations (as symmetric conditions). 

However, in size optimization of discrete structures (e.g. frame structures) it could be convenient 

to adopt discrete design variables (i.e. characterized by sets of isolated values), whose parameters 

were taken from a list of commercial structural cross-sections (Pezeshk, Camp, and Chen 2000). 

 

Figure 1. 4 Examples of size design variables of shells (a) and plates (b) 
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Figure 1. 5 Examples of size design variables of trusses (i.e. frame structures) 

Since solving an optimization problem with discrete design variables is usually much more 

difficult than solving similar problems with continuous design variables, design variables can be 

set as continuous and at a later time, rounded to the closest integer (Haftka and Gürdal 1992) 

(that could be assumed as index of a list of discrete values). 

1.3.2 Shape optimization 

Shape (geometry) optimization is a particular section of structural optimization that aims to find 

the optimal shape of the structure to be optimized for given boundary conditions. In shape 

optimization problems, the shape is unknown. Nodes coordinates of a discrete or a continuous 

structure (properly discretized into lines or surface elements) can be directly assumed as shape 

design variables (as shown in Figure 1. 6). 

 

Figure 1. 6 Shape optimization of a discrete structure: (a) ground structure and (b) optimized structure 
(Tejani, Savsani, and Bureerat 2018) 

However, the optimization problem of large-scale structures (continuous or discrete) 

characterized by a large number of nodes would require a high number of design variables. It 

could be therefore more advantageous to adopt parametric shape functions, depending on a small 

number of parameters that can be assumed as shape design variables of the optimization problem. 

The “parametrization” of a shape to be optimized, through appropriate shape functions, makes 
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easier to modify the shape under consideration by just varying the values of a few parameters 

(thereby considerably reducing the required number of shape design variables involved). 

The process of finding the best shape of a structure for some design requirements (such that 

compliance with given boundary conditions and loads, material properties, allowable stresses and 

displacements, a reasonable lifetime and architectural value) is also called “form-finding”. Before 

the advent of advanced computational techniques, engineers and architects in seeking optimal 

structural shapes employed physical models (e.g. hanging models). The English scientist Robert 

Hooke (1635-1703) in 1675 discovered and studied the relationship between a hanging chain 

(which assumes the form of a catenary under its self-weight and can withstand tension forces) 

and an arch in compression (Block, DeJong, and Ochsendorf 2006). Hooke thus summarized his 

intuition in a famous Latin anagram “ut pendet continuum flexile, sic stabit contiguum rigidum 

inversum”, translated by Heyman as follows: “as hangs the flexible line, so but inverted will stand 

the rigid arch” (Heyman 1998). In a more general sense, the Hooke’s principle means that the 

shape of a string under a set of loads (subject to pure tension forces), if stiffened and inverted, 

corresponds to a “thrust line” of compressive forces for an arch supporting the same set of loads. 

 

Figure 1. 7 Form-finding through Thrust Network Analysis (TNA): (a) form diagram (Γ), force diagram (Γ*) 
and thrust network (G); (b) relation between two reciprocal diagrams 
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The so obtained shape of the taut string and the compressed inverted arch define a funicular shape 

for these loads (Block, DeJong, and Ochsendorf 2006). In 1748, Poleni analysed a real structure 

using Hooke’s idea to assess the safety of the cracked dome of St. Peter’s in Rome, showing that 

the dome was safe by employing the hanging chain principle. The Hooke’s principle is also 

applicable to three-dimensional hanging systems (e.g. hanging membranes or cable networks) to 

find optimal shapes of discrete or continuous shells for certain load conditions. Antoni Gaudí 

(1852–1926), Heinz Isler (1926–2009) and Frei Otto (1925-2015) first took advantage of physical, 

gravity-loaded, inverted hanging models as form-finding tools for designing shell structures, 

thereby investigating and validating the Hooke’s law of inversion. 

Even if physical models can always be considered as valid form-finding techniques for both, 

bidimensional and three-dimensional structures (e.g. arches, vaults and shells), more advanced 

form-finding techniques have been developed, taking advantage of new computer methods for 

graphic statics (very intuitive and powerful method for exploring funicular shapes through 

equilibrium analysis). 

These new interactive form-finding techniques can be broadly grouped into three categories 

(Adriaenssens et al. 2014; Veenendaal and Block 2012): 

• Stiffness matrix methods (based on elastic and geometric stiffness matrices) are among 

the oldest form-finding methods 

• Geometric stiffness methods that are material independent. The Force Density Method 

(FDM) (Schek 1974) and the Thrust Network Analysis (TNA) (i.e. a three-dimensional 

version of Thrust Line Analysis  (Block 2009; Block and Ochsendorf 2007)) are among the 

most known 

• Dynamic equilibrium methods solve problems of dynamic equilibrium by reaching a static 

equilibrium state. For instance, Dynamic Relaxation (DR) (Adriaenssens et al. 2014) and 

Particle-Spring (PS) systems (Kilian and Ochsendorf 2005) are among the most known. 

Figure 1. 7 illustrates the relationship between the two planar form (Γ) and force (Γ*) diagrams 

and the three-dimensional spatial network (G) characterizing a form-finding procedure 

performed through the Thrust Network Analysis (TNA) method, developed by the Block Research 

Group at the ETH of Zurich (Switzerland) for the form-finding of compressive funicular shells by 

taking advantage of graphic statics computer techniques. 

1.3.3 Topology optimization 

Topology optimization can be broadly defined as the optimization of spatial material distribution 

in a design space. The first paper on topology optimization was published in 1904 by the 

Australian inventor Michell, who derived optimality criteria for the least weight layout of trusses 
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(Michell 1904). The work of Michell has set the foundation for research into the optimal layout of 

trusses, with materials of same or different strength in tension and compression. Michell proved 

that an optimum truss must follow the orthogonal network of lines of maximum and minimum 

strain in a constant magnitude strain field. In 1976, Prager and Rozvany (Prager and Rozvany 

1977) investigated the Michell’s theory and formulated the first general theory of topology 

optimization, termed “optimal layout theory”. Furthermore, Prager and Rozvany introduced the 

terms “truss-like continua” to define “Michell’s trusses” as structures in which, in some regions, 

members of infinitesimal cross-sectional area have an infinitesimal spacing (Querin, Victoria, and 

Martí 2010). Besides, Rozvany et al. (Rozvany, Zhou, and Gollub 1993) showed that the optimal 

topologies for plastic stress design and elastic compliance design are the same, and the volume or 

weight of the latter is given by the square of the volume of the former (multiplied by a given 

constant). After that, structural topology optimization of continuum and discrete structures has 

been extensively explored (Feng 2014). 

In structural topology optimization, the distinction between continuum and discrete structures 

optimization becomes clearer, with respect to other classes of optimization problems. 

The goal of topology optimization of continuum structures is to optimise the material distribution, 

thereby finding the optimal number, position and shape of cavities (Feng 2014), i.e. finding the 

optimal placement of a given isotropic material within a space (M P Bendsøe and Sigmund 2003). 

The simplest examples of topology optimization problems for continuum structures are 

formulated for minimum compliance (maximum global stiffness) as objective function. One may 

distribute a given amount of material in a certain region, so that the stiffness of the resulting 

structure is maximized for a given load case (Huang and Xie 2010). In the last decades, several 

methods for topology optimization of continuum structures have been developed (Tejani, Savsani, 

and Bureerat 2018): 

• Homogenization method, which consists of computing the optimal distribution in space 

of an anisotropic material that is constructed by introducing an infimum of periodically 

distributed small holes in a given homogeneous, isotropic material, with the requirement 

that the resulting structure can carry the given loads as well as satisfy other design 

requirements. The computation of effective material properties for the anisotropic 

material is carried out using the method of homogenization (Martin Philip Bendsøe and 

Kikuchi 1988) 

• SIMP (Solid Isotropic Microstructure with Penalization) method, where the design region 

is meshed into a fixed grid of 𝑛 finite elements. All elements carry densities assumed as 

design variables. The objective is to find an optimal material distribution in the design 

domain to reach quasi-discrete structures, thereby minimizing the compliance of the 
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structure (objective function)  in accordance with some constraints (M P Bendsøe and 

Sigmund 2003) 

• Evolutionary Structural Optimization (ESO)/Bidirectional Evolutionary Structural 

Optimization Method (BESO), which works on simultaneous removal and addition of 

material. An application example of ESO method is shown in Figure 1. 8 (took from 

(Huang and Xie 2010)) 

• Level Set Method is based on boundary tracked model. The contours of a parametrized 

family of level-set functions are here used to generate the boundaries of a structure, and 

the topology can change with changes in the level-set function. The principal idea of level 

set method is to remove material in regions of low stress and to add material in regions of 

high stress (M P Bendsøe and Sigmund 2003). 

Discrete topology optimization (also known as Truss Topology Optimization (TTO)) aims to 

optimize the connectivity between nodes (whose coordinates are known and fixed) of a grid. The 

problem of topology optimization of trusses can be conveniently formulated by means of the so-

called ground structure method (M P Bendsøe and Sigmund 2003). 

 

Figure 1. 8 Evolutionary Structural Optimization(ESO) method for topology optimization of continuum 
structures: (a) Design domain, boundary and loading conditions, Optimal designs (b) without a 
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local displacement constraint, (c) with displacement constraints 𝑢𝐴
∗ = 1.4𝑚𝑚, (d) 𝑢𝐴

∗ = 1.2𝑚𝑚 and 
(e) 𝑢𝐴

∗ = 1.0𝑚𝑚 (Huang and Xie 2010) 

In this approach, the layout of a truss structure is found by allowing a certain set of connections 

between a fixed grid of nodal points as potential structural or vanishing members. As a matter of 

fact, truss topology optimization problems based on the “ground structure approach” is 

commonly formulated as a standard sizing problem, seeing as how it allows for using the 

continuously varying cross-sectional bar areas as design variables, including the possibility of zero 

bar areas to be removed. In this regard, the Figure 1. 9 shows an example of topology and size 

optimization of a 20-bar truss, which was proposed in (Tejani, Savsani, and Bureerat 2018). 

It is worth noting that structural topology optimization is broadly considered like a peculiar 

category of structural shape (geometry) optimization, even if subjected to strict design bounds 

(e.g. fixed nodes in cases of TTO). 

 

Figure 1. 9 Topology and size optimization of a 20-bar truss: (a) ground structure, (b) optimized solution 
(Tejani, Savsani, and Bureerat 2018) 

1.4 Numerical methods for structural optimization: Overview 

of optimization algorithms 

An optimization algorithm is a sequence of actions (i.e. a procedure) which is executed iteratively 

by comparing various solutions of an optimization problem until a convergence criterium is 

satisfied (an optimum or a satisfactory solution is found). 

The section §1.3 provided an introduction to optimization techniques applied to structural design 

(simply called “structural optimization”). Due to the complexity of most structural optimization 
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problems, the choice of an appropriate optimization algorithm becomes of utmost importance in 

structural optimization (Clune 2013). The algorithm selection must be related to the nature of the 

optimization problem (e.g. constrained or unconstrained), also depending, in turn, on the number 

and nature of design variables (continuous or discrete, size, shape or topology), constraint 

functions (linear, nonlinear or convex, differentiable or nondifferentiable) and objective (none, 

single or multiple). 

The strategy used to move from one iteration to the next distinguishes one algorithm from another 

(Nocedal and Wright 1999). All optimization algorithms can be roughly grouped into the following 

classes (Cavazzuti 2013): 

• Deterministic algorithms 

• Optimality Criteria Methods 

• Stochastic algorithms 

They will be the subjects of the following sections §1.4.1, §1.4.2 and §1.4.3, respectively. 

1.4.1 Deterministic algorithms 

The term deterministic originated from determinism, which in physics corresponds to the 

concept of “cause-and-effect”, according to which, every state (or event) within a model is 

completely determined by previous states. 

Therefore, deterministic algorithms use specific rules for moving one solution to another and for 

a given set of inputs, they produce the same set of outputs for different runs. 

As a matter of fact, deterministic optimization algorithms follow a rigorous mathematical 

approach (they are also known as mathematical programming techniques). 

The literature provides a large number of mathematical programming techniques for both, 

constrained and unconstrained optimization problems. Some of the most known deterministic 

are the following: 

• Linear Programming (LP) algorithms, which have been properly developed to solve a 

peculiar class of optimization problems in which the objective and constraint relations are 

linear functions of design variables. Linear programming involving large number of design 

variables and constraints are usually solved through the Simplex Method, which consists 

of continuously decreasing the value of the objective function by going from one basic 

feasible solution to another until the minimum value of the objective function is achieved. 

Interior methods for solving Linear Programming problems (like the Karmarkar’s 

algorithm) demonstrated to be much faster than the Simplex Method. Special attention 

deserves the Integer Linear Programming (ILP) techniques, developed to solve discrete 
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programming problems (i.e. optimization problems with discrete design variables). The 

Branch-and-Bound algorithm is a powerful algorithm to solve Mixed Integer Linear 

Programming (MILP) problems (as well as for Mixed Non-Linear Programming 

problems), which are characterized by the coexistence of continuous and discrete design 

variables. Most structural optimization problems can’t be directly formulated as LP 

without needing a degree of simplification. However, LP algorithms are of interest to 

designer because most Non-Linear Programming (NLP) problems can be solved as a 

sequence of repetitive approximate LP problems thereby finding the exact solution of the 

original NLP problem provided that the procedure is repeated for a certain number of 

times  (Haftka and Gürdal 1992). 

• Non-Linear Programming (NLP) algorithms have been developed to solve optimization 

problems in which the objective and/or the constraints are non-linear functions of the 

design variables. NLP techniques are subdivided in turn into several categories: 

✓ Zeroth Order Methods, (also called “direct methods” or “derivative-free 

methods”), use only the value of the objective function during the optimization 

process. The literature provides several methods for minimizing objective 

functions of a single design variables (e.g. the bracketing method, the Fibonacci 

and Golden Section Search, the Quadratic Interpolation) as well as for multi-

variable optimization problems. Among the latter, the most known is the 

Sequential Simplex Method, which begins with a regular geometric figure called 

simplex (with 𝑛 + 1 vertices in a 𝑛-dimensional space) subject to three operations 

namely “reflection”, “contraction” and “expansion” (Haftka and Gürdal 1992) 

✓ First Order Methods employ values of the objective function and its first 

derivatives with respect to the design variables. Among these, the Bisection 

Method was developed to minimize objective functions of only one design variable, 

operating in a similar manner with respect to the Bracketing and the Golden 

Section Search techniques, i.e. progressively reducing the interval where the 

minimum (the zero of the first derivative) is known to lie. On the other hand, First 

Order Methods for multidimensional optimization problems use the gradient of 

the objective function as well as its value in calculating the move direction for the 

function minimization (the literature provides several Conjugate Gradient 

Algorithms  (Haftka and Gürdal 1992)) 

✓ Second Order Methods use values of the objective function, as well as its first and 

second derivatives. The oldest second order method for minimizing a nonlinear 

multivariable function in 𝑅𝑛 is the Newton’s Method, which is known as second 

order method not only because it uses second order derivatives of the objective 

function, but also because it has a quadratic rate of convergence. The motivation 
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behind Newton’s is identical to the steepest descent method.  (Haftka and Gürdal 

1992). 

It is worth noting that all methods briefly described so far have been developed to solve 

unconstrained optimization problems. Unfortunately, almost all problems in structural 

optimization must be formulated as constrained optimization problems, in order to obtain 

optimal solutions that satisfy unavoidable design constraints (e.g. stress, displacement, buckling 

and frequency constraints). These constraints are usually complex functions of the design 

variables available only from analysis of a finite element model of the structure (Haftka and 

Gürdal 1992). In §1.3 a general formulation of a constrained optimization problem was introduced 

through Eqs. (1), (2), (3) and (4). The constraints divide the design space into two domains, the 

so-called feasible domain, where all constraints are satisfied, and the infeasible domain where at 

least one of constraint equalities and/or inequalities is violated. 

For this purpose, several methods have been introduced to solve constraint optimization 

problems; among these 

• Lagrange Multiplier techniques, which is a mathematical method to find minima and 

maxima of a function subject to equality constraints. In cases of inequalities constraints, 

they can be easily converted to equivalent equality constraints. The Lagrange multiplier 

theorem roughly states that at any stationary point of the function that also satisfies the 

equality constraints, the gradient of the function at that point can be expressed as a linear 

combination of the gradients of the constraints at that point, with the Lagrange multipliers 

acting as coefficients (Luenberger 1969). Several methods that use Lagrange multipliers 

are available. For instance, Gradient Projection and Reduced Gradient Methods, which 

are based on projecting the search direction into the subspace tangent to the active 

constraints. On the other hand, the Feasible Direction Method operates in a opposite 

manner with respect to the gradient projection method, seeing as instead of following the 

constraint boundaries, the method try to stay as far away as possible from them (Haftka 

and Gürdal 1992). 

• Penalty Function methods allow to replace a constrained optimization problem with an 

unconstrained one by replacing the constraint functions by penalties depending on the 

degree of constraint violations. The Exterior Penalty Functions (which are applied in the 

exterior of the feasible domain) associates a penalty with a violation of constraints. It is a 

common practice to associate a penalty that is proportional to the square of a violation 

and to choose very high values of penalties in order to ensure that no constraints are 

violated. With an exterior penalty function, constraints contribute to the penalty terms 

only when they are violated. When only inequalities constraints are present, it is possible 

to define an Interior Penalty Function, where the penalty term is proportional to the 
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inverse constraint functions or a logarithmic interior penalty function can be defined. 

Interior penalty functions ensure feasible designs provided that the optimization process 

starts from a feasible design. Hence, it may be advantageous to adopt a combination of 

interior and exterior penalty function, called Extended Interior Penalty Function (Haftka 

and Gürdal 1992). 

• Multiplier Methods combine the use of Lagrange multipliers with penalty functions. 

When only Lagrange multipliers are employed, the minimum is a stationary point rather 

than a minimum of the Lagrangian function. On the other hand, when only penalty 

functions are adopted, a minimum is found but the function to be minimized tends to 

suffer from ill-conditioning (small changes in the independent variables lead to large 

changes in the dependent ones.  For these reasons it may be convenient to adopt multiplier 

methods (Haftka and Gürdal 1992). 

• Projected Lagrangian Methods (Sequential Quadratic Programming) pursue the same 

goal of Multiplier Methods (that is to convert the optimum from a stationary point of the 

Lagrangian function to a minimum of the augmented Lagrangian) but through a different 

procedure. Projected Lagrangian Methods are based on a theorem that states that the 

optimum is a minimum of the Lagrangian function in the subspace of vectors orthogonal 

to the gradients of the active constraints (the tangent subspace). These methods apply a 

quadratic approximation of to the Lagrangian in this subspace. This approach requires the 

solution of a Quadratic Programming problem, which is characterized by a quadratic 

objective function and linear constraints. 

1.4.2 Optimality Criteria Methods 

The Optimality Criteria Methods (OCM) consist of a combination of a pre-assumed optimality 

criterion with an algorithm used to resize the structure to be optimized for the purpose of 

satisfying the optimality criterion. The resizing algorithm can consist of a rigorous mathematical 

method or it can use a method specifically developed (Haftka and Gürdal 1992). 

The so-called Fully Stressed Design (FSD) method is probably the most popular among all 

Optimality Criteria Methods. 

The Fully Stressed Design (FSD) method can be summarized as follow (Haftka and Gürdal 1992): 

“For the optimum design each member of the structure that is not at its minimum gage is fully 

stressed under at least one of the design load conditions”. 

This optimality criterion implies that some material is removed from members that are not fully 

stressed, unless prevented by minimum gage constraints. 
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However, the assumption that adding or removing material to a member primarily affects the 

stresses in that member is valid only for statically determinate structures. Indeed, in cases of 

statically indeterminate structures, the minimum weight design may not be fully stressed. 

Moreover, the Fully Stressed Design method may not work well in cases of multiple materials. 

The method is also complemented by a resizing algorithm based on the assumption that the load 

distribution in the structure does not depend on member sizes. That is, the stress in each member 

is calculated and then the member is resized to bring the stresses to their allowable values 

assuming that the loads remain constant. This assumption is valid only for statically determinate 

structures. On the other hand, if the structure is statically indeterminate, the resizing routine 

(called “stress-ratio technique”) has to be applied iteratively until convergence to any desired 

tolerance is achieved (Haftka and Gürdal 1992). 

1.4.3 Stochastic Algorithms 

Stochastic algorithms use random selection criteria and probabilistic rules for moving from one 

iteration to another. Stochastic optimization algorithms produce, in different runs, different sets 

of outputs for a given set of inputs. These techniques are recommended for complex non-linear 

and discontinuous problems, where classical optimisation techniques might fail. For instance, a 

common disadvantage of deterministic algorithms (mathematical programming techniques) is 

the frequent difficulty in distinguishing local and global minima, especially in solving discrete 

optimization problems. In fact, a common way to address the discrete optimization problems with 

multiple minima is to employ random search techniques (Haftka and Gürdal 1992).  However, 

the main drawback of these algorithms is a lack of efficiency and robustness in handling 

constrained optimization problems. Fortunately, it became a common practice to implement 

these algorithms with appropriate constraint-handling techniques in order to extend their 

application to constrained optimization problems. 

Stochastic Algorithms can be roughly divided into two groups, Heuristic and Metaheuristic 

Algorithms (Yang 2014). Heuristic means “to find” or “to discover by trial and error” (self-

learning procedure). Quality solutions to a tough optimization problem can be found in a 

reasonable amount of time, but there is no guarantee that optimal solutions will be reached. 

However, a drawback of heuristic algorithms is that they are “problem-dependent”, since they use 

rules that have been properly conceived for a specific problem. Further development of heuristic 

algorithms is the so-called Metaheuristic Algorithms. The term meta in this context means 

“beyond” or “higher level”. These algorithms overcome the main drawback of simple heuristic 

algorithms, since they are not so sensitive to the nature of the specific problem to be optimized. 

In addition, another peculiar feature of all metaheuristic algorithms is the combination of 

randomization and local search. Randomization allows to move away from local search to search 
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on a global scale. For this reason, all metaheuristic algorithms are particularly suitable for global 

optimization (Yang 2014). Metaheuristic algorithms have been grouped in turn into two families: 

• Trajectory-based algorithms 

• Population-based algorithms. 

However, both families of algorithms rely on some naturally observed phenomena, of which they 

emulate the main rules to find optimal solutions through progressive improvements (Haftka and 

Gürdal 1992). 

1.4.3.1 Trajectory-based algorithms: The Simulated Annealing (SA) 

algorithm 

Trajectory-based algorithms use a single agent that moves through the design space. The steps or 

moves of the agent trace a trajectory in the search space, with a nonzero probability that this 

trajectory can reach the global optimum. Among these, the most known trajectory-based 

algorithm is the Simulated Annealing (SA) algorithm, developed in 1983 by Scott Kirkpatrick, C. 

Daniel Gellat, and Mario P. Vecchi (Kirckpatrick, Gelatt, and Vecchi 1983), inspired by the 

annealing process of metals (Yang 2014). For instance, during solidification of metals or 

formation of crystals, a number of solid states with different internal atomic or crystalline 

structure characterized by different energy levels can be obtained depending on the rate of 

cooling. If the system is cooled too rapidly, it entails a resulting solid state that would have a small 

margin of stability because the atoms will assume relative positions in the lattice structure to 

reach an energy state which is only locally minimal. In order to reach a more stable, globally 

minimum energy state, the process of annealing is used in which the metal is reheated to a high 

temperature and cooled slowly, allowing the atoms enough time to find positions that minimize a 

steady state potential energy. Observing the natural annealing process, it was found that during 

the time spent at a given temperature, it is possible to have a system jump to a higher temperature 

temporarily before the steady state is reached. This characteristic of the annealing process makes 

possible to achieve near global minimum energy states (Haftka and Gürdal 1992). Kirkpatrick et 

al. (Kirckpatrick, Gelatt, and Vecchi 1983) then developed an optimization algorithm inspired by 

the above described annealing process of metals. The method requires only function values. A 

typical simulated annealing algorithm starts setting an initial temperature 𝑇0 that will be 

progressively reduced during the process. The initial value of 𝑇0 must be high enough to increase 

the probability of finding a global minimum. Once the temperature is set, a large number of moves 

in the variable space is performed by perturbing the design. A possible convergence criterion 

could be imposed, for instance allowing the agent to move until the value of the objective function 

does not change for a specific number of successive iterations. Once convergence is achieved at a 
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given temperature that should correspond to a thermal equilibrium, the temperature is reduced 

and the process is repeated. (Haftka and Gürdal 1992). 

1.4.3.2 Population-based algorithms: The Evolutionary Algorithms (EAs) 

Unlike the trajectory-based algorithms just described in §1.4.3.1, population-based algorithms use 

multiple agents (or particles) that move through the design space (Yang 2014). The name 

“population-based algorithms” is referred to consider a set of candidate solutions of the problem 

to be optimized as a “population” of “individuals”, that during the optimization process are 

subjected to operations emulating the main evolution phases of natural species. Algorithms that 

were inspired by the theory of evolution are known as Evolutionary Algorithms (Ashlock 2006; 

Bäck 1996). 

Most biologist accepted the following definition of the term “evolution” 

“Evolution is the variation of allele frequencies in populations over time.” 

Where the allele is a different variant of a considered gene (e.g. different alleles can result in 

different observable phenotypic traits, such as different pigmentation). Genes can be considered 

as single units of chromosomes that are the molecules of DNA (deoxyribonucleic acid). 

Three key-concepts are particularly relevant to understand evolutionary computation rules: 

• Reproduction 

• Variation 

• Selection. 

At each iteration of an evolutionary algorithm, a “population” of new “individuals” is generated. 

Variation and Selection play a crucial role in generating new “offspring” (i.e. a new “generation” 

of “individuals”). 

Variation is the process that produces new alleles and then, genes. Selection is the process 

whereby some alleles survive, and others do not. Variation produces genetic diversity; selection 

reduces it. Evolutionary computation operates on populations of data structures (on sets of 

design variables). The variation is performed by making random changes in these data structures 

and by blending parts of different structures (of two parents). These two processes are called 

mutation and crossover, and together are referred to as variation operators. On the other hand, 

selection is accomplished with any algorithm that favours data structures with a higher fitness 

score (i.e. best value of the objective function of an optimization problem). A general evolutionary 

computation, in the end, can be condensed into the simple sentence “Evolution is the result of 

survival of the fittest” (Ashlock 2006). 
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Evolutionary algorithms are suitable to find approximated solutions to all types of problems 

because they ideally do not require any assumption about the underlying fitness landscape; this 

generality is shown by successes in fields as diverse as engineering, art, biology, economics, 

marketing, genetics, operations research, robotics, social sciences, physics, politics and chemistry 

and so on. 

The literature does not provide a universally accepted classification of evolutionary algorithms. 

However, it is possible to mention the most known algorithms of this family 

• Genetic Algorithms, which are the most popular and oldest evolutionary algorithms.  

Genetic algorithm repeatedly mutates a “population” of “individuals” (i.e. candidate 

solutions). Each candidate solution (i.e. each design variable vector) of a problem is 

commonly expressed in the form of a string of numbers (traditionally binary, although the 

best representations are usually those that reflect something about the problem being 

solved). At each step, a genetic algorithm randomly selects “individuals” from the current 

“population” to be “parents” and uses them to produce the children for the next 

“generation”. Over successive “generations”, thanks to mutation, crossover and selection 

operations, the population "evolves" improving the value of the objective function to be 

maximized or minimized until an optimal solution is obtained. 

• Genetic Programming, here the solutions are in the form of computer programs 

(commonly stores in parse trees), and their fitness is determined by their performance in 

solving a computational problem. For instance, Genetic Programming can be applied to 

search for an optimal formula for encoding and interpolating a data set describing a 

function (Ashlock 2006). 

• Evolutionary Programming, these algorithms are similar to genetic programming, but 

the structure of the program to be optimized is fixed, while its numerical parameters are 

allowed to evolve. 

• Evolutionary Strategy algorithms uses floating-point numbers to encode the continuous 

variables used in the differential equations. They work with vectors of real numbers as 

representations of solutions, and typically uses self-adaptive mutation rates. 

• Differential Evolution. The crucial idea behind Differential Evolution algorithms is a 

scheme for generating trial parameter vectors. These algorithms generate new parameter 

vectors by adding a weighted difference vector between two population members to a third 

member. If the resulting vector yields a lower objective function value than a 

predetermined population member, the newly generated vector will replace the vector 

with which it was compared in the following generation (Storn and Price 1997, 1995). 

• Particle Swarm Optimization algorithm is a computational method m inspired by swarm 

intelligence of fish and birds. It is a population-based algorithm where candidate solutions 
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are dubbed “particles”, whereas the term “swarm” is referred to a “population”. “Particles” 

move around in the search-space (according to simple mathematical formulae over the 

particle's position and velocity). In the canonical version of PSO, each particle is moved 

by two elastic forces, one attracting it with random magnitude to the fittest location so far 

encountered by the particle (“local best position”), and one attracting it with random 

magnitude to the best location encountered by any of the particle’s social neighbours in 

the swarm (“global best position”). If the problem is 𝑁-dimensional, each particle’s 

position and velocity can be represented as a vector with 𝑁 components. The position of a 

particle is updated every time step. Eventually, the swarm as a whole is likely to move close 

to the best location. (Poli 2008; Kennedy and Eberhart 1995). 

• Ant colony optimization algorithm is a probabilistic technique, inspired by the behaviour 

of real ant colonies (Monmarché, Guinand, and Siarry 2010) seeking a path between their 

colony and source of food. This algorithm was developed for solving computational 

problems that aim to find good paths through graphs. Shortest paths are discovered via 

pheromone (that is a secreted or excreted chemical factor that triggers a social response 

in members of the same species) trails. Ants move randomly, depositing some 

pheromones on the search space. More pheromone on path increases probability of path 

being followed. 

• Invasive Weed Optimization algorithm mimics natural behaviour of weeds in colonizing 

and finding suitable place for growth and reproduction. The IWO algorithm has a simple 

structure, based on a cooperative co-evolution approach that utilizes a divide-and-conquer 

(or decomposition) strategy to solve complex optimization problems. (Sang, Duan, and Li 

2018) 

• Harmony Search is a music-inspired algorithm. In HS algorithm, a feasible solution is 

called “harmony” and each decision variable (design variable) of the solution is 

corresponding to a “note”. Harmony Search algorithm includes a harmony memory in 

which a predetermined number of harmonies (𝑁) have been stored. New harmonies are 

iteratively generated, compared and replaced until the convergence criterion is satisfied 

(Askarzadeh and Rashedi 2017). 

• Gaussian Adaptation is an evolutionary algorithm based on information theory. It is a 

stochastic adaptive process where a number of samples of an 𝑛-dimensional vector 𝐱 are 

taken from a multivariate Gaussian distribution, having mean 𝑚 and moment matrix 𝑀. 

The samples are tested for fail or pass. 
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1.5 Outline of chapters 

This dissertation addressed the problem of the structural optimization of steel arched trusses 

subjected to multiple load conditions. More specifically, planar truss arches with different spans 

were optimized considering three different vertical load patterns. On the other hand, a spatial 

arched truss (with an upper arched chord lying on a horizontal plane and a lower chord, variably 

inclined in the 3D-space, linked each other through stiffening tubular elements) with a “horizontal 

span” of 40 meters, was optimized assuming three vertical load cases and a horizontal static 

seismic action (i.e. parallel to the arched upper chord). Topology, shape and size optimization, 

were simultaneously performed through an optimization macro-algorithm opportunely 

developed. 

This dissertation is divided into four parts. Part I defines the goals of the research, providing an 

introduction to parametric design and structural optimization in §Chapter 1, whereas §Chapter 2 

provides the current state of the art of structural optimization of arches, with a specific emphasis 

to truss arches. 

Part II is divided into two sections: 

• §Chapter 3 illustrates some examples of not-integrated methods combining parametric 

design and structural optimization techniques, which are applied one after the other in 

separated phases of a design process 

• §Chapter 4 shows two new integrated methods combining parametric design and 

structural optimization techniques. In particular, an optimization “macro-algorithm” 

which combines parametric design and structural optimization techniques in a hybrid 

environment composed of MATLAB and Grasshopper, was first proposed. At a later time, 

a MATLAB macro-algorithm containing a parametric definition of the optimum design 

problem, a code of an optimization algorithm and a parametric definition of a Finite 

Element Method (FEM) model for SAP2000 was implemented and presented. 

Part III shows, through the application of the optimization macro-algorithm (proposed in 

§Chapter 4) fully implemented in a MATLAB program, optimal design solutions for steel arched 

trusses. 

More specifically, in §Chapter 5 the results of simultaneous topology, shape and size optimization 

of planar truss arches subjected to different constraint conditions and three vertical load cases are 

discussed. On the other hand, §Chapter 6 shows an optimal design solution of a steel truss 

composed by a lower arched chord variably inclined in the 3D-space and a horizontal upper 

arched chord linked each other through a bracing system, which has been designed and optimized 

for three vertical load cases and a horizontal seismic action. 
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Part IV in §Chapter 7 provides general conclusions, summarizing useful suggestions for the 

design of steel arched trusses, also anticipating the future developments of the research presented 

in the present dissertation.
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Chapter 2 

2. Literature review: Structural 
optimization of arches 

Arched structures are characterized by a wide range of uses in architecture and civil engineering 

because of their ability to carry large loads and cover larger spans thanks to their shape (they are 

considered as “shape-resistant structures”). The greater is the span than an arch becomes more 

convenient than a truss. Arched structures are broadly used in bridges, aqueducts, dams and 

roofs. 

2.1 Structural behaviour of arches 

An arch is a vertically curved beam whose main feature is that horizontal reactions (called 

“thrusts”), oriented toward each other, appear even if the structure is subjected to vertical loads 

only. Thanks to this feature, bending moments and shear forces in “thrusted structures” are 

considerably smaller than corresponding internal forces in simply supported beams with same 

span and subjected to same loads. Therefore, the height of the cross section of the arch can be 

much smaller than the height of a beam to resist the same loading. 

Note that a “thrustless” structure with curvilinear axis cannot be considered an arch. 

Distribution of internal forces in arches depends on the shape of its central line, which is 

commonly circular or parabolic.  

For instance, the shape of the central line of a circular arch can be defined by the following 

function 

𝑦(𝑥) =  √𝑅2 − (
𝐿

2
− 𝑥)

2
− 𝑅 + 𝑓                  (5) 

depending on the span (𝐿), the radius of curvature (𝑅) and the rise (𝑓) of the arch. 

Similarly, the shape of the central line of a parabolic arch, is characterized by the following 

function, 

𝑦(𝑥) =  
4𝑓𝑥

𝐿2
(𝐿 − 𝑥)                    (6)
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depending on the span (𝐿) and the rise (𝑓) of the arch (Karnovsky and Lebed 2010). Arches can 

be considered as purely compressed structures, provided that their “line of thrust” coincides with 

the central line of the arch. The “line of thrust” is the locus of the points of application of the 

thrusts (internal forces or stress resultants) that must be contained within the cross-section of the 

arch in such a way that the arch transfers loads to the foundations through axial compressive 

stresses only. As a matter of fact, the more the “line of thrust” differs from the centre line of the 

arch, the larger the unfavourable bending moments that arise in the arch. In this regard, the 

Eddy’s theorem for arches states: 

“The bending moment at any section of an arch is proportional to the vertical intercept between 

the linear arch (or theoretical arch) and the centre line of the actual arch” 

where the “linear arch” corresponds to the “line of thrust” drawn for a given load. 

It is well known that a parabolic arch subjected to a load 𝑞 uniformly distributed along its span 

(𝐿) will be only subjected to axial compressive forces (i.e. any bending moment will arise in it), 

since a parabola is the “funicular curve” for a uniform load. However, Timoshenko and Gere 

(Timoshenko and Gere 2009) showed that by a gradual increase of the load intensity (𝑞), a critical 

condition in which the arch becomes unstable and buckles similarly to a circular arch can be 

reached. 

Timoshenko and Gere (Timoshenko and Gere 2009) thus provided a formula to calculate the 

critical value of the load intensity (𝑞) for which a parabolic arch with uniform cross-section 

becomes unstable (i.e. buckling occurs), which is given by, 

𝑞𝑐𝑟 = 𝛾4
𝐸𝐼

𝐿2
                     (7) 

depending on the Young’s modulus (𝐸) of the material, the moment of inertia (𝐼) of the cross-

section, the arch span (𝐿) and a constant (𝛾4) depending in turn on the rise-to-span ratio and the 

hinges number of the arch. It is worth underlining that the critical load decreases in increasing 

the number of hinges, whereas it tends to increases in increasing the rise-to-span ratio from 0.1 

to 0.4 and to rapidly decrease in gradually increasing the rise-to-span ratio from 0.5 to 1.0 

(Timoshenko and Gere 2009). 

For what concerns the maximum stresses, it is worth to keep in mind that it is a common practice 

to assume that cross-sectional dimensions of the rib are small in comparison with the radius of 

curvature and therefore to use the formulas available for straight bars in the calculation of stresses 

(Timoshenko and Young 1965). 

For straight ribs (or beams) the extreme fibre stresses are given by the following equation, 
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𝑓1,2 =
𝑁

𝐴
±
𝑀𝑎1,2

𝐼
                     (8) 

where 𝑁 is the axial force acting perpendicular to the cross-section, 𝐴 is the area of any section of 

the arch, 𝑀 is the bending moment about the gravity axis at any section, 𝐼 is the moment of inertia 

about the gravity axis of each section, whereas 𝑎1 and 𝑎2 are the distances of the upper and lower 

fibres from the centre of gravity, respectively. 

On the other hand, the exact formula to calculate the extreme fibre stresses in a curved rib with 

radius of curvature 𝑟 is given by 

𝑓1,2 =
𝑁

𝐴
+

𝑀

𝐴𝑟
±

𝑀𝑟𝑎1,2

𝐼(𝑟±𝑎1,2)
                  (9). 

However, only if the radius of curvature is small compared to cross-section dimensions Eq. (9) is 

required to calculate the stresses in ordinary arches, otherwise Eq. (8) is sufficiently accurate 

(Melan 1915). 

The arches are classified as three-hinged, two-hinged and hingeless arches (where the latter have 

fixed supports), as shown in Figure 2. 1. 

 

Figure 2. 1 Classification of arches based on articulation: (a) three-hinged arch; (b) two-hinged arch; (c) 
hingeless arch (Chen and Duan 2014) 

2.1.1 Three-hinged arches 

A three-hinged arch incorporates a hinge at the crown of the structure in addition to hinges at the 

supports. Three-hinged arches are statically determinate structures and can be solved through 

equations developed by the elastic theory; however, hinged arches are less stiff than structures 

with fixed supports (Sadhwani 2000). 

If the arch is subjected to a uniformly distributed load (of intensity 𝑞 per unit length) on the full 

span and the crown-hinge is at the mid-point of the span, the horizontal thrust of the arch can be 

evaluated by the following equation 

𝐻1 = 𝐻2 =
1

8

𝑞𝐿2

𝑓
                  (10) 

depending on the full-span load of intensity (𝑞), the span (𝐿) and the rise (𝑓) of the arch. 
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In the case of a symmetrical arch symmetrically loaded, the vertical reactions have same values 

as reactions of a simply supported beam with same span, subjected to the same loads; i.e. 

𝑉1 = 𝑉2 =
𝑞𝐿

2
                   (11). 

As a matter of fact, the above-mentioned Eq. (6) represents the axis equation of the optimal shape 

of a momentless symmetrical arch, subject to a symmetrical uniformly distributed load, obtained 

by equalling to zero the second term of the bending moment equation for a full-span load, which 

is given by, 

𝑀(𝑥) =
1

2
𝑞𝑥(𝐿 − 𝑥) −

1

8

𝑞𝐿2

𝑓
𝑦                (12). 

It is worth underlining that Eq. (6) does not depend on the intensity 𝑞 per unit length of the 

uniformly distributed load, since it only depends on the arch span (𝐿) and rise (𝑓). 

Hence in a three-hinged arch with parabolic shape, uniformly loaded over the entire span, only 

axial stresses arise; i.e. the pressure is uniformly distributed over each section (Melan 1915). 

On the other hand, if the parabolic arch is subjected to an asymmetrical uniform load over one-

half of the span, the bending moments in the loaded half will be 

𝑀′(𝑥) =
1

8
𝑞𝑥(3𝐿 − 4𝑥) −

1

16

𝑞𝐿2

𝑓
𝑦                (13) 

whereas the bending moments in the unloaded half are 

𝑀′′(𝑥) =
1

8
𝑞𝐿𝑥 −

1

16

𝑞𝐿2

𝑓
𝑦                (14). 

Note that in Eqs. (13) and (14), the abscissa 𝑥 is measured from the nearest end of the arch. 

Furthermore, the maximum bending moments (of intensity 𝑞𝐿2/64) occur at the quarter points 

of the arch while it is zero at its mid-span (Melan 1915), as shown in Figure 2. 2. 

The horizontal thrusts are opposite and equal to 

𝐻1 = 𝐻2 =
1

16

𝑞𝐿2

𝑓
                   (15) 

while the vertical reactions are given by, 

𝑉1 =
3

8
𝑞𝐿                   (16) 

for the loaded half, and by, 

𝑉2 =
1

8
𝑞𝐿                    (17) 

for the unloaded half of the arch. 
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Figure 2. 2 Bending moment diagram for a three-hinged arch subjected to a uniform load over one half of its 
span (Momo 2017) 

The ordinates of the lines of thrusts for the two halves of the arch due to the asymmetrical loading, 

can be readily found by equalling to zero the two corresponding bending moment equations (i.e. 

Eqs. (13) and (14)). 

If the two lines of thrusts, for loading on the loaded and unloaded halves of the arch are considered 

as the limiting positions of the resistance-line of the arch, their mean curve will give the best shape 

of the axis of the arch (Melan 1915). 

An important advantage of three-hinged arches is that any change of temperature does not induce 

any additional stress in the arch, since the elongation of the arch-axis is balanced by the unresisted 

rise or fall of the crown hinge. In the same way, a possible settlement of the abutments does not 

produce any additional stress in the arch (Melan 1915). 

2.1.2 Two-hinged arches 

Two-hinged arches have one redundant reaction force, since a vertical load acting on the arch 

produces vertical and horizontal reactions. Indeed, we have four unknown reactions, for the 

calculation of which only three equations of statics are available. A fourth equation must be 

obtained by considering the deformation of the arch (Timoshenko and Young 1965). Assuming 

that the arch is symmetrical and symmetrically loaded, the two vertical reactions (𝑉1 and 𝑉2) are 

equal and can be readily evaluated by Eq. (11). As in the previous case of three-hinged arches, the 

horizontal reactions (𝐻1 and 𝐻2) are equal and opposite. In calculating the horizontal reaction, 
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the deformations of the arch should be considered. However, Eq. (10) provides a good 

approximate solution. 

 Assuming that the arch has a parabolic shape, the bending moments and shear forces are zero at 

any section of the arch since only axial forces arise in it. In this regard, the axial force in three- 

and two-hinged arches uniformly loaded over the entire span can be evaluated as follow 

𝑁(𝑥) =
1

8

𝑞𝐿2

𝑓
cos 𝜃 + 𝑞𝐿 (

1

2
−
𝑥

𝐿
) sin 𝜃                (18) 

for 𝑥 ≤ 𝐿/2, and 

𝑁(𝑥) =
1

8

𝑞𝐿2

𝑓
cos 𝜃 + 𝑞𝐿 (

𝑥

𝐿
−
1

2
) sin 𝜃                (19) 

for 𝑥 > 𝐿/2; where 𝜃 indicates the variable angle formed by the arch and the horizontal reference 

axis and the quantity 
1

8

𝑞𝐿2

𝑓
 corresponds to 𝐻, the horizontal reaction (Leontovich 1959). 

On the other hand, if the considered two-hinged arch is subjected to an asymmetrical uniform 

load over one-half of the span, the vertical reactions (𝑉1 and 𝑉2) are once again given by Eqs. (16) 

and (17), whereas the opposite horizontal thrusts (𝐻1 and 𝐻2) can be calculated by Eq. (15). 

Accordingly, bending moments at any section of the arch are given by Eq. (13) for the loaded half 

of the arch and by Eq. (14) for the unloaded half, measuring the abscissa 𝑥 from the nearest end 

of the arch (see Figure 2. 3). As in the previous case, the maximum bending moments occur at the 

quarter points of the arch. 

 

Figure 2. 3 Bending moment diagrams for parabolic two-hinged arches subjected to a uniform load over the 
entire arch span (a) and over one half of the arch span (b), shown in (Leontovich 1959) 
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Axial forces are predominant in true arched structures compared to other internal forces and they 

can be evaluated by, 

𝑁′(𝑥) =
1

16

𝑞𝐿2

𝑓
cos𝜃 + (

3𝐿

8
− 𝑥)𝑞 sin𝜃                (20) 

for the loaded half, and by 

𝑁′′(𝑥) =
1

16

𝑞𝐿2

𝑓
cos𝜃 +

1

8
𝑞𝐿 sin𝜃                (21) 

for the unloaded half of the arch (Leontovich 1959). 

Two-hinged arches are stiffer than three-hinged arches; however, they are sensitive to 

temperature changes and support displacements. In fact, in a hingeless arch or any arch with less 

than three hinges, a rise of temperature induces an increase, while a fall of temperature a decrease, 

of the horizontal thrust 𝐻. A similar effect is also producible by a support displacement. 

It is worth underlining that the maximum stresses due to temperature changes commonly occur 

at the crown and at the ends of the arch; more specifically, a rise in temperature produces tensile 

stresses in the extrados and compressive stresses in the intrados at the crown and the reverse at 

the ends of the arch. A fall in temperature induces opposite effects (Melan 1915). 

2.1.3 Hingeless arches 

Arches that are rigidly joined to the abutments are commonly known as “hingeless arches” or 

“fixed arches”. Since they have three redundant reactions, the three equations of statics are not 

enough to calculate the unknown six reaction forces. The three lacking equations necessary to 

evaluate the redundant reactions, can be derived from conditions governing the deformations of 

the structure (Melan 1915). 

However, Leontovich in (Leontovich 1959), provided useful condensed solutions for parabolic 

hingeless arches for different load conditions (see Figure 2. 4). 

For instance, it is shown that for a symmetrical parabolic arch subjected to a symmetrical uniform 

load over the entire span, the horizontal thrusts (𝐻1 and 𝐻2) and the vertical reactions (𝑉1 and 𝑉2) 

are once again given by Eqs. (10) and (11), respectively. Axial force at any section of the left half 

of the arch can be determined by Eq. (18), whereas at the right half it can be evaluated by Eq. (19). 

Accordingly, since the arches under consideration are supposed to be parabolic, symmetrical and 

symmetrically loaded, bending moments should be zero at any section of the arch. 

Conversely, assuming that the parabolic arch is subjected to a uniform load (of intensity 𝑞 per 

unit length) over one half of the arch, the horizontal reactions are equal, opposite and given by 

Eq. (15), whereas the vertical reactions are given by, 
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𝑉1 =
13

32
𝑞𝐿                   (22) 

at the loaded half of the arch, and by, 

𝑉2 =
3

32
𝑞𝐿                   (23) 

at the unloaded half of the arch. 

 

Figure 2. 4 Bending moment diagrams for parabolic hingeless arches subjected to a uniform load over the 
entire arch span (a) and over one half of the arch span (b), shown in (Leontovich 1959) 

Since arches with fixed ends are analysed in the present section, in addition to horizontal and 

vertical reactions, also moment reactions arise at the arch supports, which are given by, 

𝑀1 = −
1

64
𝑞𝐿2                   (24) 

and by, 

𝑀2 = 
1

64
𝑞𝐿2                   (25) 

at the loaded and the unloaded halves of the arch, respectively. 

Axial force at any section of the loaded half of the arch can be determined as follows 

𝑁′(𝑥) =  
1

16

𝑞𝐿2

𝑓
cos 𝜃 + (

13

32
𝐿 − 𝑥) 𝑞 sin 𝜃               (26) 

and by, 

𝑁′′(𝑥) =
1

16

𝑞𝐿2

𝑓
cos𝜃 +

3

32
𝑞𝐿 sin 𝜃                (27) 

at the unloaded half. 
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As already stated, 𝐿 and 𝑓 indicate the span and the rise of the arch, respectively, while 𝜃 is the 

angle of inclination of the arch axis at any section. 

Bending moments can be determined by, 

𝑀′(𝑥) = −
1

64
𝑞𝐿2 + 𝑞𝑥 (

13

32
𝐿 −

𝑥

2
) −

1

16

𝑞𝐿2

𝑓
𝑦               (28) 

and by, 

𝑀′′(𝑥) =
1

64
𝑞𝐿2 +

3

32
𝑞𝐿(𝐿 − 𝑥) −

1

16

𝑞𝐿2

𝑓
𝑦               (29) 

at the loaded and the unloaded halves of the arch, respectively.  

2.2 Structural optimization of monolithic arches: state of the 

art 

As already stated, arches are classified as “shape-resistant” structures since their structural 

behaviour strongly depends on the shape of their axis. As a matter of fact, an arch will be subjected 

to only axial compressive forces, provided that the shape of its axis is properly defined as 

“funicular curve” for a certain load condition. 

Several analytical, graphical and physical methods are provided in the literature to find the 

optimal shape of a monolithic (i.e. with a solid section) arch subjected to a certain load case (i.e. 

the “funicular curve” for that load). 

Moreover, also several examples of topology optimization (which aims to find the optimal 

material distribution) and size optimization (which aims to find the optimal dimensions of its 

variable or constant cross-section) of single-rib arches can be found in the literature. 

2.2.1 Topology, shape and size optimization of monolithic arches 

The present section aims to provide an overview of some significant examples of topology, shape 

and size optimization of arches with a solid section (i.e. monolithic arches). 

For instance, on the basis of the Euler-Bernoulli theory of the nonlinear inextensible plane 

elasticae, Tadjbakhsh reviewed the concept of “funicular geometry” providing the equations 

governing the bending stresses that may arise due to live load or partially imposed dead load 

(Tadjbakhsh 1981). Tadjbakhsh thus determined the buckling load for parabolic arches (subjected 

to a vertical uniform load) and buried culverts supporting the weight of the soil fill (of variable 

depth), as well as the shape and the variable cross-sectional area of a funicular (i.e. momentless) 

arch of constant stress (thus providing a shape and size optimization example of an arch). 
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Vanderplaats and Han in (G. N. Vanderplaats and Han 1990) provided a method to perform shape 

and size optimization of two-hinged and fixed arches, approximated by a finite number of straight 

members and subjected to combined stress constraints. The proposed method, based on an 

approximate structural analysis using a Taylor series expansion of member and forces, is 

summarized by the flowchart in Figure 2. 5. The optimization algorithm has been applied to 

minimize the volume of two-hinged and hingeless arches, subjected to a single concentrated force 

at their mid-span in a first case and to a uniform load over the whole span as a second case. The 

goodness of numerical results demonstrated the effectiveness and the reliability of the presented 

method which allowed to simultaneously treat geometric and size design variables of the problem. 

 

 

Figure 2. 5 Algorithm proposed by Vanderplaats and Han for shape optimization of arches (G. N. 
Vanderplaats and Han 1990) 

Serra in (Serra 1994) proposed two approximate solutions of optimal uniformly compressed 

arches under static loads. An analytical solution for arches subjected to a vertical load made up of 

a uniform part plus a variable linearly depending on the arch shape was first proposed. Serra 

(Serra 1994) then presented a solution obtained by an iterative numerical method for a generic 

arch approximated by a polygonal curve, subjected to dead and external (vertical and horizontal) 

loads applied as concentrate forces on its nodes. 

More recently, Marano et al. (Marano, Trentadue, and Petrone 2014) proposed a new analytical 

method to optimize the shape and the cross-sectional area (variable along the arch) of a statically 
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determinate arch subjected to its self-weight and to an external distributed load. The work of 

Marano et al. was aimed to find the optimal shape and cross-sectional area of an arch of equal 

strength such that all its cross-sections are subjected to a constant stress and the ratio between 

the self-weight and external load ∫ 𝑝(𝑥)𝑑𝑥
𝐿

0
 is minimum. It was assumed that the material was 

homogeneous with constant specific weight. The uniform compression condition for all cross-

sections was imposed by equalling to zero the bending moment in each section. Two numerical 

examples for two different constant loads have been shown, thus demonstrating that for an 

assigned rise-to-span ratio, only the cross-sectional area depends on the intensity 𝑝 of the external 

load, whereas the optimal shape of the central line of the arch was not affected by the value of 𝑝. 

 

Figure 2. 6 Statically determinate arch with variable cross-sectional area 𝐴(𝑥), subjected to a distributed load 
𝑝 = 𝑝(𝑥) (Marano, Trentadue, and Petrone 2014) 

Furthermore, Marano et al. (Marano et al. 2018) extended the results by (Marano, Trentadue, and 

Petrone 2014) by integrating the objective function to be minimized by adding the horizontal 

thrust of the arch to its volume in a linear combination. In particular, the minimization of the 

horizontal thrust aims to minimize the cost of foundations. 

Trentadue et al. (Trentadue et al. 2018) further extended the problem of finding the optimal arch 

shape and variable cross-sectional area (Marano, Trentadue, and Petrone 2014) to the case of a 

statically determinate arch subjected to its self-weight and to a concentrated force on its crown 

section. By imposing that all cross-sections are subjected to uniform compressive stress, the 

authors analytically found and presented four optimal (i.e. momentless) solutions of different 

materials (i.e. concrete, steel, wood and masonry). As shown in Figure 2. 7, the four optimal 

arches are characterized by a similar dimensionless rise. However, it is worth noting that while in 

case of very “efficient” materials (i.e. with a high ratio between their maximum allowable stress 
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and specific weight) like steel and wood the optimal semi-arches resulted to have an extremely 

low curvature, in case of less “efficient” materials the curvature of two semi-arches are more 

emphasised. 

 

Figure 2. 7 Optimal arch shapes (Trentadue et al. 2018) 

Furthermore, it has been shown that in the case of “efficient” materials a not relevant variation of 

the optimal cross section area between the base section and the key section occurs, while in the 

other cases this variation is more significant (Trentadue et al. 2018). 

Vatulia et al. presented an analytical procedure to find the optimal shape and cross-sectional area 

of a three-hinged arch subjected to a uniformly distributed load, assumed as constant and variable 

depending on the arch axis (Vatulia et al. 2020). The authors thus found optimal axis equations 

and cross-sectional area of a momentless arch for different boundary conditions, by imposing that 

all cross-sections of the arch were subjected to only axial compressive uniform stress. 

Poraminian and Ghaemian (Pouraminian and Ghaemian 2015) proposed an optimum design 

procedure to find the optimal shape of an open spandrel arch bridge, assuming the Cetina River 

Bridge (in Croatia) as a case study. A gradient-based Simultaneous Perturbation Stochastic 

Approximation (SPSA) algorithm was implemented in a MATLAB code. The arch depth at its 

crown and bases were included in a set of shape design variables even if they also define a 

dimension of the variable cross-section of the arch. The optimization process aimed to determine 

the optimal shape and variable depth of the arch minimizing its volume, considering strength 

(limiting the maximum stress) and serviceability (limiting the maximum displacements) 

constraints. The optimization of the Centina River Bridge was performed considering three load 

cases: 

• Dead loads 

• Live loads defined as traffic uniform and static load 
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• Wind loads as static actions. 

The optimization process leaded to save the 30 % of the total volume of the sub-structure of the 

arch bridge with respect to its original design (Pouraminian and Ghaemian 2015). 

More recently, Pouraminian and Pourbakhshian (Pouraminian and Pourbakhshian 2019) 

presented a new hybrid optimization algorithm, implemented in a MATLAB code, which allows 

to call a structural analysis software (ANSYS) in batch mode to perform FEM analysis to evaluate 

the objective and constraints functions (as shown in Figure 2. 7). 

The presented method has been implemented to solve a multi-objective optimization problem 

through a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. Once again, the 

Cetina River Bridge was assumed as a case study. The optimization problem was formulated 

considering eight design variables, two objective functions (conflicting with each other) and 

several strength and serviceability constraints. 

The total volume of the bridge sub-structure (i.e. the concrete arch and piers) was assumed as 

first objective function whereas the second objective function to be minimized was the first 

principal stress. The optimization process leaded to a pareto front of 20 optimum designs, among 

which a best compromise solution saving 25 % of volume with respect to the initial design of 

Cetina River Bridge. 

 

Figure 2. 8 Flowchart of a MATLAB-ANSYS optimization macro-algorithm (Pouraminian and 
Pourbakhshian 2019) 

The literature also provides some examples of application of topology optimization (see section 

§1.3.3) in arch design. For instance, Paul et al. carried out a topology optimization with the help 

of the MSC Patran /Nastran software to find the optimal shape of an arch bridge with given span 

and rise, for assigned boundary conditions (Paul et al. 2015). For topology optimisation the arch 

bridge was modelled as a rectangular structure of height 3.25 m and length 15.0 m, made of 
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concrete and subjected to a uniformly distributed load, defined as a combination of dead and live 

loads. The compliance of the structure was assumed as objective function to be minimized, 

imposing a mass target of 25 % of the initial geometry. 

Similarly, Shen et al. provided and compared the results obtained applying different topology 

optimization methods to find the optimal shape of three kinds of arch bridges (Shen et al. 2018). 

Several numerical examples have been provided, with different design rectangular domains and 

different boundary conditions (by changing the position of applied uniform load). Once again, the 

structural compliance was assumed as objective function to be minimized under volume 

constraints. 

For instance, Figure 2. 9 shows the design domain, the boundary conditions and the optimal 

layouts obtained by Parametric Level Set Method (PLSM), by Conventional Level Set Method 

(CLSM), by Bidirectional Evolutionary Structural Optimization (BESO) method and by Solid 

Isotropic Material with Penalization (SIMP) method. 

 

Figure 2. 9 Form-finding of a deck arch bridge through different topology optimization methods (Shen et al. 
2018): (a) design domain and boundary conditions; (b) optimal layout by PLSM; (c) optimal layout by CLSM; (d) 

optimal layout by BESO; (e) optimal layout by SIMP 

The problem of finding the optimal shape of arches was widely investigated. However, Tim L. 

Michiels first proposed a form-finding method for masonry arches under a combination of self-

weight and in-plane seismic loading (Michiels 2018; Michiels and Adriaenssens 2018). The 

authors proposed a form-finding algorithm based on Thrust Line Analysis, which was applied 

under a combination of gravity and horizontal earth-quake loads. In particular, optimal shapes of 

arches of different predefined rise-to-span ratios (1/2, 1/4 and 1/8) were obtained for horizontal 

accelerations of 0.15, 0.3 and 0.45𝑔 (where 𝑔 is the gravity acceleration). The form finding process 

proposed by Michiels starts by picking an arbitrary arch (for example a catenary arch) with 

predefined rise and span. After dividing this initial arch into a set of “voussoirs”, a thrust line is 
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calculated under the combination of gravity and horizontal acceleration. This thrust line usually 

needs to be adjusted iteratively by changing the location of the pole (thus varying the intensity of 

horizontal and vertical forces). Subsequently, the thrust line is mirrored along the axis of 

symmetry of the original arch shape to obtain a second thrust line to account for the other 

potential direction of the earthquake.  The mirrored thrust line can be then horizontally moved to 

define a proper support thickness and each thrust line is then offset by a distance towards the top 

and bottom of the initial and mirrored thrust line, leading to four curves (as shown in Figure 2. 

10(a)). The envelope of these four offset curves defines the new shape of the arch (see Figure 2. 

10(b)). The obtained shapes require up to 65% less material than circular arches with constant 

thickness that are designed to withstand the same horizontal acceleration and self-weight, 

regardless of acceleration magnitude. 

 

Figure 2. 10 Form-finding of masonry arches under gravity and seismic loading: (a) offset of the initial thrust 
line; (b) new intrados and extrados after taking the envelope of the curves of the offset curves. (Michiels 2018; 

Michiels and Adriaenssens 2018) 

2.3 Structural optimization of truss arches: state of the art 

Arches with multiple ribs, linked each other through two- or three-dimensional bracing-systems, 

are called truss arches. As a matter of fact, truss arches are vertically curved (arched) truss 

structures. Their structural efficiency is due to the fact that they take advantage of static properties 

of both truss structures and arches in carrying loading. They are commonly made of steel, that is 

stronger than masonry and concrete; hence, a steel arch may cover a longer span and be slenderer 

than a masonry or concrete arch. Furthermore, the innovative use of composite materials that 

takes advantage of the properties of both steel and concrete became common in arch bridge 

design. A peculiar example is provided by concrete filled steel tubular (CFST) arch bridges. 

Indeed, a concrete-filled steel tube (CFST) arch bridge is an outstanding type of steel-reinforced 

concrete composite bridge, in which the local stability of a steel tube is improved by the concrete 

filling, while the toughness and strength of the concrete are improved by the external covering of 

the steel tube. Many CFST arch bridges have been built in China since 1990 (Zheng and Wang 

2018). The longest CFST arch bridge in the world, with a main span of 530 m, the First HeJiang 

Yangtze River Bridge (also known as Bosideng Bridge (Figure 2. 11(d)), sited in Rongshan Town, 

Hejiang, Luzhou City, Sichuan Province, China) is a truss arch bridge (Mou et al. 2015). 
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Truss arches are effectively used in steel and CFST arch bridges, especially when the arch span 

exceeds 200 meters (five out of the six steel arch bridges with a span larger than 500 m are truss 

arch bridges (Chen and Duan 2014)). Truss arch bridges with a span larger than 500 m are the 

Sydney Harbor Bridge (Figure 2. 11(a)), the New York’s Bayonne Bridge (Figure 2. 11(b)), the 

New River Gorge Bridge (Figure 2. 11(c)), the Bosideng Bridge (Figure 2. 11(d)) and the 

Chaotianmen Bridge (Figure 2. 11(e)). 

Since a large number of parameters must be considered in the design of truss arch bridges, it is 

immediate to understand how much beneficial it would be the development of an effective 

strategy able to optimize truss arches with the purpose of maximizing their structural 

performance thereby minimizing their cost, in light of their widespread use in long-span arch 

bridges. 

 

Figure 2. 11 Longest truss arch bridges in the world: (a) Sydney Harbor Bridge, Sydney, Australia, 1932 (503 
m); (b) Bayonne Bridge, Staten Island, New York-Bayonne, New Jersey, USA, 1931 (510 m); (c) New River Gorge 

Bridge, Fayetteville, West Virginia, USA, 1977 (518 m); (d) Bosideng Bridge, Hejiang County, Sichuan, China, 2012 
(530 m); (e) Chaotianmen Bridge, Chongqing, China, 2009 (552 m). 
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2.3.1 Topology, shape and size optimization of truss arches 

The literature provides only a few works that faced the problem of structural optimization of truss 

arches; furthermore, most of them only concern size optimization of member cross-sections. 

Jin Cheng in (Cheng 2010) addressed the problem of minimizing the weight of a truss arch bridge, 

according to strength (stresses) and serviceability (deflections) constraints. The author developed 

a hybrid optimization algorithm (whose flowchart is illustrated in the Figure 2. 12), integrating a 

Genetic Algorithm (GA) with Finite Element Method (FEM), the latter used to calculate implicit 

objective and constraint functions. 

 

Figure 2. 12 Flowchart of the hybrid genetic algorithm proposed in (Cheng 2010) 

The proposed macro-algorithm has been applied to optimize a simplified two-dimensional model 

of the Chaotianmen Bridge (Chongqing, China, 2009) with a main span of 552 meters (thus 

resulting the longest steel arch bridge in the World) and a rise to span ratio equal to 1⁄4.31. 
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Nonetheless, only size design variables (cross-sectional areas of groups of elements) were 

involved in the optimization problem. The author applied his hybrid optimization algorithm to 

different optimization problems, each characterized by a different grouping of elements (as well 

as by a different number of continuous and discrete size design variables, i.e. assuming 4, 10 and 

then 41 different cross-sectional areas). In the end, the author compared the results of a 

traditional design with optimized solutions in order to demonstrate the efficiency of his 

optimization strategy. 

 

Figure 2. 13 Flowchart of the hybrid Genetic Algorithm for reliability-based design optimization proposed in 
(Cheng and Jin 2017)  

More recently, Jin Cheng and Hui Jin in (Cheng and Jin 2017) proposed a reliability-based 

optimization (RBO) approach applied to minimize the weight of steel truss arch bridges subject 

to probabilistic (the overall probability failure of the structure) and deterministic (stress and 

deflection) constraints. The method proposed in this work integrates a Genetic Algorithm (GA), 

FEM and the first order reliability method (FORM), as shown in Figure 2. 13. The finite element 

method (FEM) and the first order reliability method were used to compute the value of the 

probabilistic and deterministic constraint functions.  
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The finite element analysis is performed using the ANSYS program. The reliability problem is 

solved by using FERUM. For the specific RBO problem considered in (Cheng and Jin 2017), the 

authors used MATLAB to formulate and solve the design optimization problem, as well as to 

manage the flow of information from one computer program to another. Once again, a simplified 

two-dimensional model of the Chaotianmen Bridge has been adopted as numerical study case. 

Only the cross-sectional areas of four groups of elements (as shown in the Figure 2. 14) have been 

assumed as design variables (continuous and discrete) of the problem; therefore, only size 

optimization has been performed. Eventually, the authors compared the results of deterministic 

optimal design and reliability-based optimal design (with reliability constraints), finding that the 

reliability-based optimal design was about 22% heavier than the deterministic optimal design. 

M. H. Makiabadi and other authors (Makiabadi et al. 2013) investigated the effectiveness of a 

recently developed population-based algorithm, called as Teaching-Learning-Based 

Optimization (TLBO) algorithm in sizing optimization of real truss arch bridges.  The TLBO 

algorithm emulates the process of teaching and learning in a classroom. The optimization 

process involves two stages including teacher phase and learner phase. 

The proposed method has been applied to optimize two existing truss arch bridges: 

• the Burro Creek Bridge (Arizona, U.S., 1966) 

• the West End-North Side Bridge (Pennsylvania, U.S., 1932). 

 

Figure 2. 14 Element group definitions for the Chaotianmen bridge model (for one half of the bridge, because 
of its symmetry) from (Cheng and Jin 2017) 

In both cases, the optimization problem has been defined for minimizing the total weight of the 

structure, in accordance with strength (stresses) and serviceability (deflections) constraints, 

assuming cross-sectional areas of element groups, as size design variables and a uniform total 

load (including dead and live loads) applied to the bridge deck.  
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Figure 2. 15 Elevation of Burro Creek Bridge (Makiabadi et al. 2013) 

The Burro Creek Bridge (with a span of 207 meters), is a truss arch structure with spandrel 

columns supporting the roadway deck and plate girder approach spans. Both upper and lower 

chords shapes are quadratic parabola (see the Figure 2. 15). 

The sizing optimization problem has been formulated considering three different groups of 

variables including four, eight and twelve continuous size design variables. 

On the other hand, the West End-North Side Bridge (having a span of 240 meters) is a steel 

bowstring truss arch bridge (whose elevation is illustrated in Figure 2. 16). 

 

Figure 2. 16 Elevation of West End-North Side Bridge (Makiabadi et al. 2013) 

Two different formulations of the optimization problem have been defined, one with four and the 

other with eight groups of element cross-sections (i.e. four and eight size design variables). 

The authors compared the results obtained from different formulations of the optimization 

problem (each one characterized by a different number of design variables) for both bridges (the 

Burro Creek Bridge and the West End-North Side Bridge) with the actual weight of the real 

structures. Furthermore, as expected, they obtained better results (lighter optimal structures) by 

increasing the number of assumed design variables. 

More recently, Malik Mushthofa and other authors (Mushthofa, Aminullah, and Muslikh 2019) 

showed some applications of shape and size optimization of steel truss arch bridges, assuming 
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cross-sectional areas of elements groups as size design variables and the rise over span ratio as 

shape design variable. 

In (Mushthofa, Aminullah, and Muslikh 2019) the optimization problem was formulated to 

minimize the normalized magnitude of differences between maximum and minimum internal 

forces (axial forces, shear forces and bending moments) in truss arch bridges with different spans 

and rise-to-span ratios, according to strength and serviceability constraints. 

 

Figure 2. 17 Initial geometries: (a) type 1 and (b) type 2 (Mushthofa, Aminullah, and Muslikh 2019) 

The process of geometry optimization is done by using SAP2000 software, by changing rise-to-

span ratio parameter. 

Bridge modelling is carried out for spans of 150 m, 200 m, 250 m and 300 m, as well as for each 

of two initial geometries (see Figure 2. 17(a) and (b)). For each span and geometry, a bridge FEM 

model was realized with a specific rise-to-span ratio, varying from a ratio of 1/2.25 to 1/8.00 with 

intervals of 1/0.25. The optimization process was then carried out by only comparing internal 

forces values of 96 FEM models (each characterized by a different rise to span ratio between 1⁄2.25 

and 1⁄8.00) for each truss geometric and topological configuration, without applying a proper 

optimization algorithm. 

In the end, Khaoula Msaaf considered the problem of single and multi-objective optimization of 

steel truss arch bridges in his master’s degree dissertation (Khaoula Msaaf 2017).  The Gustave 

Eiffel’s Garabit Viaduct (France, 1884) was assumed as case-study (whose frame structure is 

shown in Figure 2. 19). 
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Figure 2. 18 Two different  topologies of the truss arch to be optimized: (a) type 1 and (b) type 2 (Khaoula 
Msaaf 2017) 

 

Figure 2. 19 Three-dimensional frame structure of the Garabit Viaduct designed by Gustave Eiffel (Khaoula 
Msaaf 2017) 

Two- and three-dimensional parametric models of the truss arch bridge were realized with two 

different web configurations (see the Figure 2. 18), three different spans (100 m, 165 m and 200 

m) and optimized uniquely in Grasshopper environment. 

Three different combinations of gravity and live loads have been considered in two-dimensions, 

whereas five load cases have been considered in three-dimensions (since two wind-load 

combinations have been here considered). For each load case, a FEM analysis was carried out in 

Grasshopper environment (by means of a proper tool) in order to evaluate the total weight of the 

structure and its maximum deflection. The author defined a parametrized geometry by different 

design variables such as the number of piers, the depths at the crown and the base, the number of 

truss webs, and the height of the deck (shape design variables). 

Size design variables (cross-sectional areas of the elements chosen from a list of 40 discrete 

values) were optimized by means of a specific component of the Grasshopper FEM tool that allows 

to limit the maximum percentage of the material utilization and maximum deflection, providing 

the total weight of the structure and its maximum deflection (objective functions of the problem). 
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Then, single and multi-objective optimization have been carried out by means of proper 

Grasshopper tools, minimizing the structural weight of the structure and its maximum deflection 

(resulting from FEM analysis) in separated and simultaneous phases. 

It is worth noting that the single-objective optimization tool relies on gradient-free deterministic 

algorithms. This algorithm was used in two steps: a first run starting from a random point in the 

design space and using a global algorithm, and a second run starting from the best design chosen 

by the global algorithm and exploring the small area of the design space surrounding that point 

using a local algorithm. On the other hand, the Multi-Objective optimization tool was used by 

adopting an evolutionary algorithm (i.e. a stochastic optimization algorithm). 

As expected by the author, deflection-based optimization provided solutions with highest 

structural weights, whereas weight-based optimization generated solutions with minimum 

structural weights (saving more than 60% of the weight of the original structure) but greater 

deflections. Multi-objective optimization runs produced some Pareto optimum solutions, 

characterized by trade-off between structural weight and maximum deflection optimal values. 

Furthermore, the author found that the second topology (shown in Figure 2. 18(b)) produced best 

results in most cases and he finally concluded his study pointing out the importance of choosing 

a proper shape and topology in the design of truss arch bridges.
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Chapter 3 

3. Not-integrated methods for parametric 
design and structural optimization 

This section briefly illustrates some examples of not-integrated methods combining parametric 

design and structural optimization techniques, which are applied one after the other in separated 

phases of a design process. 

Despite the disadvantage just mentioned, the effectiveness of these methods has been 

demonstrated through their application in optimal design of continuous and discrete structures. 

3.1 Thrust Network Analysis (TNA) and Finite Element Method 

(FEM) analysis 

Thrust Network Analysis (TNA) is a three-dimensional version of Thrust-Line Analysis, as 

previously anticipated in §1.3.2 where most known form-finding techniques have been briefly 

introduced (Adriaenssens et al. 2014; Veenendaal and Block 2012). 

Thrust Network Analysis was developed by the Block Research Group at the ETH of Zurich 

(Switzerland) for the form-finding of compressive funicular shells by taking advantage of graphic 

statics computer techniques (Block 2009; Block and Ochsendorf 2007). The method belongs to 

Geometric Stiffness Methods for form-finding and it is independent from material properties. It 

was developed (and is particularly suitable) for designing masonry vaults that should be 

compressed in any direction due to the low tensile strength of the material. 

The TNA method is based on the assumption (derived from descriptive geometry) that a three-

dimensional network under vertical external loads is in compression when its projection on the 

horizontal plane is also in compression. The form-finding procedure of a uniformly compressed 

vault (or shell) by Thrust Network Analysis method is performed by the simultaneous 

manipulation of two reciprocal and planar diagrams: 

• the form diagram Γ, which is the horizontal projection of a three-dimensional auxiliary 

network G
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• the force diagram Γ*, which is constituted by the horizontal components of the forces that 

act on each bar of the compressed network. 

 

Figure 3. 1 Thrust Network Analysis (TNA) flowchart (Adriaenssens et al. 2014) 
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The relation between two reciprocal bi-dimensional diagrams and the auxiliary spatial network is 

clearly illustrated in Figure 1. 7 in the previous section §1.3.2. Form and force diagrams are 

reciprocally related, i.e. they are dual parallel graphs. This means that branches that converge at 

a certain node in the form diagram Γ form an equilibrium force polygon in the force diagram Γ* 

and vice versa. Indeed, each side of all polygons of Γ and the corresponding force of the related 

equilibrium polygon in Γ* must be parallel within a certain tolerance angle that is generally 

included between 5° and 10° (“parallelism condition”). From a statical point of view, the 

equilibrium of a node in one graph is guaranteed by a closed polygon of force vectors in the other 

graph, and vice versa. The length of each branch e* of the force diagram Γ*, multiplied by an 

assigned scale factor ς, provides the magnitude of the axial force that acts in the corresponding 

branch e of the form diagram Γ, as well as the magnitude of the horizontal component of the axial 

force that acts on the corresponding bar of the three-dimensional thrust network G. 

The reciprocal relationship between Γ and Γ* cannot (by itself) guarantee that all network bars 

are in compression. A further necessary condition so that the funicular network is purely 

compressed is that vectors of all closed polygons of Γ rotate in counterclockwise direction with 

respect to any point inside the closed polygon. In addition, all polygons of Γ and Γ* must be 

convex (“convexity condition”) to prevent the formation of tension forces or tensile stresses in any 

vault regions. Eventually, the auxiliary thrust network adopted to find the optimal shape of a 

masonry vault (or concrete shell) is totally compressed if reciprocity and further just mentioned 

conditions are satisfied, provided that only vertical loads are considered (Adriaenssens et al. 

2014). 

Since the equilibrium of horizontal force components can be computed regardless of the external 

vertical loading, the form-finding procedure through a Thrust Network Analysis (TNA) method 

can be divided into two distinct phases (Figure 3. 1): 

• the solution of the horizontal equilibrium 

• the solution of the vertical equilibrium. 

The above described form-finding procedure generates purely compressed networks of nodes and 

bars that can be easily interpolated through a NURBS surface by means of any CAD (computer-

Aided Design) software, by taking advantage of direct and parametric modelling techniques. 

In the end, a Finite Element Model (FEM) of the vault or shell, built up by assigning a variable or 

constant thickness to the medium surface (obtained through a TNA form-finding), as well as real 

material and boundary conditions, can be analysed to check the quality of results (e.g. by verifying 

the effectiveness of the method in reducing tensile stress regions). The method cannot be 

considered integrated since the Finite Element Analysis is not performed at internal steps of the 

shape optimization (form-finding) procedure. This implies that the whole form-finding procedure 
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need to be repeated for an undetermined number of times until satisfactory results (in term of 

both design qualities and structural efficiency) are obtained. 

3.1.1 Form-finding (shape optimization) of anticlastic shells for curved 

footbridges 

The effectiveness of the not-integrated optimization method illustrated in §3.1 was demonstrated 

by applying it in an unconventional way to find the optimal shape of concrete anticlastic shells, 

properly designed to support curved footbridges (Luigi Fenu et al. 2019, 2017; Luigi Fenu, Congiu, 

and Briseghella 2016; Luigi Fenu, Briseghella, and Congiu 2016; L Fenu, Briseghella, and Congiu 

2016). 

Thrust network Analysis (TNA) method has been applied to find the optimal shape of the medium 

surface of anticlastic shells. The TNA method was applied in a non-standard manner by drawing 

form and force diagrams in a vertical plane (Figure 3. 2), shaping the shell by applying the 

boundary conditions (Figure 3. 2(a)) and allowing relaxation in the horizontal direction, as the 

shell was subjected to horizontal forces without gravity. 

 

Figure 3. 2 Thrust Network Analysis (TNA) form-finding: (a) boundary conditions; (b) starting surface; (c) 
initial form diagram Γ; (d) initial force diagram Γ* (Luigi Fenu et al. 2019) 

The initial form diagram Γ (Figure 3. 2(c)) was obtained by discretizing a starting surface (Figure 

3. 2(b)), whereas the initial force diagram Γ* (Figure 3. 2(d)) was drawn in accordance with 

reciprocity conditions (mentioned in the previous section §3.1). Indeed, the initial force diagram 

Γ* is reciprocal with respect to the initial configuration of Γ but it does not yet represent a diagram 
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of equilibrium forces.  In solving the horizontal equilibrium of the thrust network G, form and 

force diagrams were iteratively and simultaneously deformed until, in addition to “reciprocity 

condition”, even “parallelism” and “convexity conditions” (previously explained in §3.1) were 

satisfied. 

 

Figure 3. 3 Thrust network Analysis (TNA) form-finding: (a) final form diagram Γ; (b) final force diagram 
Γ*; (c) 3D-boundary conditions; (d) optimized thrust network G (Luigi Fenu et al. 2019) 

 

Figure 3. 4 Three-dimensional model of the shell-supported curved footbridge: (a) transversal deck cross-
section; (b) perspective detail of the deck arrangement; (c) perspective view of the footbridge (Luigi Fenu et al. 

2019) 

Once the force diagram really represented the horizontal equilibrium of the network (assuming 

the configuration of the final force diagram Γ* in Figure 3. 3(b)), the vertical equilibrium of the 

network could be solved for given spatial boundary conditions (Figure 3. 3(c)) and external loads 
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that had to be orthogonal to the plane on which form, and force diagrams lie. The so-optimized 

thrust network G was visualized in three-dimensions (Figure 3. 3(d)). 

For a force diagram representing a horizontal equilibrium configuration, several vertical 

equilibrium solutions can be found thereby obtaining different thrust networks G characterized 

by different levels of relaxation. Indeed, varying the relaxation level of the thrust network means 

increase or decrease the load values. Moreover, the more relaxed the network, the lower the 

internal forces acting in it and vice versa. 

As anticipated in the previous section §3.1, since the method is not integrated, the quality of 

results can be only checked once the whole form-finding procedure is concluded. For this reason, 

the optimal solution was hand-selected by comparing design quality and structural performance 

of several optimal shells, all obtained by interpolating nodes of different thrust networks 

generated from a TNA form-finding routine for various boundary conditions (i.e. different loads 

and support positions). 

Each shell was then subjected to a Gaussian curvature analysis (by searching for anticlastic shells 

with most negative distribution of Gaussian curvature) and structural analysis of a FEM model of 

the whole bridge structure (shown in Figure 3. 4). 

 

Figure 3. 5 FEM analysis results: (a) tensile stress distribution on the shell front; (b) tensile stress distribution 
on the shell back (Luigi Fenu et al. 2019) 

FEM analysis thus allowed to choose the shell with minimized tensile stress regions (Figure 3. 5). 

Structural analysis indicated that the shell was prevalently in compression with a maximum 

compressive stress of 18 MPa. The excellent structural behaviour of the shell supported footbridge 

has been confirmed by the results of the FE analysis, which demonstrated that the non-
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conventional form-finding procedure minimised unwished tensile stresses in the concrete 

anticlastic shell with uniform thickness. 

3.1.2 Form-finding and size optimization of concrete free-form vaults 

A similar not-integrated method was successfully applied to optimize shape and size (i.e. the 

thickness) of concrete free-form vaults. 

As in the previous case, the medium surface of a free-form vault has been optimized through 

Thrust Network Analysis (TNA) form-finding method (whose resulting final form Γ and force Γ* 

diagrams, as well as the optimized thrust network G interpolated by a NURBS surface are shown 

in Figure 3. 6). 

 

Figure 3. 6 Vault form-finding through TNA: (a) final form diagram Γ; (b) final force diagram Γ*; (c) 
optimized thrust network G interpolated through a NURBS surface 

Once an optimal medium surface was obtained (i.e. the shape optimization phase was concluded), 

a parametric FEM model was defined through a proper tool (called Karamba3D) for Grasshopper 

(mentioned in §1.2.1 and described in (Tedeschi, Wirz, and Andreani 2014)). The parametric FEM 

tool (Karamba3D) for Grasshopper, allowed to assign a variable thickness to the concrete vault, 

by optimizing it for given boundary conditions (size optimization phase). 
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Figure 3. 7 Comparison of FEM analysis results: (a) Von Mises Stress distribution in constant thickness vault; 
(b) Von Mises Stress distribution in variable thickness vault; (c) maximum vertical deflections (𝑢𝑧) in constant 

thickness vault; (d) maximum vertical deflections (𝑢𝑧) in variable thickness vault 

In the end, structural performance (evaluated trough FEM analysis) of a vault with a variable 

(from 0.015 to 0.12 m) optimized thickness and a constant thickness (of 0.046 m) vault with same 

optimized medium surface and equivalent volume was compared. It was found that structural 

behaviour of optimized concrete vault was better than that one of constant thickness vault, in 

terms of both, stress distribution and maximum deflections (under same loads). 

Therefore, the analysis of final results validated the effectiveness of the proposed not-integrated 

method in optimizing a concrete free-form vaults, besides all phases (shape optimization, 

parametric FEM analysis and size optimization) were consecutively performed. 
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3.2 Particle Spring (PS) System and Finite Element Method 

(FEM) analysis 

The Particle-Spring (PS) method (which is introduced in §1.3.2) belongs to Dynamic Equilibrium 

form-finding methods that solve problems of dynamic equilibrium by reaching a static 

equilibrium state (Adriaenssens et al. 2014). The Particle-Spring method aims to find structures 

in static equilibrium by defining the topology of a particle-spring network with loads on the 

particles, the masses of the particles, the stiffnesses and rest lengths of the linear elastic springs, 

and then by attempting to equalize the sum of all forces in this system. For instance, the 

gravitational pull on a mass causes the displacement of the associated particle and subsequently 

the elongation of the attached springs. This elongation produces in turn a counter internal force 

in the springs and stretching continues until the sum of internal forces acting in springs matches 

the downward force of the mass. Particles motion and springs forces are governed by Newton’s 

second law of motion and Hooke’s law of elasticity, respectively. 

A standard Particle-Spring form-finding routine is based on the main following assumptions: 

• Surfaces are discretized by lines and points. The latter are nodes with mass (“particles”) 

whereas lines represent deformable linear elastic “springs” connecting the “particles” 

(which can be considered as lumped masses) 

• Nodes can be fixed or free to move along each direction (which means that they can have 

from zero to three degrees of freedom) 

• Both external (i.e. gravity and applied loads) and internal (acting in springs) forces act on 

nodes. 

Stretching of “springs” (through applying forces on “particles”) leads to iteratively obtain a 

balance of internal and external forces on each node, as well as an equilibrium optimal shape. 

The form-finding flowchart of the Particle-Spring (PS) method is illustrated in Figure 3. 8. This 

method is not material-independent, and it can be adopted to perform a stretched cloth or a 

hanging cloth simulation. In a stretched cloth simulation gravity is usually turned off or set to a 

very low value and the rest-lengths of all the springs are very low or set to zero. 

This type of simulation is commonly used to optimize anticlastic geometries. On the other hand, 

in a hanging cloth simulation, the particles are allowed to “fall” under the gravity loads and the 

rest lengths of springs along the boundary edges are set to be equal to their original lengths. 

Further, additional diagonal springs with differential strengths might be added to ensure that 

faces do not distort significantly during simulation. This type of simulation is more frequently 

used to optimize synclastic geometries (Adriaenssens et al. 2014). 
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Figure 3. 8 Particle-Spring (PS) form-finding flowchart (Adriaenssens et al. 2014) 

The Particle-Spring (PS) method can be performed in the parametric Grasshopper (Tedeschi, 

Wirz, and Andreani 2014) environment through a proper tool (called Kangaroo) or in the CAD 

platform Autodesk Maya by means of a suitable “dynamic solver” called Nucleus (Stam 2009). 

However, regardless the adopted tool, once the shape optimization (form-finding) phase is 

concluded, FEM analysis of the whole model of the vault or shell (with assigned cross-section, 
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material properties and boundary conditions) need to be carried out in order to evaluate the 

quality of obtained results. The method cannot be considered integrated since the Finite Element 

Analysis is not performed at internal steps of the shape optimization (form-finding) procedure. 

This implies that the whole form-finding procedure need to be repeated for an undetermined 

number of times until satisfactory results (in term of both design qualities and structural 

efficiency) are obtained. 

3.2.1 Form-finding (shape optimization) of synclastic shells in 

traditional Lecce’s Star Vaults using a Particle-Spring (PS) 

system 

In the region of Puglia in southern Italy, from the late 16th century onward and continuing to 

today, one finds the architectural tradition of a peculiar type of composite vault called the “Lecce 

vault” (volta leccese). The Lecce vault, which derives its name from the eponymous city (i.e. 

Lecce), is also designated as a “star vault” because, when viewed from below its form resembles a 

star (Fallacara 2012). As a composite vault, commonly with square or rectangular plan, the Lecce 

vaults combine several features of most traditional vaults as barrel, pavilion and cross vaults. The 

simplest types of Lecce vaults are known as: 

• “a spigoli” star vaults, which are composed by four cylindrical lunettes (as portions of 

barrel or cross vaults) and a four-pointed star synclastic shell obtained as a star portion of 

a peculiar pavilion vault generated by an intersection of two semi-ellipsoids 

• “a squadro” star vaults, which are also composed by four cylindrical lunettes, an eight-

pointed star shell generated by an intersection of a four-pointed star shell (again obtained 

as a portion of an ellipsoidal pavilion vault) with four slices of a smaller ellipsoidal pavilion 

vault at its vertices. 

The not-integrated optimization method described in §3.2 was applied to optimize the shape of 

the star shell of “a spigoli” and “a squadro” Lecce vaults, by applying a Particle-Spring (PS) form-

finding system and comparing the structural performance of optimized and not-optimized models 

in a later phase, in order to afterwards check the goodness of solutions. 

The PS form-finding method was applied by means of Kangaroo dynamic solver in the 

Grasshopper parametric platform. In Figure 3. 9 the main steps of the form-finding procedure of 

the four-pointed star shell of a “a spigoli” Lecce vault are illustrated. Since hanging cloth 

simulations are more suitable to find the optimal shape of a synclastic surface (as explained in 

§3.2), PS-method was applied by simulating an inverted hanging cloth, by applying forces 

upwards directed and assigning to springs a high stiffness coefficient and rest lengths equal to 

their initial undeformed lengths. 
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Figure 3. 9 Form-finding through a Particle-Spring (PS) system of a “a spigoli” Lecce vault: (a) initial 
particle-spring network; (b) particle-spring network deformed by forces acting on particles; (c) static equilibrium 

configuration of the network; (d) NURBS patch interpolating the optimized network. 

 

Figure 3. 10 Form-finding through a Particle-Spring (PS) system of a “a squadro” Lecce vault: (a) initial 
particle-spring network; (b) particle-spring network deformed by forces acting on particles; (c) static equilibrium 

configuration of the network; (d) NURBS patch interpolating the optimized network. 
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In the same way, the Particle-Spring form-finding system was applied to optimise the eight-

pointed star shell of a “a squadro” Lecce vault (as shown in Figure 3. 10) by performing an 

inverted hanging cloth simulation. 

Once the form-finding (shape optimization) of the star shells of two types of Lecce vaults was 

concluded, the effectiveness of the method was validated by performing Finite Element Analysis 

(FEA) of “a spigoli” and “a squadro” Lecce vaults with optimized (Figure 3. 9(d) and Figure 3. 

10(d)) and not-optimized star shells with same dimensions. 

The latter were modelled in accordance with architectural traditions clearly illustrated in 

(Colaianni 1967), i.e. by modelling the star shells of vaults as star portions of a ellipsoidal pavilion 

vault. 

 

Figure 3. 11 FEM analysis results: (a) first principal stresses on the extrados of a not-optimized “a spigoli” star 
vault; (b) first principal stresses on the extrados of an optimized “a spigoli” star vault; (c) first principal stresses on 
the extrados of a not-optimized “a squadro” star vault; (d) first principal stresses on the extrados of an optimized “a 

squadro” star vault. 

In the end, the goodness of optimized solutions came to light from a comparison of FEM analysis 

results of optimized and not-optimized Lecce vaults (only subjected to their self-weight) 

regarding first principal stress distributions (see Figure 3. 11) and maximum deflections. 
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Since Lecce vaults were traditionally made of stone masonry (whose material properties were 

brought from (Conte et al. 2011)), the main goal of the optimization procedure was to optimize 

structural performance of these vaults by minimising tensile stress regions on them. As further 

proof of that, Figure 3. 11 shows that first principal stresses (which contain highest tensile 

stresses) are mainly negative (compressive) and more uniform on the extrados of optimized star 

vaults.  

3.2.2 Form-finding (shape optimization) and size optimization of a 

footbridge grid-shell 

The Particle-Spring (PS) method and Finite Element Analysis (FEA) have been consecutively 

applied in a stepwise procedure to perform shape and size optimization of an anticlastic grid-shell 

supporting a curved footbridge, illustrated in Figure 3. 12. 

In a first phase, a Particle-Spring (PS) method was applied (in the Autodesk Maya platform by 

means of Nucleus dynamic solver) by performing a stretched cloth simulation, which is more 

suitable to obtain an optimal anticlastic surface with minimal area. 

 

Figure 3. 12 Three-dimensional model of the grid-shell footbridge 

Once an optimal anticlastic surface was obtained by PS form-finding method, the shell was 

properly discretized by a network lines and nodes, which was suitable to define the central lines 

of a steel tube grid-shell. 

In the next phase, a parametric FEM model of the whole structure of the footbridge (whose deck 

arrangement was the same adopted in (Luigi Fenu et al. 2019, 2017; Luigi Fenu, Congiu, and 

Briseghella 2016; Luigi Fenu, Briseghella, and Congiu 2016; L Fenu, Briseghella, and Congiu 

2016; Luigi Fenu, Briseghella, and Zordan 2015) shown in Figure 3. 4) was defined in the 

Grasshopper environment through the FEM tool Karamba3D, in order to assign and optimize 

steel tube cross-sections (chosen among a list of commercial profiles) of the grid-shell. 
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More accurate Finite Element Analysis (FEA) were carry out (through ANSYS Mechanical APDL) 

in order to verify the goodness of the optimal solution. 

 

Figure 3. 13 FEM analysis results: Axial stress diagram 
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Chapter 4 

4. Integrated methods for parametric design 
and structural optimization 

All methods presented in the §Chapter 3 are based on the use of parametric design techniques 

(e.g. parametric modelling tools like Grasshopper platform) and structural optimization methods 

(e.g. form-finding methods and tools, FEM (Finite Element Method) tools for structural analysis) 

in a stepwise process. Despite their undeniable effectiveness, since the solution goodness (e.g. 

through structural Finite Element Analysis) was verified only when the form-finding process was 

concluded, these not-integrated approaches are extremely time-consuming, and they do not allow 

to evaluate and compare a large number of candidates in searching for the optimal solution. 

In light of the above, new integrated methods combining parametric design and structural 

optimization techniques have been developed and proposed. 

4.1 Macro-algorithm integrating parametric design and 

structural optimization techniques in a hybrid environment 

(MATLAB + Grasshopper) 

A first attempt to overcome the drawbacks of not-integrated optimization methods previously 

discussed was made by developing an integrated “macro-algorithm” (i.e. made of several 

subroutines connected with each other), which combines parametric design and structural 

optimization techniques in a hybrid environment composed of MATLAB and Grasshopper. 

The flowchart of the whole macro-algorithm under consideration, which is illustrated in Figure 

4. 1, shows the structure of a common population-based optimization algorithm on the left (e.g. 

an Evolutionary Algorithm like a Differential Evolution Algorithm), written in a MATLAB 

program. After setting the values of optimization parameters (depending on the chosen 

optimization algorithm), the optimization algorithm starts by generating a first Population of 

Individuals (i.e. a first set of “candidate solution”, which are represented as vectors of design 

variables). It is worth noting that each Individual of the Population corresponds to a vector 
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containing a set of values for all design variables, regardless their various nature (i.e. topology, 

shape and size design variables). 

 

Figure 4. 1 Flowchart of the macro-algorithm integrating parametric design and structural optimization 
techniques in a hybrid environment (MATLAB + Grasshopper) 
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A parametric model, defined as a function of design variables in the Grasshopper environment, 

is updated for each Individual of the first Population (see Figure 4. 1). 

The parametric model defined in Grasshopper receives from MATLAB an “input data structure” 

(which contains a vector of a certain set of design variables for each Individual of the Population) 

and, at the end of its sub-routine, sends to MATLAB an “output data structure” (containing results 

from FEM analysis as for instance the total volume of the structure, maximum stresses and 

maximum deflections). In this regard, this crucial data exchange is allowed by two Grasshopper 

components that were properly programmed by Python language to read and write data on “.csv” 

files (i.e. comma-separated values files). Therefore, through these two non-standard Grasshopper 

components, at each iteration of the optimization algorithm, the Grasshopper parametric model 

can receive a set of input data from MATLAB and send to MATLAB a set of output data containing 

results derived from FE structural analysis of the updated FEM model. The Grasshopper file 

contains a parametric definition of the geometry and a parametric FEM model for structural 

analysis and the whole model is updated for each Individual (design variable vector) of the 

Population. As shown in the flow-chart (in the Figure 4. 1), at the first iteration, FEM analysis 

results are used to evaluate the Objective Function and Constraint Function values of candidate 

solutions of the first Population. At a later time, the Individuals of the initial Population are 

subjected to some operations typical of Evolutionary Algorithms (e.g. like mutation and crossover 

briefly described in the section §1.4.3.2) which commonly make random changes in original 

Individuals (mutation operation) and blend parts of different Individuals (crossover operation). 

The so-varied Individuals provide a new input data structure for the update of the parametric 

Grasshopper model. New FEM results are then produced by analysing all “varied” Individuals 

(new output data structure for MATLAB), for which Objective and Constraint Function values 

have to be evaluated. The most pivotal phase in population-based optimization algorithms is the 

selection operation, which compares one by one each Individual of a current Population with its 

corresponding “varied” Individual of the “after-crossover Population”, in order to select the best 

candidate solutions. In unconstrained optimization problems, the selection of the best candidate 

solutions is only based on the values of the Objective Function which must be minimized or 

maximized. On the other hand, in constrained optimization problems the selection must be also 

based on the feasibility (i.e. a feasible solution satisfies all Constraint Functions) or on the 

Violation values of Constraints (if violation is allowed) of candidates. Individuals who “survive” 

to the selection process, will form a new Population (also called “Generation”) as long as an 

optimal solution will be found (which satisfies a default convergence criterion) or a default 

maximum number of iterations will be reached. 

 



Chapter 4 – Integrated methods for parametric design and structural optimization 

98 |  

4.1.1 Limitations of the method 

The macro-algorithm integrating parametric design and optimization techniques in a MATLAB-

Grasshopper environment (just illustrated in §4.1 and summarized by the flow-chart in Figure 4. 

1) proved to be effective and robust in solving simple structural optimization problems. However, 

despite the advantage of being able to see in real time the updated geometry and FEM model (for 

each design variable vector, which is a candidate solution of the optimum design problem) 

ensured by their parametric definition in the Grasshopper environment, the whole process is 

extremely time-consuming. For this reason, the method is not suitable to solve optimization 

problems depending on a large number of design variables (as most structural optimization 

problems are). 

Hence, since structural optimization of truss arches, which is the subject of the present 

dissertation, depends on a very large number of design variables, the optimization strategy 

proposed in the sub-section §4.1 cannot be considered appropriate. 

 

4.2 Macro-algorithm integrating parametric design and 

structural optimization techniques in MATLAB 

environment 

The need to overcome the limitations of methods illustrated so far (in §Chapter 3 and in previous 

sections of this Chapter) has made it necessary to develop a new optimization strategy, suitable 

to manage and solve structural optimization problems with a very large number of design 

variables in a reasonable time. For this purpose, a MATLAB program containing a parametric 

definition of the optimum design problem, a code of an optimization algorithm and a parametric 

definition of a Finite Element Method (FEM) model for SAP2000 was implemented. A flowchart 

of the whole macro-algorithm (i.e. a program integrating several subroutines), which is entirely 

defined in MATLAB, is illustrated in Figure 4. 2. It is worth noting that the subroutine of the 

macro-algorithm containing a Differential Evolution Algorithm (DEA) could be easily replaced 

by another optimization algorithm, whose selection should be based on the nature of the 

considered optimization problem. 
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Figure 4. 2 Flowchart of the proposed macro-algorithm integrating parametric design and structural 
optimization techniques in MATLAB environment  
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4.2.1 Parametric design and definition of the optimization problem 

Parametric design has a pivotal role in the preliminary phase of a structural optimization process, 

in identifying the design variables (among all parameters that mostly affect the design solutions) 

and properly defining their upper and lower bounds, as well as in the parametric definition of the 

geometry as a function of design variables and formulation of the considered optimization 

problem as function of them (as shown in the flowchart of the proposed macro-algorithm 

illustrated in Figure 4. 2). 

More specifically, the parametric definition of an optimum design problem in the method here 

described, consists of defining a unique set (a vector) of all design variables, regardless their 

various nature (i.e. topology, shape and size design variables), two vectors of lower and upper 

bounds of design variables, the objective and constraint functions as functions of design variables, 

as well as a parametric definition of the geometry depending on topology and shape design 

variables. 

 

4.2.2 The optimization algorithm: A Differential Evolution Algorithm 

(DEA) implemented with a Constraint Domination Selection (CDS) 

criterion 

Once the parametric definition of the considered design and optimization problem is concluded, 

the optimization algorithm can be run. The macro-algorithm here proposed, contains a peculiar 

version of a Differential Evolution Algorithm (DEA), introduced in (Storn and Price 1997), which 

is classified as a population-based stochastic algorithm inspired by biological evolution 

mechanisms, thus belonging to Evolutionary Algorithms (which were previously introduced in 

the section §1.4.3.2). 

Candidate solutions to the optimization problem play the role of individuals in a population 

subject to consequent stages (operations) of reproduction, mutation, crossover (also called 

recombination) and selection. The effectiveness of Evolutionary Algorithms (EA) is confirmed by 

successes in fields as diverse as engineering, art, biology, economics, marketing, genetics, 

operations research, robotics, social sciences, physics, politics and chemistry. 

Notwithstanding, a well-known weak point of Evolutionary Algorithms (EA) is lack of efficiency 

and robustness to handle constraints. Since most structural optimization problems are subjected 

to several constraint functions (that for instance can limit maximum stresses and deflections in 

accordance with mechanical properties of materials and technical standards for construction), a 

dynamic Constraint Domination Selection-based (CDS) criterion was adopted to implement the 
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proposed Differential Evolution Algorithm (DEA) in order to extend its applicability to constraint 

optimization problems. 

The Differential Evolution Algorithm in its original version (Storn and Price 1997) shares some 

features with the well-known Genetic Algorithms. For instance, both optimizers adopt the same 

terminology to define the key elements of the algorithm (i.e. a collection of solutions is called 

“population”, each solution is called as “individual” and each iteration is called as “generation”) 

and incorporate operators (like “mutation”, “crossover” and “selection”) that works in similar 

manners. Nonetheless, DEA is different in handling distance and direction information to move 

from the population at the current generation toward the next one because it takes into account 

constructive cooperation between individuals: in this sense, it behaves in a more similar manner 

to Particle Swarm Optimization Algorithms (PSOAs). 

DEA uses the differences between randomly selected individuals as the source of random 

variations for a third individual referred to as the target vector. Trial solutions are generated by 

adding weighted difference vectors to the target vector. This process is referred to as the mutation 

operator: its main goal is to enable diversity in the current population as well as to direct the 

individuals in such a way a better result is expected. By computing the differences between two 

individuals randomly chosen from the population, the algorithm estimates the gradient in that 

zone rather than in a point. 

The Latin Hypercube Sampling (LHS) Technique is iteratively used to pseudo-randomly generate 

the best initial population with minimum correlation between samples (Monti, Quaranta, and 

Marano 2010). 

At iteration 𝑘 + 1, for each individual 𝐱𝑖
𝑘 , a mutation vector 𝐯𝑖

(𝑘+1)
 is computed by means of one 

of the following alternatives implemented with a “best” selection based on a CDS-criterion: 

𝐯𝑖
(𝑘+1) = 𝐱𝑏𝑒𝑠𝑡 + 𝐹

1( 𝐱𝑟1
𝑘 − 𝐱𝑟2

𝑘 )𝑘                 (30) 

𝐯𝑖 = 𝐱𝑖
𝑘 + 𝐹2( 𝐱𝑏𝑒𝑠𝑡

𝑘 − 𝐱𝑖
𝑘 ) + 𝐹1( 𝐱𝑟1

𝑘 − 𝐱𝑟2
𝑘 )

(𝑘+1)
             (31) 

𝐯𝑖
(𝑘+1)

= 𝐱𝑏𝑒𝑠𝑡 + 𝐹
2( 𝐱𝑟1

𝑘 − 𝐱𝑟2
𝑘 ) + 𝐹1( 𝐱𝑟3

𝑘 − 𝐱𝑟4
𝑘 )𝑘             (32). 

In Eqs. (30-32), 𝑟1, 𝑟2, 𝑟3 and 𝑟4 denote integers randomly selected within the set 

{1,… , 𝑖 − 1, 𝑖 + 1,… ,𝑁} and 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4. The individual 𝐱𝑏𝑒𝑠𝑡
𝑘  is the best performer in the 

population (with 𝑁 individuals) at a 𝑘-iteration. The coefficients 𝐹1 and 𝐹2 are the so-called 

“mutation coefficients” and they are real positive constants (it was assumed that 𝐹1 = 0.8 and 

𝐹2 = 0.95). Any alternative mutation operator leads to different versions of DEA (Storn and Price 

1997). 
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Figure 4. 3 Flowchart of a Differential Evolution Algorithm (DEA) implemented with a Constraint 
Domination Selection-based (CDS) criterion 
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For each mutated vector 𝐯𝑖
(𝑘+1)

 a trial vector 𝐮𝑖
(𝑘+1)

 (offspring) is generated by using the 

binomial crossover formalized as follows 

𝐮𝑖𝑗
(𝑘+1) = {

𝐯𝑖𝑗
(𝑘+1)

, 𝑖𝑓 𝑢 ≤ 𝑝𝑐  𝑜𝑟 𝑗 = 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(0, 𝑛)

𝐱𝑖𝑗
𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (33). 

In Eq. (33), 𝑢 is a pseudo-random number generated by using the uniform probability density 

functions in the range [0,1]. On the other hand, 𝑝𝑐 is the “probability of crossover” (or “crossover 

ratio” or “probability of reproduction”) and it takes values between 0 and 1. All optimization tests 

illustrated in the following sections were performed assuming a “probability of crossover” 

coefficient equal to 0.5. Moreover, 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(0, 𝑛) is a pseudo-random integer selected within the 

set {1,… , 𝑗, … , 𝑛}, where 𝑛 is the number of design variables of the problem. 

After the crossover stage, the selection phase starts. The selection operator in case of 

unconstrained problems employs a very simple one-to-one competition scheme between  𝐮𝑖
(𝑘+1)

 

and 𝐱𝑖
(𝑘+1)

 as follows 

𝐱𝑖 = {
𝐮𝑖

(𝑘+1) , 𝑖𝑓 𝑓 ( 𝐮𝑖
(𝑘+1) ) < 𝑓 ( 𝐱𝑖

(𝑘+1) )

𝐱𝑖
𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(𝑘+1)
             (34). 

The output of the selection operator is a new population for the next generation if a stopping 

criterion has not been satisfied. 

For constrained optimization problems, the standard selection criterion formalized in Eq. (34) is 

replaced by a CDS one, also applied to the evaluation of “best” individual over the entire 

population. 

A Constraint Domination Selection-based (CDS) criterion is based on the concept of 

“domination”, i.e. 

𝐱𝑖
(𝑘+1) = {

𝐮𝑖
(𝑘+1) , 𝑖𝑓 𝐱𝑖

(𝑘+1)  ≻  𝐮𝑖
(𝑘+1)

𝐱𝑖
𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (35) 

where 𝐱𝑖
(𝑘+1)  ≻  𝐮𝑖

(𝑘+1)
 denotes that 𝐮𝑖

(𝑘+1)
 is dominated by 𝐱𝑖

(𝑘+1)
. In the same way, a 

Constraint Domination Selection-based (CDS) criterion is also required to compare the best 

performer of the previous generation ( 𝐱𝑖
𝑃𝑏(𝑘−1)

) with each individual ( 𝐱𝑖
𝑘 ) of the current 

generation in order to find the best solution produced by the whole optimization process. 

Furthermore, a violation function for an 𝑖𝑡ℎ individual can be expressed as follows 

𝛷( 𝐱𝑖
𝑘 ) = ∑ 𝑚𝑎𝑥{0, 𝑔𝑝( 𝐱𝑖

𝑘 )}
𝑛𝑞+𝑛𝑟
𝑝=1 ≥ 0               (36) 
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where 𝑛𝑞 and 𝑛𝑟 indicate the numbers of the equality and inequality constraints, respectively. 

The value of the violation function (expressed by the Eq. (36)) is zero if and only if all constraints 

are satisfied, otherwise it is a positive scalar number. Note that, if the orders of magnitude of the 

constraint violations could be largely different, it will be necessary to normalize the magnitude of 

the violations. Since in all cases addressed in the present dissertation, all constraint violations 

have the same order of magnitude, it was not indispensable to normalize them. 

A static domination-based selection scheme can be formulated for Eq. (9) as follows 

𝐱𝑖
𝑘 ≻ 𝐱𝑖

𝑃𝑏(𝑘−1)
⇔

{
 
 
 

 
 
 (𝑓( 𝐱𝑖

𝑘 ) < 𝑓 ( 𝐱𝑖
𝑃𝑏(𝑘−1)
)) ∧ (𝛷( 𝐱𝑖

𝑘 ) = 0) ∧ (𝛷 ( 𝐱𝑖
𝑃𝑏(𝑘−1)
) = 0)

⋁

(𝛷( 𝐱𝑖
𝑘 ) = 0) ∧ (𝛷 ( 𝐱𝑖

𝑃𝑏(𝑘−1) ) > 0)

⋁

𝛷( 𝐱𝑖
𝑘 ) < 𝛷 ( 𝐱𝑖

𝑃𝑏(𝑘−1) )

        (37). 

A selection scheme (Eq. (35)) based on Eq. (37) is static because the concept of dominance is not 

dynamically tuned during the evolutionary search. 

As a matter of fact, comparing the best performer of the previous generation ( 𝐱𝑖
𝑃𝑏(𝑘−1)

) with each 

individual of the current generation ( 𝐱𝑖
𝑘 ), the selection operator evaluates the following 

alternatives: 

• If both individuals are feasible (which means that 𝛷( 𝐱𝑖
𝑘 ) = 0 and 𝛷 ( 𝐱𝑖

𝑃𝑏(𝑘−1)
) = 0) the 

operator selects the one with minimum value of the objective function; 

• If one of them is unfeasible, the selection operator chooses the one that is feasible; 

• If both individuals are unfeasible, selection operator chooses the individual characterized 

by the minimum value of violation function. 

4.2.3 Finite Element Analysis (FEA): A MATLAB code for SAP2000 

Structural Analysis play an extremely important role in structural optimization process, since it 

is required to compute the value of the objective function (for instance in cases where the total 

weight of the structure or maximum deflections nor the compliance of the structure are assumed 

as objective function to be minimized) and/or the values of parameters which are to be kept within 

certain ranges (in accordance with mechanical properties of materials and technical standards for 

construction like maximum stresses or deflections), thus defining constraint functions of the 

optimization problem. 

As shown in the flowchart of the here proposed optimization macro-algorithm (summarized in  

Figure 4. 2), Finite Element Analysis (FEA) need to be performed for all individuals (i.e. 
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candidate solutions of the considered optimization problem, which are expressed as design 

variable vectors) of the initial population (i.e. the first generation), as well as for all individuals of 

the consecutive populations after being subjected to the crossover operation. 

Structural analysis is here assumed to be performed by the FEM software SAP2000 to evaluate 

the objective and constraints functions of the considered optimization problem. However, the 

FEM model for structural analysis is entirely defined and updated (for each design variable 

vector) in the MATLAB environment, by using the so-called Open Application Programming 

Interface (OAPI) functions, in order to minimize the total computational time of the whole 

process. The OAPI functions allow the user to execute SAP2000 functions (in batch mode) by 

means of MATLAB (or Visual Basic for Applications (VBA), Visual Basic 2012, Visual C# 2012, 

Visual Fortran, Microsoft Visual C++ 2012 and Python programming languages) strings. 

Through this powerful tool, parametric FEM models have been entirely defined (in terms of 

element types, material properties, cross-section features, constraint and load conditions) in the 

MATLAB environment through proper codes able to run structural analysis and so obtain needed 

results. 

In the present dissertation, different kind of structural optimization problems of steel arched 

trussed (planar and spatial) subjected to different boundary conditions have been considered. 

In all cases, the total volume of the steel frame structures was assumed as the objective function 

to be minimized. The value of the total volume was defined as follows 

𝑉 =
𝑊

𝛾𝑠𝑡𝑒𝑒𝑙
                   (38) 

where 𝛾𝑠𝑡𝑒𝑒𝑙 is the specific weight of steel (𝛾𝑠𝑡𝑒𝑒𝑙 = 76.97𝑘𝑁 𝑚3⁄ ). On the other hand, 𝑊 is the total 

weight of the structure to be optimized, evaluated (for each model updated for each design 

variable vector) by carrying out Finite Element Analysis (FEA) and so computing the sum of all 

vertical reaction forces attributable to the structural masses (∑𝑅𝑧,𝐷𝑒𝑎𝑑) as shown in Eq. (39) 

𝑊 = ∑𝑅𝑧,𝐷𝑒𝑎𝑑                  (39). 

Moreover, FEM analysis need to be performed also to evaluate constraint functions of considered 

optimization problem. For instance, to keep stress values within allowable ranges according to 

mechanical properties of materials and technical standards for construction. The maximum 

“utilization ratio” (i.e. the “demand/capacity ratio”) of all truss members, for all applied load 

cases, was assumed as strength constraint in order to evaluate the combined effect of axial forces 

and bending moments. In particular, the critical utilization ratio of bars subjected to compression 

axial forces was calculated by evaluating the combined effect of compression axial forces and 

bending moments by also checking the flexural and lateral-torsional local buckling by means of 
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the interaction equations provided by the section EC3-2005 6.3.3(4), here expressed by Eqs. (40) 

and (41) 

𝑁𝐸𝑑
𝜒𝑦𝑁𝑅𝑘
𝛾𝑀1

+ 𝑘𝑦𝑦
𝑀𝑦,𝐸𝑑

𝜒𝐿𝑇
𝑀𝑦,𝑅𝑘

𝛾𝑀1

+ 𝑘𝑦𝑧
𝑀𝑧,𝐸𝑑

𝜒𝐿𝑇
𝑀𝑧,𝑅𝑘
𝛾𝑀1

≤ 0.99               (40) 

𝑁𝐸𝑑
𝜒𝑧𝑁𝑅𝑘
𝛾𝑀1

+ 𝑘𝑧𝑦
𝑀𝑦,𝐸𝑑

𝜒𝐿𝑇
𝑀𝑦,𝑅𝑘

𝛾𝑀1

+ 𝑘𝑧𝑧
𝑀𝑧,𝐸𝑑

𝜒𝐿𝑇
𝑀𝑧,𝑅𝑘
𝛾𝑀1

≤ 0.99               (41) 

where 𝑁𝐸𝑑, 𝑀𝑦,𝐸𝑑 and 𝑀𝑧,𝐸𝑑 express the values of the axial force and bending moments acting on 

the considered member, 𝑁𝑅𝑘, 𝑀𝑦,𝑅𝑘 and 𝑀𝑧,𝑅𝑘 indicate the characteristic resistance values, 𝑘𝑦𝑦, 

𝑘𝑦𝑧, 𝑘𝑧𝑦 and 𝑘𝑧𝑧 are the so-called “interaction factors”, 𝜒𝑦 and 𝜒𝑧 are the reduction factors for the 

local flexural buckling whereas 𝜒𝐿𝑇 indicates the reduction factor for the lateral-torsional local 

buckling. Note that it was assumed to have 𝛾𝑀0 = 𝛾𝑀1 = 1.1. In this regard, it is important to 

underline that, since all solutions demonstrated to be very stiff, any global buckling analysis was 

not performed. However, it could be easily added to the MATLAB subroutine for SAP2000 

through specific OAPI-functions.  

On the other hand, the utilization ratio of members subjected to tensile axial forces is evaluated 

by checking the combined effect of axial forces and bending moments by means of the interaction 

equation provided by EC3-2005 6.2.1(7) to evaluate the cross-section resistance, here expressed 

by the Eq. (42) 

𝑁𝐸𝑑

𝑁𝑅𝑑
+√(

𝑀𝑦,𝐸𝑑

𝑀𝑦,𝑅𝑑
)
2

+ (
𝑀𝑧,𝐸𝑑

𝑀𝑧,𝑅𝑑
)
2

≤ 0.99             (42). 

For Doubly Symmetric Sections, the previous Eq. (42) is a representation of the code-specified 

equation (EC3 6.2.9.2(1)) given here 

𝜎𝑥,𝐸𝑑 ≤
𝑓𝑦

𝛾𝑀0
                 (43). 

As a matter of fact, the program (SAP2000) performs the design for resistance of members 

subjected to tensile axial forces and bending moments whereas it performs the design for local 

buckling resistance of members subjected to compressive axial forces and bending moments. 

Furthermore, in the case of structural optimization of a spatial arched truss subjected to different 

load cases acting in different directions, it was also necessary to consider serviceability 

constraints, by limiting maximum deflections in all directions of a three-dimensional space. 

For this additional goal, in the particular case of a spatial arched truss, also maximum deflections 

in all directions of all truss members, for all considered load cases, must be evaluated through 
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FEM analysis performed by SAP2000 working in batch-mode by following the instructions 

provided by the MATLAB subroutine (through the OAPI-functions). 

In conclusion, FEM analysis results are indispensable and are used to evaluate the objective and 

the constraint function values, in order to allow the optimization algorithm (as shown in the 

Figure 4. 2 and Figure 4. 3) to find an optimal solution among all feasible candidates (i.e. which 

satisfy all constraint inequality functions). 
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Chapter 5 

5. Parametric design and structural 
optimization of planar truss arches 

The Part III of the present dissertation aims to show, through the application of the new macro-

algorithm (proposed in section §4.2) which completely integrates parametric design and 

structural optimization techniques on MATLAB, optimal design solutions for planar and spatial 

arched trusses, made of steel tubes, subjected to various boundary conditions (e.g. several load 

cases acting in vertical and/or horizontal directions). The ultimate goal of the Part III is to 

carefully analyse the obtained results and compare the optimal solutions, in order to deduce 

useful suggestions for the design of steel arched truss. 

The present Chapter illustrates the results obtained by optimizing, for different sets of boundary 

conditions, planar truss arches composed by two arched tubular chords lying on a vertical plane, 

connected to each other by means of a bracing system with the same configuration of a Pratt truss. 

In particular, planar truss arches, with different spans and constraints conditions, have been 

successfully optimized for multiple load cases, all acting on the same plane of the structure, since 

in-plane structures would not be able to well withstand out-of-plane loads. 

5.1 Structural optimization of truss arches under a single load 

case (demonstrative applications) 

In a preliminary phase, for demonstrative purposes, the problem of structural optimization of in-

plane truss arches subjected to a single load case (acting on the same plane of the arch) was 

investigated. 

Several analytical, graphical and physical methods are available to find the optimal shape of a 

monolithic (single rib) arch subjected to a certain load case (i.e. the “funicular curve” for that 

load). However, only one optimal “funicular curve” can be obtained for a single load case and then 

assumed as “centre line” of an arched structure so that the arch is mainly subjected to compressive 

axial forces, thereby minimizing bending moments. In this regard, the optimization examples 

illustrated in the next sections §5.1.1 and §5.1.2 aim to demonstrate that truss arches cannot be 

optimized for a single load case. For this purpose, optimal solutions obtained by optimizing truss 
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arches with same span and constraint conditions (one subjected to a single load pattern and the 

other subjected to multiple load cases) are compared. 

5.1.1 Two-hinged truss arches 

For demonstrative purposes, the optimization problem of two-hinged planar truss arches, with a 

fixed span of 40 meters, was formulated in one case considering only one load condition (a 

symmetric uniform load) whereas, in another case, three different load patterns were assumed, 

also considering an asymmetric uniform load, which mostly induces unfavourable bending 

moments. 

Both optimization problems were formulated assuming the total volume of the structure as 

objective function to be minimized and the maximum “utilization ratio” (which has been 

previously introduced in §4.2.3) in all truss members for each load case as constraint function, in 

order to keep the stress level within allowable values in accordance with Eurocode3-2005. Both 

problems were solved by applying the integrated method here proposed and described in detail 

in §4.2 (summarized by the flowchart in Figure 4. 2), assuming the same unique set of design 

variables (i.e. without any distinction between topology, shape and size variables) for both 

optimization problems (i.e. single- and multi-load case formulations). 

 

Figure 5. 1 Structural optimization of two-hinged truss arches: (a) optimal solution for a single uniformly 
distributed load case; (b) optimal solution for multiple load cases; (c) superposition of the two optimal solutions 
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Since the application here considered has a mere illustrative purpose, a detailed description of 

the individual phases of the optimization procedure is not provided in the present section. 

Figure 5. 1 allows to easily compare the two optimal solutions obtained by solving the same 

optimum design problem, for one and for three load cases, represented in Figure 5. 1(a) and in 

Figure 5. 1(b) and superimposed in Figure 5. 1(c). Topology, shape and size design variables have 

been simultaneously optimized. The even integer of equal intervals (𝑛𝑖𝑛𝑡) of subdivisions of the 

arch span, is assumed as topology design variable (as a continuous value varying between 10 and 

70, then rounded to the nearest even integer) since it determines the number of truss members, 

thereby changing its topology. As shown in Figure 5. 1 and indicated in Table 5. 1, the optimal 

solution obtained for a single-load pattern is characterized by a number of subdivisions of the 

span (𝑛𝑖𝑛𝑡 = 30) and a resulting total number of elements much higher than the one of the optimal 

solution obtained for multiple load combinations (𝑛𝑖𝑛𝑡 = 10). Further significant differences are 

represented by geometric parameters like the rise over span ratio, the total height and the crown 

depth of two compared arches. In this regard, the optimal solution obtained for a single load case 

is characterized by an almost parabolic shape, with a total height of 12.57 meters, compared to a 

height of 10.31 meters characterizing the multi-load solution.  Moreover, the shape of the multi-

load case solution is much lowered than the optimal shape of the single-load case, as 

demonstrated by the comparison between the two rise over span ratios indicated in Table 5. 1. 

Table 5. 1 Comparison of the optimal values of the objective function (i.e. the volume) and design variables 
mainly characterizing the two compared solutions of two-hinged truss arches 

Compared results Single-load case Multi-load case 

volume 0.23 [𝑚3] 0.31 [𝑚3] 

nint 30 [𝑎𝑑𝑖𝑚.] 10 [𝑎𝑑𝑖𝑚.] 

rise/span 1 1.37 [𝑎𝑑𝑖𝑚. ]⁄  1 1.75 [𝑎𝑑𝑖𝑚. ]⁄  

total height 12.57 [𝑚] 10.31 [𝑚] 

crown depth 0.72 [𝑚] 4.98 [𝑚] 

lower chord diameter 0.103 [𝑚] 0.269 [𝑚] 

upper chord diameter 0.324 [𝑚] 0.299 [𝑚] 

diagonal elements diameter 0.054 [𝑚] 0.107 [𝑚] 

vertical elements diameter 0.057 [𝑚] 0.059 [𝑚] 

lower chord thickness 0.0032 [𝑚] 0.0032 [𝑚] 

upper chord thickness 0.0032 [𝑚] 0.0032 [𝑚] 

diagonal elements thickness 0.0032 [𝑚] 0.0032 [𝑚] 

vertical elements thickness 0.0032 [𝑚] 0.0032 [𝑚] 

On the other hand, the most relevant difference is represented by the “crown depth” of two 

solutions, since in the single-load solution, the arched chords tend to coincide with each other. 
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The presented results are justified by the fact that, for a given load pattern, an optimal shape for 

an arch with a solid and constant cross-section exists (the so-called “line of thrusts”). 

For this reason, when only a single-load pattern is considered, the two chords of the truss arch 

tend to coincide with each other and with the “funicular curve” (also called “line of thrusts”) for 

that load. 

 

Figure 5. 2 Structural optimization of two-hinged truss arches: (a) Axial force diagram of the single load case 
optimal solution; (b) axial force diagram of the multi-load case optimal solution 

As a matter of fact, the optimal truss arch obtained from a single-load case formulation of the 

optimization problem, behaves like a monolithic arch, as also confirmed by the axial force 

diagram (illustrated in the Figure 5. 2(a)), which shows that the upper chord supports most of 

the axial force (whose maximum value is about 800 kN in the upper chord, compared to 195 kN 

in the lower one). This remark legitimizes the significantly bigger diameter resulted (from size 

optimization) for the upper chord with respect to the lower one, as shown in the Table 5. 1. All 

size design variables were assumed as continuous parameters varying between their lower and 

upper bounds (i.e. 0.054 [𝑚] ≤ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ≤ 0.508 [𝑚] and 0.0032 [𝑚] ≤ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ≤ 0.02 [𝑚]). 

In light of the above, it can be said that two-hinged truss arches are not suitable to be optimized 

just considering one load condition, since the optimal solution tends to resemble and behave 

similarly to a single-rib arch. At the same time, it is also possible to affirm that single-rib arches 
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would not be suitable to withstand and be optimized for multiple-load cases extremely different 

from each other (as real load cases commonly are and have to be considered in structural design). 

5.1.2 Hingeless truss arches 

Similarly to the applicative example of two-hinged truss arches (illustrated in the section §5.1.1), 

for the same demonstrative purposes, the optimization problem of planar truss arches 

constrained by two vertically aligned double-hinges (which prevent rotations in two of three 

directions), thus behaving like almost hingeless structures, was preliminary investigated. The 

optimization problem of the “hingeless” truss arches under consideration, with a fixed span of 40 

meters, was formulated in one case considering only one load condition (a symmetric uniform 

load), whereas in another case, three different load patterns were assumed, also considering an 

asymmetric uniform load, which mostly induces unfavourable bending moments. 

 

Figure 5. 3 Structural optimization of hingeless truss arches: (a) optimal solution for a single uniformly 
distributed load case; (b) optimal solution for multiple load cases; (c) superposition of the two optimal solutions 

Figure 5. 3 allows to easily compare the two optimal solutions obtained by solving the same 

optimum design problem, for one and for three load cases, which are illustrated in Figure 5. 3(a) 

and in Figure 5. 3(b) respectively while they are superimposed in Figure 5. 3(c). As in the previous 

case (in §5.1.1), the main features that basically distinguish the two optimal solutions clearly come 

up from a close inspection of Figure 5. 3, as well as from the resulting values shown in Table 5. 2. 

Compared to the previous analysis, it is more evident that the optimal solution obtained for a 

single-load case looks like a monolithic arch (i.e. a single-rib arch with a constant solid cross-

section), as shown in Figure 5. 3(a). 
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As a matter of fact, it is not possible to distinguish the frame structure of the truss arch because 

distances between the two chords at the arch bases and crown (whose values are indicated in the 

Table 5. 2 as “base depth” and “crown depth”, respectively) are smaller than or equal to the sum 

of cross-section radius of the lower and upper chords. Moreover, the single-load optimal arch is 

characterized by a much higher number of elements with respect to the multi-load solution, 

thereby contributing to “fill up” the frame structure of the truss arch. It is worth remembering 

that the number of arch elements depends on the variable number of equal intervals (represented 

by the topology design variable 𝑛𝑖𝑛𝑡) in which arch spans are divided. As in the previous case, the 

parameter 𝑛𝑖𝑛𝑡 was defined as a continuous parameter, varying between 10 and 70, then rounded 

to the closest even integer value. Note that significant differences are also remarkable in size 

optimization results (contained in Table 5. 2) since the multiple load case optimization process 

produced higher diameters compared to the ones obtained from the single load case optimization. 

As in the previous case, all size design variables were assumed as continuous parameters varying 

between their lower and upper bounds (i.e. 0.054 [𝑚] ≤ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 ≤ 0.508 [𝑚] and 0.0032 [𝑚] ≤

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ≤ 0.02 [𝑚]). 

Table 5. 2 Comparison of the optimal values of the objective function (i.e. the volume) and design variables 
mainly characterizing the two compared solutions of hingeless truss arches 

Compared results Single-load case Multi-load case 

volume 0.23 [𝑚3] 0.28 [𝑚3] 

nint 58 [𝑎𝑑𝑖𝑚.] 16 [𝑎𝑑𝑖𝑚.] 

rise/span 1 1.32 [𝑎𝑑𝑖𝑚. ]⁄  1 1.36 [𝑎𝑑𝑖𝑚. ]⁄  

total height 12.71 [𝑚] 12.59 [𝑚] 

crown depth 0.12 [𝑚] 1.44 [𝑚] 

base depth 0.20 [𝑚] 3.39 [𝑚] 

taper ratio 1 1.67 [𝑎𝑑𝑖𝑚. ]⁄  1 2.35 [𝑎𝑑𝑖𝑚. ]⁄  

lower chord diameter 0.206 [𝑚] 0.335 [𝑚] 

upper chord diameter 0.181 [𝑚] 0.163 [𝑚] 

diagonal elements diameter 0.054 [𝑚] 0.075 [𝑚] 

vertical elements diameter 0.054 [𝑚] 0.057 [𝑚] 

lower chord thickness 0.0036 [𝑚] 0.0032 [𝑚] 

upper chord thickness 0.0033 [𝑚] 0.0032 [𝑚] 

diagonal elements thickness 0.0032 [𝑚] 0.0032 [𝑚] 

vertical elements thickness 0.0032 [𝑚] 0.0032 [𝑚] 

A further feature of the two optimal solutions that immediately comes to light by observing the 

arch shapes, as superimposed each other in Figure 5. 3(c), is that the single-load optimal arch is 

perfectly included in and has same height of the multi-load optimal arch. This is justified by the 
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fact that the single load pattern considered in the first formulation of the optimization problem 

also corresponds with one of the three different load conditions adopted in the second formulation 

of the optimization problem. 

It is also worth noting that, since the “base depth” of the solution represented in Figure 5. 3(a) is 

very small, the vertical distance between the two hinges at its base is so small that the arch 

behaviour should be considered more comparable with a two-hinged arch (instead of a hingeless 

arch). 

On the other hand, the structural behaviour of the truss arch optimized for three different load 

conditions should be comparable with a “hingeless” arch since the vertical distance between 

hinges is significant and higher than 3 meters (as indicated in Table 5. 2, referred to the value of 

the “base depth”). A “taper ratio” of two solutions is also compared in the Table 5. 2 and evaluated 

as a ratio between the “crown depth” and the “base depth” of the two optimal arches. In this 

regard, it is easily noted that the optimal truss arch in Figure 5. 3(b) is considerably tapered 

toward its bases, in accordance with the axial force diagram (shown in Figure 5. 4). Nevertheless, 

its peculiar shape is also justified by the fact that it should include all “line of thrusts” derived 

from all considered load conditions. 

 

Figure 5. 4 Structural optimization of hingeless truss arches: (a) Axial force diagram of the single load case 
optimal solution; (b) axial force diagram of the multi-load case optimal solution 
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In the end, this demonstrative application of the optimization macro-algorithm proposed in the 

present dissertation (described in §4.2), once again leads to state that truss arches are not suitable 

to be optimally designed only considering a single load case, as well as monolithic arches (i.e. 

single-rib arches) would not be suitable to bear multiple load conditions extremely different from 

each other. 

5.2 Simultaneous topology, shape and size optimization of two-

hinged truss arches under multiple load cases 

In light of the results obtained from the demonstrative applications previously illustrated in 

section §5.1, the optimization macro-algorithm (proposed in section §4.2) was applied to 

simultaneously perform topology, shape and size optimization of steel arched trusses under 

multiple load cases. 

In particular, the present section will provide a detailed description of the stepwise optimization 

process of two-hinged truss arches, with different spans (40, 80, 120 and 160 meters), subjected 

to multiple different load cases. More specifically, in-plane Pratt trusses, composed by two arched 

chords connected each other and made of steel tubular members (i.e. with circular hollow cross-

sections), were optimally designed for different vertical load patterns (acting in the arch plane). 

The so obtained results will be illustrated and discussed in subsection §5.2.4. 

5.2.1 Parametric design 

It was earlier underlined the pivotal role that parametric design plays in the preliminary phase of 

a structural optimization process, in identifying the design variables (among all parameters that 

mostly affect the design solutions) and properly defining their upper and lower bounds, as well as 

in the parametric definition of the geometry. This phase is thus indispensable to properly 

formulate, at a later stage, the considered optimization problem as a function of the design 

variables (as shown in the flowchart of the proposed macro-algorithm illustrated in Figure 4. 2). 

Parametric design (Woodbury 2010) has been previously defined (in section §1.2) as a complex 

process aiming to define a design problem as a function of several parameters. As a matter of fact, 

this phase consists in establishing the relationships between the parts of the project, in order to 

define them as a function of constant and variable parameters (i.e. as parametric equations). 

Furthermore, the higher the number of design variables to consider, the more crucial the role of 

this stage in the whole process becomes. 

In this regard, the design problem of truss arches here investigated depends on a large number of 

parameters, among which a set of design variables needs to be identified and properly defined. 
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5.2.1.1 Topology design variables 

As anticipated in section §1.3.3, Truss Topology Optimization (TTO) aims to optimize the 

connectivity between a set of nodes, by formulating the problem as a size optimization problem 

thereby allowing zero bar areas (M P Bendsøe and Sigmund 2003). 

In the presented case, topology optimization was not considered by the “ground structure” 

method. 

The topology optimization problem of arched Pratt trusses (with spans of 40, 80, 120 and 160 

meters) has been here formulated as a function of a variable number of truss elements and joints, 

thereby assuming, as topology design variable, a parameter indicated as 𝑛𝑖𝑛𝑡, defining the number 

of equal “intervals” (segments), into which the arch span is subdivided, as follows 

𝑑𝐿 = 𝐿 𝑛𝑖𝑛𝑡⁄                    (44) 

Where 𝐿 represents the length of the arch span, whereas the term 𝑑𝐿 indicates the length of the 

equal segments (see Figure 5. 6). 

The topology design variable 𝑛𝑖𝑛𝑡 determines the node number and spacing (their 𝑥 −coordinates) 

and the number of the truss bars. In particular, the two-hinged truss arches under consideration 

are characterized by 2𝑛𝑖𝑛𝑡 joint number and 4𝑛𝑖𝑛𝑡 − 3 number of members. 

 Furthermore, since a Pratt-type truss has been chosen as bracing system, 𝑛𝑖𝑛𝑡 needed to be 

defined as an even integer, as well as a discrete design variable. 

However, the optimization method here proposed (previously illustrated in section §4.2) needs to 

consider a unique set of continuous design variables. For this reason, the value related to the 

parameter 𝑛𝑖𝑛𝑡 needed to be rounded to the nearest even integer. 

No other parameter was assumed as topology design variable. 

5.2.1.2 Shape design variables: parameters defining Cubic Rational Bézier 

Curves 

As anticipated in the section §1.3.2, the shape optimization here means that node coordinates of 

the structure have to be found. However, the optimization problem of large-scale structures 

(continuous or discrete) characterized by a large number of nodes would require a high number 

of design variables. It could be therefore more advantageous to adopt parametric shape functions, 

depending on a small number of parameters. 

For this purpose, Rational Bézier Curves have been adopted to parametrize the shape of the top 

and bottom chords of the planar truss arches under consideration, in order to define it as a 

function of a limited number of parameters (shape design variables). Bézier curves are parametric 



Chapter 5 – Parametric design and structural optimization of planar truss arches 

120 |  

curves widely used in vector graphics and animation applications to model smooth curves that 

can be scaled indefinitely (Farin, Hoschek, and Kim 2002; Piegl and Tiller 1997; Gerald Farin 

1988). Quadratic and Cubic Bézier curves are most commonly adopted because the evaluation of 

higher degree curves is more computationally demanding. Moreover, Quadratic Rational Bézier 

curves can exactly represent conic curves (see the §Appendix A). However, in this work, the 

parametric form of third-degree Rational Bézier curves (shown in the Figure 5. 5) was adopted 

in order to represent a wider family of curves than conics. 

 

Figure 5. 5 Third-degree Rational Bézier Curve 

Therefore, the following parametric equation (Eq. 45) was used to determine the 𝑧 −coordinates 

of the truss joints 

𝐶(𝐮) =  
(𝑃0.𝑤0.(1−𝐮)

3+𝑃1.𝑤1.3𝐮.(1−𝐮)
2+𝑃2

2.𝑤2.3𝐮
2.(1−𝐮)+𝑃3.𝑤3.𝐮

3)

(𝑤0.(1−𝐮)
3+𝑤13𝐮.(1−𝐮)

2+𝑤2.3𝐮
2.(1−𝐮).𝑤2+𝑤3.𝐮

3)
             (45) 

where 𝑃0, 𝑃1, 𝑃2 and 𝑃3 are called “control points” (they are also the vertices of the so-called 

“control polygon”), whereas 𝑤0, 𝑤1, 𝑤2 and 𝑤3 are their corresponding so-called “weight factors” 

(which are non-negative factors, whose values define the attraction level that the control polygon 

exerts on the curve) and 𝐮 is a vector containing a large number of linearly spaced values, included 

in the interval [0,1]. Both Rational and Non-Rational Bézier Curves pass through the first and 

the last control points and are tangent at these points, respectively to the first and the last “control 

polygon” sides (as shown in the Figure 5. 5 and in the Figure 5. 6). 

In this regard, a more detailed description of Rational Bézier curves is provided in the §Appendix 

A. 
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Figure 5. 6 Parametric definition of the geometry as a function of shape design variables, by taking 
advantage of Cubic Rational Bézier Curves 

Therefore, based on the Eq. (45), as well as on assumed symmetry conditions (remarked in the 

Figure 5. 6), the following parameters were defined as shape design variables to be optimized 

• 𝑥𝑃1𝑙, 𝑥 −coordinate of the second control point (𝑃1𝑙) of the lower chord (shaped as a Cubic 

Rational Bézier arc), assumed as symmetric to the 𝑥 −coordinate (𝑥𝑃2𝑙) of the third control 

point (𝑃2𝑙), with respect to a central vertical axis. Furthermore, both 𝑥 −coordinates of two 

internal control points (𝑃1𝑙 and 𝑃2𝑙) of the bottom arched chord were assumed to be equal 

to the 𝑥 −coordinates of the internal control points of the upper chord axis (indicated as 

𝑃1𝑢 and 𝑃2𝑢) 

• 𝑧𝑃1𝑙, 𝑧 −coordinate of the second control point (𝑃1𝑙 ) of the bottom arch rib (shaped as a 

Cubic Rational Bézier arc), which is assumed to be equal to the 𝑧 −coordinate (𝑧𝑃2𝑙) of the 

third control point 𝑃2𝑙 

• 𝑤𝑃1𝑙, weight non-negative factor of the second control point (𝑃1𝑙) of the bottom arched 

chord, which is equal to the weight factors (𝑤𝑃2𝑙, 𝑤𝑃1𝑢 and 𝑤𝑃2𝑢) of other internal control 

points (𝑃2𝑙, 𝑃1𝑢 and 𝑃2𝑢) of lower and upper arch chords 

• ∆𝑧, absolute value of the difference between 𝑧 −coordinates of the internal control points 

of top and bottom arch chords (∆𝑧 = |𝑧𝑃1𝑢 − 𝑧𝑃1𝑙| = |𝑧𝑃2𝑢 − 𝑧𝑃2𝑙|). 
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It is worth noting that all assumed shape design variables were defined as continuous variable 

values, each one included in a proper range between a lower and an upper bound limit. 

5.2.1.3 Size design variables 

Size optimization of discrete structures aims to find the optimal cross-sectional areas of the 

considered truss members, which could be subdivided into several groups in order to reduce the 

total number of size design variables. 

It is therefore a common practice to assume the cross-sectional areas of elements (or element 

groups) as continuous or discrete size design variables in a structural optimization process (as 

already discussed in section §1.3.1). In size optimization problems it could be particularly 

advantageous to assume a set of discrete variables, corresponding to a list of commercial cross-

sections. 

In this case, the elements of arched trusses were characterized by circular hollow cross-sections. 

Therefore, the steel tubular elements were grouped as follow 

• Bottom chord (lower chord) elements 

• Top chord (upper chord) elements 

• Diagonals 

• Verticals. 

Each group of elements is characterized by same diameter, thus assuming 

• 𝑑1 as diameter of bottom chord elements 

• 𝑑2 as diameter of top chord elements 

• 𝑑3 as diameter of diagonals 

• 𝑑4 as diameter of verticals. 

On the other hand, it was assumed that elements of the same group could have different 

thicknesses, by just imposing that each couple of elements, which are symmetrical with respect to 

a central vertical axis (placed in the mid-span and parallel to the reference 𝑧 −axis), must have 

same thickness. For this purpose, further 𝑛 size design variables were considered, thereby 

assuming 𝑛 different thicknesses 𝑡𝑖 (with 𝑖 = 1,…𝑛), for each 𝑖𝑡ℎ −couple of symmetrical 

elements. 

It is worth noting that the allowable number of different thicknesses (𝑛) depends on 𝑛𝑖𝑛𝑡
𝑢 , which 

indicates the considered upper bound of the topological design variable 𝑛𝑖𝑛𝑡, previously described 

(in section §5.2.1.1). More specifically, it was assumed that 

𝑛 = 2 ∗ 𝑛𝑖𝑛𝑡
𝑢 + 1                  (46) 
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which means that the assumed number of different cross-sections must depend on the allowable 

maximum number of elements, equal to 4𝑛𝑖𝑛𝑡
𝑢 − 3 (see the definition of the topology optimization 

sub-problem illustrated in §5.2.1.1). 

5.2.2 Problem formulation 

Based on the parametric  definition (carry out in §5.2.1) of topology and geometry of the two-

hinged arched trusses under consideration (see the Figure 5. 6), four different optimization 

problems were formulated for arches with spans of 40, 80, 120 and 160 meters. In particular, the 

considered optimization problems differ from each other for the allowable minimum and 

maximum numbers of elements (as shown in the Table 5. 3), already defined in the previous 

section (§5.2.1.3), thus evaluated as follows 

• for the arch model with a span of 40.0 [𝑚], the even number of equal intervals into which the 

span is subdivided (𝑛𝑖𝑛𝑡) can vary from  4 (𝑛𝑖𝑛𝑡
𝑙 ) to 40 (𝑛𝑖𝑛𝑡

𝑢 ), the number of elements can then vary 

from 𝑛𝑒𝑙
𝑀𝐼𝑁 = 4𝑛𝑖𝑛𝑡

𝑙 − 3 = 13 to 𝑛𝑒𝑙
𝑀𝐴𝑋 = 4𝑛𝑖𝑛𝑡

𝑢 − 3 = 157 (CASE 1) 

• for the arch model with a span of 80.0 [𝑚], the even number of equal intervals into which the 

span is subdivided (𝑛𝑖𝑛𝑡) can vary from  6 (𝑛𝑖𝑛𝑡
𝑙 ) to 80 (𝑛𝑖𝑛𝑡

𝑢 ), the number of elements can then vary 

from 𝑛𝑒𝑙
𝑀𝐼𝑁 = 4𝑛𝑖𝑛𝑡

𝑙 − 3 = 21 to 𝑛𝑒𝑙
𝑀𝐴𝑋 = 4𝑛𝑖𝑛𝑡

𝑢 − 3 = 317 (CASE 2) 

• for the arch model with a span of 120.0 [𝑚], the even number of equal intervals into which the 

span is subdivided (𝑛𝑖𝑛𝑡) can vary from  8 (𝑛𝑖𝑛𝑡
𝑙 ) to 120 (𝑛𝑖𝑛𝑡

𝑢 ), the number of elements can then vary 

from 𝑛𝑒𝑙
𝑀𝐼𝑁 = 4𝑛𝑖𝑛𝑡

𝑙 − 3 = 29 to 𝑛𝑒𝑙
𝑀𝐴𝑋 = 4𝑛𝑖𝑛𝑡

𝑢 − 3 = 477 (CASE 3) 

• for the arch model with a span of 160.0 [𝑚], the even number of equal intervals into which the 

span is subdivided (𝑛𝑖𝑛𝑡) can vary from  10 (𝑛𝑖𝑛𝑡
𝑙 ) to 160 (𝑛𝑖𝑛𝑡

𝑢 ), the number of elements can then 

vary from 𝑛𝑒𝑙
𝑀𝐼𝑁 = 4𝑛𝑖𝑛𝑡

𝑙 − 3 = 37 to 𝑛𝑒𝑙
𝑀𝐴𝑋 = 4𝑛𝑖𝑛𝑡

𝑢 − 3 = 637 (CASE 4). 

Table 5. 3 summarizes the numbers of design variables, distinguished by type (topology, shape 

and size), for each optimization problem. As anticipated, the considered problems differ from 

each other only for the number of size design variables, which was assumed to be proportional to 

the allowable maximum numbers of elements (defined in proportion to the length of the arch 

span). 

Table 5. 3 Design variable definitions for the four considered optimization problems 

Span 

length 

Range of 

element 

number 

Number of  

Topology DV 

Number of  

Shape DV 

Number of  

Size DV 

Total 

number 

of DV 

40.0 [𝑚] 13 ≤ 𝑛𝑒𝑙 ≤ 157 1 4 85 90 

80.0 [𝑚] 21 ≤ 𝑛𝑒𝑙 ≤ 317 1 4 165 170 

120.0 [𝑚] 29 ≤ 𝑛𝑒𝑙 ≤ 477 1 4 245 250 

160.0 [𝑚] 37 ≤ 𝑛𝑒𝑙 ≤ 637 1 4 325 330 



Chapter 5 – Parametric design and structural optimization of planar truss arches 

124 |  

Table 5. 4 Lower and upper bounds of design variables for the CASE 1 (arch span of 40 meters) 

CASE 1 

Design 

Variable (DV) 
Type of DV Lower bound Upper bound Unit 

𝑛𝑖𝑛𝑡 topology 4 40 [𝑎𝑑𝑖𝑚. ] 

𝑥𝑃1𝑙  shape 0.1 20.0 [𝑚] 

𝑧𝑃1𝑙  shape 0.0 20.0 [𝑚] 

𝑤𝑃1𝑙 shape 0.5 8 [𝑎𝑑𝑖𝑚. ] 

∆𝑧 shape 0.1 20.0 [𝑚] 

𝑖𝑛𝑑𝑒𝑥𝑑1 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑2 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑3 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑4 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑡(𝑖) ∗ size 2 20 [𝑎𝑑𝑖𝑚. ] 

* with 𝑖 = 1,…𝑛 (𝑛 was defined in the section §5.2.1.3 by the Eq. (46)). 

Table 5. 5 Commercial circular hollow cross-sections 
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0.054 0.0032 0.0036 0.004 0.0045 0.005                             

0.0603 0.0032 0.0036 0.004 0.0045 0.005                             

0.07 0.0032 0.0036 0.004 0.0045 0.005                             

0.0761 0.0032 0.0036 0.004 0.0045 0.005                             

0.0889 0.0032 0.0036 0.004 0.0045 0.005                             

0.1016   0.0036 0.004 0.0045 0.005 0.0054 0.0056 0.0059                       

0.108   0.0036 0.004 0.0045 0.005 0.0054 0.0056 0.0059                       

0.1143   0.0036 0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063                     

0.127     0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071                   

0.133     0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.1397     0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.1524     0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.159     0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.1683     0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.1937       0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.2191         0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008 0.0088               

0.2445           0.0054 0.0056 0.0059 0.0063 0.0071 0.008 0.0088 0.01             

0.273             0.0056 0.0059 0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125         

0.2985               0.0059 0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125         

0.3239               0.0059 0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125         

0.3556                 0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142       

0.368                 0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142       

0.4064                 0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016     

0.419                   0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016     

0.4572                   0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175   

0.47                   0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175   

0.508                   0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 
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A further crucial phase of the optimization problem formulation is the definition of proper lower 

and upper bound values for all design variables. In this regard, the Table 5. 4 shows the lower and 

upper bounds of design variables for the CASE 1 (truss arch with a span of 40 meters). 

As a matter of fact, size design variables were defined as indexes, which allow to take the values 

of diameters and thicknesses from a table of parameters of commercial circular hollow cross-

sections (see Table 5. 5). Size design variables needed to be assumed as discrete. However, since 

the optimization method here proposed (in §4.2) can only generate continuous values, discrete 

size design variables were obtained by rounding the corresponding continuous values to the 

nearest integers. It is important to keep in mind that the elements of the truss arches under 

consideration were subdivided into four groups (previously defined in the section §5.2.1.3), each 

one characterized by same diameter and different thicknesses (by just imposing that couples of 

symmetrical members have the same thickness). 

Furthermore, note that, in all cases, the upper bounds concerning the 𝑥 − and 𝑧 −coordinates of 

the internal control point 𝑃1𝑙 (from which also the 𝑥 − and 𝑧 −coordinates of the other internal 

control points 𝑃1𝑢, 𝑃2𝑙 and 𝑃2𝑢 also depend on), were assumed to be equal to the half-span of the 

considered arch. 

Table 5. 6 shows the lower and upper bounds of design variables for the CASE 2 (truss arch with 

a span of 80 meters). As in the previous case (as well as in all next cases), the size design variables 

were defined as indexes identifying rows and columns of Table 5. 5 (whose first column contains 

the diameters of a list of 27 commercial steel tubes, whereas the other columns contain all 

thicknesses available). 

Table 5. 6 Lower and upper bounds of design variables for the CASE 2 (arch span of 80 meters) 

CASE 2 

Design 

Variable (DV) 
Type of DV Lower bound Upper bound Unit 

𝑛𝑖𝑛𝑡 topology 6 80 [𝑎𝑑𝑖𝑚. ] 

𝑥𝑃1𝑙  shape 0.1 40.0 [𝑚] 

𝑧𝑃1𝑙  shape 0.0 40.0 [𝑚] 

𝑤𝑃1𝑙 shape 0.5 8 [𝑎𝑑𝑖𝑚. ] 

∆𝑧 shape 0.1 40.0 [𝑚] 

𝑖𝑛𝑑𝑒𝑥𝑑1 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑2 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑3 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑4 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑡(𝑖) ∗ size 2 20 [𝑎𝑑𝑖𝑚. ] 
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* with 𝑖 = 1,…𝑛 (𝑛 was defined in the section §5.2.1.3 by the Eq. (46)). 

Table 5. 7 shows a list of topology, shape and size design variables with their lower and upper 

bounds defined of for the CASE 3 (i.e. a two-hinged truss arch with a span of 120 meters, made of 

steel tubular elements). On the other hand, Table 5. 8 shows the lower and upper bounds of all 

design variables assumed for the CASE 4 (truss arch with a span of 160 meters). 

Table 5. 7 Lower and upper bounds of design variables for the CASE 3 (arch span of 120 meters) 

CASE 3 

Design 

Variable (DV) 
Type of DV Lower bound Upper bound Unit 

𝑛𝑖𝑛𝑡 topology 8 120 [𝑎𝑑𝑖𝑚. ] 

𝑥𝑃1𝑙  shape 0.1 60.0 [𝑚] 

𝑧𝑃1𝑙  shape 0.0 60.0 [𝑚] 

𝑤𝑃1𝑙 shape 0.5 8 [𝑎𝑑𝑖𝑚. ] 

∆𝑧 shape 0.1 60.0 [𝑚] 

𝑖𝑛𝑑𝑒𝑥𝑑1 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑2 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑3 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑4 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑡(𝑖) ∗ size 2 20 [𝑎𝑑𝑖𝑚. ] 

* with 𝑖 = 1,…𝑛 (𝑛 was defined in the section §5.2.1.3 by the Eq. (46)). 

Table 5. 8 Lower and upper bounds of design variables for the CASE 4 (arch span of 160 meters) 

CASE 4 

Design 

Variable (DV) 
Type of DV Lower bound Upper bound Unit 

𝑛𝑖𝑛𝑡 topology 10 160 [𝑎𝑑𝑖𝑚. ] 

𝑥𝑃1𝑙  shape 0.1 80.0 [𝑚] 

𝑧𝑃1𝑙  shape 0.0 80.0 [𝑚] 

𝑤𝑃1𝑙 shape 0.5 8 [𝑎𝑑𝑖𝑚. ] 

∆𝑧 shape 0.1 80.0 [𝑚] 

𝑖𝑛𝑑𝑒𝑥𝑑1 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑2 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑3 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑4 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑡(𝑖) ∗ size 2 20 [𝑎𝑑𝑖𝑚. ] 
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* with 𝑖 = 1,…𝑛 (𝑛 was defined in the section §5.2.1.3 by the Eq. (46)). 

All different optimization problems (CASE 1, 2, 3 and 4) were formulated with same objective and 

constraint functions. As described in section §4.2.3, the objective and constraint functions needed 

to be evaluated at each iteration of the proposed optimization macro-algorithm (see the Figure 4. 

2), by performing Finite Element Analysis (FEA) through the software for structural analysis 

SAP2000. 

In all considered cases, the total volume of the structure was assumed as objective function to be 

minimized and calculated by Eqs. (38) and (39) described in the section §4.2.3. In order to keep 

stress values within allowable ranges according to mechanical properties of materials and 

technical standards for construction, the maximum “utilization ratio” (i.e. the “demand/capacity 

ratio”) of all truss members, for all applied load cases, was assumed as strength constraint in order 

to evaluate the combined effect of axial forces and bending moments (as anticipated in the section 

§4.2.3). In particular, the critical utilization ratio of bars subjected to compression axial forces 

was calculated by evaluating the combined effect of compression axial forces and bending 

moments by also considering flexural and lateral-torsional buckling by means of the interaction 

equations provided by the section EC3-2005 6.3.3(4), expressed by the Eqs. (40) and (41) in 

section §4.2.3. The utilization ratio of members subjected to tensile axial forces is evaluated by 

checking the combined effect of axial forces and bending moments by means of the interaction 

equation (provided by EC3-2005 6.2.1(7)), expressed by Eq. (42) in section §4.2.3. 

However, the constraint functions can be generalized by the following inequality 

max
𝑖
𝑈𝑡𝑖𝑙𝑖

𝐿𝐶 ≤ 0.99                  (47) 

where 𝑖 = 1,… 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 (i.e. the latter indicating the number of elements of the frame structure), 

whereas 𝑈𝑡𝑖𝑙𝑖
𝐿𝐶 corresponds to the “Utilization ratio” of an 𝑖𝑡ℎ −truss element evaluated, by means 

of the aforementioned Eqs. (40), (41) and (42), for each load case (𝐿𝐶). As a matter of fact, the 

“utilization ratio” is the ratio between real and allowable stresses, whereas the inequality 

constraint, expressed by the Eq. (47), indicates that the maximum value of the “Utilization ratio” 

among all truss members must be less than 0.99 for all considered load cases (feasibility 

condition). 

It is important to keep in mind that the values of the objective and constraint functions are 

indispensable to compare and iteratively select the best candidate solutions of the considered 

problem during the optimization process, until an optimal solution is achieved. 
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5.2.3 Boundary conditions 

All different optimization problems (CASES 1, 2, 3 and 4) faced in the present section §5.2, are 

characterized by the same boundary conditions. 

More specifically, the steel truss arches under consideration, were assumed to be connected to the 

foundations by two hinges (see the Figure 5. 7). Moreover, since all members are connected 

together through pinned joints, the considered steel arches can be treated as true trusses (i.e. 

subjected to almost only axial forces). 

In planar trusses, the degree of determinacy can be evaluated in the following simplified way 

• If 2𝑛𝑛𝑜𝑑𝑒𝑠 > 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 + 𝑔𝑑𝑣𝑒𝑥𝑡, the structure is determinate and unstable (which is also 

called “hypostatic structure”) 

• If 2𝑛𝑛𝑜𝑑𝑒𝑠 = 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 + 𝑔𝑑𝑣𝑒𝑥𝑡, the structure is determinate and stable (which is also called 

“isostatic structure”) 

• If 2𝑛𝑛𝑜𝑑𝑒𝑠 < 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 + 𝑔𝑑𝑣𝑒𝑥𝑡, the structure is indeterminate (also called “redundant 

structure” 

where 𝑛𝑛𝑜𝑑𝑒𝑠 indicates the number of joints, 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 represents the number of elements whereas 

𝑔𝑑𝑣𝑒𝑥𝑡 corresponds to the “degree of external constraint”, which, in this case, is equal to 4 (since 

the considered truss arches are characterized by two external hinges). 

The structure illustrated in the Figure 5. 7 is statically redundant or indeterminate, since it is easy 

to prove that  

2. 𝑛𝑛𝑜𝑑𝑒𝑠 < 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 + 𝑔𝑑𝑣𝑒𝑥𝑡                 (48) 

by substituting the quantities indicating the numbers of nodes (𝑛𝑛𝑜𝑑𝑒𝑠) and elements (𝑛𝑓𝑟𝑎𝑚𝑒𝑠) 

with their parametric expressions as a function of the parameter 𝑛𝑖𝑛𝑡 

2. (2. 𝑛𝑖𝑛𝑡) < (4. 𝑛𝑖𝑛𝑡 − 3) + 4                 (49) 

which leads to obtain the following simplified inequality 

4. 𝑛𝑖𝑛𝑡 < 4. 𝑛𝑖𝑛𝑡 + 1                 (50). 

Not that the Eq. (50) proves that the considered structure to be optimized is always indeterminate 

with one degree, regardless the number of its members. 

It is clearly shown in Figure 5. 7 that three different load cases acting in the 𝑧 −direction (i.e. lying 

on the same 𝑥𝑧 −plane as the arch) were applied; which are 
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• LOAD CASE 1: Non-structural Dead Loads (24.00 𝑘𝑁 𝑚⁄ ) + Live Loads (15.00 𝑘𝑁 𝑚⁄ ) 

applied along the total length of the arch 

• LOAD CASE 2: Non-structural Dead Loads (24.00 𝑘𝑁 𝑚⁄ ) applied along the total length 

of the arch 

• LOAD CASE 3: Non-Structural Dead Loads (24.00 𝑘𝑁 𝑚⁄ ) applied along the total length 

of the arch + Live Loads (15.00 𝑘𝑁 𝑚⁄ ) applied along the right half of the arch. 

Note that all load patterns were applied as Point Loads on nodes (of the bottom chord), equivalent 

to the uniform load conditions just mentioned (and illustrated in Figure 5. 7). 

 

 

 

Figure 5. 7 Boundary conditions (external constraints and multiple load cases) considered in all cases of the 
optimization problem of two-hinged truss arches 
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5.2.4 Results 

As discussed in the previous section §5.2.2, the problem of the optimum design of two-hinged 

steel truss arches was faced with four different formulations, each one characterized by a different 

span (40, 80, 120 and 160 𝑚𝑒𝑡𝑒𝑟𝑠) and different number of size design variables (which increases 

as the arch span increases, as shown in Table 5. 3). The optimization problems of CASES 1, 2, 3 

and 4 were solved by applying the optimization macro-algorithm entirely contained in a MATLAB 

program (described in the section §4.2 and summarized in the flowchart in Figure 4. 2). The 

proposed method was applied to find optimal solutions (with minimum weight) of the two-hinged 

truss arches under consideration, subjected to the above mentioned different load cases (shown 

in Figure 5. 7). The purpose of this section is to illustrate and compare the obtained best solutions 

of all considered optimization problems (CASES 1, 2, 3 and 4), in order to investigate them and 

deduce useful suggestions for the design of two-hinged truss arches made of steel tubular 

elements. 

As already mentioned, the proposed macro-algorithm includes a modified version of a 

Differential Evolution Algorithm (in detail described in the section §4.2.2 and summarized in the 

Figure 4. 3). Since this optimization algorithm belongs to population-based Evolutionary 

Algorithms (introduced in §1.4.3.2), in a preliminary phase, following the parametric definition 

of the considered problem, it was necessary to properly define the “population” size (which 

corresponds to the number of candidate solutions, called “individuals”, of each “generation”) and 

the maximum number of “generations”. 

Table 5. 9 Optimization parameters of the Differential Evolution Algorithm (DEA) for the different problem 
formulations (CASES 1, 2, 3 and 4) 

OPTIMIZATION PARAMETERS 

CASE Span length 

Number of 

design 

variables 

Population 

size 
Generations 

Total 

number of 

iterations 

1 40.0 [𝑚] 90 100 300 30000 

2 80.0 [𝑚] 170 100 500 50000 

3 120.0 [𝑚] 250 100 750 75000 

4 160.0 [𝑚] 330 100 1000 100000 

In regard, Table 5. 9 summarizes the main optimization parameters, defined for each case. It is 

worth noting that all problems were characterized by a large number of design variables, same 

population size and the maximum number of “generations” is increased according to the number 

of design variables of the problems in order to ensure a suitable exploration of the search space. 
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In closing, it is worth highlighting that the proposed optimization method, allowed to 

simultaneously optimize all design variables despite their various nature (since topology, shape 

and size, as well as continuous and discrete design variables were considered) and extremely large 

number leading to satisfactory results. 

5.2.4.1 Case 1 optimal solution 

As a first case, the problem of the structural optimization of a two-hinged truss arch with a span 

of 40 meters parametrically defined as shown in the section §5.2.1 (by taking advantage of Cubic 

Rational Bézier curves to parametrize the geometry, as illustrated in Figure 5. 6) and subjected 

to three vertical load cases (represented in Figure 5. 7) was considered and successfully solved. 

All assumed design variables, with corresponding lower and upper bounds, are indicated in Table 

5. 4. 

In this regard, Figure 5. 8 shows the optimal shape of the best solution characterized by a 

minimum volume of 0.339 𝑚3 (i.e. the minimum value of the objective function), corresponding 

to a self-weight per unit length of 0.652 𝑘𝑁 𝑚⁄ . The so-obtained optimal solution is characterized 

by a total height of 10.23 𝑚, a rise of 5.83 𝑚 and a “crown depth” about 4.40 𝑚 (as indicated in 

Figure 5. 8).  

 

Figure 5. 8 Front view of the optimized truss arch with main dimensions (CASE 1 optimal solution) 

As well known, a representative parameter of an arch shape is its “rise-to-span ratio” (commonly 

included between 1/4 and 1/6), which strongly affects the structural behaviour of the arch. The 

smaller the rise of an arch, the greater the magnitude of horizontal thrusts (see Eqs. (10) and (15)) 

that arise at its end. In particular, the optimal arch here considered, has a “rise-to-span ratio” 

equal to 1/6.86, a “height-to-span ratio” equal to 1/3.91 and a “crown depth-to-span ratio” 

corresponding 1/9.09. Such a high depth at the arch crown could be justified by the high flexibility 

of a two-hinged arch, especially under asymmetric load patterns as the one among all load cases 

considered (represented in Figure 5. 7). A further representative parameter of the optimal truss 

arch under consideration is the total number of elements, which directly depends on the even 
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integer (𝑛𝑖𝑛𝑡) of the arch span subdivisions into equal intervals. In this regard, the truss arch 

represented in the Figure 5. 8 is characterized by an arch span subdivision number (𝑛𝑖𝑛𝑡) equal 

to 12, thereby resulting in a total element number (𝑛𝑓𝑟𝑎𝑚𝑒𝑠) equal to 45 (since it was assumed that 

𝑛𝑓𝑟𝑎𝑚𝑒𝑠 = 4𝑛𝑖𝑛𝑡 − 3) and joint number (𝑛𝑛𝑜𝑑𝑒𝑠) equal to 24 (since 𝑛𝑛𝑜𝑑𝑒𝑠 = 2𝑛𝑖𝑛𝑡). 

Table 5. 10 Topology and shape optimization results for the CASE 1: optimal values of topology and shape 
design variables 

Topology optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑛𝑖𝑛𝑡 topology 12 [𝑎𝑑𝑖𝑚. ] 

Shape optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑥𝑃1𝑙  shape 12.078 [𝑚] 

𝑧𝑃1𝑙  shape 9.310 [𝑚] 

𝑤𝑃1𝑙 shape 0.559 [𝑎𝑑𝑖𝑚. ] 

∆𝑧 shape 7.030 [𝑚] 

Table 5. 10 contains the optimal values obtained for all topology and shape design variables, which 

completely define the geometry of the optimal truss arch here analysed. It is worth observing that 

the obtained arch shape (especially the bottom chord shape) is quite lowered and comparable to 

that one of a “segmental arch”. Note that the obtained arched truss shape must be a trade-off 

between the optimal shapes for all considered load cases (shown in Figure 5. 7), among which the 

asymmetric load pattern strongly affects the structural response of the structure and the solution 

of the optimization problem. 

Table 5. 11 Size optimization results for the CASE 1: optimal diameters and thicknesses of circular hollow 
cross-sections  

Size optimization results 

Element 

groups 
Type of DV 

Diameter 

𝒅𝒊 

Min. 

thickness 

𝒕𝒊 

Max. 

thickness 

𝒕𝒊 

Unit 

Bottom chord size 0.1524 0.004 0.008 [𝑚] 

Top chord size 0.2191 0.005 0.005 [𝑚] 

Diagonals size 0.0889 0.0032 0.005 [𝑚] 

Verticals size 0.054 0.0032 0.005 [𝑚] 
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Figure 5. 9 Finite Element Analysis (FEA) results for the CASE 1: (a) axial force diagram; (b) bending 
moment diagram 

 

Figure 5. 10 Finite Element Analysis (FEA) results for the CASE 1: Demand/Capacity ratio (also called 
“utilization ratio”) diagram of the optimal solution for the envelope of all load cases 

However, the optimal shape for an asymmetrical uniform load pattern (like the third load case 

here considered) should also be asymmetrical but the arch was imposed to be symmetric. 

Table 5. 11 shows the optimal values of diameters and thicknesses (taken from Table 5. 5) that 

define the circular hollow cross-sections of the elements. As described in the section §5.2.1.3, the 
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elements were subdivided into four groups (bottom chord elements, top chord elements, 

diagonals and verticals), each characterized by same diameter and different thicknesses (it was 

only imposed that couples of symmetrical elements with respect a central vertical axis must have 

same thickness). 

Since the number of size design variables corresponding to the element thicknesses is extremely 

large, only the minimum and the maximum thicknesses for each element group are indicated in 

Table 5. 11. Note that the tubular elements of the top chord have the largest diameter and constant 

thickness, because the upper chord is subjected to the maximum axial force (as shown in Figure 

5. 9(a)). In particular, it was found that the upper chord was subjected to a compressive axial force 

varying from 578 𝑘𝑁 to 674 𝑘𝑁 (which could be considered as constant), as well as to bending 

moments (whose diagram is illustrated in Figure 5. 9(b)) varying from 0.36 𝑘𝑁.𝑚 to 0.54 𝑘𝑁.𝑚. 

On the other hand, the bottom chord is subjected to a compressive axial force varying between 

193 𝑘𝑁 to 553 𝑘𝑁, as well as to bending moments varying from 0.20 𝑘𝑁.𝑚 to 0.46 𝑘𝑁.𝑚. 

Moreover, diagonal and vertical members are subjected to tensile axial forces, whereas diagonals 

also withstand bending moment actions varying from 0.1 𝑘𝑁.𝑚 to 0.22 𝑘𝑁.𝑚.  

It is worth highlighting that a structural optimization process of an arch always aims to minimize 

potential bending effects, since arches were properly conceived to bear and transfer loads by 

mainly compressive axial stresses. The stress level in the structure to be optimized was kept within 

an allowable range of values, according to mechanical properties of materials and technical 

standards for construction, assuming the maximum “utilization ratio” (i.e. the “demand/capacity 

ratio”) of all truss members, for all applied load cases, as strength constraint function (expressed 

by the Eq. (47)), thus checking the combined effect of axial forces and bending moments with 

special emphasis to flexural and lateral-torsional buckling in case of combined compressive and 

bending stresses. Figure 5. 10 shows a diagram of the optimal truss arch here analysed, indicating 

the maximum 𝑖𝑡ℎ −element “utilization ratio” (𝑈𝑡𝑖𝑙𝑖
𝐿𝐶), among all load combinations. 

The aforementioned “utilization ratio” diagram shows that more than half of elements is 

characterized by a critical ratio larger than 0.7. However, a new parameter to express the overall 

percentage of “utilization” of the whole structure was introduced and evaluated as follows 

𝑈𝑡𝑖𝑙𝑡𝑜𝑡 =
∑ (max

𝐿𝐶
𝑈𝑡𝑖𝑙𝑖

𝐿𝐶*𝑊𝑖)
𝑛𝑓𝑟𝑎𝑚𝑒𝑠
𝑖=1

∑ (𝑊𝑖)
𝑛𝑓𝑟𝑎𝑚𝑒𝑠
𝑖=1

                 (51) 

where the term max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶 indicates the maximum “utilization ratio” characterizing each 

𝑖𝑡ℎ −member among all load cases (𝐿𝐶), whereas 𝑊𝑖 indicates the weight of each 𝑖𝑡ℎ −member. 
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Figure 5. 11 Convergence curve of the Objective (Obj) function (i.e. the volume of the arch) for all “generations” 
(for the CASE 1) 

As a matter of fact, the new introduced parameter 𝑈𝑡𝑖𝑙𝑡𝑜𝑡 was evaluated as a weighted average of 

Demand/Capacity ratios (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) shown in Figure 5. 10, with respect to the weight of each 

member. The “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) therefore expresses a quite realistic overall 

percentage of the material exploitation characterizing the whole structure. 

The “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) resulting from all values indicated in Figure 5. 10, and 

calculated by the Eq. (51), corresponds to a satisfactory percentage of material exploitation about 

76.3 %, which ensures a high level of structural performance of the optimized solution under 

consideration. 

Figure 5. 11 shows the convergence curve of the “objective function” (i.e. the total volume of the 

structure) to be minimized, in order to validate the goodness of the obtained result, 

notwithstanding the extremely large number of design variables and their various nature. 

For the same purpose, Figure 5. 12 shows two diagrams, representing the history of two important 

functions in the optimization process, which are 

• The “stagnation function” (whose diagram is shown in Figure 5. 12(a)) mathematically 

represents a particular situation, which could be confused with a premature convergence 

since it occurs when a population-based optimization algorithm stops proceeding towards 

the global optimum, although the population has not converged to a local optimum and 

new individual entered the population 
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Figure 5. 12 History of optimization functions (for the CASE 1): (a) stagnation function; (b) “unfeasibility 
function” (ρ) 

• The “unfeasibility function” (indicated as 𝜌 in Figure 5. 12(b)), evaluates the number of 

“unfeasible individuals” (i.e. candidate solutions that not satisfy all constraint functions) 

generated in each generation (𝑘), as follows 

𝜌𝑘 =
𝑈𝑛𝑓𝑘

𝑃𝑜𝑝𝑘
                 (52). 

More specifically, 𝜌𝑘 is a value between 0 and 1, calculated as a ratio between “unfeasible 

individuals” (𝑈𝑛𝑓𝑘) and all individuals (𝑃𝑜𝑝𝑘) of a 𝑘𝑡ℎ −generation.  
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Figure 5. 13 Convergence curve of the topology design variable (𝑛𝑖𝑛𝑡) for the CASE 1 

 

 

Figure 5. 14 Convergence curves of the shape design variables (variable parameters of third-degree rational 
Bézier curves) for the CASE 1: (a) 𝑥 −coordinate of the second control point (𝑥𝑃1𝑙) of the bottom arched chord; (b) 
𝑧 −coordinate of the second control point (𝑧𝑃1𝑙) of the bottom arched chord; (c) weight factor of the second control 
point (𝑤𝑃1𝑙) of the bottom arched chord; (d) the difference between the 𝑧 −coordinates (in absolute value) of the top 

and bottom chord internal control points (∆𝑧) 
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Figure 5. 15 Convergence curves of size design variables (i.e. indexes identifying the element group diameters 
in a list of commercial circular hollow cross-sections) for the CASE 1: (a) index identifying the bottom chord 

diameter; (b) index identifying the top chord diameter; (c) index identifying the diameter of diagonals; (d) index 
identifying the diameter of verticals 

The “zigzag” trend of the “stagnation function” (Figure 5. 12(a)) occurs because it becomes equal 

to zero at each generation characterized by an improvement in the objective function compared 

to the previous generation. On the other hand, the “stagnation function” increases until an 

improvement in the objective function occurs. 

Figure 5. 12(b) shows that the “unfeasibility function” (𝜌) becomes and remains zero from the 

27𝑡ℎ generation to the last one, meaning that the optimization process produces and evaluates 

only feasible candidate solutions from this point on. 

Since the optimization problem here analysed is characterized by an extremely large number of 

design variables, it is not possible to show all their convergence curves. 

In this regard, Figure 5. 13 represents the convergence diagram of the topology design variable 

𝑛𝑖𝑛𝑡, which the total number of the truss arch elements depends on. It is worth recalling that 𝑛𝑖𝑛𝑡 

was defined as a continuous value between 4 and 40 (to be later rounded to the nearest even 

integer). 

The convergence curve validates the goodness of obtained solution, since from the first 20 

generations its value only tends to oscillate between 10 and 14, until an optimal value close to 12 

was found (see Figure 5. 13). 
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In Figure 5. 14 the convergence curves of shape design variables (i.e. the variable parameters 

defining the shape of the lower and upper arch chords through parametric Cubic Rational Bézier 

curves) are presented to prove the validity of results, despite the large number and the variety of 

design variables. In the same way, a good convergence trend was also obtained for the size design 

variables determining the element group diameters (whose curves are shown in Figure 5. 15). 

The goodness of the obtained results validates the effectiveness of the adopted optimization 

method (i.e. the MATLAB macro-algorithm presented in section §4.2) in handling and solving 

structural optimization problems characterized by an extremely large number of design variables 

and constraint functions, in a reasonable computational time. 

5.2.4.2 Case 2 optimal solution 

As a second case, the problem of the structural optimization of a two-hinged truss arch with a 

span of 80 meters, parametrically defined by taking advantage of parametric Cubic Rational 

Bézier curves (as described in section §5.2.1 and illustrated in Figure 5. 6) and subjected to three 

vertical load cases (represented in Figure 5. 7) was addressed and successfully solved. All assumed 

design variables, with corresponding lower and upper bounds, are indicated in Table 5. 6. Figure 

5. 16 shows the optimal shape of the obtained best solution, characterized by a minimum volume 

(best objective) equal to 1.508 𝑚3, corresponding to a self-weight per unit about 1.451 𝑘𝑁 𝑚⁄ . The 

optimal truss arch in Figure 5. 16, is 21.47 𝑚 high, has a rise of 13.12 𝑚 and a “crown depth” about 

8.36 𝑚.  

Therefore, the optimal arch here considered is characterized by a “rise-to-span ratio” equal to 

1/6.10, a “height-to-span ratio” equal to 1/3.72, as well as a “crown depth-to-span ratio” about 

1/9.57. As in the previous case (in section §5.2.4.1) the “crown depth” of the arch is considerably 

high, indeed because of the high flexibility of a two-hinged arch system, especially under 

asymmetric load patterns as the third one among the load cases considered (represented in Figure 

5. 7). 

 

Figure 5. 16 Front view of the optimized truss arch with main dimensions (CASE 2 optimal solution) 
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Table 5. 12 Topology and shape optimization results for the CASE 2: optimal values of topology and shape 
design variables 

Topology optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑛𝑖𝑛𝑡 topology 12 [𝑎𝑑𝑖𝑚. ] 

Shape optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑥𝑃1𝑙  shape 29.224 [𝑚] 

𝑧𝑃1𝑙  shape 21.696 [𝑚] 

𝑤𝑃1𝑙 shape 0.509 [𝑎𝑑𝑖𝑚. ] 

∆𝑧 shape 13.821 [𝑚] 

Furthermore, the truss arch represented in Figure 5. 16 is characterized by an arch span 

subdivision number (𝑛𝑖𝑛𝑡) equal to 12 as the optimal solution of the CASE 1 thereby resulting in 

a total element number (𝑛𝑓𝑟𝑎𝑚𝑒𝑠) equal to 45 and joint number (𝑛𝑛𝑜𝑑𝑒𝑠) equal to 24. 

Table 5. 12 contains the optimal values of the topology and shape design variables, which defined 

the optimal shape of the arch under consideration. Note that, as in the previous case, the shape of 

the arch chords (especially of the lower chord) are quite lowered (even if to a less extent with 

respect to the optimal arch carried out for the CASE 1), looking like flattened at their crown. It is 

important to remember that the shape of the truss arch under consideration, has to be optimal 

for the three considered load conditions, among which an asymmetric load pattern was also 

assumed (see the Figure 5. 7). The asymmetrical uniform load pattern assumed as third load case, 

as larger effect on the structural behaviour of the symmetric arch to be optimized, since the 

optimal shape for that load condition should be also asymmetric. 

Table 5. 13 Size optimization results for the CASE 2: optimal diameters and thicknesses of circular hollow 
cross-sections 

Size optimization results 

Element 

groups 
Type of DV 

Diameter 

𝒅𝒊 

Min. 

thickness 

𝒕𝒊 

Max. 

thickness 

𝒕𝒊 

Unit 

Bottom chord size 0.2985 0.0059 0.008 [𝑚] 

Top chord size 0.368 0.007159 0.00904 [𝑚] 

Diagonals size 0.159 0.004 0.008 [𝑚] 

Verticals size 0.0761 0.005 0.005 [𝑚] 
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Table 5. 13 shows the optimal values of diameters and thicknesses (taken from Table 5. 5) defining 

the circular hollow cross-sections of the elements. Since the number of size design variables 

corresponding to the element thicknesses is extremely large, only the diameter, the minimum and 

the maximum thicknesses for each element group are indicated in Table 5. 11. Note that the 

tubular elements of the top chord have the largest diameter (as occurred in CASE 1), because the 

upper chord is subjected to the maximum axial force (as shown in Figure 5. 17(a)).  

In particular, it was found that the upper chord was subjected to a compressive axial force varying 

from 1118 𝑘𝑁 to 1453 𝑘𝑁, as well as to bending moments (whose diagram is illustrated in Figure 

5. 17(b)) varying from 3.07 𝑘𝑁.𝑚 to 5.69 𝑘𝑁.𝑚. On the other hand, the bottom chord is subjected 

to a compressive axial force varying between 544 𝑘𝑁 to 1202 𝑘𝑁, as well as to bending moments 

varying from 2.33 𝑘𝑁.𝑚 to 3.74 𝑘𝑁.𝑚. 

Moreover, diagonal and vertical members are subjected to tensile axial forces, whereas diagonals 

also withstand bending moment actions varying from 0.89 𝑘𝑁.𝑚 to 2.50 𝑘𝑁.𝑚. Since the 

considered loads were applied as point loads on the lower chord nodes, the vertical members are 

subjected to only tensile axial forces. 

A structural optimization process of an arch always aims to minimize potential bending effects. 

However, since the arch under consideration was imposed to be symmetric, bending moments 

unavoidably arise, mainly because of the asymmetric load case here assumed. 

The combined effect of axial forces and bending moments was evaluated by means of the 

interaction equation provided by EC3-2005, (expressed by the Eqs. (40), (41) and (42) presented 

in the section §4.2.3), through Finite Element Analysis (FEA) to calculate the maximum 

“utilization ratio” (i.e. the “demand/capacity ratio”) of all truss members, for all applied load cases 

by the Eq. (47), assumed as strength constraint function (as shown in section §5.2.2). 

The constraint functions allowed to keep the stress level, within an allowable range of values, 

according to mechanical properties of materials and technical standards for construction. 

Figure 5. 18 shows a diagram of the optimal truss arch here analysed, indicating the maximum 

𝑖𝑡ℎ −element “utilization ratio” (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) among all load combinations (𝐿𝐶). The so-called 

“utilization ratio” diagram shows once again that more than half of elements is characterized by 

a critical ratio larger than 0.7. As in the CASE 1, it was found that the “total utilization ratio” 

(𝑈𝑡𝑖𝑙𝑡𝑜𝑡) resulting from the weighted average of all values indicated in Figure 5. 18 with respect to 

their self-weight, calculated by Eq. (51), corresponded to a satisfactory percentage of material 

exploitation (about 73.9 %), which ensures a high level of structural performance of the optimized 

solution under consideration. 
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Figure 5. 17 Finite Element Analysis (FEA) results for the CASE 2: (a) axial force diagram; (b) bending 
moment diagram 

 

Figure 5. 18 Finite Element Analysis (FEA) results for the CASE 2: Demand/Capacity ratio (also called 
“utilization ratio”) diagram of the optimal solution for the envelope of all load cases 

The quality of the obtained results is proved by the trend of the convergence curves of the objective 

function and of most significant design variables. 

For instance, Figure 5. 19 shows the convergence curve of the “objective function” (i.e. the total 

volume of the structure) to be minimized. The objective function decreases rapidly in the first 100 

generations, after which it continues to decrease extremely slowly.  This is also confirmed by the 

“stagnation function” trend (illustrated in Figure 5. 20(a)), which for instance, considerably 
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increases from the 115𝑡ℎ to 279𝑡ℎ generation because there was not any improvement in the 

objective function during this interval. This situation could have been confused with a premature 

convergence. However, after that interval, the objective function starts again to slowly improve 

until the maximum number of iterations was reached (stop criterion here assumed). 

 

Figure 5. 19 Convergence curve of the Objective (Obj) function (i.e. the volume of the arch) for all “generations” 
(for the CASE 2) 

On the other hand, Figure 5. 20(b) presents the history of the previously-defined “unfeasibility 

function” 𝜌𝑘 (expressed by Eq. (52) introduced in section §5.2.4.1), showing that it became and 

remained 0 from the 61𝑡ℎ generation until the last one. This means that the optimization process 

produced and compared only feasible candidate solutions from the 61𝑡ℎ generation onwards. 

Figure 5. 21 represents the convergence diagram of the topology design variable 𝑛𝑖𝑛𝑡, which the 

total number of the truss arch elements depends on. It is worth remembering that 𝑛𝑖𝑛𝑡 was defined 

as a continuous value varying between 6 and 80 (to be rounded to the nearest even integer at a 

later time), as indicated in Table 5. 6. Its history curve shows a good convergence trend, since 

from the 115𝑡ℎ generation its value only tends to oscillate between continuous numbers close to 

12 (see Figure 5. 21). 

In Figure 5. 22 the convergence curves of shape design variables are presented to prove the 

validity of results, despite the large number and the variety of design variables. 

In the same way, a good convergence trend was also obtained for the size design variables 

determining the diameters of each element group (see Figure 5. 23), thus proving the 

effectiveness of the MATLAB macro-algorithm presented in the section §4.2. Once again, the 
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MATLAB macro-algorithm presented in section §4.2, demonstrated to be extremely effective in 

handling and solve structural optimization problems characterized by an extremely large number 

of design variables and constraint functions, as all cases analysed in this chapter. 

 

 

Figure 5. 20 History of optimization functions for the CASE 2: (a) stagnation function; (b) “unfeasibility 
function” (ρ)  
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Figure 5. 21 Convergence curve of the topology design variable (𝑛𝑖𝑛𝑡) for the CASE 2 

 

Figure 5. 22 Convergence curves of the shape design variables (variable parameters of third-degree rational 
Bézier curves) for the CASE 2: (a) 𝑥 −coordinate of the second control point (𝑥𝑃1𝑙) of the bottom arched chord; (b) 
𝑧 −coordinate of the second control point (𝑧𝑃1𝑙) of the bottom arched chord; (c) weight factor of the second control 
point (𝑤𝑃1𝑙) of the bottom arched chord; (d) the difference between the 𝑧 −coordinates (in absolute value) of the top 

and bottom chord internal control points (∆𝑧) 
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Figure 5. 23 Convergence curves of size design variables (i.e. indexes identifying the element group diameters 
in a list of commercial circular hollow cross-sections) for the CASE 2: (a) index identifying the bottom chord 

diameter; (b) index identifying the top chord diameter; (c) index identifying the diameter of diagonals; (d) index 
identifying the diameter of verticals 

5.2.4.3 Case 3 optimal solution 

The problem of the structural optimization of a two-hinged truss arch with a span of 120 meters 

is here treated and discussed. As in the previous cases, the truss arch here considered is subjected 

to the boundary conditions (constraints and load cases) illustrated in section §5.2.3, whereas all 

assumed design variables, with corresponding lower and upper bounds, are indicated in Table 5. 

7. The optimal truss arch represented in Figure 5. 24 has a minimum volume (best objective) 

equal to 3.572 𝑚3, corresponding to a self-weight per unit about 2.291 𝑘𝑁 𝑚⁄ . 

Furthermore, the arch is 31.51 𝑚 high, has a rise of 18.65 𝑚 and a “crown depth” about 12.86 𝑚,  

and so characterized by a “rise-to-span ratio” equal to 1/6.43, a “height-to-span ratio” equal to 

1/3.81, as well as a “crown depth-to-span” about 1/9.33. With respect to the  previous cases 1 and 

2 (respectively illustrated in sections §5.2.4.1 and §5.2.4.2) the “crown depth” of the arch is still 

considerably high, since its corresponding “crown depth-to-span ratio” is always around 1/9. 

However, the optimal shapes found in the previous cases were comparable to the one typical of 

“segmental arches”, whereas the shape of the arch under consideration is now comparable to a 

“parabolic arch”. Two factors produced this parabolic shape, which are: 

• The “weight factor” (𝑤𝑃1𝑙) of the internal control points of Rational Bézier Curves (which 

were introduced in §5.2.1.2) equal to 0.501 (as indicated in Table 5. 14) 
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• The value of 𝑥𝑃1𝑙  indicated in Table 5. 14, corresponding to the 𝑥 −coordinate of the second 

control point defining the shape of the arch chords (see the definition of the shape design 

variables in the section §5.2.1.2), resulted to be very close to the length of half-span (equal 

to 60 meters), thus tending to coincide with the third control point (because of imposed 

symmetry conditions). 

 

Figure 5. 24 Front view of the optimized truss arch with main dimensions (CASE 3 optimal solution) 

Note that, the truss arch represented in Figure 5. 24 is once again characterized by an arch span 

subdivision number (𝑛𝑖𝑛𝑡) equal to 12 (as the optimal solutions of the CASES 1 and 2), as well as 

by a resulting total element number (𝑛𝑓𝑟𝑎𝑚𝑒𝑠) equal to 45 and joint number (𝑛𝑛𝑜𝑑𝑒𝑠) equal to 24. 

Table 5. 14 Topology and shape optimization results for the CASE 3: optimal values of topology and shape 
design variables 

Topology optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑛𝑖𝑛𝑡 topology 12 [𝑎𝑑𝑖𝑚. ] 

Shape optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑥𝑃1𝑙  shape 56.514 [𝑚] 

𝑧𝑃1𝑙  shape 31.061 [𝑚] 

𝑤𝑃1𝑙 shape 0.501 [𝑎𝑑𝑖𝑚. ] 

∆𝑧 shape 21.428 [𝑚] 

Table 5. 15 shows the size optimization results, i.e. the optimal values assigned to diameters and 

thicknesses (taken from Table 5. 5) of circular hollow cross-sections of elements. As for the 

previous cases (1 and 2), only the diameter, the minimum and the maximum thicknesses for each 

element group are indicated in Table 5. 15. 
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Table 5. 15 Size optimization results for the CASE 3: optimal diameters and thicknesses of circular hollow 
cross-sections 

Size optimization results 

Element 

groups 
Type of DV 

Diameter 

𝒅𝒊 

Min. 

thickness 

𝒕𝒊 

Max. 

thickness 

𝒕𝒊 

Unit 

Bottom chord size 0.4064 0.0063 0.0063 [𝑚] 

Top chord size 0.508 0.0071 0.011 [𝑚] 

Diagonals size 0.273 0.0056 0.0056 [𝑚] 

Verticals size 0.159 0.004 0.0045 [𝑚] 

The tubular elements of the top chord have the largest diameter (as occurred in the previous 

CASES 1 and 2), because the upper chord is still subjected to a greater axial force (as shown in 

Figure 5. 25(a)). More specifically, it turned out that the upper chord was subjected to a 

compressive axial force varying from 1657 𝑘𝑁 to 2963 𝑘𝑁, and also to bending moments (whose 

diagram is illustrated in Figure 5. 25(b)) varying from 10.79 𝑘𝑁.𝑚 to 22.23 𝑘𝑁.𝑚. The same time, 

the bottom chord resulted to be subjected to an almost constant compressive axial force, varying 

between 1137 𝑘𝑁 to 1325 𝑘𝑁 (reason for which the thickness of the bottom chord elements 

resulted to be constant), as well as to bending moments varying from 7.63 𝑘𝑁.𝑚 to 8.63 𝑘𝑁.𝑚. 

Since the external loads were applied as point loads on the lower chord nodes, diagonal and 

vertical members showed to be subjected to tensile axial forces, whereas diagonals also withstood 

significant bending actions varying from 4.44 𝑘𝑁.𝑚 to 7.05 𝑘𝑁.𝑚. 

Figure 5. 26 shows a diagram of the optimal truss arch here analysed, where the maximum 

𝑖𝑡ℎ −element “utilization ratio” (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶), evaluated for the envelope of all load cases (𝐿𝐶), is 

pointed out on each member, to prove that all constraint functions (generalized by Eq. (47)) are 

satisfied. 

The “utilization ratio” diagram also shows that more than two thirds of the elements are 

characterized by a critical ratio larger than 0.7. 

Furthermore, it was found that the “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) resulting from the weighted 

average of all values indicated in Figure 5. 26 with respect to their self-weight (calculated by Eq. 

(51)), corresponded to a very high percentage of material exploitation about 79.2 %, thus 

guaranteeing a higher level of structural performance of the optimized solution under 

consideration, compared to the previous solutions of CASES 1 and 2. 

The quality of the obtained results is demonstrated by the trend of convergence diagrams of the 

objective function and design variables. In particular, Figure 5. 27 shows the convergence curve 

of the “objective function” (i.e. the total volume of the structure) to be minimized. 
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Figure 5. 25 Finite Element Analysis (FEA) results for the CASE 3: (a) axial force diagram; (b) bending 
moment diagram 

 

Figure 5. 26 Finite Element Analysis (FEA) results for the CASE 3: Demand/Capacity ratio (also called 
“utilization ratio”) diagram of the optimal solution for the envelope of all load cases 

The objective function decreases rapidly in the first 300 generations, after which it continues to 

decrease extremely slowly.  Accordingly, the “stagnation function” (illustrated in Figure 5. 28(a)), 

increases more rapidly in two intervals (from the 359𝑡ℎ to the 474𝑡ℎ, and also from the 499𝑡ℎ to 

631𝑡ℎ generation) due to a lack of improvement in the objective function. However, after that 

phase, the objective function started again to slowly decrease until the maximum number of 

iterations was reached. 
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Figure 5. 27 Convergence curve of the Objective (Obj) function (i.e. the volume of the arch) for all “generations” 
(for the CASE 3) 

On the other hand, Figure 5. 28(b) presents the history of the “unfeasibility function” 𝜌𝑘 

(evaluated by Eq. (52)). That diagram shows that the optimization process generated and 

compared only feasible candidate solutions from the 113𝑡ℎ generation onwards. 

For the sake of brevity, it is not possible to show the convergence curves of all design variables of 

the problem. 

However, particular attention is paid to the topology design variable (𝑛𝑖𝑛𝑡), whose value indirectly 

defined the total number of the truss arch members. In this regard, Figure 5. 29 represents the 

convergence diagram of that parameter. 

As indicated in Table 5. 7, 𝑛𝑖𝑛𝑡 was assumed to vary between 8 and 120. The convergence curve 

validates the goodness of obtained solution, since from the 115𝑡ℎ generation onwards, its value 

only tends to oscillate between values very close to 12 (see Figure 5. 29). 

In Figure 5. 30 the convergence curves of shape design variables (i.e. the variable parameters 

defining the shape of the lower and upper arch chords through parametric Cubic Rational Bézier 

curves) are also presented to prove the validity of results. In particular, those diagrams show that 

the optimization process leaded to the optimal values of all shape design variables approximately 

from the 350𝑡ℎ generation. 

In the same way, Figure 5. 31 pointed out that the optimal values of size design variables under 

consideration were also approximately obtained from the 350𝑡ℎ generation. 
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This is in accordance with the trend of the objective function that showed to decrease extremely 

slowly from the 300𝑡ℎ. 

The histories of size design variables corresponding to the indexes defining the thickness elements 

are not showed for the sake of brevity, but they are also characterized by a satisfactory 

convergence level, further validating the goodness of results despite the large dimensions of the 

optimization problem. 

 

Figure 5. 28 History of optimization functions (for the CASE 3): (a) stagnation function; (b) “unfeasibility 
function” (ρ)  
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Figure 5. 29 Convergence curve of the topology design variable (𝑛𝑖𝑛𝑡) (for the CASE 3) 

 

Figure 5. 30 Convergence curves of the shape design variables (variable parameters of third-degree rational 
Bézier curves) for the CASE 3: (a) 𝑥 −coordinate of the second control point (𝑥𝑃1𝑙) of the bottom arched chord; (b) 
𝑧 −coordinate of the second control point (𝑧𝑃1𝑙) of the bottom arched chord; (c) weight factor of the second control 
point (𝑤𝑃1𝑙) of the bottom arched chord; (d) the difference between the 𝑧 −coordinates (in absolute value) of the top 

and bottom chord internal control points (∆𝑧) 



Chapter 5 – Parametric design and structural optimization of planar truss arches 

153 |  
 

 

Figure 5. 31 Convergence curves of size design variables (i.e. indexes identifying the element group diameters 
in a list of commercial circular hollow cross-sections) for the CASE 3: (a) index identifying the bottom chord 

diameter; (b) index identifying the top chord diameter; (c) index identifying the diameter of diagonals; (d) index 
identifying the diameter of verticals 

5.2.4.4 Case 4 optimal solution 

The present section shows the results obtained by applying the MATLAB macro-algorithm 

described in §4.2 to simultaneously perform topology, shape and size optimization of a two-

hinged truss arch with a span of 160 meters, subjected to three different load conditions (shown 

in Figure 5. 7). The optimization problem was parametrically defined as described in sections 

§5.2.1 and §5.2.2. In particular, as in all previous cases (1, 2 and 3), the arched shape of the top 

and bottom chords was parametrized by taking advantage of parametric Cubic Rational Bézier 

Curves. 

All design variables with corresponding lower and upper bounds are indicated in Table 5. 8. Note 

that the present optimization problem was assumed to depend on 330 different design variables, 

thus requiring a very large number of iterations (100000) to ensure a good convergence in finding 

a reliable optimal solution. 

Figure 5. 32 shows the optimal solution thus obtained, characterized by a minimum volume (best 

objective) equal to 6.005 𝑚3, corresponding to a self-weight per unit about 2.889 𝑘𝑁 𝑚⁄ . The arch 

under consideration is 46.53 𝑚 high and characterized by a “rise-to-span ratio” about 1 4.79⁄ , a 

“height-to-span ratio” equal to 1 3.44⁄  and a “crown depth-to-span ratio” about 1 12.15⁄ . Note that 

the “rise-to-span” and the “crown depth-to-span” ratios are significantly different from the ones 

characterizing the previous solutions. 
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Figure 5. 32 Front view of the optimized truss arch with main dimensions (CASE 4 optimal solution) 

Table 5. 16 contains the obtained optimal values of the topology and shape design variables. 

Among these, the topology design variable 𝑛𝑖𝑛𝑡 plays a crucial role, since it defines the total 

number of elements of the structure. In fact, since it was found an optimal value of 𝑛𝑖𝑛𝑡 equal to 

22, the optimal truss arch in Figure 5. 32 is composed by 85 tubular members and 44 joints. 

As in the previous cases, the size optimization results, summarized in Table 5. 17, shows that the 

tubular elements of the top chord have the largest diameter because most of its elements is 

subjected to a larger axial force (as shown in Figure 5. 33(a)). In particular, the upper chord 

resulted to be subjected to a compressive axial force varying from 913 𝑘𝑁 to 2405 𝑘𝑁 (see Figure 

5. 33(a)), and to bending moments (whose diagram is illustrated in Figure 5. 33(b)) varying from 

5.69 𝑘𝑁.𝑚 to 9.61 𝑘𝑁.𝑚.  

Table 5. 16 Topology and shape optimization results for the CASE 4: optimal values of topology and shape 
design variables 

Topology optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑛𝑖𝑛𝑡 topology 22 [𝑎𝑑𝑖𝑚. ] 

Shape optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑥𝑃1𝑙  shape 51.393 [𝑚] 

𝑧𝑃1𝑙  shape 55.610 [𝑚] 

𝑤𝑃1𝑙 shape 0.500 [𝑎𝑑𝑖𝑚. ] 

∆𝑧 shape 21.941 [𝑚] 
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Table 5. 17 Size optimization results for the CASE 4: optimal diameters and thicknesses of circular hollow 
cross-sections 

Size optimization results 

Element 

groups 
Type of DV 

Diameter 

𝒅𝒊 

Min. 

thickness 

𝒕𝒊 

Max. 

thickness 

𝒕𝒊 

Unit 

Bottom chord size 0.4572 0.0071 0.0142 [𝑚] 

Top chord size 0.508 0.0071 0.0071 [𝑚] 

Diagonals size 0.2445 0.0054 0.01 [𝑚] 

Verticals size 0.2191 0.005 0.005 [𝑚] 

On the other hand, the bottom chord is subjected to a compressive axial force, varying between 

672 𝑘𝑁 to 3882 𝑘𝑁, as well as to bending moments varying from 5.11 𝑘𝑁.𝑚 to 14.06 𝑘𝑁.𝑚. 

Note that in the present case, the end elements of the bottom chord resulted to be subjected to 

the absolute maximum values of axial force and bending moments. However, most of the elements 

of the top chord elements resulted to be more axially and flexibly stressed with respect to the 

bottom chord members. Diagonal and vertical members are stretched (i.e. under tension) whereas 

diagonals also withstand significant bending actions, varying from 2.23 𝑘𝑁.𝑚 to 6.14 𝑘𝑁.𝑚. 

Finite Element Analysis (FEA) were also carried out to calculate the maximum “utilization ratio” 

(i.e. the “demand/capacity ratio”) of all truss members, for all applied load cases, which has been 

assumed as strength constraint function (expressed by Eq. (47)). 

In order to prove the feasibility of the obtained solution under consideration, a diagram of the 

optimal truss arch pointing out the maximum 𝑖𝑡ℎ −element “utilization ratio” (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶), among 

all load combinations (𝐿𝐶) is presented in Figure 5. 34. Indeed, the “utilization ratio” diagram 

shows that all elements are characterized by a critical ratio lower than 0.99 (thus satisfying the 

constraint functions generalized by Eq. (47)) and also larger than 0.7 for most of them. 

Furthermore, the “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) resulting from the weighted average of all values 

indicated in Figure 5. 34 with respect to element self-weights, (calculated by Eq. (51)), showed to 

be equal to 71.5 %, thus ensuring a high level of material exploitation. 

The reliability of the obtained results is primarily demonstrated by the convergence curve of the 

objective function to be minimized (the total volume of the structure) represented in Figure 5. 35. 

Indeed, the objective function tends to decrease rapidly until the 400𝑡ℎ generation, after which it 

continues to progress more slowly towards the obtained minimum. 

Accordingly, the “stagnation function” trend (represented in Figure 5. 36(a)) also confirms that 

from the 850𝑡ℎ generation the objective function stops to decrease for two significant intervals. 
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Figure 5. 33 Finite Element Analysis (FEA) results for the CASE 4: (a) axial force diagram; (b) bending 
moment diagram 

 

Figure 5. 34 Finite Element Analysis (FEA) results for the CASE 4: Demand/Capacity ratio (also called 
“utilization ratio”) diagram of the optimal solution for the envelope of all load cases 
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Figure 5. 35 Convergence curve of the Objective (Obj) function (i.e. the volume of the arch) for all “generations” 
(for the CASE 4) 

On the other hand, the history of the previously-defined “unfeasibility function” 𝜌𝑘 (expressed by 

Eq. (52)) is shown in Figure 5. 36(b). That diagram shows that the optimization process produced 

and evaluated only feasible candidate solutions from the 76𝑡ℎ to the 1000𝑡ℎ generation. 

For the sake of brevity, only the convergence curves of design variables that more affect the results 

are presented and analysed. 

For instance, particular attention is paid to the topology design variable (𝑛𝑖𝑛𝑡), whose value 

indirectly defines the total number of the truss arch members. 

In this regard, Figure 5. 37 represents its convergence diagram. As indicated in Table 5. 8, 𝑛𝑖𝑛𝑡 

was defined as a continuous value between 10 and 160 (to be rounded to the nearest even integer 

at a later time). Its convergence curve shows that its value only tends to oscillate between values 

extremely close to 22 from the 200𝑡ℎ generation onwards (see Figure 5. 37). 

In Figure 5. 38 the convergence curves of shape design variables (i.e. the variable parameters 

defining the shape of the lower and upper arch chords through parametric Cubic Rational Bézier 

curves) are presented to prove the validity of results, despite the large number and the variety of 

design variables. In particular, those diagrams show that the optimization process leaded to 

values very close to the optimal ones of all shape design variables approximately from the 250𝑡ℎ 

generation. 
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Figure 5. 36 History of optimization functions for the CASE 4: (a) stagnation function; (b) “unfeasibility 
function” (ρ) 

In the same way, a good convergence trend was also obtained for the size design variables 

determining the element group diameters (whose curves are shown in Figure 5. 39). 

It is worth highlighting that the goodness of the presented results, obtained for all different 

formulations of the optimization problem, prove the effectiveness and robustness of the 

optimization macro-algorithm proposed in section §4.2 in solving problems with a very large 

number of design variables of different nature. 
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Nevertheless, the present dissertation mainly aims to deduce precious suggestions for the 

optimum design of steel truss arches from the analysis and comparison of these results (see 

section §5.2.4.5). 

 

Figure 5. 37 Convergence curve of the topology design variable (𝑛𝑖𝑛𝑡) for the CASE 4 

 

Figure 5. 38 Convergence curves of the shape design variables (variable parameters of third-degree rational 
Bézier curves) for the CASE 4: (a) 𝑥 −coordinate of the second control point (𝑥𝑃1𝑙) of the bottom arched chord; (b) 
𝑧 −coordinate of the second control point (𝑧𝑃1𝑙) of the bottom arched chord; (c) weight factor of the second control 
point (𝑤𝑃1𝑙) of the bottom arched chord; (d) the difference between the 𝑧 −coordinates (in absolute value) of the top 

and bottom chord internal control points (∆𝑧) 
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Figure 5. 39 Convergence curves of size design variables (i.e. indexes identifying the element group diameters 
in a list of commercial circular hollow cross-sections) for the CASE 4: (a) index identifying the bottom chord 

diameter; (b) index identifying the top chord diameter; (c) index identifying the diameter of diagonals; (d) index 
identifying the diameter of verticals 

5.2.4.5 Comparison of optimal solutions 

In the present section, the optimal solutions obtained for all different formulations (i.e. the CASES 

1, 2, 3 and 4) of the optimization problem considered in section §5.2, are investigated and 

compared by an aesthetical and structural points of view. 

First of all, in Figure 5. 40 the optimal layouts of the obtained solutions are superimposed, in 

order to clearly show how the optimal shape and topology of the considered truss arch change as 

the arch span increases. The main features characterizing the optimal solutions are summarized 

in Table 5. 18. 

Primarily, the self-weight of the optimal solutions tends to grow very rapidly (from 0.652 to 

2.889 𝑘𝑁/𝑚) as the span uniformly increases. Consequently, this implies that the ratio between 

variable (equal to 15.00 𝑘𝑁/𝑚) and permanent loads (the latter obtained by adding the self-weight 

of the considered arch to the external permanent load assumed to be equal to 24.00 𝑘𝑁/𝑚) rapidly 

decreases from 1/1.64 to 1/1.79, as pointed out in Figure 5. 41 (where the objective function values, 

the self-weights and the variable-to-permanent loads ratios of all CASES are compared). 

In particular, the trend of variable-to-permanent loads ratios (in Figure 5. 41(c)) must be strongly 

considered in analysing and comparing all results, since its reduction implies a lower effect of the 

asymmetric combination of variable loads on the optimization process. 
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Figure 5. 40 Shape comparison of the optimal solutions for the CASES 1, 2, 3 and 4 

As previously highlighted, the topology design variable 𝑛𝑖𝑛𝑡 (defined in section §5.2.1.1) plays a 

fundamental role from a constructive point of view since it indirectly defines the total element 

number and joints. In this regard, Figure 5. 42 shows that it was found a value of arch span 

subdivisions (𝑛𝑖𝑛𝑡) equal to 12 for CASES 1, 2 and 3, whereas it resulted to be equal to 22 for the 

truss arch of CASE 4. 

Consequently, truss arches with spans of 40, 80 and 120 meters showed to have 45 elements, 

whereas the optimal solution with a span of 160 meters resulted to be characterized by 85 tubular 

elements (as indicated in Table 5. 18). 

It is worth noting that the optimal solution with a span of 160 meters also significantly differs 

from the others on its shape. In this regard, in Figure 5. 43 the “height-to-span ratios” (a), the 

“rise-to-span ratios” (b) and the “crown depth-to span ratios” which characterize all optimal truss 

arches are compared. It can be easily noted that the “height-to-span ratio” varies from 1/3.8 to 

1/3.9 in optimal solutions with spans from 40 to 120 meters, while for the arch with a span of 160 

meters it was found a higher value, equal to 1/3.44 (as pointed out in Figure 5. 43(a)). 

Table 5. 18 Comparison of main parameters characterizing the optimal solutions 

CASE 

Span 

length 

[𝒎] 

Min. 

volume 

[𝒎𝟑] 

Self-

weight 

[𝒌𝑵 𝒎⁄ ] 

Elem. 

number 

[𝒂𝒅𝒊𝒎. ] 

Height/span 

[𝒂𝒅𝒊𝒎. ] 

Rise/span 

[𝒂𝒅𝒊𝒎. ] 

Crown-

Depth/span 

[𝒂𝒅𝒊𝒎. ] 

1 40 0.339 0.652 45 1/3.91 1/6.86 1/9.09 

2 80 1.508 1.451 45 1/3.72 1/6.10 1/9.57 

3 120 3.572 2.291 45 1/3.81 1/6.43 1/9.33 

4 160 6.005 2.889 85 1/3.44 1/4.79 1/12.15 
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Figure 5. 41 Comparison of the results of the optimal solutions: (a) best objective values; (b) arch self-weights 
per unit; (c) variable-to-permanent load ratios 
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Table 5. 19 Comparison of optimal values of shape design variables 

CASE 

Span 

length 

[𝒎] 

𝒙𝑷𝟏𝒍 

[𝒎] 

𝒛𝑷𝟏𝒍 

[𝒎] 

𝒘𝑷𝟏𝒍 

[𝒂𝒅𝒊𝒎. ] 

∆𝒛 

[𝒎] 

𝒙𝑷𝟏𝒍 

/span 

[𝒂𝒅𝒊𝒎. ] 

𝒛𝑷𝟏𝒍 

/span 

[𝒂𝒅𝒊𝒎. ] 

1 40 12.078 9.310 0.559 7.030 1/3.31 1/4.30 

2 80 29.224 21.696 0.509 13.821 1/2.74 1/3.69 

3 120 56.514 31.061 0.501 21.428 1/2.12 1/3.86 

4 160 51.393 55.610 0.500 21.941 1/3.11 1/2.88 

On the other hand, Figure 5. 43(b) compares the “rise-to-span ratios”, which proved to be always 

close to 1/6 for CASES 1, 2 and 3 (varying from 1/6.86 and 1/6.10), whereas the optimal solution 

of the CASE 4 showed to be characterized by a “rise-to-span ratio” equal to 1/4.79. It is therefore 

possible to state that as the arch span increases, its optimal shape becomes less lowered and less 

flattened at its crown. This should be related to the progressive reduction of the effect of the 

asymmetric load combination of variable loads as the arch self-weight grows with its span. In 

particular, the “𝑥𝑃1𝑙-to-span ratio” tends to rapidly increase from 1/3.31 to 1/2.12 from 40 to 120 

meters of span while a value of 1/3.11 was obtained for the CASE 4. It is important to remark that 

small values of this dimensionless parameter make the arch shape flattened at its crown. 

Similarly, the “𝑧𝑃1𝑙-to-span ratio” tends to slowly increase (oscillating between 1/4.30 and 1/3.69) 

till the arch span reaches 120 meters, whereas it rapidly reaches a value about 1/2.88 in the CASE 

4, thus determining its higher “height-to-span” and “rise-to-span ratios” with respect to the other 

solutions. 

 

Figure 5. 42 Optimal values of the topology design variable (𝑛𝑖𝑛𝑡), which defines the number of the truss arch 
element 
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Figure 5. 43 Comparison of the results of the optimal solutions: (a) height-to-span ratios; (b) rise-to-span 
ratios; (c) crown depth-to-span ratios 
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Figure 5. 44 Comparison of the results of the optimal solutions: (a) 𝑥𝑃1𝑙-to-span ratios; (b) 𝑧𝑃1𝑙-to-span ratios 

As anticipated in section §5.2.4.1, a new parameter was introduced by Eq. (26) (i.e. the “total 

utilization ratio”(𝑈𝑡𝑖𝑙𝑡𝑜𝑡)) to provide an approximate overall percentage of material exploitation. 

In this regard, Figure 5. 45 shows that a “total utilization ratio” greater than 70% was obtained 

for all cases, reaching a peak of 79.2 % for the truss arch with a span of 120 meters. This meaning 

that the structural optimization process here discussed leaded to satisfactory results in terms of 

structural performances. 
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Figure 5. 45 Resulting values of the “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡), evaluated through the Eq. (26), providing 
an overall percentage of the material exploitation 

5.3 Simultaneous topology, shape and size optimization of 

hingeless truss arches under multiple load cases 

The present section will provide a detailed description of the stepwise process carried out, by the 

optimization macro-algorithm presented in section §4.2, to simultaneously perform topology, 

shape and size optimization of “hingeless” truss arches, with different spans (40, 80, 120 and 160 

meters), subjected to multiple different load cases. More specifically, in-plane Pratt trusses, 

composed by two arched chords with hinged ends and made of steel tubular members (i.e. with 

circular hollow cross-sections), were optimally designed for different vertical load patterns (acting 

in the arch plane). As a matter of fact, the truss-arches under consideration are comparable to 

“fixed” arches (i.e. to a “hingeless” arch) since the two double-hinges, vertically aligned, prevent 

rotations in the arch plane. 

The so obtained results will be illustrated and discussed in subsection §5.3.4. 

5.3.1 Parametric design 

The pivotal role that parametric design plays in the preliminary phase of a structural optimization 

process has been already underlined in sub-section §4.2.1. This phase is indispensable to properly 

define all design variables within a range of lower and upper bounds and then formulate the 

considered optimization problem as a function of the assumed design variables (as shown in the 

flowchart of the proposed macro-algorithm illustrated in Figure 4. 2). 
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The higher the number of design variables to consider, the more crucial the role of this stage in 

the whole process becomes. 

In this regard, the design problem of truss arches here investigated depends on a large number of 

parameters, among which several design variables have been identified and different sets of them 

have been properly defined for different formulations of the problem. 

5.3.1.1 Topology design variables 

As in cases of two-hinged truss arches treated in the previous section §5.2, the topology 

optimization problem of “hingeless” arched trusses under consideration (with spans of 40, 80, 

120 and 160 meters) has been formulated as a function of a variable number of truss elements 

and joints, thereby assuming, as topology design variable, a parameter indicated as 𝑛𝑖𝑛𝑡, defining 

the number of equal “intervals” (𝑑𝐿), into which the arch span is subdivided (as expressed by Eq. 

(44) and indicated in Figure 5. 46). 

The topology design variable 𝑛𝑖𝑛𝑡 affects the node number and spacing (their 𝑥 −coordinates), as 

well as the number of the truss bars. In particular, the “hingeless” truss arches under 

consideration are characterized by 2𝑛𝑖𝑛𝑡 + 2 joint number and 4𝑛𝑖𝑛𝑡 + 1 number of members. 

Furthermore, since a Pratt-type truss has been chosen as bracing system, 𝑛𝑖𝑛𝑡 is required to be 

defined as an even integer, as well as a discrete design variable. 

However, the optimization method here adopted (previously illustrated in section §4.2) requires 

a unique set of continuous design variables. For this reason, the value related to the parameter 

𝑛𝑖𝑛𝑡 is rounded to the nearest even integer during the optimization process. 

5.3.1.2 Shape design variables: parameters defining Cubic Rational Bézier 

Curves 

In shape optimization of continuous and discrete structures, the nodes coordinates are commonly 

assumed as design variables. However, as anticipated in the section §1.3.2, the optimization 

problem of large-scale structures (characterized by a large number of members and joints) would 

require a high number of design variables. For this reason, it has become a common practice to 

adopt parametric shape functions to significantly reduce the number of shape design variables. 

For this purpose, the parametric form of third-degree Rational Bézier curves (represented in 

Figure 5. 5 and expressed by Eq. (45)) was adopted to define shape design variable in order to 

represent a very wide family of curves. 

Therefore, on the basis of Eq. (45) and several symmetry conditions (pointed out in Figure 5. 46), 

the following parameters have been assumed as shape design variables to be optimized 
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• 𝑥𝑃1𝑙, 𝑥 −coordinate of the second control point (𝑃1𝑙) of the lower chord (shaped as a Cubic 

Rational Bézier arc).  As shown in Figure 5. 46, the third control point (𝑃2𝑙) of the bottom 

rib has been assumed as symmetric to 𝑃1𝑙 with respect to a central vertical axis, by 

imposing that 𝑥𝑃2𝑙 = 𝐿 − 𝑥𝑃1𝑙. Furthermore, 𝑥 −coordinates of two internal control points 

(𝑃1𝑙 and 𝑃2𝑙) of the bottom arched chord also define 𝑥 −coordinates of the corresponding 

control points (𝑃1𝑢 and 𝑃2𝑢) of the upper control polygon 

• 𝑧𝑃1𝑙, 𝑧 −coordinate of the second control point (𝑃1𝑙 ) of the bottom arch rib (shaped as a 

Cubic Rational Bézier arc), which is assumed to be equal to the 𝑧 −coordinate (𝑧𝑃2𝑙) of the 

third control point 𝑃2𝑙 

• 𝑤𝑃1𝑙, weight non-negative factor of the second control point (𝑃1𝑙) of the bottom arched 

chord, which is equal to the weight factors (𝑤𝑃2𝑙, 𝑤𝑃1𝑢 and 𝑤𝑃2𝑢) of other internal control 

points (𝑃2𝑙, 𝑃1𝑢 and 𝑃2𝑢) of lower and upper arch chords 

• 𝑧𝑃0𝑢, 𝑧 −coordinate of the first control point (𝑃0𝑢 ) of the upper arched rib (shaped as a 

Cubic Rational Bézier arc), which defines the arch depth at its ends 

• ∆𝑧, absolute value of the difference between 𝑧 −coordinates of the internal control points 

of top and bottom arch chords (∆𝑧 = |𝑧𝑃1𝑢 − 𝑧𝑃1𝑙| = |𝑧𝑃2𝑢 − 𝑧𝑃2𝑙|). 

It is worth remarking that all shape design variables have been defined as continuous variables 

within proper ranges of lower and upper limits. 

 

Figure 5. 46 Parametric definition of the geometry as a function of shape design variables, by taking 
advantage of Cubic Rational Bézier Curves 
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5.3.1.3 Size design variables 

The cross-sectional areas of members are commonly assumed as design variables in size 

optimization of discrete structures. The elements of frame structures are often split into several 

groups (each one characterized by same cross-section features) in order to reduce the total 

number of size design variables. 

Analogously to the case of two-hinged truss arches (treated in section §5.2), the arched trusses 

under consideration are assumed to be composed by elements with circular hollow cross-sections, 

grouped as follow 

• Bottom chord (lower chord) elements 

• Top chord (upper chord) elements 

• Diagonals 

• Verticals. 

Each group of elements is characterized by same diameter, thus assuming 

• 𝑑1 as diameter of bottom chord elements 

• 𝑑2 as diameter of top chord elements 

• 𝑑3 as diameter of diagonals 

• 𝑑4 as diameter of verticals. 

On the other hand, it was assumed that couples of elements that are symmetrical with respect to 

a central vertical axis (i.e. placed in the mid-span and parallel to the reference 𝑧 −axis), must have 

same thickness. Therefore, four diameters and 𝑛 different thicknesses 𝑡𝑖 (with 𝑖 = 1,…𝑛) were 

assumed as size design variables, for each 𝑖𝑡ℎ −couple of symmetrical elements. 

Since the element number is variable and depending on the topology design variable 𝑛𝑖𝑛𝑡, the 

number 𝑛 of different thicknesses 𝑡𝑖 (with 𝑖 = 1,…𝑛) has been defined as a function of 𝑛𝑖𝑛𝑡
𝑢  (i.e. 

upper limit of 𝑛𝑖𝑛𝑡) as follows 

𝑛 = 2 ∗ 𝑛𝑖𝑛𝑡
𝑢 + 1                 (53). 

As a matter of fact, the number of different cross-sections expressed by Eq. (53) showed to depend 

on the allowable maximum number of elements, equal to 4𝑛𝑖𝑛𝑡
𝑢 + 1. 

To be more precise, as previously stated in section §5.2.2, size design variables were defined as 

indexes, which allow to extract the values of diameters and thicknesses from a table of parameters 

of commercial circular hollow cross-sections (see Table 5. 5). Therefore, size design variables 

needed should be discrete. However, since the optimization method here proposed (in §4.2) can 
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only generate continuous values, discrete size design variables were obtained by rounding the 

corresponding continuous values to the nearest integers. 

5.3.2 Problem formulation 

Analogously to what has been done for two-hinged truss arches, four different optimization 

problems were formulated for “hingeless” arches with spans of 40, 80, 120 and 160 meters. The 

considered optimization problems once again differ from each other for the allowable range of 

numbers of elements (as shown in the Table 5. 20), defined as follows 

• for the arch model with a span of 40.0 [𝑚], the even number of equal intervals into which the 

span is subdivided (𝑛𝑖𝑛𝑡) can vary from  10 (𝑛𝑖𝑛𝑡
𝑙 ) to 40 (𝑛𝑖𝑛𝑡

𝑢 ), the number of elements can then vary 

from 𝑛𝑒𝑙
𝑀𝐼𝑁 = 4𝑛𝑖𝑛𝑡

𝑙 + 1 = 41 to 𝑛𝑒𝑙
𝑀𝐴𝑋 = 4𝑛𝑖𝑛𝑡

𝑢 + 1 = 161 (CASE 1) 

• for the arch model with a span of 80.0 [𝑚], the even number of equal intervals into which the 

span is subdivided (𝑛𝑖𝑛𝑡) can vary from  10 (𝑛𝑖𝑛𝑡
𝑙 ) to 80 (𝑛𝑖𝑛𝑡

𝑢 ), the number of elements can then vary 

from 𝑛𝑒𝑙
𝑀𝐼𝑁 = 4𝑛𝑖𝑛𝑡

𝑙 + 1 = 41 to 𝑛𝑒𝑙
𝑀𝐴𝑋 = 4𝑛𝑖𝑛𝑡

𝑢 + 1 = 321 (CASE 2) 

• for the arch model with a span of 120.0 [𝑚], the even number of equal intervals into which the 

span is subdivided (𝑛𝑖𝑛𝑡) can vary from  10 (𝑛𝑖𝑛𝑡
𝑙 ) to 120 (𝑛𝑖𝑛𝑡

𝑢 ), the number of elements can then 

vary from 𝑛𝑒𝑙
𝑀𝐼𝑁 = 4𝑛𝑖𝑛𝑡

𝑙 + 1 = 41 to 𝑛𝑒𝑙
𝑀𝐴𝑋 = 4𝑛𝑖𝑛𝑡

𝑢 + 1 = 481 (CASE 3) 

• for the arch model with a span of 160.0 [𝑚], the even number of equal intervals into which the 

span is subdivided (𝑛𝑖𝑛𝑡) can vary from  10 (𝑛𝑖𝑛𝑡
𝑙 ) to 160 (𝑛𝑖𝑛𝑡

𝑢 ), the number of elements can then 

vary from 𝑛𝑒𝑙
𝑀𝐼𝑁 = 4𝑛𝑖𝑛𝑡

𝑙 + 1 = 41 to 𝑛𝑒𝑙
𝑀𝐴𝑋 = 4𝑛𝑖𝑛𝑡

𝑢 + 1 = 641 (CASE 4). 

Table 5. 20 Design variable definitions for the four considered optimization problems 

Span 

length 

Range of 

element 

number 

Number of  

Topology DV 

Number of  

Shape DV 

Number of  

Size DV 

Total 

number 

of DV 

40.0 [𝑚] 41 ≤ 𝑛𝑒𝑙 ≤ 161 1 5 85 91 

80.0 [𝑚] 41 ≤ 𝑛𝑒𝑙 ≤ 321 1 5 165 171 

120.0 [𝑚] 41 ≤ 𝑛𝑒𝑙 ≤ 481 1 5 245 251 

160.0 [𝑚] 41 ≤ 𝑛𝑒𝑙 ≤ 641 1 5 325 331 

In Table 5. 20 the ranges of element numbers and the numbers of design variables, distinguished 

by type (topology, shape and size), are indicated for each optimization problem. The different 

formulations of the problem differ from each other for the number of size design variables, which 

was assumed to be proportional to the allowable maximum numbers of elements (defined in 

proportion to the length of the arch span). 

Table 5. 21 shows the lower and upper bounds of design variables for the CASE 1 (truss arch with 

a span of 40 meters). It is worth noting that the upper limits of the 𝑥 − and 𝑧 −coordinates 

correspond to the half span of the arch. Furthermore, also note that the arch depth at its crown 
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and bases can vary between 0.10 and 12.00 meters in all formulations of the optimization 

problem. 

Table 5. 21 Lower and upper bounds of design variables for the CASE 1 (arch span of 40 meters) 

CASE 1 

Design 

Variable (DV) 
Type of DV Lower bound Upper bound Unit 

𝑛𝑖𝑛𝑡 topology 10 40 [𝑎𝑑𝑖𝑚. ] 

𝑥𝑃1𝑙  shape 0.1 20.0 [𝑚] 

𝑧𝑃1𝑙  shape 6.0 20.0 [𝑚] 

𝑤𝑃1𝑙 shape 0.5 8 [𝑎𝑑𝑖𝑚. ] 

𝑧𝑃1𝑢 shape 0.1 12.0 [𝑚] 

∆𝑧 shape 0.1 12.0 [𝑚] 

𝑖𝑛𝑑𝑒𝑥𝑑1 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑2 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑3 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑4 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑡(𝑖) ∗ size 2 20 [𝑎𝑑𝑖𝑚. ] 

* with 𝑖 = 1,…𝑛 (𝑛 was defined in the section §5.3.1.3 by the Eq. (21)) 

Table 5. 22 Lower and upper bounds of design variables for the CASE 2 (arch span of 80 meters) 

CASE 2 

Design 

Variable (DV) 
Type of DV Lower bound Upper bound Unit 

𝑛𝑖𝑛𝑡 topology 10 80 [𝑎𝑑𝑖𝑚. ] 

𝑥𝑃1𝑙  shape 0.1 40.0 [𝑚] 

𝑧𝑃1𝑙  shape 6.0 40.0 [𝑚] 

𝑤𝑃1𝑙 shape 0.5 8 [𝑎𝑑𝑖𝑚. ] 

𝑧𝑃1𝑢 shape 0.1 12.0 [𝑚] 

∆𝑧 shape 0.1 12.0 [𝑚] 

𝑖𝑛𝑑𝑒𝑥𝑑1 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑2 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑3 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑4 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑡(𝑖) ∗ size 2 20 [𝑎𝑑𝑖𝑚. ] 

* with 𝑖 = 1,…𝑛 (𝑛 was defined in the section §5.3.1.3 by the Eq. (21)) 
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Table 5. 22, Table 5. 23 and Table 5. 24 contain the sets of topology, shape and size design 

variables with relative lower and upper bounds defined for CASES 2, 3 and 4, respectively. 

Table 5. 23 Lower and upper bounds of design variables for the CASE 3 (arch span of 120 meters) 

CASE 3 

Design 

Variable (DV) 
Type of DV Lower bound Upper bound Unit 

𝑛𝑖𝑛𝑡 topology 10 120 [𝑎𝑑𝑖𝑚. ] 

𝑥𝑃1𝑙  shape 0.1 60.0 [𝑚] 

𝑧𝑃1𝑙  shape 6.0 60.0 [𝑚] 

𝑤𝑃1𝑙 shape 0.5 8 [𝑎𝑑𝑖𝑚. ] 

𝑧𝑃1𝑢 shape 0.1 12.0 [𝑚] 

∆𝑧 shape 0.1 12.0 [𝑚] 

𝑖𝑛𝑑𝑒𝑥𝑑1 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑2 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑3 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑4 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑡(𝑖) ∗ size 2 20 [𝑎𝑑𝑖𝑚. ] 

* with 𝑖 = 1,…𝑛 (𝑛 was defined in the section §5.3.1.3 by the Eq. (21)) 

Table 5. 24 Lower and upper bounds of design variables for the CASE 4 (arch span of 160 meters) 

CASE 4 

Design 

Variable (DV) 
Type of DV Lower bound Upper bound Unit 

𝑛𝑖𝑛𝑡 topology 10 160 [𝑎𝑑𝑖𝑚. ] 

𝑥𝑃1𝑙  shape 0.1 80.0 [𝑚] 

𝑧𝑃1𝑙  shape 6.0 80.0 [𝑚] 

𝑤𝑃1𝑙 shape 0.5 8 [𝑎𝑑𝑖𝑚. ] 

𝑧𝑃1𝑢 shape 0.1 12.0 [𝑚] 

∆𝑧 shape 0.1 12.0 [𝑚] 

𝑖𝑛𝑑𝑒𝑥𝑑1 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑2 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑3 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑4 size 1 27 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑡(𝑖) ∗ size 2 20 [𝑎𝑑𝑖𝑚. ] 

* with 𝑖 = 1,…𝑛 (𝑛 was defined in the section §5.3.1.3 by the Eq. (21)) 
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All different optimization problems (CASE 1, 2, 3 and 4) were formulated with same objective and 

constraint functions. As described in section §4.2.3, the objective and constraint functions are 

evaluated at each iteration of the adopted optimization process (see Figure 4. 2), by performing 

Finite Element Analysis (FEA) through the software for structural analysis SAP2000. 

In all considered cases, the total volume of the structure was assumed as objective function to be 

minimized and calculated by Eqs. (38) and (39) described in the section §4.2.3.  

Analogously to what has been done for the two-hinged truss arches, strength constraints 

(expressed by Eq. (47)) have been imposed in order to keep stress values within allowable ranges 

according to mechanical properties of materials and technical standards for construction. More 

specifically, the inequality constraint function, expressed by the Eq. (47), indicates that the 

maximum value of the afore-mentioned “Utilization ratio” (also called “Demand/Capacity ratio”, 

since it corresponds to the ratio between real and allowable stresses acting in a section) among all 

truss members must be less than (or equal to) 0.99 for all considered load cases (feasibility 

condition). In particular, the critical “Utilization ratio” of bars subjected to compression axial 

forces was calculated by evaluating the combined effect of compression axial forces and bending 

moments by also considering flexural and lateral-torsional buckling of cross-sections by means of 

the interaction equations provided by the section EC3-2005 6.3.3(4), expressed by the Eqs. (40) 

and (41) in section §4.2.3. On the other hand, the “utilization ratio” of members subjected to 

tensile axial forces is evaluated by checking the combined effect of axial forces and bending 

moments by means of the interaction equation (provided by EC3-2005 6.2.1(7)), expressed by Eq. 

(42) in section §4.2.3. 

As already underlined, the values of the objective and constraint functions are determined and 

compared to iteratively select the best candidate solutions during the optimization process, until 

an optimal solution is achieved. 

5.3.3 Boundary conditions 

All different formulations (the CASES 1, 2, 3 and 4) of the optimization problem just described in 

§5.3.2, are characterized by the same boundary conditions. 

More specifically, the steel truss arches under consideration were assumed to be connected to the 

foundations by two double hinges, vertically aligned (see Figure 5. 47). Moreover, since all 

members are connected to each other by pinned joints and external loads are applied as 

concentrated forces on nodes, the considered arched trusses can be treated as “true trusses” (i.e. 

subjected to almost only axial forces). 

The structure illustrated in Figure 5. 47 is statically redundant or indeterminate, since by 

substituting in Eq. (48) the quantities indicating the numbers of nodes (𝑛𝑛𝑜𝑑𝑒𝑠) and elements 
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(𝑛𝑓𝑟𝑎𝑚𝑒𝑠) with their parametric expressions as a function of the parameter 𝑛𝑖𝑛𝑡, and a value of 

𝑔𝑑𝑣𝑒𝑥𝑡 (i.e. the “degree of external constraint”) equal to 8 (since the considered truss arches are 

connected to the soil by four external hinges), you find that, 

2. (2. 𝑛𝑖𝑛𝑡 + 2) < (4. 𝑛𝑖𝑛𝑡 + 1) + 8                (54) 

Thus, leading to, 

4. 𝑛𝑖𝑛𝑡 + 4 < 4. 𝑛𝑖𝑛𝑡 + 9                (55). 

In addition, Figure 5. 47 shows that the “hingeless” truss arches under consideration are subjected 

to the same combinations of vertical load patterns applied in optimizing the two-hinged arches 

(see section §5.2.3). Furthermore, the external loads have been analogously applied as 

concentrated forces on nodes (of the lower chord), equivalent to non-structural Dead Loads 

(24.00 𝑘𝑁 𝑚⁄ ) and Live Loads (15.00 𝑘𝑁 𝑚⁄ ), uniformly distributed along the arch span. 

 

Figure 5. 47 Boundary conditions (external constraints and multiple load cases) considered in all cases of the 
optimization problem of hingeless truss arches 
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5.3.4 Results 

The optimization macro-algorithm proposed and described in section §4.2 has been applied to 

solve the problem of the optimum design of “hingeless” truss arches defined by four different 

formulations (just described in the previous section §5.3.2) each one characterized by a different 

span (40, 80, 120 and 160 𝑚𝑒𝑡𝑒𝑟𝑠), different sets of design variables and relative lower and upper 

bounds. 

In this regard, the purpose of this section is to illustrate and compare the obtained best solutions 

of all considered optimization problems (CASES 1, 2, 3 and 4), in order to investigate them and 

deduce useful suggestions for the design of two-hinged truss arches made of steel tubular 

elements. 

As already stated, the macro-algorithm here proposed includes a modified version of a 

Differential Evolution Algorithm (in detail described in section §4.2.2 and summarized in the 

flowchart in Figure 4. 3). The chosen optimization algorithm belongs to population-based 

Evolutionary Algorithms (introduced in §1.4.3.2) that requires an appropriate definition of the 

“population” size (i.e. the number of candidate solutions, called “individuals”, of each 

“generation”) and maximum number of “generations” for all formulations of the optimization 

problem under consideration. 

Table 5. 25 Optimization parameters of the Differential Evolution Algorithm (DEA) for the different problem 
formulations (CASES 1, 2, 3 and 4) 

OPTIMIZATION PARAMETERS 

CASE Span length 

Number of 

design 

variables 

Population 

size 
Generations 

Total 

number of 

iterations 

1 40.0 [𝑚] 91 100 300 30000 

2 80.0 [𝑚] 171 100 500 50000 

3 120.0 [𝑚] 251 100 750 75000 

4 160.0 [𝑚] 331 100 1000 100000 

In this regard, Table 5. 25 shows that all considered problems were characterized by an extremely 

large number of design variables, same population size (equal to 100 “individuals”) and a 

maximum number of “generations” properly increased, according to the number of design 

variables of the optimization problems in order to ensure a suitable exploration of the search 

space. 

The optimization method here adopted showed to be robust and effective in performing topology, 

shape and size optimization of the considered truss arches at the same time. However, the analysis 
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of the obtained results mainly aims to identify the most peculiar features of the best solutions and 

then deduce precious design recommendations. 

5.3.4.1 Case 1 optimal solution 

The solution of the optimization problem of a “hingeless” truss arch with a span of 40 meters 

(parametrically defined by taking advantage of Cubic Rational Bézier curves, as illustrated in 

Figure 5. 46) and subjected to three vertical load cases (represented in Figure 5. 47) is here 

presented. All assumed design variables, with corresponding lower and upper bounds, are 

indicated in Table 5. 21. 

In this regard, Figure 5. 48 shows the shape of the optimized arch under consideration, 

characterized by a minimum volume of 0.293 𝑚3 (i.e. the minimum value of the objective 

function), corresponding to a self-weight per unit length of 0.563 𝑘𝑁 𝑚⁄ . Furthermore, the 

optimal arch has a total height of 11.92 𝑚 and a rise of 10.92 𝑚 (as indicated in Figure 5. 48).  

 

Figure 5. 48 Front view of the optimized truss arch with main dimensions (CASE 1 optimal solution) 

As well known, the rise-to-span ratio of an arch (commonly included between 1/4 and 1/6) is one 

of most peculiar shape parameters that more affect the structural behaviour of the arch. In fact, 

the smaller the rise of an arch, the greater the magnitude of horizontal thrusts that arise at its 

ends (as demonstrated by Eqs. (10) and (15) in §2.1). In particular, the optimal arch here 

considered, showed to have a “rise-to-span ratio” equal to 1/3.66 and a “height-to-span ratio” 

equal to 1/3.36. Moreover, it can be also easily seen that the arch in Figure 5. 48 is characterized 

by an extremely small “crown depth”, about 0.99 𝑚, and a much higher “base depth” of 2.72 𝑚, 

thus leading to a “crown depth-to-span ratio” corresponding to 1/40.20 and a “base depth-to span 

ratio” about 1/14.71. In addition, a further parameter, called “taper ratio” was evaluated and 

considered in analysing the optimal shape of the arch under consideration. This parameter 

expresses how much the arch depth tends to vary from its crown to its ends, since it was defined 

as a ratio of the “crown-depth” over the “base-depth” of the arch. In the current case, a “taper 

ratio” of 1/2.73, confirming that the optimized truss arch here considered is significantly tapered.  
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Table 5. 26 Topology and shape optimization results for the CASE 1: optimal values of topology and shape 
design variables 

Topology optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑛𝑖𝑛𝑡 topology 16 [𝑎𝑑𝑖𝑚. ] 

Shape optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑥𝑃1𝑙  shape 16.7584 [𝑚] 

𝑧𝑃1𝑙  shape 16.5854 [𝑚] 

𝑤𝑃1𝑙 shape 0.643 [𝑎𝑑𝑖𝑚. ] 

𝑧𝑃0𝑢 shape 2.719 [𝑚] 

∆𝑧 shape 0.100 [𝑚] 

The depth of an arch commonly needs to be increased from its crown to its bases proportionally 

to axial force variation in it, also ensuring greater stability. 

A further representative parameter of the optimal truss arch under consideration, extremely 

important by a constructive point of view, is the total number of its elements, depending on the 

even integer (𝑛𝑖𝑛𝑡) of the arch span subdivisions into equal intervals (i.e. the topological design 

variable). In this regard, the truss arch represented in Figure 5. 48 is characterized by an arch 

span subdivision number (𝑛𝑖𝑛𝑡) equal to 16, thereby resulting in a total element number (𝑛𝑓𝑟𝑎𝑚𝑒𝑠) 

equal to 65 (since it was assumed that 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 = 4. 𝑛𝑖𝑛𝑡 + 1) and joint number (𝑛𝑛𝑜𝑑𝑒𝑠) equal to 

34 (since 𝑛𝑛𝑜𝑑𝑒𝑠 = 2𝑛𝑖𝑛𝑡 + 2). 

Table 5. 27 Size optimization results for the CASE 1: optimal diameters and thicknesses of circular hollow 
cross-sections  

Size optimization results 

Element 

groups 
Type of DV 

Diameter 

𝒅𝒊 

Min. 

thickness 

𝒕𝒊 

Max. 

thickness 

𝒕𝒊 

Unit 

Bottom chord size 0.1937 0.0045 0.008 [𝑚] 

Top chord size 0.159 0.004 0.004 [𝑚] 

Diagonals size 0.07 0.0032 0.005 [𝑚] 

Verticals size 0.07 0.004 0.005 [𝑚] 
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Figure 5. 49 Finite Element Analysis (FEA) results for the CASE 1: (a) axial force diagram; (b) bending 
moment diagram 

 

Figure 5. 50 Finite Element Analysis (FEA) results for the CASE 1: Demand/Capacity ratio (also called 
“utilization ratio”) diagram of the optimal solution for the envelope of all load cases 
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Table 5. 26 contains the optimal values obtained for all topology and shape design variables, 

which completely define the geometry of the optimal truss arch here analysed. Note that the 

optimal shape of the considered arched truss must be a trade-off between the optimal shapes for 

all considered load cases (shown in Figure 5. 47), among which the asymmetric load pattern 

strongly affects the structural response of the structure and the solution of the optimization 

problem. 

On the other hand, in Table 5. 27 size optimization results are summarized. Since the number of 

size design variables corresponding to the element thicknesses is extremely large, in addition to 

the diameters, only the minimum and the maximum thicknesses for each element group are 

indicated in Table 5. 27.  

Unlike the case of two-hinged truss arches previously treated in §5.2, the bottom chord elements 

required a greater diameter compared to other elements, because they are subjected to greater 

axial forces and bending moments (as shown in Figure 5. 49). In particular, it was found that the 

lower chord was subjected to a compressive axial force varying from 426 𝑘𝑁 to 901 𝑘𝑁 (see Figure 

5. 49(a)) as well as to bending moments (whose diagram is illustrated in Figure 5. 49(b)) varying 

from 0.15 𝑘𝑁.𝑚 to 0.37 𝑘𝑁.𝑚.  

 

Figure 5. 51 Convergence curve of the Objective (Obj) function (i.e. the volume of the arch) for all “generations” 
(for the CASE1) 

On the other hand, the upper chord showed to be subjected to a compressive axial force varying 

between 291 𝑘𝑁 to 387 𝑘𝑁, as well as to bending moments varying from 0.11 𝑘𝑁.𝑚 to 0.15 𝑘𝑁.𝑚. 

Since axial forces and bending moments showed to be approximately uniform, a constant value 
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of 0.004 𝑚 has been obtained for the thickness of all upper chord elements (as indicated in Table 

5. 27).  Moreover, diagonal and vertical members are subjected to tensile axial forces (varying 

from 1 𝑘𝑁 to 123 𝑘𝑁 in diagonal, and from 6 𝑘𝑁 to 82 𝑘𝑁 in vertical bars), whereas diagonal tubes 

also withstand bending moment actions varying from 0.03 𝑘𝑁.𝑚 to 0.06 𝑘𝑁.𝑚. 

Analogously to what has been done for two-hinged truss arches, the stress level in the structure 

to be optimized was kept within an allowable range of values, according to mechanical properties 

of materials and technical standards for construction, imposing that the maximum “utilization 

ratio” (i.e. the “demand/capacity ratio” evaluated by Eqs. (40-42)) of all truss members, for all 

applied load cases, was less or equal to 0.99 (see Eq. (47) assumed as strength constraint 

function). Eqs. (40-42) allowed to check the combined effect of axial forces and bending moments 

by also considering flexural and lateral-torsional buckling of cross-sections subjected to combined 

axial compressive and bending stresses.  

Figure 5. 50 shows a diagram of the optimal truss arch here analysed, indicating the maximum 

𝑖𝑡ℎ −element “utilization ratio” (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶), for the envelope of all considered load combinations. 

That diagram shows that more than half of elements is characterized by a critical ratio larger than 

0.7. Furthermore, a “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) expressing a quite realistic overall percentage 

of the material exploitation of the whole structure was evaluated as a weighted average of 

Demand/Capacity ratios (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) shown in Figure 5. 50, with respect to the weight of each 

member (Eq. (51)). A satisfactory percentage of material exploitation about 71.6 % has been 

obtained, thus ensuring a high level of structural performance of the optimized steel truss arch 

under consideration. 

Figure 5. 51 shows the convergence curve of the “objective function” (i.e. the total volume of the 

structure) to be minimized, in order to validate the goodness of the obtained result, 

notwithstanding the extremely large number of design variables and their various nature. It can 

be easily seen that the objective function tends to become almost flat from the 172𝑡ℎ generation, 

meaning that from this point it starts do decrease extremely slowly. 

The “objective function” tendency is further confirmed by the history of the “stagnation function” 

(introduced in section §5.2.4.1), whose “zig-zag” trend occurs because it becomes zero at each 

generation characterized by an improvement in the objective function compared to the previous 

generation, otherwise it linearly increases (see Figure 5. 52(a)). In this specific case, the 

“stagnation function” showed to have the greatest peaks from the 172𝑡ℎ to the 228𝑡ℎ generation 

and from 245𝑡ℎ generation to the maximum iteration. 
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Figure 5. 52 History of optimization functions (for the CASE 1): (a) stagnation function; (b) “unfeasibility 
function” (ρ)  

Figure 5. 52(b) shows the history of the “unfeasibility function” (𝜌𝑘), which was introduced in 

section §5.2.4.1 and defined by Eq. (52), as a ratio between “unfeasible individuals” (𝑈𝑛𝑓𝑘) and 

all individuals (𝑃𝑜𝑝𝑘) of a 𝑘𝑡ℎ −generation. The “unfeasibility function” (𝜌𝑘) therefore produces 

values between 0 (i.e. all “individuals” are feasible, since all constraints are satisfied) and 1 (all 

“individuals” are unfeasible, since at least one constraint is violated). In this specific case, it has 

been found that 𝜌  becomes and remains zero from the 47𝑡ℎ generation to the last one, meaning 
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that the optimization process produces and evaluates only feasible candidate solutions from this 

point on (as shown in Figure 5. 52(b)). 

The quality of results produced by an optimization process should be also validated by the 

convergence curves of design variables. However, since the optimization problem here discussed 

is characterized by an extremely large number of design variables, it is not possible to present all 

their convergence curves. 

 

Figure 5. 53 Convergence curve of the topology design variable (𝑛𝑖𝑛𝑡) for the CASE 1 

In this regard, Figure 5. 53 shows the history of the topology design variable 𝑛𝑖𝑛𝑡, which the total 

number of the truss arch elements depends on. Seeing as how the number of bars and joints 

strongly affects the cost of a truss structure, its value has a great importance by a constructive 

point of view. It is worth recalling that 𝑛𝑖𝑛𝑡 was defined as a continuous value between 10 and 40 

(to be later rounded to the nearest even integer). The convergence curve validates the goodness 

of obtained solution, since from the first 172𝑡ℎ generation its value only tends to oscillate between 

15 and 18, until an optimal value (to which 16 was the nearest even integer) was found (see Figure 

5. 53). In Figure 5. 54 the convergence curves of shape design variables (i.e. the variable 

parameters defining the shape of lower and upper arch chords by parametric Cubic Rational 

Bézier curves) are presented to prove the validity of results, despite the large number and the 

variety of design variables. In the same way, a good convergence trend was also obtained for the 

size design variables determining the element group diameters (whose curves are shown in Figure 

5. 55). It can be easily noted that the optimal values (summarized in Table 5. 26 and in Table 5. 

27) have been achieved at the 245𝑡ℎ generation. 
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Figure 5. 54 Convergence curves of the shape design variables (variable parameters of third-degree rational 
Bézier curves) for the CASE 1: (a) 𝑥 −coordinate of the second control point (𝑥𝑃1𝑙) of the bottom arched chord; (b) 
𝑧 −coordinate of the second control point (𝑧𝑃1𝑙) of the bottom arched chord; (c) weight factor of the second control 

point (𝑤𝑃1𝑙) of the bottom arched chord; (d) 𝑧 −coordinate of the first control point (𝑧𝑃0𝑢) of the top arched 
chord;(e) the difference between the 𝑧 −coordinates (in absolute value) of the top and bottom chord internal control 

points (∆𝑧) 
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Figure 5. 55 Convergence curves of size design variables (i.e. indexes identifying the element group diameters 
in a list of commercial circular hollow cross-sections) for the CASE 1: (a) index identifying the bottom chord 

diameter; (b) index identifying the top chord diameter; (c) index identifying the diameter of diagonals; (d) index 
identifying the diameter of verticals 

5.3.4.2 Case 2 optimal solution 

As a second case, the optimization problem of a “hingeless” truss arch with a span of 80 meters 

(parametrically defined by taking advantage of Cubic Rational Bézier curves, as illustrated in 

Figure 5. 46) and subjected to three vertical load cases (in Figure 5. 47) was addressed and solved. 

All assumed design variables, with corresponding lower and upper bounds, are indicated in Table 

5. 22. 

In this regard, Figure 5. 56 shows the shape of the optimized arch under consideration, 

characterized by a minimum volume of 1.194 𝑚3 (i.e. the objective function), corresponding to a 

self-weight per unit length of 1.149 𝑘𝑁 𝑚⁄ . Furthermore, the optimal arch has a total height of 

25.70 𝑚 and a rise of 23.15 𝑚 (as indicated in Figure 5. 56). 

Therefore, the optimal arch here considered, has a resulting “rise-to-span ratio” equal to 1/3.46 

and a “height-to-span ratio” equal to 1/3.11. Moreover, similarly to the CASE 1, the arch in Figure 

5. 56 is still characterized by a small “crown depth”, about 2.55 𝑚, and a much higher “base depth” 

of 4.48 𝑚, but leading to a greater “crown depth-to-span ratio”, equal to 1/31.36 and a smaller 

“base depth-to span ratio” about 1/17.86. Consequently, the arch under consideration showed to 

be less tapered from its crown to its ends compared to the previous case (discussed in §5.3.4.1), 
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since its “taper ratio” (i.e. the “crown-depth” divided by the “base-depth” of the arch) has grown 

to 1/1.76. 

 

 

Figure 5. 56 Front view of the optimized truss arch with main dimensions (CASE 2 optimal solution) 

The optimal values of topology and shape design variables are pointed out in Table 5. 28, thus 

showing that the arch is characterized by an arch span subdivision number (𝑛𝑖𝑛𝑡) equal to 20. The 

truss arch under consideration resulted to be composed by 81 steel tubular elements and 42 

pinned joints. Shape design variables in Table 5. 28 determined the form of the optimal truss arch 

under consideration, by defining coordinates and weight factors of control points of upper and 

lower thrid-degree Rational Bézier arcs. On the other hand, the diameter, the minimum and 

maximum thicknesses for each element group are indicated in Table 5. 29. 

Table 5. 28 Topology and shape optimization results for the CASE 2: optimal values of topology and shape 
design variables 

Topology optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑛𝑖𝑛𝑡 topology 20 [𝑎𝑑𝑖𝑚. ] 

Shape optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑥𝑃1𝑙  shape 34.8715 [𝑚] 

𝑧𝑃1𝑙  shape 38.3198 [𝑚] 

𝑤𝑃1𝑙 shape 0.5084 [𝑎𝑑𝑖𝑚. ] 

𝑧𝑃0𝑢 shape 4.4800 [𝑚] 

∆𝑧 shape 1.2876 [𝑚] 
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As in the previous case (discussed in §5.3.4.1) the lower chord elements required a greater 

diameter compared to other elements, because they are subjected to greater axial forces and 

bending moments (as shown in Figure 5. 57).  

In particular, it was found that the lower chord was subjected to a compressive axial force varying 

from 715 𝑘𝑁 to 1702 𝑘𝑁 (see Figure 5. 57(a)) as well as to bending moments (whose diagram is 

illustrated in Figure 5. 57(b)) varying from 0.84 𝑘𝑁.𝑚 to 1.97 𝑘𝑁.𝑚. 

Conversely, the upper chord supports a compressive axial force varying between 674 𝑘𝑁 to 

871 𝑘𝑁, as well as bending moments varying from 0.55 𝑘𝑁.𝑚 to 1.02 𝑘𝑁.𝑚. Moreover, diagonal 

and vertical members are subjected to tensile axial forces (varying from 31 𝑘𝑁 to 175 𝑘𝑁 in 

diagonal, and from 44 𝑘𝑁 to 161 𝑘𝑁 in vertical bars), whereas diagonal tubes also withstand 

bending moment actions varying from 0.16 𝑘𝑁.𝑚 to 0.31 𝑘𝑁.𝑚. 

Table 5. 29 Size optimization results for the CASE 2: optimal diameters and thicknesses of circular hollow 
cross-sections  

Size optimization results 

Element 

groups 
Type of DV 

Diameter 

𝒅𝒊 

Min. 

thickness 

𝒕𝒊 

Max. 

thickness 

𝒕𝒊 

Unit 

Bottom chord size 0.2985 0.0059 0.01 [𝑚] 

Top chord size 0.2445 0.0054 0.0063 [𝑚] 

Diagonals size 0.108 0.0036 0.0059 [𝑚] 

Verticals size 0.108 0.0036 0.0059 [𝑚] 

The arch diagram represented in Figure 5. 58 validates the feasibility of the optimal solution here 

analysed, by indicating the maximum “utilization ratio” (𝑚𝑎𝑥
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) characterizing each 

𝑖𝑡ℎ −element  for the envelope of all load combinations, which proved to be always less than 0.99 

(as required by the constraint function, corresponding to Eq. (47)). That diagram also 

demonstrates that most of elements are characterized by a “Demand/Capacity ratio” larger than 

0.7. Furthermore, a “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) expressing an estimated overall percentage of 

the material exploitation of the whole structure was evaluated as a weighted average of 

“Demand/Capacity ratios” (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) shown in Figure 5. 58, with respect to the weight of each 

member (Eq. (51)). 

More specifically, a value of “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) about 71.4  % has been achieved in 

the considered case, once again ensuring a satisfactory level of structural performance of the 

optimized steel truss arch. 
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Figure 5. 57 Finite Element Analysis (FEA) results for the CASE 2: (a) axial force diagram; (b) bending 
moment diagram 

 

Figure 5. 58 Finite Element Analysis (FEA) results for the CASE 2: Demand/Capacity ratio (also called 
“utilization ratio”) diagram of the optimal solution for the envelope of all load cases 
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Figure 5. 59 Convergence curve of the Objective (Obj) function (i.e. the volume of the arch) for all “generations” 
(for the CASE 2) 

The arch diagram represented in Figure 5. 58 validates the feasibility of the optimal solution here 

analysed, by indicating the maximum “utilization ratio” (𝑚𝑎𝑥
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) characterizing each 

𝑖𝑡ℎ −element  for the envelope of all load combinations, which proved to be always less than 0.99 

(as required by the constraint function, corresponding to Eq. (47)). That diagram also 

demonstrates that most of elements are characterized by a “Demand/Capacity ratio” larger than 

0.7.  

Furthermore, a “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) expressing an estimated overall percentage of the 

material exploitation of the whole structure was evaluated as a weighted average of 

“Demand/Capacity ratios” (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) shown in Figure 5. 58, with respect to the weight of each 

member (Eq. (51)). More specifically, a value of “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) about 71.4  % has 

been achieved in the considered case, once again ensuring a satisfactory level of structural 

performance of the optimized steel truss arch. 

On the other hand, Figure 5. 59 shows the convergence curve of the “objective function” (i.e. the 

total volume of the structure) to be minimized, showing that the objective function tends to 

become almost flat from the 100𝑡ℎ generation, thus decreasing extremely slowly from this point. 

The “zig-zag” trend of the “stagnation function” (in Figure 5. 60(a)) more clearly shows when any 

improvement in the objective function occurs or not. In this specific case, the “stagnation 

function” showed to have the greatest peaks from the 327𝑡ℎ to the 390𝑡ℎ generation, after which 

it continued to improve very slowly. 
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Figure 5. 60(b) shows the history of the “unfeasibility function” (𝜌𝑘), which was introduced in 

section §5.2.4.1 and defined by Eq. (52), as a ratio between “unfeasible individuals” (𝑈𝑛𝑓𝑘) and 

all individuals (𝑃𝑜𝑝𝑘) of a 𝑘𝑡ℎ −generation. It has been found that the optimization process 

produced and evaluated only feasible candidate solutions from the 30𝑡ℎ generation onwards (as 

shown in Figure 5. 60(b)). 

 

Figure 5. 60 History of optimization functions (for the CASE 2): (a) stagnation function; (b) “unfeasibility 
function” (ρ)  
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Figure 5. 61 Convergence curve of the topology design variable (𝑛𝑖𝑛𝑡) for the CASE 2 

 

The convergence curves of all design variables can further validate the reliability of results here 

discussed. 

Among these, the topology design variable (𝑛𝑖𝑛𝑡) has a great importance by a constructive point 

of view, since its value indirectly determines the number of elements and joints of the structure. 

About that, Figure 5. 61 shows the history of 𝑛𝑖𝑛𝑡. This parameter was defined as a continuous 

variable between 10 and 80 (to be later rounded to the nearest even integer). The convergence 

curve shows that since the first generations its best value only tends to oscillate between measures 

extremely close to the optimal one (to which 20 was the nearest even integer). 

The convergence graphs of shape design variables (defining the shape of lower and upper arch 

chords parametrized by third-degree Rational Bézier curves) are presented in Figure 5. 62 to 

prove the reliability of results, despite the large number and the variety of design variables. In the 

same way, a good convergence trend was also obtained for the size design variables determining 

the element group diameters (whose curves are shown in Figure 5. 63). 

It can be easily noted that approximately after the first 150𝑡ℎ generations, the best values of all 

design variables tend to vary between rational numbers very close to the optimal ones finally 

obtained (summarized in Table 5. 28 and in Table 5. 29). However, it is worth highlighting that 

convergence curves of design variables never become flat because the objective function never 

stops to improve even if extremely slowly. 
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Figure 5. 62 Convergence curves of the shape design variables (variable parameters of third-degree rational 
Bézier curves) for the CASE 2: (a) 𝑥 −coordinate of the second control point (𝑥𝑃1𝑙) of the bottom arched chord; (b) 
𝑧 −coordinate of the second control point (𝑧𝑃1𝑙) of the bottom arched chord; (c) weight factor of the second control 

point (𝑤𝑃1𝑙) of the bottom arched chord; (d) 𝑧 −coordinate of the first control point (𝑧𝑃0𝑢) of the top arched 
chord;(e) the difference between the 𝑧 −coordinates (in absolute value) of the top and bottom chord internal control 

points (∆𝑧) 
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Figure 5. 63 Convergence curves of size design variables (i.e. indexes identifying the element group diameters 
in a list of commercial circular hollow cross-sections) for the CASE 2: (a) index identifying the bottom chord 

diameter; (b) index identifying the top chord diameter; (c) index identifying the diameter of diagonals; (d) index 
identifying the diameter of verticals 

5.3.4.3 Case 3 optimal solution 

In the present section, the solution of the optimization problem of a “hingeless” truss arch with a 

span of 120 meters, parametrically defined as shown in section §5.3.1 and subjected to boundary 

conditions assumed in §5.3.3, is discussed. It was found an optimal truss arch with a minimum 

volume about 2.773 𝑚3, equivalent to a self-weight of 1.779 𝑘𝑁/𝑚. All design variables, classified 

by type (topology, shape and size) with relative lower and upper bounds are indicated in Table 5. 

23. 

Figure 5. 64 shows the optimal shape of the truss arch under consideration with main dimensions, 

showing that it is characterized by a total height of 41.71 𝑚 and a rise of 38.02 𝑚, as well as by a 

resulting “height-to-span ratio” and a “rise-to-span ratio” equal to 1/2.88 and 1/3.16, respectively. 

Moreover, it can be easily noted in Figure 5. 64 that the arch depth at its crown (equal to 3.69 𝑚) 

is still considerably smaller than its “base depth” (equal to 5.93 𝑚). 

The arch under consideration is therefore characterized by a “crown depth-to-span ratio” equal 

to 1/32.48, a “base depth-to-span ratio” corresponding to 1/20.22, as well as by a consequent 

“taper ratio” equal to 1/1.61, hence slightly larger than that one of the CASE 2 solution. 
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Figure 5. 64 Front view of the optimized truss arch with main dimensions (CASE 3 optimal solution) 

The optimal values of topology and shape design variables are indicated in Table 5. 30, showing 

that the span of the considered arch resulted to be divided into 24 equal intervals (𝑛𝑖𝑛𝑡 = 24). The 

truss arch in Figure 5. 64 is therefore composed by 97 elements and 50 pinned joints. 

The values of shape design variables define the coordinates and weight factors of control points 

of upper and lower thrid-degree Rational Bézier arcs, thus determining the optimal shape of the 

considered truss arch. 

Table 5. 30 Topology and shape optimization results for the CASE 3: optimal values of topology and shape 
design variables 

Topology optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑛𝑖𝑛𝑡 topology 24 [𝑎𝑑𝑖𝑚. ] 

Shape optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑥𝑃1𝑙  shape 33.8728 [𝑚] 

𝑧𝑃1𝑙  shape 43.2732 [𝑚] 

𝑤𝑃1𝑙 shape 2.4112 [𝑎𝑑𝑖𝑚. ] 

𝑧𝑃0𝑢 shape 5.9351 [𝑚] 

∆𝑧 shape 3.3845 [𝑚] 

On the other hand, the diameter, the minimum and maximum thicknesses for each element group 

are indicated in Table 5. 31, showing that the lower chord elements required a slightly larger 

diameter compared to upper chord elements, because they are subjected to greater axial forces 

and bending moments (as shown in Figure 5. 65). For the same reason, diagonal and verticals 
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tubes required considerably smaller diameters and thicknesses compared to the elements 

composing the arched ribs. 

Table 5. 31 Size optimization results for the CASE 3: optimal diameters and thicknesses of circular hollow 
cross-sections  

Size optimization results 

Element 

groups 
Type of DV 

Diameter 

𝒅𝒊 

Min. 

thickness 

𝒕𝒊 

Max. 

thickness 

𝒕𝒊 

Unit 

Bottom chord size 0.368 0.0063 0.0125 [𝑚] 

Top chord size 0.3556 0.0063 0.0088 [𝑚] 

Diagonals size 0.1524 0.004 0.0071 [𝑚] 

Verticals size 0.1143 0.0036 0.0063 [𝑚] 

Indeed, size optimization results are validated by the internal force diagrams shown in Figure 5. 

65. In particular, the lower chord resulted to be subjected to a compressive axial force varying 

from 729 𝑘𝑁 to 2267 𝑘𝑁 (see Figure 5. 65(a)) as well as to bending moments (whose diagram is 

illustrated in Figure 5. 65 (b)) varying from 1.70 𝑘𝑁.𝑚 to 5.22 𝑘𝑁.𝑚. 

Conversely, the upper chord showed to withstand compressive axial forces varying between 

1010 𝑘𝑁 to 1749 𝑘𝑁, as well as bending moments included between 1.70 𝑘𝑁.𝑚 and 3.37 𝑘𝑁.𝑚. 

Moreover, diagonal and vertical members bear tensile axial forces (varying from 58 𝑘𝑁 to 263 𝑘𝑁 

in diagonal, and from 32 𝑘𝑁 to 312 𝑘𝑁 in vertical bars), whereas diagonal tubes also withstand 

bending moment actions varying from 0.42 𝑘𝑁.𝑚 to 0.86 𝑘𝑁.𝑚. 

In Figure 5. 66, the maximum “utilization ratio” (𝑚𝑎𝑥
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) for the envelope of all load 

combinations (𝐿𝐶) is indicated for each 𝑖𝑡ℎ −element, showing to be always less than 0.99 (as 

required by the constraint function, expressed by Eq. (47)). That diagram thus demonstrates the 

feasibility of the obtained solution, and also that most of elements are characterized by a 

“Demand/Capacity ratio” larger than 0.7. 

Furthermore, a weighted average of all “Demand/Capacity ratios” (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) shown in Figure 

5. 66, with respect to the weight of each 𝑖𝑡ℎ −member, has been evaluated as a “total utilization 

ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) to estimate an overall percentage of material exploitation of the whole structure 

(see Eq. (51)). A satisfactory level of structural performance has been therefore achieved since a 

value of “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) about 70.0  % has been obtained. 

The reliability of the obtained results can be proved by the convergence curves of the “objective 

function” and design variables that more characterized the optimized truss arch under 

consideration. 
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Figure 5. 65 Finite Element Analysis (FEA) results for the CASE 3: (a) axial force diagram; (b) bending 
moment diagram 

 

Figure 5. 66 Finite Element Analysis (FEA) results for the CASE 3: Demand/Capacity ratio (also called 
“utilization ratio”) diagram of the optimal solution for the envelope of all load cases 
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Figure 5. 67 Convergence curve of the Objective (Obj) function (i.e. the volume of the arch) for all “generations” 
(for the CASE 3) 

In this regard, Figure 5. 67 shows the convergence curve of the “objective function” (i.e. the total 

volume of the structure) to be minimized. 

The curve in Figure 5. 67, which represents the best values of the “objective function” obtained at 

each generation of candidate solutions, seems becoming rapidly flat since it starts from an 

extremely high value, after which it first decreases very rapidly and then much slower. The 

“objective function” stops to significantly improve approximately from the 500𝑡ℎ generation. 

The “zig-zag” trend of the “stagnation function” (in Figure 5. 68(a)) more clearly shows that from 

the 617𝑡ℎ generation onwards there is no longer any improvement in the “objective function”. 

On the other hand, Figure 5. 68(b) shows the history of the “unfeasibility function” (𝜌𝑘), which 

produces values between 0 and 1, since it was defined as a ratio between “unfeasible individuals” 

(𝑈𝑛𝑓𝑘) and all individuals (𝑃𝑜𝑝𝑘) of a 𝑘𝑡ℎ −generation (see Eq. (52)). Despite the large 

dimensions of the optimization problem under consideration, the optimization process produced 

and evaluated only feasible candidate solutions from the 37𝑡ℎ generation onwards (as shown in 

Figure 5. 68(b)). 

The convergence curves of all design variables can further validate the goodness of results here 

analysed. 
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Among these, the topology design variable (𝑛𝑖𝑛𝑡) has a great importance by a constructive point 

of view, since its value indirectly determines the number of elements (4𝑛𝑖𝑛𝑡 + 1) and joints 

(2𝑛𝑖𝑛𝑡 + 2) of the structure.  About that, Figure 5. 69 shows the history of 𝑛𝑖𝑛𝑡. This parameter 

was defined as a continuous variable between 10 and 120 (to be later rounded to the nearest even 

integer). The convergence curve shows that from the 80𝑡ℎ generation, the value of 𝑛𝑖𝑛𝑡 only varies 

between 24 and 26, until its optimal value closer to 24 was found. 

 

Figure 5. 68 History of optimization functions (for the CASE 3): (a) stagnation function; (b) “unfeasibility 
function” (ρ)  
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Figure 5. 69 Convergence curve of the topology design variable (𝑛𝑖𝑛𝑡) for the CASE 3 

 

The convergence diagrams of shape design variables (defining the shape of lower and upper arch 

chords parametrized by third-degree Rational Bézier curves) are presented in Figure 5. 70 to 

prove the reliability of results, despite the large number and the variety of design variables. 

For the same purpose, the convergence curves of size design variables determining the diameters 

characterizing each element group are represented in Figure 5. 71. 

It is worth to remark that the optimal values of topology, shape and size design variables 

(summarized in Table 5. 30 and in Table 5. 31) have been found at the 617𝑡ℎ generation, thus 

confirming what previously emerged from the history curve of the “stagnation function”. This 

means that for more than 100 generations, the obtained final solution resulted to be the best one 

among all 100 candidate solutions of each generation. 
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Figure 5. 70 Convergence curves of the shape design variables (variable parameters of third-degree rational 
Bézier curves) for the CASE 3: (a) 𝑥 −coordinate of the second control point (𝑥𝑃1𝑙) of the bottom arched chord; (b) 
𝑧 −coordinate of the second control point (𝑧𝑃1𝑙) of the bottom arched chord; (c) weight factor of the second control 

point (𝑤𝑃1𝑙) of the bottom arched chord; (d) 𝑧 −coordinate of the first control point (𝑧𝑃0𝑢) of the top arched 
chord;(e) the difference between the 𝑧 −coordinates (in absolute value) of the top and bottom chord internal control 

points (∆𝑧) 
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Figure 5. 71 Convergence curves of size design variables (i.e. indexes identifying the element group diameters 
in a list of commercial circular hollow cross-sections) for the CASE 3: (a) index identifying the bottom chord 

diameter; (b) index identifying the top chord diameter; (c) index identifying the diameter of diagonals; (d) index 
identifying the diameter of verticals 

5.3.4.4 Case 4 optimal solution 

As a last numerical case, the optimization problem of a “hingeless” truss arch with a span of 160 𝑚, 

made of steel tubular elements, has been successfully solved under three vertical load 

combinations. As already stated in section §5.3.2, the problem was defined to minimize the total 

volume of the structure according with strength constraints, assuming a unique set of topology, 

shape and size design variables, indicated in Table 5. 24 (with relative lower and upper limits). 

The present section aims to illustrate in detail the so-obtained solution. 

 

Figure 5. 72 Front view of the optimized truss arch with main dimensions (CASE 4 optimal solution) 
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Table 5. 32 Topology and shape optimization results for the CASE 4: optimal values of topology and shape 
design variables 

Topology optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑛𝑖𝑛𝑡 topology 28 [𝑎𝑑𝑖𝑚. ] 

Shape optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑥𝑃1𝑙  shape 45.3013 [𝑚] 

𝑧𝑃1𝑙  shape 46.7272 [𝑚] 

𝑤𝑃1𝑙 shape 4.0243 [𝑎𝑑𝑖𝑚. ] 

𝑧𝑃0𝑢 shape 5.8139 [𝑚] 

∆𝑧 shape 5.7462 [𝑚] 

The optimal solution illustrated in Figure 5. 72 has a volume of 4.839 𝑚3, and therefore a resulting 

self-weight of 2.328 𝑘𝑁/𝑚. The arch is characterized by a total height of 48.904 𝑚 and a clear rise 

of 43.153 𝑚, as well as by an almost constant depth, varying from 5.751 𝑚 to 5.814 𝑚 from its 

crown to its ends, determining a “taper ratio” almost equal to 1. The arch under consideration is 

therefore typified by a “height-to-span ratio” and a “rise-to-span ratio” of 1/3.27 and 1/3.71, 

respectively, as well as by a “crown depth-to-span ratio” and a “base depth-to-span ratio” almost 

the same and equal to 1/27.82 and 1/27.52, in that order. The flattened shape of the arch 

represented in Figure 5. 72, has been determined by the optimal values obtained for topology and 

shape design variables indicated in Table 5. 33.  

Among this, a number of equal intervals into which the arch span is divided (𝑛𝑖𝑛𝑡) equal to 28 was 

found, determining a total number of elements equal to 113 and 58 joints. 

Table 5. 33 Size optimization results for the CASE 4: optimal diameters and thicknesses of circular hollow 
cross-sections  

Size optimization results 

Element 

groups 
Type of DV 

Diameter 

𝒅𝒊 

Min. 

thickness 

𝒕𝒊 

Max. 

thickness 

𝒕𝒊 

Unit 

Bottom chord size 0.508 0.0071 0.0125 [𝑚] 

Top chord size 0.4064 0.0063 0.008 [𝑚] 

Diagonals size 0.1683 0.004 0.008 [𝑚] 

Verticals size 0.1524 0.004 0.008 [𝑚] 
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Figure 5. 73 Finite Element Analysis (FEA) results for the CASE 4: (a) axial force diagram; (b) bending 
moment diagram 

 

Figure 5. 74 Finite Element Analysis (FEA) results for the CASE 4: Demand/Capacity ratio (also called 
“utilization ratio”) diagram of the optimal solution for the envelope of all load cases 
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Figure 5. 75 Convergence curve of the Objective (Obj) function (i.e. the volume of the arch) for all “generations” 
(for the CASE 4) 

As shown in Table 5. 33, the lower chord elements required a thickness varying from 0.0071 to 

0.0125 𝑚 and  greater diameter than other elements, in fact corresponding to the maximum 

diameter available in the list of commercial steel tubular cross-sections here adopted (see Table 

5. 5), equal to 0.508 𝑚. Significantly smaller diameters and thicknesses have been obtained for 

the other elements since they showed to be subjected to significantly smaller axial forces and 

bending moments (as shown in Figure 5. 73). 

In particular, the lower chord elements support an axial compressive force varying between 

1200 𝑘𝑁 and 3900 𝑘𝑁 (see Figure 5. 73(a)) and bending moments between 3.03 𝑘𝑁.𝑚 and 

8.02 𝑘𝑁.𝑚 (see Figure 5. 73(b)), under the envelope of all assumed load combinations. On the 

other hand, the upper chord elements resulted to be subjected to a minimum and maximum 

compressive axial force of 1170 𝑘𝑁 and 1950 𝑘𝑁, in that order; as well as to bending moment 

actions oscillating between 2.52 𝑘𝑁.𝑚 and 4.45 𝑘𝑁.𝑚. 

As in the previous cases, diagonal elements showed to be mainly under tension (with a tensile 

axial force varying from 80 to 530 𝑘𝑁) and to also withstand bending moments oscillating 

between 0.60 𝑘𝑁.𝑚 and 1.80 𝑘𝑁.𝑚. Conversely, vertical elements resulted to be purely stretched 

(under a tensile axial force varying from 21 𝑘𝑁 to 294 𝑘𝑁) since external loads have been applied 

as concentrated forces on lower joints). 

The combined effect of axial forces and bending moments under the envelope of all assumed load 

cases (shown in Figure 5. 47) on the optimized truss arch under here analysed is more clearly 

represented by the arch diagram in Figure 5. 74. 
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Figure 5. 76 History of optimization functions (for the CASE 4): (a) stagnation function; (b) “unfeasibility 
function” (ρ)  

More specifically, the maximum “utilization ratio” (𝑚𝑎𝑥
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) for the envelope of all load 

combinations (𝐿𝐶) is pointed out in Figure 5. 74 for each 𝑖𝑡ℎ −member, showing to be always less 

than 0.99 (as required by the constraint function, expressed by Eq. (47)), thus demonstrating the 

feasibility of the obtained solution. 

Moreover, a “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) was defined (by Eq. (51)) as a weighted average of all 

“Demand/Capacity ratios” (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) shown in Figure 5. 74, with respect to the weight of each 
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𝑖𝑡ℎ −member, to estimate an overall percentage of material exploitation of the whole structure. In 

this specific case, a percentage of material exploitation about 72.5  % has been reached. 

Figure 5. 75 illustrates the convergence curve of the “objective function” that was minimized (i.e. 

the total volume of the truss arch), pointing out that it improves extremely slowly starting from 

the 450𝑡ℎ generation, until the optimal value has been achieved. 

The history curve of the “stagnation function” (in Figure 5. 76(a)) more precisely shows that the 

“objective function” stopped to improve longer from the 596𝑡ℎ to the 720𝑡ℎ generation, and also 

between the 790𝑡ℎ and the 914𝑡ℎ generation. 

On the other hand, the trend of the “unfeasibility function” (expressed by Eq. (52)) proves that 

the optimization process generated and compared only feasible “individuals” (i.e. candidate 

solutions) starting from the 70𝑡ℎ onwards (see Figure 5. 76(b)). 

In Figure 5. 77 the convergence curve of the topology design variable (𝑛𝑖𝑛𝑡) demonstrated that 

only best values close to the optimal one (that is 28) have been obtained since the 27𝑡ℎ generation 

until the end of the optimization process. 

In accordance with what emerged so far, the convergence curves of shape design variables 

(represented in Figure 5. 78) prove that their corresponding optimal values have been 

approximately found around the 900𝑡ℎ generation. On the other hand, the history of size design 

variables in Figure 5. 79 showed to be characterized by a better convergence, since from the first 

generations their value tends to oscillate around the optimal ones finally obtained. 

 

Figure 5. 77 Convergence curve of the topology design variable (𝑛𝑖𝑛𝑡) for the CASE 4 
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Figure 5. 78 Convergence curves of the shape design variables (variable parameters of third-degree rational 
Bézier curves) for the CASE 4: (a) 𝑥 −coordinate of the second control point (𝑥𝑃1𝑙) of the bottom arched chord; (b) 
𝑧 −coordinate of the second control point (𝑧𝑃1𝑙) of the bottom arched chord; (c) weight factor of the second control 

point (𝑤𝑃1𝑙) of the bottom arched chord; (d) 𝑧 −coordinate of the first control point (𝑧𝑃0𝑢) of the top arched 
chord;(e) the difference between the 𝑧 −coordinates (in absolute value) of the top and bottom chord internal control 

points (∆𝑧) 
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Figure 5. 79 Convergence curves of size design variables (i.e. indexes identifying the element group diameters 
in a list of commercial circular hollow cross-sections) for the CASE 4: (a) index identifying the bottom chord 

diameter; (b) index identifying the top chord diameter; (c) index identifying the diameter of diagonals; (d) index 
identifying the diameter of verticals 

As for all previous cases, it can be stated that the trends of convergence curves (of the “objective 

function” and design variables) strongly validates the reliability of the obtained results, 

notwithstanding an extremely large set of design variables of different nature was assumed. 

5.3.4.5 Comparison of optimal solutions 

An analytical comparison of the optimal solution obtained for all different formulations (i.e. the 

CASES 1, 2, 3 and 4) of the optimization problem presented in section §5.3 is here carried out, in 

order to deduce useful suggestion for an optimal design of steel truss arches. 

A superimposition of optimal shapes of the presented solutions is represented in Figure 5. 80 to 

more easily show how the optimal layout of the truss arch under consideration needs to change 

in increasing its span length. It can be immediately noted that, as the span grows, the arch 

becomes less tapered (i.e. its depth tends to become constant along its span) and slightly flattened 

at its top. 

This observation is confirmed by the values of main geometrical parameters indicated below, in 

Table 5. 34. It is worth noting that the self-weight of the presented solutions increases almost 

linearly as the arch span grows (see Figure 5. 81(b)), but much slower compared to the self-weight 

of the two-hinged truss arches (see Figure 5. 41(b)) previously analysed. 
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Figure 5. 80 Shape comparison of the optimal solutions for the CASES 1, 2, 3 and 4 

 

Consequently, since variable loads were assumed to be constant and equal to 15.00 𝑘𝑁/𝑚 (as 

indicated in section §5.3.3), the “variable-to-permanent loads ratio” decreases as the arch self-

weight increases (as shown in Figure 5. 81(c)), reaching a value of 1/1.75 for the hingeless truss 

arch 160 𝑚 long, that was conversely reached for the two-hinged truss arch with a span of 120 𝑚 

(as previously shown in Figure 5. 41(c)). 

As shown in Table 5. 34, the element number linearly varies from 65 to 113, as the arch span 

increases. 

 

Table 5. 34 Comparison of main parameters characterizing the optimal solutions 

CASE 

Span 

length 

[𝒎] 

Min. 

volume 

[𝒎𝟑] 

Self-

weight 

[𝒌𝑵 𝒎⁄ ] 

Elem. 

number 

[𝒂𝒅𝒊𝒎. ] 

Height

/span 

[𝒂𝒅𝒊𝒎. ] 

Rise/

span 

[𝒂𝒅𝒊𝒎. ] 

Crown-

Depth/

span 

[𝒂𝒅𝒊𝒎. ] 

Base-

Depth/

span 

[𝒂𝒅𝒊𝒎. ] 

Crown-

Depth/ 

Base-

Depth 

[𝒂𝒅𝒊𝒎. ] 

1 40 0.293 0.563 65 1/3.36 1/3.66 1/40.20 1/14.71 1/2.73 

2 80 1.194 1.149 81 1/3.11 1/3.46 1/31.36 1/17.86 1/1.76 

3 120 2.773 1.779 97 1/2.88 1/3.16 1/32.48 1/20.22 1/1.61 

4 160 4.839 2.328 113 1/3.27 1/3.71 1/27.82 1/27.52 1/1.01 
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Figure 5. 81 Comparison of the results of the optimal solutions: (a) best objective values; (b) arch self-weights 
per unit; (c) variable-to-permanent load ratios 
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Table 5. 35 Comparison of optimal values of shape design variables 

CASE 

Span 

length 

[𝒎] 

𝒙𝑷𝟏𝒍 

[𝒎] 

𝒛𝑷𝟏𝒍 

[𝒎] 

𝒘𝑷𝟏𝒍 

[𝒂𝒅𝒊𝒎. ] 

𝒛𝑷𝟎𝒖 

[𝒎] 

∆𝒛 

[𝒎] 

𝒙𝑷𝟏𝒍 

/span 

[𝒂𝒅𝒊𝒎. ] 

𝒛𝑷𝟏𝒍 

/span 

[𝒂𝒅𝒊𝒎. ] 

1 40 16.758 16.585 0.643 2.719 0.100 1/2.38 1/2.41 

2 80 34.871 38.320 0.508 4.480 1.287 1/2.29 1/2.08 

3 120 33.873 43.273 2.411 5.935 3.384 1/3.54 1/2.77 

4 160 45.301 46.727 4.024 5.814 5.46 1/3.53 1/3.42 

This is directly related to the optimal values of the topology design variable (𝑛𝑖𝑛𝑡) pointed out in 

Figure 5. 82, which shows that they are perfectly collinear, i.e. lying on the same line of equation, 

𝑛𝑖𝑛𝑡 =
1

10
𝐿 + 12                              (56) 

which has been defined as a function of the arch span (𝐿). 

Therefore, since the element number (𝑛𝑓𝑟𝑎𝑚𝑒𝑠) of the structure in turn depends on 𝑛𝑖𝑛𝑡 (𝑛𝑓𝑟𝑎𝑚𝑒𝑠 =

4𝑛𝑖𝑛𝑡 + 1), a linear relationship correlating the optimal element number with the arch span, can 

be expressed by the following equation 

𝑛𝑓𝑟𝑎𝑚𝑒𝑠 = 
2

5
𝐿 + 49                 (57). 

 

Figure 5. 82 Optimal values of the topology design variable (𝑛𝑖𝑛𝑡), which defines the number of the truss arch 
element 
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In the same way, a linear equation expressing the optimal joint number (𝑛𝑛𝑜𝑑𝑒𝑠) as a function of 

the arch span (𝐿) can be easily deduced and written as follows, 

𝑛𝑛𝑜𝑑𝑒𝑠 = 
1

5
𝐿 + 26                 (58). 

Note that Eqs. (56-58) provides useful indications (and are valid only) for an optimal design of 

steel arched trusses of type Pratt, parametrically defined as described in section §5.3.1  and 

subjected to the boundary conditions in Figure 5. 47.  

 

Figure 5. 83 Comparison of the results of the optimal solutions: (a) height-to-span ratios; (b) rise-to-span 
ratios 

As already stated, the number of bars and joints of a truss structure has a great importance by a 

constructive point of view since the greater the number of joints, the higher the construction cost 

of the truss. As well-known, the “rise-to-span ratio” of an arch has also a great importance both 

from an architectural and structural point of view, since it strongly affects its aspect and its 

structural behaviour at the same time. Indeed, the smaller the rise of an arch, the greater the 

magnitude of horizontal thrusts that arise at its ends (as demonstrated by Eqs. (10) and (15) in 

§2.1).  
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Figure 5. 84 Comparison of the results of the optimal solutions: (a) base depth-to-span ratios; (b) crown 
depth-to-span ratios; (c) taper ratios 
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Figure 5. 85 Comparison of the results of the optimal solutions: (a) 𝑥𝑃1𝑙-to-span ratios; (b) 𝑧𝑃1𝑙-to-span ratios 

However, as the arch height and rise increase, its visual impact deeply increases over the natural 

and anthropized landscape into which it is integrated. 

In this regard, it can be immediately seen from the Figure 5. 83(a) that the arches under 

consideration are characterized by a “height-to-span ratio” growing from 1/3.36 to 1/2.87, as the 

arch span increases from 40.00 to 120.00 𝑚, whereas decreasing to 1/3.27 when the arch span 

becomes equal to 160 𝑚. Similarly, Figure 5. 83(b) shows that the “rise-to-span ratio” has a 

similar trend, increasing from 1/3.66 to 1/3.16 as the arch span grows from 40.00 to 120.00 𝑚, 

and decreasing to 1/3.71 when the arch reaches a span of 160 𝑚. 
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It is also worth noting that, unlike what previously emerged from the optimization results of two-

hinged arches  (discussed in section §5.2.4), in this case the values of the “height-to-span” and the 

“rise-to-span” ratios are quite close but they tend to more deviate from each other as the arch span 

increases, indeed corresponding to a growth of the “crown depth-to-span ratio” (from 1/40.20 to 

1/27.82) of the arch (as shown in Figure 5. 84(b)). On the other hand, it can be seen from Figure 

5. 84(a) the so-called “base depth-to-span ratio” (where the “base depth” indicates the arch depth 

at its ends) decreases (from 1/14.71 to 1/27.52) as the arch span increases. 

Figure 5. 84(c) finally represents the trend of the aforementioned “taper ratio”, which tends to 

decrease as the arch span growths, becoming almost equal to 1 when the arch reaches a span of 

160 𝑚 (meaning that its depth tends to become constant). 

All changes in the optimal shape of the arch as its span increases should be related to the 

progressive reduction of the effect of the asymmetric load combination of variable loads as the 

arch self-weight grows with its span. 

Contrary to what came to light from the optimization results of two-hinged arches ( in section 

§5.2.4), it can be observed from Figure 5. 80 how the optimal shapes of the “hingeless” truss 

arches under consideration tend to flatten at the top as the arch span increases. This should be 

related to the optimal values of shape design variables (indicated in Table 5. 35) determining the 

coordinates and weight factors of control points defining in turn the shape of the lower and upper 

chord axis as cubic Rational Bézier arcs. In this regard, the resulting values of the “𝑥𝑃1𝑙-to-span” 

and “𝑧𝑃1𝑙-to-span” ratios are pointed out in Figure 5. 85(a) and (b), respectively, showing that the 

former assumed a value close to 1/2.3 for arches with spans of 40 and 80 𝑚 and around 1/3.5 for 

arches with spans of 120 and 160 𝑚. It is worth to keep in mind that the smaller the “𝑥𝑃1𝑙-to-span 

ratio”, more flattened the arch top becomes. Conversely, the “𝑧𝑃1𝑙-to-span ratio” showed to 

decrease (from 1/2.41 to 1/3.42) as the arch span grows, except for the arch 80 𝑚 long resulted to 

be characterized by a “𝑧𝑃1𝑙-to-span ratio” equal to 1/2.08. Note that the smaller the “𝑧𝑃1𝑙-to-span 

ratio”, the lower the arch rise. However, the arch rise and height were also determined by the 

dimensionless value of the weight factors of internal control points here defined by the parameter 

𝑤𝑃1𝑙, which showed to increase from 0.508 to 4.02 as the arch span increases (as indicated in Table 

5. 35). 

It is worth remembering that the greater the value of the weight factor 𝑤𝑃1𝑙 (properly defined in 

section §5.3.1.2), the higher the arch. Moreover, since the total height of the arch also depends on 

the 𝑧 −coordinates of internal control points defining the shape of the axis upper chord, evaluated 

by adding a variable quantity called ∆𝑧 (included in the set of design variables in §5.3.1.2) to the 

𝑧 −coordinate of internal control points (𝑧𝑃1𝑙) defining the shape of the axis bottom chord. 
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Table 5. 35 shows that the value of ∆𝑧, which also determines the arch depth at its crown, increases 

(from 0.1 to 5.46 𝑚) as the arch span grows, thus justifying the increasing trend of the “crown 

depth-to-span ratios” (shown in Figure 5. 84(b)). 

Useful design recommendations for steel truss arches can be therefore deduced from results 

discussed so far and adopted, provided that boundary conditions similar to those ones here 

defined (see §5.3.3) were taken into account, paying particular attention to the ratio between 

variable and permanent loads in considering different load patterns. 

In conclusion, Figure 5. 86 shows that a “total utilization ratio” (introduced in section §5.2.4.1 

and defined  by Eq. (26)) greater than 70% was obtained for all cases, reaching a peak of 72.5 % 

for the truss arch with a span of 160 meters. It can be therefore stated that the structural 

optimization process here proposed leaded to satisfactory results in terms of structural 

performances, since the “total utilization ratios” express the overall percentages of the material 

exploitation characterizing the optimized solutions. 

 

Figure 5. 86 Resulting values of the “total utilization ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡), evaluated through the Eq. (26), providing 
an overall percentage of the material exploitation 
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Chapter 6 

6. Parametric design and structural 
optimization of spatial arched trusses 

In §Chapter 5, in-plane truss arches with different span lengths and structural boundary 

conditions have been optimized for multiple load cases (defined in sections §5.2.3 and §5.3.3), 

only considering vertical loads (acting on the same plane as the arch), since in-plane arches are 

not suited to withstand out-of-plane loads. 

The optimization strategy here developed and presented in section §4.2 has been therefore 

adopted to simultaneously perform topology, shape and size optimization of a spatial arched truss 

(with lower and upper chords lying on different planes) under multiple load cases acting in 

different directions. The so-obtained results will be discussed in present Chapter. 

6.1 Simultaneous topology, shape and size optimization of an 

arched truss under vertical and horizontal loads 

The present section aims to provide a detailed description of the stepwise optimization process of 

a three-dimensional arched truss, with a span of 40 meters, subjected to vertical and horizontal 

load conditions. More specifically, an arched system composed by an upper arched chord lying on 

a horizontal plane and by a lower inclined arched chord, connected each other by a bracing system 

of type Pratt, was optimized by minimizing its total volume according with strength and 

serviceability constraints. Such an arched truss was for instance supposed to be suited to support 

the curved deck of a footbridge (Luigi Fenu, Congiu, and Briseghella 2016). The considered arched 

truss, made of steel tubular members (i.e. with circular hollow cross-sections), were optimally 

designed for three different vertical load patterns and a static seismic action, acting in parallel to 

the horizontal upper chord plane. 

The so-obtained results will be illustrated and discussed in subsection §6.1.4. 

6.1.1 Parametric design 

As shown in the flowchart of the proposed optimization macro-algorithm illustrated in Figure 4. 

2, a parametric formulation of the optimum design problem is indispensable to properly define
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 all design variables within a range of lower and upper bounds, as well as the objective and 

constraint functions as a function of the assumed design variables. 

The higher the number of design variables to consider, the more crucial the role of this stage in 

the whole process becomes. 

In this regard, the design problem of the three-dimensional arched truss here investigated 

depends on a large number of parameters, among which 93 have been assumed as design 

variables of different nature (1 topology, 7 shape and 85 size design variables). 

6.1.1.1 Topology design variables 

As in cases of in-plane truss arches treated in §Chapter 5, the topology optimization problem of 

the spatial arched truss under consideration has been formulated as a function of a variable 

number of bars and joints, thereby assuming, as a unique topology design variable of the problem, 

a parameter indicated as 𝑛𝑖𝑛𝑡, defining the number of equal “intervals” (𝑑𝐿), into which the arch 

span is subdivided (as expressed by Eq. (44) and indicated in Figure 6. 2). 

The topology design variable 𝑛𝑖𝑛𝑡 determines the node number and spacing (their 

𝑥 −coordinates), as well as the number of the truss bars. In particular, the curved truss under 

consideration is characterized by 2𝑛𝑖𝑛𝑡 + 2 joints and 4𝑛𝑖𝑛𝑡 + 1 members. 

Furthermore, since a Pratt-type truss has been chosen as bracing system, 𝑛𝑖𝑛𝑡 needs to be an even 

integer, as well as a discrete design variable. However, since the optimization method here 

adopted only allows the assumption of continuous variables, the value related to the parameter 

𝑛𝑖𝑛𝑡 is rounded to the nearest even integer during the optimization process. 

6.1.1.2 Shape design variables: parameters defining Cubic Rational Bézier 

Curves 

Analogously to what has been done in case of in-plane truss arches (see Figure 6. 1(a)), once again 

the axis shape of both the lower and the upper chords has been parametrized by cubic Rational 

Bézier curves with four control points (whose parametric equation can be expressed by Eq. (45)). 

In particular, the upper chord was supposed to lie on a horizontal plane, whereas the lower rib 

was defined as an arch with a variable inclination in three-dimensional space (as shown in Figure 

6. 1(b)). 

Figure 6. 2 shows how the shapes of lower and upper chords depend on the positions of Rational 

Bézier arcs control points. 

The spatial arched truss in Figure 6. 2 was further assumed to be symmetrical with respect to a 

𝑦𝑧 −plane with origin on the 𝑥 −axis at the mid-span of the arched system. 
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Figure 6. 1 Form-finding of planar (a) and spatial double-chord arches (b) through Cubic Rational Bézier 
Curves 

On the basis of the aforementioned symmetry conditions, seven parameters typifying cubic 

Rational Bézier curves have been therefore assume as shape design variables; which are, 

• 𝑥𝑝1𝑙, x-coordinate of the second control point (𝑃1𝑙) of the lower inclined chord. Note that 

the third control point (𝑃2𝑙) of the bottom rib has been assumed as symmetric to 𝑃1𝑙 (with 

respect to a 𝑦𝑧 −plane with origin on the 𝑥 −axis at the mid-span of the arched system), 

by imposing 𝑥𝑃2𝑙 = 𝐿 − 𝑥𝑃1𝑙 

• 𝑦𝑝1𝑙, y-coordinate of the second control point (𝑃1𝑙) of the lower inclined chord. For the 

imposed symmetry conditions, it was assumed that the third control point (𝑃2𝑙) of the 

bottom rib has same 𝑦 −coordinate (𝑦𝑃2𝑙 = 𝑦𝑃1𝑙) 

• 𝑤1𝑙, non-negative weight factor of the second control point (𝑃1𝑙) of the lower inclined 

chord, also corresponding to the weight factor of the third control point (𝑃2𝑙) affecting the 

shape of the lower inclined chord 

• ∆𝑧, absolute value of the difference between z-coordinates of the internal control points of 

upper and lower chords (∆𝑧= |𝑧𝑝1𝑢 − 𝑧𝑝1𝑙| = |𝑧𝑝2𝑢 − 𝑧𝑝2𝑙|), that defines the crown depth 

of the curved truss 

• 𝑥𝑝1𝑢, x-coordinate of the second control point (𝑃1𝑢) of the upper chord. For the imposed 

symmetry conditions, the third control point (𝑃2𝑢) of the top rib has been assumed as 

symmetric to 𝑃1𝑢 (with respect to a 𝑦𝑧 −plane with origin on the 𝑥 −axis at the mid-span 

of the arched system), by imposing 𝑥𝑃2𝑢 = 𝐿 − 𝑥𝑃1𝑢 
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• 𝑦𝑝1𝑢, y-coordinate of the second control point (𝑃1𝑢) of the upper chord. It was further 

assumed that the third control point (𝑃2𝑙) of the horizontal rib has same 𝑦 −coordinate 

(𝑦𝑃2𝑙 = 𝑦𝑃1𝑙) 

• 𝑤1𝑢, weight factor of the second control point (𝑃1𝑢) of the upper chord, whose value also 

define the non-negative weight factor of the third control point (𝑃2𝑢) affecting the axis 

shape of the horizontal upper chord. 

 

Figure 6. 2 Parametric definition of the geometry as a function of shape design variables, by taking 
advantage of Cubic Rational Bézier Curves 

It is worth remarking that all coordinates of the first and last control points of both chords have 

been assumed as fixed, in order that the arched truss under consideration was characterized by a 

“base depth” (i.e. its height at its hinged ends) equal to 6.00 𝑚 and by a span of 40.00 𝑚. 

Furthermore, all shape design variables have been defined as continuous variables within proper 

ranges of lower and upper limits (indicated in Table 6. 1). 

6.1.1.3 Size design variables 

The size design variables define the dimensions of cross-sections of truss elements. Analogously 

to the case of in-plane truss arches (addressed in §Chapter 5) the arched truss under 

consideration is assumed to be composed by elements with circular hollow cross-sections, 

grouped as follow 

• Bottom chord (lower chord) elements 

• Top chord (upper chord) elements 

• Diagonals 

• Verticals. 
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Each group of elements is characterized by same diameter, thus assuming 

• 𝑑1 as diameter of bottom chord elements 

• 𝑑2 as diameter of top chord elements 

• 𝑑3 as diameter of diagonals 

• 𝑑4 as diameter of verticals. 

On the other hand, a further symmetry condition imposed that couples of elements that are 

symmetrical with respect to a central vertical plane (i.e. placed in the mid-span and parallel to the 

reference 𝑦𝑧 −axis), must have same thickness. Therefore, four diameters and 𝑛 different 

thicknesses 𝑡𝑖 (with 𝑖 = 1,…𝑛 and 𝑛 = 81) were assumed as size design variables, for each 

𝑖𝑡ℎ −couple of symmetrical elements. Note that the allowable number of different thicknesses (𝑛) 

depends on 𝑛𝑖𝑛𝑡
𝑢  (since it was assumed that 𝑛 = 2𝑛𝑖𝑛𝑡

𝑢 + 1), upper bound of the topological design 

variable 𝑛𝑖𝑛𝑡, here assumed equal to 40 (as indicated in Table 6. 1). Therefore, the optimization 

problem under consideration showed to depend on 85 size design variables, given by 4 diameters 

and 81 thicknesses. 

6.1.2 Problem formulation 

Unlike the previous case of in-plane truss arches, a unique formulation of the optimization 

problem here discussed has been considered. As already stated, the problem has been defined as 

a function of 93 design variables, indicated in Table 6. 1 with corresponding lower and upper 

bounds. Among these, the topology design variable (𝑛𝑖𝑛𝑡), expressing the even integer of equal 

intervals into which the span is subdivided, was assumed to be variable between 10 (𝑛𝑖𝑛𝑡
𝑙 ) and 40 

(𝑛𝑖𝑛𝑡
𝑢 ).  The number of elements can therefore vary from 𝑛𝑒𝑙

𝑀𝐼𝑁 = 4𝑛𝑖𝑛𝑡
𝑙 + 1 = 41 to 𝑛𝑒𝑙

𝑀𝐴𝑋 = 4𝑛𝑖𝑛𝑡
𝑢 +

1 = 161, thus determining the required number of size design variables (defined in section 

§6.1.1.3). 

It can be immediately seen from Table 6. 1 that the upper bounds of coordinates 𝑥𝑃1𝑙, 𝑦𝑃1𝑙 and 

𝑦𝑃1𝑢 corresponds to the half span of the arch (thus equal to 
𝐿

2
= 20.00 𝑚), whereas the upper 

bound of 𝑥𝑃1𝑢 was limited to one third of the arched truss span (thus equal to 
𝐿

3
= 13.33 𝑚) in 

order to ensure that the horizontal upper chord had a smooth shape, since it was supposed to be 

properly design to support a curved deck of a footbridge (Luigi Fenu, Congiu, and Briseghella 

2016). For the same purpose, the upper bounds of weight factors 𝑤𝑃1𝑙 and 𝑤𝑃1𝑢 have been limited 

to 1. 

Size design variables were defined as indexes (as indicated in Table 6. 1), which allow to take the 

values of diameters and thicknesses from a table of commercial circular hollow cross-sections (see 

Table 6. 2). 
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Table 6. 1 Lower and upper bounds of design variables 

Design 

Variable (DV) 
Type of DV Lower bound Upper bound Unit 

𝑛𝑖𝑛𝑡 topology 10 40 [𝑎𝑑𝑖𝑚. ] 

𝑥𝑃1𝑙  shape 0.1 20.0 [𝑚] 

𝑦𝑃1𝑙  shape 10.0 20.0 [𝑚] 

𝑤𝑃1𝑙 shape 0.5 1 [𝑎𝑑𝑖𝑚. ] 

∆𝑧 shape 0.1 5.0 [𝑚] 

𝑥𝑃1𝑢  shape 0.1 13.3 [𝑚] 

𝑦𝑃1𝑢 shape 10.0 20.0 [𝑚] 

𝑤𝑃1𝑢 shape 0.5 1 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑1 size 1 38 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑2 size 1 38 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑3 size 1 38 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑑4 size 1 38 [𝑎𝑑𝑖𝑚. ] 

𝑖𝑛𝑑𝑒𝑥𝑡(𝑖) ∗ size 2 18 [𝑎𝑑𝑖𝑚. ] 

* with 𝑖 = 1,…𝑛 (𝑛 was defined in the section §6.1.1.3 by the Eq. (21)) 

 

It is worth noting that, since the spatial arched truss under consideration showed to be much 

more flexible than in-plane truss arches analysed in §Chapter 5, a list of circular hollow cross-

sections with larger diameters (0.1016 𝑚 ≤ 𝑑𝑗 ≤ 0.925 𝑚, with 𝑗 = 1,… 4) was here adopted. Size 

design variables should be assumed as discrete. However, since the optimization method here 

proposed (in §4.2) can only generate continuous values among lower and upper bounds, discrete 

size design variables were obtained by rounding the corresponding continuous values to the 

nearest integers during the optimization process. 

As in previous numerical examples, the total volume of the structure was assumed as objective 

function to be minimized (and calculated by Eqs. (38) and (39)).  

Moreover, strength constraints have been imposed to keep the stress values under allowable 

limits. More specifically, the inequality constraint function generalized by Eq. (47), imposes that 

the maximum value of the afore-mentioned “Utilization ratio” (also called “Demand/Capacity 

ratio”, since it corresponds to the ratio between real and allowable stresses acting in a section) 

among all truss members be less than (or equal to) 0.99 for all considered load cases (feasibility 

condition). 
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Table 6. 2 Commercial circular hollow cross-sections 
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0.1016 0.0036 0.004 0.0045 0.005 0.0054 0.0056 0.0059                       

0.108 0.0036 0.004 0.0045 0.005 0.0054 0.0056 0.0059                       

0.1143 0.0036 0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063                     

0.127   0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071                   

0.133   0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.1397   0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.1524   0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.159   0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.1683   0.004 0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.1937     0.0045 0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008                 

0.2191       0.005 0.0054 0.0056 0.0059 0.0063 0.0071 0.008 0.0088               

0.2445         0.0054 0.0056 0.0059 0.0063 0.0071 0.008 0.0088 0.01             

0.273           0.0056 0.0059 0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125         

0.2985             0.0059 0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125         

0.3239             0.0059 0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125         

0.3556               0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142       

0.368               0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142       

0.4064               0.0063 0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016     

0.419                 0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016     

0.4572                 0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175   

0.47                 0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175   

0.508                 0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.521         0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.5588         0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.572         0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.6096         0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.622         0.0071 0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.6604          0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.673          0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.7112          0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.724          0.008 0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.762           0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.775           0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.8128           0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.825           0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.8636           0.0088 0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.9144            0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

0.925            0.01 0.011 0.0125 0.0142 0.016 0.0175 0.02 

The critical “Utilization ratio” of bars subjected to compression axial forces was calculated by 

evaluating (by Eqs. (40) and (41) in section §4.2.3) the combined effect of compression axial 

forces and bending moments by also considering flexural and lateral-torsional buckling of cross-

sections. On the other hand, the “utilization ratio” of members subjected to tensile axial forces is 

evaluated by checking the combined effect of axial forces and bending moments by means of the 

Eq. (42) introduced in section §4.2.3. 

However, since the arched truss under consideration showed to be considerably more flexible 

compared with planar truss arches analysed in the previous Chapter, serviceability constraints 

have been additionally defined. 
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It was therefore imposed that the absolute values of the maximum displacements in the 𝑥 − 

(max
𝑖
(𝑈1)𝑖

𝐿𝐶) and 𝑦 −directions (max
𝑖
(𝑈2)𝑖

𝐿𝐶) among all 𝑖𝑡ℎ −nodes for each load case (𝐿𝐶) be 

limited as follows, 

|max
𝑖
(𝑈1)𝑖

𝐿𝐶| ≤ 𝐻 300⁄                   (59) 

|max
𝑖
(𝑈2)𝑖

𝐿𝐶| ≤ 𝐻 300⁄                   (60) 

where 𝐻 indicates the height of the considered arched truss (i.e. the truss depth at its ends), 

assumed to be equal to 6.00 𝑚. 

Furthermore, it was assumed that the absolute value of the maximum displacements in the 

𝑧 −direction (max
𝑖
(𝑈3)𝑖

𝐿𝐶) among all 𝑖𝑡ℎ −nodes for each load case (𝐿𝐶) be limited as follows, 

|max
𝑖
(𝑈3)𝑖

𝐿𝐶| ≤ 𝐿 500⁄                   (61) 

where 𝐿 represents the span length of the arched truss, here assumed equal to 40.00 𝑚. 

As shown in Figure 4. 2, the total weight of the structure, as well as the “Demand/Capacity ratios” 

of each section and nodes displacements in all directions are obtained by performing Finite 

Element Analysis (FEA) through SAP2000, to evaluate the “objective” and “constraint functions” 

for each candidate solution of the optimization problem. 

6.1.3 Boundary conditions 

The two chords of the arched truss under consideration are hinged at their ends. The four hinges 

are therefore aligned two by two in the vertical direction, at each truss side. Since the considered 

spatial truss is composed by the same parametric number of bars and pinned joints as the in-

plane “hingeless” truss arches investigated in section §5.3, it can be easily proved (by 

demonstrating that 2𝑛𝑛𝑜𝑑𝑒𝑠 < 𝑛𝑓𝑟𝑎𝑚𝑒𝑠 + 𝑔𝑑𝑣𝑒𝑥𝑡, where 𝑔𝑑𝑣𝑒𝑥𝑡 is equal to 8 in case of four hinges) 

that the spatial arched truss in Figure 6. 2 is equally redundant (i.e. statically indeterminate). 

As previously mentioned, vertical and horizontal multiple load cases have been applied, since the 

structural behaviour of structures is strongly affected by the loading to which they are subjected. 

Three different load combinations of external vertical loads (orthogonal to the 𝑥𝑦 −plane on 

which the horizontal arch lies) have been considered (see Figure 6. 3): 

• LOAD CASE 1: Non-structural Dead Loads (24.00 𝑘𝑁 𝑚⁄ ) + Live Loads (15.00 𝑘𝑁 𝑚⁄ ) 

applied along the total length of the arch 

• LOAD CASE 2: Non-structural Dead Loads (24.00 𝑘𝑁 𝑚⁄ ) applied along the total length 

of the arch 
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• LOAD CASE 3: Non-Structural Dead Loads (24.00 𝑘𝑁 𝑚⁄ ) applied along the total length 

of the arch + Live Loads (15.00 𝑘𝑁 𝑚⁄ ) applied along the right half of the arch. 

It is worth to remark that external loads have been applied as concentrated forces on nodes (of 

the upper chord), equivalent to non-structural Dead Loads (24.00 𝑘𝑁 𝑚⁄ ) and Live Loads 

(15.00 𝑘𝑁 𝑚⁄ ), uniformly distributed along the arch span. 

 

 

 

Figure 6. 3 Vertical load cases 



Chapter 6 – Parametric design and structural optimization of spatial arched trusses 

226 |  

 

Figure 6. 4 Horizontal load case (static seismic action) 

In addition, a fourth horizontal load case (LOAD CASE 4) has been defined, simulating a static 

seismic action (see Figure 6. 4), given by multiplying the weight of the structure (for each 

candidate solution) by a normalized seismic acceleration equal to 0.35 (corresponding to an actual 

acceleration equal to 𝑎𝑔 = 0.35 ∙ 𝑔 = 3.343 𝑚 𝑠2⁄ , where 𝑔 is the gravity acceleration), acting in 

the horizontal direction orthogonally to the truss span (i.e. in the 𝑦 −direction). Unlike the other 

load cases, it can be seen from Figure 6. 4 that the static seismic load has been applied as 

concentrated forces on all nodes of the considered arched truss. 

6.1.4 Results 

The optimum design problem of the spatial arched truss parametrically defined in section §6.1.1, 

subjected to three different combinations of vertical loadings and to a horizontal static seismic 

action (as shown in section §6.1.3), has been solved, by the optimization hybrid algorithm 

previously presented in section §4.2, producing significant results both in terms of structural 

performance and architectural value. 

Since the optimization problem has been formulated as a function of 93 design variables, the 

Differential Evolution Algorithm (described in detail in section §4.2.2) included in the proposed 

macro-algorithm, was performed assuming a “population” of 100 “individuals” and a maximum 

number of “generations” equal to 300 (stop criterion of the optimization routine). 

Figure 6. 5 shows the shape of the optimal solution obtained for a given span of 40.00 𝑚 of the 

arched chords and a fixed depth of 6.00 𝑚 at the truss ends (also called “base depth”). The upper 

chord showed to be characterized by a total length of 43.516 𝑚 and a “horizontal rise” equal to 

7.571 𝑚 (see Figure 6. 5(a)), leading to a resulting “rise-to-span ratio” corresponding to 1/5.28. 

On the other hand, Figure 6. 5(b) also shows that the lower chord turned out to be characterized 
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by a total length of 44.521 𝑚 and inclination about 27.5° over the horizon, as well as by an 

“inclined rise” of 9.022 𝑚 and a resulting “inclined rise-to-span ratio” about 1/4.43. Furthermore, 

the projection of the inclined arched chord on a horizontal plane showed to be characterized by a 

“projected rise” of 8.000 𝑚, thus corresponding to a “projected rise-to-span ratio” of 1/5. 

 

Figure 6. 5 Spatial arched truss optimal shape with main dimensions: (a) top view; (b) lateral view; (c) 
perspective view 

The spatial curved is further typified by a “crown depth” of 1.81 𝑚, approximately corresponding 

to 1/22 of the arch span (which is its resulting “crown depth-to span ratio”), leading to a “taper 

ratio” (defined as a ratio of the arch “crown depth” over its “base depth”) about 1/3.32. 

The shape of the optimal solution in Figure 6. 5 was determined by the obtained values of shape 

design variables (indicated in Table 6. 3), defining the coordinates and corresponding weight 

factors of control points of the upper and lower Rational Bézier arcs. 

It can be easily seen from Table 6. 3 that the value of the 𝑥 −coordinates of the internal control 

points (𝑥𝑃1𝑢 = 𝑥𝑃2𝑢) defining the shape of the horizontal arched chord correspond to 1/3.00 of 

the arch span, whereas the value determining the 𝑥 −coordinates of the internal control points 

(𝑥𝑃1𝑙 = 𝑥𝑃2𝑙) defining the shape of the inclined arched chord corresponds to 1/2.18 of the arch 

span. 
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Table 6. 3 Topology and shape optimization results: optimal values of topology and shape design variables 

Topology optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑛𝑖𝑛𝑡 topology 10 [𝑎𝑑𝑖𝑚. ] 

Shape optimization results 

Design 

Variable (DV) 
Type of DV Best value Unit 

𝑥𝑃1𝑙  shape 18.3298 [𝑚] 

𝑦𝑃1𝑙  shape 11.2507 [𝑚] 

𝑤𝑃1𝑙 shape 0.8168 [𝑎𝑑𝑖𝑚. ] 

∆𝑧 shape 0.100 [𝑚] 

𝑥𝑃1𝑢  shape 13.3191 [𝑚] 

𝑦𝑃1𝑢 shape 10.0941 [𝑚] 

𝑤𝑃1𝑢 shape 1.00 [𝑎𝑑𝑖𝑚. ] 

Table 6. 4 Size optimization results: optimal diameters and thicknesses of circular hollow cross-sections 

Size optimization results 

Element 

groups 
Type of DV 

Diameter 

𝒅𝒊 

Min. 

thickness 

𝒕𝒊 

Max. 

thickness 

𝒕𝒊 

Unit 

Bottom chord size 0.4064 0.0063 0.0063 [𝑚] 

Top chord size 0.5588 0.0071 0.0071 [𝑚] 

Diagonals size 0.133 0.004 0.008 [𝑚] 

Verticals size 0.3556 0.0063 0.0142 [𝑚] 

Furthermore, a value about 1/3.96 of the arch span was obtained for the 𝑦 −coordinates of the 

internal control points (𝑦𝑃1𝑢 = 𝑦𝑃2𝑢) affecting the shape of the horizontal arched chord, whereas 

a slightly larger value, equal to 1/3.55 of the arch span, was obtained for the 𝑦 −coordinates of the 

internal control points (𝑦𝑃1𝑙 = 𝑦𝑃2𝑙) determining the shape of the inclined arched chord, 0.40 𝑚 

more protruding (in the 𝑦 −direction) with respect to the horizontal upper chord (see Figure 6. 

5(b)). 

The size optimization results are summarized in Table 6. 4, showing that, as expected, the tubular 

elements of the horizontal upper chord required a significantly larger diameter compared with 

other elements. Furthermore, both the upper and lower chords elements needed a constant 

thickness (equal to 0.0071 𝑚  and 0.0063 𝑚, respectively). It is worth noting that, unlike the case 
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of in-plane truss arches analysed in §Chapter 5, in this case vertical elements required large 

diameter and thicknesses. 

 

Figure 6. 6 Finite Element Analysis (FEA) results: (a) axial force diagram; (b) bending moment diagram 

 

Figure 6. 7 Finite Element Analysis (FEA) results: Demand/Capacity ratio (also called “utilization ratio”) 
diagram of the optimal solution for the envelope of all load cases 



Chapter 6 – Parametric design and structural optimization of spatial arched trusses 

230 |  

The size optimization results are validated by the axial force and bending moment diagrams 

evaluated for the envelope of all considered load combinations (see Figure 6. 6). More specifically, 

it has been found that the six more external elements of the upper chord are subjected to a tensile 

axial force, varying from 95 to 978 𝑘𝑁, whereas its four internal members are subjected to a 

compressive axial force between 28 and 552 𝑘𝑁. Conversely, the eight more external tubes 

composing the lower inclined chord turned out to be subjected to a compressive axial force 

varying from 75 to 1415 𝑘𝑁, while its two internal bars bear a tensile axial force of 402 𝑘𝑁 (see 

the axial force diagram in Figure 6. 6(a)). As a matter of fact, the upper chords elements required 

a greater cross-section although they are subjected to smaller tensile and compressive axial forces 

compared with the lower chord members. However, the steel tubes composing the upper 

horizontal rib supports considerably greater bending moments, varying between 23 𝑘𝑁.𝑚 and 

120 𝑘𝑁.𝑚. 

Indeed, the lower chord bars showed to withstand bending moment actions smaller than 54 𝑘𝑁.𝑚 

(as shown in Figure 6. 6(b)). 

Unlike what emerged from results of structural optimization of in-plane truss arches, the diagonal 

elements are here subjected to only tensile axial forces, varying from 141 to 500 𝑘𝑁. On the other 

hand, vertical elements withstands a compressive axial force included between 7 and 482 𝑘𝑁, as 

well as bending moments smaller than 50 𝑘𝑁.𝑚. 

Analogously to what has been done for in-plane truss arches, the stress level in the structure to be 

optimized was kept within an allowable range of values, imposing that the maximum “utilization 

ratio” (i.e. the “demand/capacity ratio” evaluated by Eqs. (40-42)) of all truss members, for all 

applied load cases, was less or equal to 0.99 (see Eq. (47) assumed as strength constraint 

function). Eqs. (40-42) check the combined effect of axial forces and bending moments by also 

considering flexural and lateral-torsional buckling of cross-sections subjected to combined axial 

compressive and bending stresses.  In this regard, Figure 6. 7 shows a diagram of the optimal 

arched truss here analysed, indicating the maximum 𝑖𝑡ℎ −element “utilization ratio” (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶), 

for the envelope of all considered load combinations, thus proving the feasibility of the considered 

solution regarding the strength constraints. However, also all serviceability constraints were 

satisfied. 

Furthermore, a weighted average of Demand/Capacity ratios (max
𝐿𝐶

𝑈𝑡𝑖𝑙𝑖
𝐿𝐶) shown in Figure 6. 7, 

with respect to the weight of each member was evaluated by Eq. (51), to obtain a “total utilization 

ratio” (𝑈𝑡𝑖𝑙𝑡𝑜𝑡) expressing an overall percentage of the material exploitation of the whole 

structure. A satisfactory percentage of material exploitation, about 69.6 % has been therefore 

obtained as a guarantee of a high level of structural performance of the spatial arched truss under 

consideration. 
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The quality of the optimization results here discussed is proved by the convergence curve of the 

minimized “objective function” (i.e. the total volume of the structure) shown in Figure 6. 8. A 

minimum volume of 1.388 𝑚3 was obtained since the 196𝑡ℎ generation. This is further confirmed 

by the history curve of the “stagnation function”, which grows continuously from the 196𝑡ℎ 

generation onwards, as shown in Figure 6. 9(a). 

Figure 6. 9(b) shows the history of the “unfeasibility function” (𝜌𝑘), which was introduced in 

section §5.2.4.1 and defined by Eq. (52), as a ratio between “unfeasible individuals” (𝑈𝑛𝑓𝑘) and 

all individuals (𝑃𝑜𝑝𝑘) of a 𝑘𝑡ℎ −generation. In this specific case, it has been found that 𝜌  becomes 

and remains zero from the 22𝑡ℎ generation onwards, meaning that the optimization process 

produced and evaluated only feasible candidate solutions from this point on (as shown in Figure 

6. 9(b)). 

The quality of the obtained results is also proved by the trend of convergence curves of design 

variables that most typified the final optimal solution. 

 

Figure 6. 8 Convergence curve of the Objective (Obj) function (i.e. the volume of the arch) for all “generations” 

Among all design variables, the topology parameter 𝑛𝑖𝑛𝑡 has a great importance by a constructive 

and structural point of view, since its value indirectly determined the number of elements and 

joints composing the structure. As shown in Figure 6. 10, the final optimal value equal to 10 (for 

which the arched truss under consideration resulted to be composed by 41 tubular members, 

connected by 22 pinned joints) was achieved since the third generation. 
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Figure 6. 9 History of optimization functions: (a) stagnation function; (b) “unfeasibility function” (called “ρ-
function” 
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Figure 6. 10 Convergence curve of the topology design variable (𝑛𝑖𝑛𝑡) 

 

 

Figure 6. 11 Convergence curves of the shape design variables (variable parameters of third-degree rational 
Bézier curves): (a) 𝑥 −coordinate of the second control point (𝑥𝑃1𝑙) of the bottom arched chord; (b) 𝑦 −coordinate of 
the second control point (𝑦𝑃1𝑙) of the bottom arched chord; (c) weight factor of the second control point (𝑤𝑃1𝑙) of the 
bottom arched chord;(d) the difference between the 𝑧 −coordinates (in absolute value) of the top and bottom chord 

internal control points (∆𝑧) 
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Figure 6. 12 Convergence curves of the shape design variables (variable parameters of third-degree rational 
Bézier curves): (a) 𝑥 −coordinate of the second control point (𝑥𝑃1𝑢) of the top arched chord; (b) 𝑦 −coordinate of the 

second control point (𝑦𝑃1𝑢) of the top arched chord; (c) weight factor of the second control point (𝑤𝑃1𝑢) of the top 
arched chord 

 

Figure 6. 13 Convergence curves of size design variables (i.e. indexes identifying the element group diameters 
in a list of commercial circular hollow cross-sections): (a) index identifying the bottom chord diameter; (b) index 

identifying the top chord diameter; (c) index identifying the diameter of diagonals; (d) index identifying the 
diameter of verticals 
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The good convergence level of the history curves of shape design variables is demonstrated by 

Figure 6. 11 and Figure 6. 12. More specifically, the optimal values of design variables determining 

the shape of the lower inclined chord (which are 𝑥𝑃1𝑙, 𝑦𝑃1𝑙 and 𝑤𝑃1𝑙) have been achieved at the 

196𝑡ℎ generation (as shown in Figure 6. 11(a-c)) except for ∆𝑧, whose optimal value was reach 

since the 30𝑡ℎ generation (see Figure 6. 11(d)). On the other hand, the final values of design 

variables determining the shape of the upper horizontal chord have been achieved before the 50𝑡ℎ 

generation, except for the value of the weight factor 𝑤𝑃1𝑢 that has been finally found since the 

196𝑡ℎ generation (see Figure 6. 12). 

Since the number of size design variables here assumed is extremely large (as shown in section 

§6.1.1), only the convergence curves of design variables determining the diameters of four element 

groups have been presented in Figure 6. 13, showing that their optimal values have been reached 

since the  196𝑡ℎ generation, further confirming the quality of the obtained results notwithstanding 

the large number of design variables here assumed and their different nature (topology, shape 

and size). 
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Chapter 7 

7. Conclusions and future developments 

7.1 Conclusions 

The present dissertation has addressed the problem of optimizing planar and spatial arched 

trusses (made by steel tubular elements) under multiple load cases. 

For this purpose, a hybrid optimization routine integrating a parametric definition of the design 

problem (i.e. its geometry, boundary conditions, as well as objective and constraint functions, as 

a function of properly selected design variables), a metaheuristic optimization algorithm and a 

code for Finite Element Analysis (FEA) has been developed through a MATLAB program (in detail 

described in section §4.2). In particular, structural analysis was required to be performed by the 

FEM software SAP2000 to evaluate the objective and constraints functions of the considered 

optimization problem. However, the FEM model for structural analysis is entirely defined and 

updated (for each design variable vector) in the MATLAB environment, by using the so-called 

Open Application Programming Interface (OAPI) functions, in order to minimize the total 

computational time of the whole process. 

The proposed method allowed to simultaneously optimize planar and spatial steel arched trusses 

considering a unique set of a large number of design variables, notwithstanding their different 

nature (topology, shape and size, as well as continuous and discrete variables have been 

considered). 

At an early stage, the results obtained from the optimization of planar truss arches subjected to 

single and multiple load cases were compared. In doing so, it has been demonstrated that 

structural optimization of in-plane truss arches with two chords subjected to a single load case 

leads to optimal solutions in which upper and lower chords tend to coincide with each other and 

with the “funicular curve” (i.e. the “line of thrust”) for that given load.  

This first demonstrative application of the structural optimization strategy proposed in this thesis 

thus proved that truss arches are not suitable to be optimized considering a single load pattern 

only. At the same time, this consideration also allows to state that single-rib arches would not be 

appropriate to be optimized for multiple load conditions.
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In light of the above, simultaneous topology, shape and size optimization of steel truss arches with 

two arched chords linked each other through a bracing system (with variable Pratt-type pattern) 

has been formulated for multiple load cases and different structural boundary conditions (as 

illustrated in §Chapter 5). 

The problem of the optimum design of two-hinged and hingeless in-plane truss arches was 

addressed considering four different formulations, each one characterized by a different span (40, 

80, 120 and 160 𝑚𝑒𝑡𝑒𝑟𝑠) and different numbers of size design variables (which were assumed to 

be proportional to the allowable range of the element number for each span length). The variable 

number of the arch elements was defined as a function of the chosen topology design variable 𝑛𝑖𝑛𝑡, 

indicating the even integer of equal intervals into which the arch span was subdivided. 

It is worth highlighting that the shape design variables have been chosen among the parameters 

defining the cubic parametric form of Rational Bézier Curves with four control points. Third-

degree Rational Bézier Curves have been chosen to optimize the shape of the arch chords because 

they can represent a wide family of curves (also including conic curves), depending on a small 

number of parameters, thus allowing to assume a limited number of shape design variables. 

Furthermore, the elements of arched trusses under consideration were characterized by circular 

hollow cross-sections, whose diameters and thicknesses were assumed as discrete size design 

variables, since their values were taken from a list of commercial steel tubes. 

In so doing, in-plane truss arches with different span lengths and structural boundary conditions 

have been successfully optimized for multiple load cases, only considering vertical loads (acting 

in the same plane as the arch), since in-plane arches are not suited to withstand out-of-plane 

loads. 

The obtained optimal results have been presented and investigated in this dissertation, thus 

deducing useful suggestions for the design of steel arched trusses. 

For instance, in cases of two-hinged arches, it was found that: 

• The optimal number of the arch span subdivision (𝑛𝑖𝑛𝑡) resulted to be constant and equal 

to 12 for the arches with spans of 40, 80 and 120 meters, whereas it resulted to be equal 

to 22 for the truss arch with a span of 160 meters 

• All optimal shapes resulted to be characterized by a “rise-to-span ratio” included between 

1/6.1 and 1/6.9 for truss arches with spans of 40, 80 and 120 meters, whereas a value 1/4.8 

has been obtained for the two-hinged truss arch with a span of 160 meters. Note that as 

the arch span increases, its optimal shape becomes less and less lowered (i.e. looking less 

flattened at its crown), finding an almost parabolic optimal shape for the arch with a span 

of 120 meters 
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• All optimal shapes are characterized by a “crown depth-to-span ratio” between 1/9.1 and 

1/9.6 for truss arches with spans of 40, 80 and 120 meters, whereas a value about 1/12.15 

has been obtained for the two-hinged truss arch with a span of 160 meters. It is worth 

noting that as the arch span increases, its “crown depth” is significantly reduced 

• The optimal solutions are characterized by an overall percentage of the material 

exploitation (also called “total utilization ratio”) always bigger than 70 % (i.e. between 71.5 

% and 79.2 %). 

On the other hand, considerably different results have been obtained for the truss arches 

connected to the soil by means of two double hinges (vertically aligned), thus comparable to 

hingeless truss arches. In cases of “hingeless” truss arches with spans of 40, 80, 120 and 160 

meters, it was found that: 

• The optimal number of the arch span subdivisions (𝑛𝑖𝑛𝑡), which indirectly determines the 

optimal element number of the arch, resulted to be linearly dependent on the arch span 

as follows, 𝑛𝑖𝑛𝑡 =
1

10
. 𝐿 + 12 (where 𝐿 indicates the arch span) 

•  The optimal shapes of arches with span from 40 to 120 meters are characterized by a “rise-

to-span ratio” increasing from 1/3.7 to 1/3.2, whereas the optimal truss arch 160 meters 

long showed to have a “rise-to-span ratio” once again equal to 1/3.7. Note that their shapes 

are therefore significantly less lowered than optimal two-hinged arches 

• The optimal “hingeless” truss arches under consideration are also characterized by 

significantly smaller “crown-depth-to-span ratios”, varying between 1/28 and 1/40, 

compared with values between 1/9 and 1/12 obtained for the two-hinged solutions 

• Evaluating a “taper ratio” as a ratio of “crown” and “base” depths, it was found that this 

value varies between 1/2.7 and 1. This means that as the arch span increases, the distance 

between two arch chords tends to become constant. 

• Analogously to what emerged for two-hinged truss arches, the optimal solutions of the 

considered “hingeless” arches were also characterized by an overall percentage of the 

material exploitation (also called “total utilization ratio”) always greater than 70 % and 

included between 70.1 % and 72.5 %. 

All illustrated results should be correlated to the strong increase in the self-weight of the arch, as 

its span increases.  As a matter of fact, as the arch span increases, the more its self-weight 

increases with respect to variable loads, thus strongly reducing the influence of the asymmetrical 

load condition. It is important to remark that the self-weight of two-hinged arches increased much 

more rapidly as the arch span increased, compared with “hingeless” truss arches. 

At a later stage (in §Chapter 6), a spatial arched truss with two arched chords lying on different 

planes has been optimally designed for multiple loadings acting in different directions. In 
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particular, a steel truss with a lower arched chord variably inclined in the 3D-space and a 

horizontal upper arched chord linked each other through a bracing system (of type Pratt), has 

been optimally designed under three combinations of vertical loadings and a horizontal seismic 

action (obtained by multiplying the weight of the structure by a normalized acceleration equal to 

0.35) parallel to the upper chord plane. 

The spatial arched truss under consideration, with a given horizontal span of 40 meters and a 

fixed depth at its ends of 6 meters, was optimally designed, according to strength and 

serviceability constraints, as well as assigning larger cross-sections to the truss elements, due to 

its lower stiffness. However, significant results were obtained both in terms of structural 

performance and architectural value. In particular, the optimal slender shape of the considered 

arched truss showed to be characterized by a “horizontal rise-to-span ratio” of the upper arched 

chord equal to 1/5.28, an “inclined rise-to-span ratio” of the lower arched chord equal to 1/4.43 

and by an extremely small “crown-depth” approximately corresponding to a 1/22 of the arch span. 

Furthermore, a high level of structural performance is ensured by an overall percentage of 

material exploitation (i.e. expressed by the aforementioned “total utilization ratio”) equal to 69.7 

%, although also serviceability constraints have been imposed requiring greater cross-sections 

compared with in plane truss arches analysed in §Chapter 5. 

It is worth noting that it was unfortunately not possible to optimize spatial arched trusses with 

larger spans because of the high deformability of the structure. However, the obtained arched 

truss with a given span of 40 meters, optimized for multiple load cases also considering a static 

seismic action, would be suitable to support the curved deck of a footbridge, similarly to what has 

been done by Fenu et al. (Luigi Fenu, Congiu, and Briseghella 2016). 

In conclusion, analysing the obtained results, useful suggestions for steel truss arch design can be 

deduced and adopted as general guidelines. 

7.2 Future works 

As demonstrated by the results discussed in §Chapters 5 and 6, the optimization macro-algorithm 

here proposed, implemented by a MATLAB program containing a parametric definition of the 

optimization problem and geometry, a metaheuristic optimization algorithm and a code for Finite 

Element Analysis (FEA), showed to be effective and robust in handling and solving optimization 

problems characterized by large numbers of design variables of different nature, minimizing the 

assumed objective function in accordance with several constraint functions. 

The present research was focused on the structural optimization of in-plane and spatial steel 

arched trusses with span from 40 to 160 meters, subjected to different load cases. 
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Since truss arches are mainly used in steel and CFST (Concrete Filled Steel Tubes) arch bridges, 

especially when the arch span exceeds 200 meters, the present research should be extended to 

the structural optimization of planar steel truss arches with span larger than 160 meters, also 

overcoming 200 meters of span. However, long span truss arches are commonly designed for road 

or railway bridges, whereas the load patterns here assumed are comparable to dead and live loads 

considered in footbridges design. Therefore, in extending the present research to truss arches with 

long spans (longer than 200 meters), different combinations of more various load patterns should 

be considered. 

A further innovative aspect of the proposed approach was the assumption of the parametric cubic 

equation of Rational Bézier curves as shape function, to parametrize the shape of the arched 

chords as a function of a limited number of design variables. More specifically, third-degree 

Rational Bézier curves have been adopted to represent an extremely wide family of curves (also 

including conic curves) assuming a small number of shape design variables. It would be therefore 

interesting to extend, in the future, the application of the optimization macro-algorithm here 

proposed (§4.2) to the optimization problem of vaults and shells, continuous and discrete (e.g. 

the “grid-shells”), synclastic and anticlastic, by parametrizing them by means of high-degree 

functions of Rational Bézier Surfaces (whose shape needs to be defined by a set of control points 

and corresponding weight factors) to considerably limit the number of necessary shape design 

variables. 
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Appendix A 

Rational Bézier Curves 

Bézier curves are parametric curves very used in vector graphics to model smooth curves that can 

be scaled indefinitely but are also in animation applications (Gerald Farin 1988; Farin, Hoschek, 

and Kim 2002; Piegl and Tiller 1997). Quadratic and cubic Bézier curves are most common 

because higher degree curves are more computationally expensive to evaluate. The higher the 

degree of the Bézier function, the weaker the relationship between the Bézier curve and its control 

polygon (polyline obtained by linking the control points) becomes. 

Composite quadratic and cubic Bézier (series of Bézier curves joined end to end) functions are 

generally very used to model curved shape but standard Bézier curves can’t exactly represent arcs 

of conic sections, except parabolic arcs.  

Conversely, parametric Rational Bézier curves can exactly represent conic sections and are widely 

used in CAD (Computer Aided Design)/CAGD (Computer Aided Geometric Design) fields to 

model freeform curves because they can be easily deformed by changing the control point 

coordinates or by varying its corresponding non-negative weight factors (whose values define the 

attraction level that the control polygon exerts on the curve). 

The mathematical basis for Bézier curves is the Bernstein polynomials (known since 1912). 

The 𝑛 + 1 Bernstein basis polynomials of degree 𝑛 are defined as 

𝐵𝑖,𝑛(𝒖) = (
𝑛
𝑖
)𝒖𝑖(1 − 𝒖)𝑛−𝑖                (A.1) 

where 𝑖 = 0,… , 𝑛 and 0 ≤ 𝐮 ≤ 1, whereas the quantity (𝑛
𝑖
) is a binomial coefficient that is given 

by, 

(𝑛
𝑖
) =

𝑛!

𝑖!(𝑛−𝑖)!
                (A.2). 

The standard parametric expression of a 𝑛-degree Bézier Curve is defined as follows 

𝐶(𝒖) = ∑ 𝐵𝑖,𝑛(𝒖)𝑃𝑖
𝑛
𝑖=0                 (A.3) 

where which 𝑃𝑖 are the 𝑛 + 1 control points. 

The coordinates of each point of the curve are obtained as a sum of blending functions multiplied 

by the control point coordinates. Both Rational and Non-Rational Bézier Curves pass through
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 the first and the last control points and are tangent at those points respectively to the first and 

the last control polygon (obtained as interpolation of control points) segments. 

Standard Bézier Curves can’t exactly represent conic sections, except for parabolic arcs that can 

be represented by polynomial curves. Conversely, second-degree Rational Bézier Curves (with 

three control points and corresponding weight factors) can exactly represent conic sections. When 

the weight factors are all the same, a Rational Bézier Curve becomes equivalent to a Standard 

(non-rational) Bézier curve (for instance, a second-degree Rational Bézier function with all 

weights equal to 1 represents a parabolic arc). 

The general parametric expression of a Rational Bézier 𝑛𝑡ℎ −degree Curve can be written as 

follows, 

𝐶(𝐮) = ∑ 𝑅𝑖,𝑛(𝐮)𝑃𝑖
𝑛
𝑖=0                 (A.4) 

In which the quantity 𝑅𝑖,𝑛(𝐮), being called as blending function, is a 𝑛𝑡ℎ −degree rational function 

in 𝐮 with the following parametric expression, 

𝑅𝑖,𝑛(𝐮) =
𝐵𝑛,𝑖(𝐮)𝑤𝑖

∑ 𝐵𝑛,𝑗(𝐮)𝑤𝑗
𝑛
𝑗=0

               (A.5). 

The parametric form of a second-degree Rational Bézier function (which can exactly represent 

conic sections) can be expressed as follow, 

𝐶(𝐮) =
(𝑃0.𝑤0.(1−𝐮)

2+𝑃1.𝑤1.2𝐮.(1−𝐮)+𝑃2.𝑤2.𝐮
2)

(𝑤0.(1−𝐮)
2+𝑤1.2𝐮.(1−𝐮)+𝑤2.𝐮

2)
             (A.6) 

where 𝑃0, 𝑃1 and 𝑃2 are the control points, 𝑤0, 𝑤1 and 𝑤2 are the corresponding weight factors 

and 𝐮 is the parameter included in the interval [0,1]. 

The value of the weight factor 𝑤1 (of the internal control point 𝑃1) can be considered as a shape 

coefficient since, 

• When 𝑤1 < 1 the Rational Quadratic Bézier function represents an elliptical arc; 

• When 𝑤1 = 1 the Rational Quadratic Bézier function represents a parabolic arc; 

• When 𝑤1 > 1 the Rational Quadratic Bézier function represents a hyperbolic arc 

as shown in Figure A. 1. 

On the other hand, third-degree Rational Bézier functions represent a wider family of curves, 

also including conic sections. 

The parametric form of a cubic Rational Bézier curve, here adopted as shape function in 

parametrizing the shape of the considered arches, can be expressed by the following equation, 
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𝐶(𝐮) =  
(𝑃0.𝑤0.(1−𝐮)

3+𝑃1.𝑤1.3𝐮.(1−𝐮)
2+𝑃2

2.𝑤2.3𝐮
2.(1−𝐮)+𝑃3.𝑤3.𝐮

3)

(𝑤0.(1−𝐮)
3+𝑤13𝐮.(1−𝐮)

2+𝑤2.3𝐮
2.(1−𝐮).𝑤2+𝑤3.𝐮

3)
            (A.7) 

depending on the coordinates of four control points 𝑃0, 𝑃1, 𝑃2 and 𝑃3, on the corresponding weight 

factors (𝑤0, 𝑤1, 𝑤2 and 𝑤3) and on the parameter 𝐮. 

 

Figure A. 1 Quadratic Rational Bézier curves representing the conic sections 

Rational Bézier curves can be further considered as a special case of NURBS (Non-Uniform 

Rational B-Splines) curves and they then satisfy all the peculiar properties of these curves. 

A NURBS Curve is a piecewise composed by Rational Bézier curve segments and it interpolates 

the first 𝑃0 and the last 𝑃𝑛 control points (endpoints interpolation property). A NURBS Curve (as 

well as a Rational Bézier Curve) is entirely contained in the hull of the convex polygon obtained 

as interpolation of the control points, since the weights are non-negative factors. A Bézier curve 

of any degree 𝑛 can be converted in a Bézier curve of degree 𝑛 + 1 with same shape, by multiplying 

each component of 𝐵𝑖,𝑛(𝐮)𝑃𝑖 by (1 − 𝐮)𝐮. 

Furthermore, a point in a Bézier curve, can be evaluated by means of the De Casteljau’s 

Algorithm, a recursive algorithm that exploit an important property of Bézier Curves: any Bézier 

Curve can be split into multiple parts to trace out the curve as straight lines. Computers use the 

De Casteljau’s Algorithm to draw a Bézier Curve. 

The De Casteljau’s Algorithm takes the control points and finds the midpoints along each line, 

then joins these midpoints. After that, it takes the midpoints along the newly drawn lines and 
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finds the midpoints again, then draws a line connecting these. By doing this until we are down to 

only one point, we can approximate the Bézier curve (Šír and Jüttler 2015). 
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