
Università degli Studi di Cagliari

Dipartimento di Fisica

Scuola di Dottorato di Ricerca in Fisica
XXX Ciclo

UNDERSTANDING THERMAL TRANSPORT
IN NANOSCALE SYSTEMS BY ATOMISTIC SIMULATIONS

from nanostructured semiconductors to organic molecules

Settore scientifico disciplinare di afferenza: FIS/03

Presentata da:
Riccardo Dettori

Coordinatore Dottorato:
Prof. Alessandro de Falco

Supervisor:
Prof. Luciano Colombo

Esame finale anno accademico 2016–2017
Tesi discussa nella sessione d’esame Febbraio-Marzo 2018





U N D E R S TA N D I N G T H E R M A L T R A N S P O R T I N N A N O S C A L E
C O M P L E X S Y S T E M S B Y AT O M I S T I C S I M U L AT I O N S

from nanostructured semiconductors to organic molecules



Riccardo Dettori:
Understanding thermal transport in nanoscale complex systems by atomistic
simulations



It’s all about the journey, not the destination

Dedicated to my parents.





A B S T R AC T

Thermal transport represents an open issue for experimental and theoretical
investigation in the field of nanoscale physics. Several challenges strictly de-
pend on understanding the details related to how heat is transported at the
nanoscale, how heat carriers behave when the size involved are that small
and how to better exploit such features. In this scenario, the role of the
present work is twofold: first, theoretical methods and atomistic simulations
are adopted to investigate thermal transport is adopted and a very detail-
oriented assessment have been performed; secondly, it is studied a panoply of
different materials exhibiting interesting features related to thermal transport.
The first aspect aims at highlighting the advantages and disadvantages of
each approach, in order to delineate how these techniques can complement
each other to give the best performances, reliable trends and especially de-
tailed information about thermal conductivity and its related properties in
nanostructured systems. The purpose of second element, istead, is to charac-
terize nanostructured material in order to provide a thorough description of
the nanoscale features which can influence thermal transport. Semiconductors
are widely adopted to devise nanostructured materials: the first part of this
thesis is focused on nanostructures based on silicon and germanium. The idea
of nanoengineering a material involves the usage of interfaces, reduced di-
mensionality, substitutional defects and alloys, and the creation of nanovoids:
these components have been deeply addressed in the present investigation
aiming at possible applications in the field of renewable energies (e.g. thermo-
electric conversion), and in the field of information technology (e.g. thermal
rectification, thermal dissipation, etc.).
In the context of complex material for technological application, organic

molecules are rising due to their improved performances in several application
areas: LEDs, photovovoltaic cells, thermoelectric applications, etc. The second
part of this thesis aims at shredding light on the mechanisms of energy relax-
ation and thermal dissipation in organic and hydrogen-bonded system. Fur-

vii



thermore, organic molecules present several interesting characteristics when
arranged in a glassy configuration: here a detailed investigation to understand
the role of molecular orientation in organic glasses thermal transport is also
provided.
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1
I N T R O D U C T I O N

During the last two decades, the investigation on thermal transport
at the nanoscale has been strongly stimulated by practical interests

in thermal management in microelectronics. Indeed, thermal management is
a key factor in many fields of science and technology. The design of next
generation integrated circuits is one of the main driving argument when deal-
ing with thermal transport. The performances of ultra-large scale integrated
circuits are indeed critically affected by temperature. In fact, the number of
components inside a single chip has rigorously followed Moore’s law [1]. Nowa-
days, field-effect-transistors have typical channel length of 10 nm and 5-nm
devices are projected for 2020, meaning that typical integrated circuit chips
have billions of transistors, as shown in Fig. 1.1. Furthermore, the progressive
increase of CPU operating frequency beyond a few GHz stopped when typical
dissipated power reached 100 W/cm2. Such levels of thermal and electronic
power impact negatively when dealing with performances and scalability. In
this perspective, a fundamental role is not only played by the power sup-
ply required: data centers and great infrastructures consume an additional
50% − 100% of additional energy for cooling, as shown in Fig. 1.2, which so
far represents the most important factor limiting their performance, not the
hardware itself. Present growth trends embody one of the greatest challenge
of our time: technologically developed regions such as the U. S., Western
Europe, and Japan currently account for 58% of the world computers, but
only 15% of the world population. On top of that, the amount of equivalent
CO2 emissions generated to supply such energy demand, represent ∼ 42% of
worldwide emissions [2].

The above scenario outline the two main issues related to energy produc-
tion and heat dissipation: first of all, the necessity to provide a continuous
energy supply, limiting greenhouse gas emissions, and secondly the exigency

3
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Figure 1.1. Moore’s law still holds true after 50 years. The number of transistor per
chip increases exponentially, meaning that the productive process is able
to manufacture ever smaller components.

of efficient dissipation and adequate thermal management, which involves the
capability of cooling. The latter aspect encompass many technological appli-
cations involving nano- and opto-mechanics [3], quantum technologies [4, 5],
and medical applications [6]. In this context, assumes a key role the possibil-
ity of nanostructuring˝, i.e. the possibility of engineering the system at the
nanoscale, by reducing dimensionality, introducing interfaces or tailoring point
and/or extended defects.

1.1 the role of nanostructures

The most fundamental approach to understand heat is represented by Joseph
Fourier’s work [7], whose most important theory, the Fourier law, states that
j = −κ∇T where j is the heat flux and ∇T is the temperature gradient.
This law implies basically two things: heat flows in the opposite direction
of a temperature gradient and the relation between the two is linear with
proportionality constant κ, i.e. thermal conductivity. Such quantity is mea-
sured Wm−1K−1 and is the property of a material ability to conduct heat.
Thermal conductivity is an intrinsic property, which means that it depends
on many charateristics of a material, notably its structure and temperature.
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Figure 1.2. Data center power use in the U. S. doubled in six years, with an extremely
large portion devoted to cooling.

In solid state systems, heat is carried by lattice vibration and electrons. In
insulators and semiconductors, the concentration of free electrons is very low
(even in doped semiconductors) resulting in an electronic thermal conductiv-
ity negligible with respect to lattice thermal conductivity. Quantized lattice
vibrations in condensed phase, responsible for thermal conduction, are called
phonons. Depending on the type of these vibrations, we can have longitudinal
and transverse modes. Acoustic and optical phonons refer to the case where
neighboring atoms oscillate in phase or out of phase, respectively. Electron
transport in devices often generates optical phonon. Since these phonon have
low group velocities, they have to decay to acoustic phonons so that heat
is transported. When one area of the sample is hot, the interaction between
neighboring atoms causes the random vibrations to propagate in the material.
Huge efforts have been addressed to achieve control on phonons especially at
the nanoscale, a research topic usually referred to as nanophononics, fueled
by the importance assumed by phonons. Consequences

of nanoscalingSpatial confinement of phonons occurs when the system size reaches the
nanoscale [8, 9]. Furthermore, when the size is of the same order of mag-
nitude as the phonon mean free path (MFP) heat conduction experiences
enhancement of boundary scattering in the ballistic regime [10]. These two
features can strongly affect the phonon dispersion and modify phonon prop-
erties such as phonon group velocity, polarization, density of states [11], and
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affect phonon interaction with electrons, point defects, other phonons, etc.
Such modification may turn out to be desirable for some applications while
detrimental for others. Thus, nanostructures offer a new way of controlling
phonon transport via tuning its dispersion relation, i.e., via phonon engineering.
Modern manufacturing techniques offer the possibility to fabricate structures
that are confined to 2 (thin films), 1 (nanowires), or 0 (nanodots) dimensions
with sizes in the 1 − 100 nm range. The possibility of controlling phonons
and their interaction with electrons and photons, produced a growing interest
by the scientific community, resulting in a very broad range of technological
applications [12, 13].

1.1.1 Low-dimensional thermoelectrics

Among the many implications which feed the field of nanophononics, one
of the most important is represented by the thermoelectric conversion, espe-
cially for its potential impact in the landscape of the renewable energy. In
the perspective of the above mentioned energy supply, the possibility to con-
vert low-grade thermal energy, generally a waste product of several kind of
processes, to reusable electricity delineates an appealing and intriguing chal-
lenge. The efficiency of the thermoelectric process is related to a dimensionless
parameter called figure of merit

ZT =
σS2T

κ
(1.1)

where T is the absolute temperature, S is the Seebeck coefficient and σ and κ
are the electrical and thermal conductivities of the material, respectively [14–
16]. Here κ contains both the electronic κe and the lattice contribution κl.
Figure 1.3a shows the behavior of ZT and its related quantities for different
class of solid materials, reported as a function of the number of charge carriers
. Thermoelectric conversion is a physical phenomenon known since the end of
18th century and which involves basically all kind of materials. However, so
far thermoelectric conversion has covered only niche applications due to the
very low efficiency: to reach a power generation of 25%, thus comparable to
traditional heat engines, a ZT = 3.0 is required when temperature gradients
involved are ∆T = 400 K. Dealing with smaller and more human˝ temper-
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Figure 1.3. a: Mutual dependence of ZT on its components S, σ, κe and κl as
a function of charge carriers n. b: Values of ZT obtained for different
materials in the last 20 years, as a function of absolute T . [18].

ature values, for example ∆T = 20 K, the thermoelectric efficiency drops to
values of about 5− 6% [17]. For bulk materials, figure of merit is usually very
low and hardly reaches values of 0.4.
As reported in Fig. 1.3b, which shows the figure of merit peaks for several

thermoelectric materials at a given temperature, higher ZT values are ob-
tained by devising composite systems, introducing impurities in pristine struc-
tures: as a matter of facts, the key approach to maximize ZT is to minimize
the material thermal conductivity without appreciably affecting the electronic
transport properties. In this respect, alloyed semiconductors, such as Bi2Te3,
BixSb2xTe3, PbTe and Si0.8Ge0.2 have been shown to be promising materials
[19, 20]. Scattering of short-wavelength phonons on impurity atoms is respon-
sible for the decrease of κ while thermal transport by mid- and long-wavelength
phonons remains unperturbed by atomistic defects [19]. Noticeable high figure
of merits have been obtained for materials which components are rare-earth
or other heavy elements [21]. Such materials however, exhibit several disad-
vantages: they are expensive, not easy to synthesize and to scale, and their
environmental impact is not negligible. In this perspective, nanostructuring a Nanostructured

thermoelectricsmaterial represents the direction of near-future thermoelectric research: Dres-
selhaus et al. showed that electrons in low-dimensional semiconductors such
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as quantum wells and wires have an improved thermoelectric power factor
and ZT > 2− 3 can be achieved [22].

One of the most popular and effective approach consists in using nanofab-
rication techniques so as to increase phonon scattering by internal interfaces.
Superlattices consists in a succession of quantum wells and quantum barri-
ers [23, 24]: quantum confinement of electrons eliminates some states that
electrons can occupy, but electronic density of states and electronic transport
properties are not markedly altered. On the contrary, phonon can appreciably
suffer the presence of the barriers, resulting in a remarkable reduction of lat-
tice thermal conductivity. Such nanostructures can reach ZT > 1. A natural
extension of quantum wells and superlattices are quantum wires [25–27]. The-
oretical studies predict a large enhancement of ZT inside quantum wires due
to additional electron confinement.
In the perspective of pursuing ever higher ZT values, a full understanding of

the nanoscale features becomes the paramount concern. The development of
a new generation of thermoelectric materials builds on a profound comprehen-
sion of how point defects, grain boundaries, interfaces and surface scattering
influence the thermal properties [28–33].

1.1.2 Why simulating nanostructures

Although significant progress has been made over the last years, heat transport
mechanisms at the nanoscale suffer from limited available theoretical and ex-
perimental descriptions. The experimental difficulties begin with the severely
limited capabilities for measuring thermal transport in increasingly small sys-
tems. Among the different measurement approaches, the 3ω method is a
widely adopted procedure in the case of bulk materials and thin films [34–37],
although it has been used also to investigate thermal transport in nanowires.
The process involves a periodically heating of a metal heater applied to aThe 3ω method
sample: the following temperature oscillations are measured. If an AC current
is used to heat it, the temperature and consequently the resistance (as long
as it is temperature dependent) of the sample will change at 2ω, since the
heating power varies as the square of the current. This periodic resistance
changes at 2ω and, combined with the current at frequency ω, leads to a
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voltage modulation with triple the driving frequency. The temperature ampli-
tude, phase and the thermal properties are extracted from the 3ω component
of the voltage along the bridge. While the 3ω method initially could only
measure the out-of-plane thermal conductivity in dielectric films [38, 39], re-
cent extensions using multiple bridges of varying width were able to measure
the thermal conductivity anisotropy in superlattices [40], polymide [41], and
the in-plane conductivity of thin silicon films [42]. The drawback stands in
the high electrical and thermal conductivity that are required for the sample
and, moreover, in the difficulty of evaluating the thermal boundaries at the
contacts [43].
The 3ω can be applied also as a scanning technique by adopting a Scanning

Thermal Microscope. It consists of a scanning tip with an electrical conduc-
tivity which is temperature-dependent. The tip scans the sample while an AC
current is driven through it to heat it. This heat will be transferred to the
sample, according to its local thermal conductivity. The consequence is a volt-
age signal with a frequency 3ω in response, due to the resistance of the tip,
which can be measured. Despite its higher spatial resolution with respect to
the standard 3ω method, scan speed is very slow and is very sensitive to me-
chanical vibrations and thus requires a much more complex setup to properly
measure. Furthermore, the thermal contact between the tip and the sample
is essential, resulting in a high dependence on the thermal contacts. Optical

techniquesA rather different approach is represented by optical techniques, which
involve a laser used both as a heater and as a thermometer [43]. By using
a micro-Raman technique [44, 45], the temperature change induced by the
laser incidence can be related to the shift of the phonon frequency, which
varies linearly with the temperature. The sample is suspended in vacuum while
the ends are placed on the substrate, which serves as a thermal bath. The
laser spot can scan the temperature profile in the sample, and therefore both
the thermal conductivity and the thermal contact resistance can be obtained.
Although it helps in overcoming the limits of the 3ω method, the problem
lies in the fact that the modeling of the absorbed laser power is a non-trivial
issue especially for very thin nanowires and films.
In order to rationalize and integrate this experimental scenario, the the-

oretical approach acquire a central position. Computer performances have Theoretical
approachesskyrocketed in the last 10 years and this has opened the possibility to perform
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large scale investigations. Several theoretical approaches have been proposed:
self-consistent and variational approaches to solve the Boltzmann Transport
Equation (BTE) with Density Functional Theory (DFT) allowed to overcome
the limits of single-mode relaxation time and the local near-to-equilibrium ap-
proximations [46], providing more accurate calculations of the intrinsic thermal
conductivity of crystals [47, 48], and a more fundamental knowledge about the
role of collective excitations in non-diffusive heat transport of low-dimensional
nanostructures [49, 50]. However, the use of DFT is still limited to periodic
systems making it unsuitable for nanostructured and disordered systems.

The Landauer approach [51] with phonon Green’s function (GF) is also
widely used in thermal transport calculations [52–56]: usually it is used with
harmonic force constant matrices and it incorporates the Bose-Einstein statis-
tics for phonons. As a consequence, this approach is particularly suitable to
treat ballistic transport at relatively low temperatures and it allows to deal
with semi-infinite open systems [28]. The drawback is represented by the un-
derlying assumption of harmonic forces, which make this technique inadequate
to the study of thermal properties at high temperature, where anharmonic ef-
fects come at play. Moreover, its high complexity and computational costs
limited its use to small systems such as molecular junctions [54, 55].

In addition, a fundamental understanding of phonon scattering at bound-
aries and interfaces is still missing. The effect of interfaces on heat flux is
known as TBR, also known as Kapitza resistance [57]. Theoretical models to
quantitatively investigate quantitatively the TBR are available such as Acoustic
Mismatch Model (AMM) and Diffuse Mismatch Model (DMM) [39, 58]. How-
ever, these models make a priori assumptions of the scattering processes (for
example, scattering is considered to be elastic in both methods). Moreover,
the DMM considers only diffuse scattering at the interface, while this aspect
is neglected in AMM, where only specular scattering is assumed. This often
results in incorrect predictions of thermal resistances.The importance

of being
Classical˝

For these and other reasons, an approach involving a different description
of the system of interest can be helpful, in order to be able to calculate ther-
mal conductivity in such complex systems not addressable with the above
introduced techniques. This approach is based on classical MD [59, 60], which
stands as a useful complementary method to assess material properties. Due
to its real space representation, MD directly provides the atomic trajectories
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at well defined thermodynamic conditions, allowing to compute heat fluxes,
local temperatures and a large number of other observables. MD runs can
deal with system as large as O(107) for simulation times up to several tens of
nanoseconds, constituting the ideal framework to investigate nanostructured
materials. The disadvantage of this approach stands in the reliability of MD
simulations, strictly related to the accuracy and the validity of the adopted
interatomic potentials, which sometimes turn out to be inaccurate in reproduc-
ing the phonon spectrum. Furthermore, since MD is based on the integration
of Newton’s equation of motions, it is unable to reproduce quantum features
as, for example, phonon populations (Bose-Einstein distribution) making its
thermal transport predictions strictly valid only at high temperature, i.e. for
temperatures higher than the Debye temperature ΘD.

1.2 plan of this work

This thesis is addressed to different goals: several theoretical approaches, ly-
ing in the MD framework, have been adopted to investigate heat transport
in various material systems, characterized by different level of disorder, differ-
ent states of aggregation and also different chemical nature. The panoply of
methods here reported somehow complement each other: equilibrium methods
based on statistical mechanics theorems are characterized by slow convergence,
but are suitable for investigating separately thermal transport along different
directions; non-equilibrium direct methods require long simulation times es-
pecially to perform an appropriate heat flux average, however they represent
a perfect approach when addressing thermal rectification and all those mea-
surement involving heat current inside a material; finally, methods based on
the transient response to an excitation are characterized by a relatively light
computational workload and, furthermore, a number of useful informations
can be extracted during the approach to the equilibrium configuration. Tech-
niques here proposed involving a temperature or an excitation decay, thus
those that explore the transient regime, have been originally implemented in
this work and the results obtained are the product of their first applications.
In Chapter 2 is reported a detailed overview of theoretical methods used in
atomistic simulations to probe thermal transport in all its details. The theoret-
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ical development is accompanied by different examples related to the systems
studied in the next chapters.
Different issues and features, which are state-of-the-art problems in

nanoscale thermal transport as above explained, have been here explored.
For example, nanoporous silicon, either in its bulk version or with reduced
dimensionality, has been investigated for its intriguing applications in the
field of thermal insulation and for thermoelectric applications. Thermoelectric
applications have also stimulated extensive simulations in silicon-germanium
nanostructures, in order to reduce the thermal conductivity and achieve
high thermoelectric figures of merit. Possible thermal rectification without
interfaces is demanded by applications in nanophonics and by the possibility
of devising the building blocks for logic gates controlled by phonons. The
investigation of thermal transport in organic glasses is encouraged by their
promising performances in optoelectronics and in the field of photovoltaics.
The topics covered in the present work are quite diverse, however the very

nature of the materials here investigated offers a natural division of this thesis
in two main part: the first one concerning thermal transport in inorganic sys-
tems, nanostructured semiconductor for which model potentials such as Ter-
soff and Environment Dipendent Interatomic Potential (EDIP) are required,
and the second part dealing with hydrogen bonded and organic molecules,
which instead necessitate empirical force field of first and second generation,
such as CVFF and the Condensed-phase Optimized Molecular Potentials for
Atomistic Simulation Studies (COMPASS) force field. In particular, in Chapter 3
nanostructured silicon is taken into account: a profound analysis of the role of
defects in c-Si is presented, addressing the role of point defects and extended
defects as well. Indeed, a model for thermal conductivity in nanoporous sili-
con is derived from atomistic results. Then, the interplay between localized
porosity and extended grain boundaries is critically addressed for nanoporous
polycrystalline silicon: the model for κ previously introduced is reinterpreted
by considering the gray˝ and the non-gray˝ approaches, i.e. without or with
spectral resolution. Finally, also the interaction between defects and dimen-
sionality has been studied: the thermal conductivity model for nanoporous
silicon is extended to the case of nanoporous nanowires, by fitting atomistic
results and providing physical insight about the investigated system.
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Si and Ge structures are instead presented in Chapter 4. Here, the role of
the interface is considered in two different flavors: in the first place, heat
transfer in Ge/Si and Ge/SixGe1−x superlattices is studied to highlight the
effect of different silicon concentrations in SiGe alloys as a phonon barrier
and the period ratio (defined as the ratio between the germanium layer and
SiGe layer thicknesses) as well. Then, a closer look to the interface between
the two different materials itself is given: a different formulation to calculate
the interface thermal resistance is introduced, based on a non-equilibrium
thermodynamics approach.
The final chapter of the first part is Chapter 5: here the two classes of

impurities (substitutional or voids) previously introduced are used to realize
rectifying materials avoiding discontinuities and interfaces, thus by designing
graded geometries. The role of system length, temperature offset and defect
concentration is taken into account
In the second part of the thesis, Chapter 6 is devoted to the study of

energy relaxation in organic molecules and hydrogen bonded liquids in gen-
eral. A spectrally resolved thermostat, which only transfers kinetic energy to
a confined region of the vibrational spectrum is introduced. Thus, the ther-
mostatting occurs only for a subset of the system degrees of freedom (DOF),
exciting the oxygen-deuterium (in the case of deuterated methanol) or the
oxygen-hydrogen (in the case of water) stretching mode in order to mimic
a pump and probe vibrational spectroscopy experiment. The goal is to study
how the spectral excitation is relaxed thanks to the coupling between the
excited modes and the unperturbed ones.
Next, in Chapter 7, different kind of organic glasses are realized. Typical

glass former with more or less symmetric shape are considered, in order to
provide a consistent picture about the role of anisotropy in thermal conduction.
Two classes of system, isotropic and anisotropic, are investigated and thermal
conductivity calculations are performed together with detailed characterization
of the morphological features and molecular orientation.
Finally, in Appendix A a brief explanation about the MD scheme underly-

ing this thesis is given, while Appendix B offers a quick overview about the
interatomic potentials extensively adopted in this work.
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In this chapter, the two main methods for investigating thermal transport
are described. In particular, in the following section the so-called phonon

picture is briefly explained in its main features. The phonon picture relies on a
reciprocal space description of the system and thus it requires the definition of
a wave vector, which is the typical situation found in perfect crystals. However,
when translational invariance is no longer satisfied. it is necessary to switch to
an atomistic picture which is built on a real space description and thus only
involves the knowledge of atomic positions and velocities.

2.1 boltzmann transport equation

Lattice dynamics describes the vibrations of the atoms in a crystal: in fact, in
dielectric crystals lattice vibrations are the main heat carriers. In this context,
lattice dynamics provides the mathematical framework to describe, exactly,
the interatomic forces. In its most basic form, lattice dynamics describes the
crystal potential energy as a function of separation between the atoms

V =
1

2

N∑
i,j

φi,j(ri,j) (2.1)

where φi,j(ri,j) is some function that depends on the distance between atoms
i and j.

15
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Phonons investigation, and their related properties, represents a compli-
cated task. Methods from first principles can, in principle, provide accurate
predictions on the material properties without using any fitting parameter,
relying only in the chemical composition of the system under investigation.
However, the increasing precision and sophistication of the adopted numerical
method require a deep understanding of the physical phenomena. Currently,
one of the most used approach is the DFT [61, 62] which allows to evaluate
any ground state property. The electronic many-body problem is reduced to
a single particle problem where all the informations are stored in the elec-
tronic density. Many physical properties, such as phonons scattering, electron-
phonon interactions or polarizability, depend upon a system response to some
form of perturbation. In these cases the system responses may be calculated
by DFT with the addition of some perturbing potential and by using the so
called Density Functional Perturbation Theory (DFPT) [63], which is a power-
ful theoretical tool to address such properties. Lattice dynamics approaches to
thermal transport rely either on the harmonic approximation (harmonic Kubo
[64] or GF approaches [52]), or account for anharmonic terms in a perturbative
manner, which is the case of the BTE.Phonons

interaction The main idea behind BTE is to divide phonons interactions in two distinxt
terms: the first part accounts for the interaction with external forces, while
the second one is related to microscopic interactions between the particles.
These collisions continuously create˝ and destroy˝ phonons, thus the idea
is to study phonon distribution as a function of time. In equilibrium condition,
at a temperature T , the phonon system is characterized by the Bose-Einstein
thermal equilibrium distribution:

n0k,s =
1

exp
(

 hωk,s

kBT

)
− 1

(2.2)

Here k, s indicates the phonon wave vector k in a specific phonon branch s,
while ωk,s is the phonon frequency. Starting from this condition of equilib-
rium, if a temperature gradient is applied, the phonon population leaves its
equilibrium condition reaching an out-of-equilibrium one: a corresponding flux
of heat, collinear to the gradient, is thus generated.
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The most general version of the BTE [65] reads as

−vk,s∇T
∂nk,s

∂T
+
∂nk,s

∂t

∣∣∣∣
scatt

= 0 (2.3)

where vk,s is the group velocity and nk,s is the occupation factor of the
specific mode, which includes all deviations from equilibrium phonon distribu-
tion. The two terms in Eq. (2.3) describe diffusion processes, i.e. a system
of non interacting phonons, and scattering processes respectively, which form
is unknown to date, since a theory for phonon cross section for scattering
of phonons in real space is still missing. In a perfect harmonic crystals with
no defects, no impurities and no boundaries, phonon MFP is infinite and so
the thermal conductivity. However, this is not the case and real materials
have finite thermal conductivity. This can be explained by the fact that real
materials are not perfectly harmonic and that phonons actually scatter via
a variety of mechanisms, including phonon-phonon interactions (vibrational
anharmonicities), defect scattering, surface scattering, electron-phonon inter-
actions. Discarding for one moment effects due to defects and to surfaces (i.e.
considering perfect and bulk crystals) and electron-phonon interactions (i.e.
considering only semiconductors), phonon-phonon interactions can be classi-
fied into two distinct type of interactions. The first, called normal process
(N-process), involves the collision of two phonons, k1 and k2, that combine
to form a third phonon, k3, via the following relation

ω3 = ω1 +ω2 (2.4)

In this type of interaction, crystal momentum is conserved. If this was the
only type of phonon interaction, then there would be nothing impeding the
transport of energy, resulting in an infinite thermal conductivity. The second
type of phonon interaction, called Umklapp process (U-process), combines
two phonons in such a way that crystal momentum is not conserved. This can
be described according to the relation

k1 + k2 = k3 + G (2.5)

where G is a reciprocal lattice vector. U-processes lead to finite thermal con-
ductivities and are described by the anharmonic terms [66, 67].
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Figure 2.1. An applied thermal gradient generates a heat flux, determined by the net
variation of the phonon population within each volume element, due to
the different phonon population at the hot and cold ends of the volume
element and to scattered phonons.

Dealing with BTE, the main challenge is to determine and calculate an
expression for the scattering term. The general approach for solving Eq. (2.3)
involves dealing with small perturbation from the equilibrium: typically, when
considering small temperatures gradient, for example the situation depicted
in Fig. 2.1, it is assumed that the modes occupation factor withstands small
deviations with respect to the equilibrium value. This allow to recast Eq. (2.3)
in a linearized form. In fact, exploiting the relaxation time approximation (RTA)Linearizing BTE
or single mode approximation (SMA), a single lifetime can be adopted to
describe the overall effect of the scattering processes for each mode, assuming
the equilibrium for the remaining phonon modes

∂nk,s

∂t

∣∣∣∣
scatt

=
nk,s −n

0
k,s

τk,s
(2.6)

where τk,s is the lifetime and n0k,s again is the equilibrium occupation factor
and is given by Eq. (2.2). Hence, it is assumed that fluctuations nk,s − n

0
k,s

are small and not temperature dependent. Adopting this strategy, BTE can be
solved in terms of nk,s. The heat flux due to phonons motion, i.e. due to the
fluctuations of the distribution functions with respect to equilibrium, is given
by

j =
1

NkV

∑
k,s

 hωk,svk,snk,s (2.7)
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Considering Fourier law

j(x,y, z) = −κ∇T(x,y, z) (2.8)

where j is the heat flux vector, κ is the system thermal conductivity and
T(x,y, z) is the local temperature, thermal conductivity can be obtained as
[68, 69]

κ =
1

NkV

∑
k,s

ck,sv2k,sτk,s (2.9)

where Nk is the number of considered k-point for the calculation.
Phonon frequencies and phonon eigenmodes are obtained by diagonalizing

the dynamical matrix [68]

Dαβ(bb ′|k) =
1

√
mbmb ′

∑
l ′

Φαβ(0b, l ′b ′) exp(ikl ′) (2.10)

where Φαβ(0b, l ′b ′) are the harmonic force constant defined as the second
order derivatives of potential energy W with respect to atomic displacements
u, which are assumed to be small, with respect to the equilibrium positions
(0b), l is the l-th unit cell lattice vector, b represents an atom in the l-th
cell with mass mb, and α and β are Cartesian coordinates, Quantum heat
capacity for phonon mode ck,s is given by

ck,s = kB

(
 hωk,s

kBT

)2
exp

(
 hωk,s

kBT

)
[

exp
(

 hωk,s

kBT

)
− 1

]2 (2.11)

Group velocities are defined according to vk,s = dωk,s/dk. In RTA approxi-
mation, first order perturbation theory is adopted

vk,s =
1

2ωk,s

〈
k, s
∣∣∣∣dD(k)
dk

∣∣∣∣k, s
〉

(2.12)
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Moreover, phonon lifetime are computed according to the Fermi golden rule
and considering only the lowest order term, that is the contribution from
three-phonon processes (quasi-harmonic approximation) [68–70]

τ−1k,s =
π h

4Nk

∑
k ′,s ′

∑
k ′′,s ′′

δG,k+k ′+k ′′
|V3(ks, k ′s ′, k ′′s ′′)|2

ωk,sωk ′,s ′ωk ′′,s ′′
×

×[1
2
(1+n0k ′,s ′ +n

0
k ′′,s ′′)δ(ωk,s −ωk ′,s ′ −ωk ′′,s ′′)+

+(n0k ′,s ′ +n
0
k ′′,s ′′)δ(ωk,s +ωk ′,s ′ −ωk ′′,s ′′)]

(2.13)

where phonon modes (k, s),(k ′, s ′) e (k ′′, s ′′) are coupled by the matrix ele-
ment

V3(ks, k ′s ′, k ′′s ′′) =
∑
l ′,l ′′

∑
b,b ′,b ′′

∑
α,β,γ

Ψα,β,γ(0b, l ′b ′, l ′′b ′′) exp (ik ′l ′)×

× exp (ik ′′l ′′)
eα(b|ks)eβ(b ′|k ′s ′)eγ(b ′′|k ′′s ′′)√

mbmb ′mb ′′

(2.14)

Ψα,β,γ(0b, l ′b ′, l ′′b ′′) are the third order force constants, defined as the third
order derivatives of potential energy with respect to small atomic displace-
ments around the equilibrium position.

The SMA assumes that each phonon population thermalizes independently
from the other ones and the thermal conductivity can be written in terms in-
dividual phonon properties, which is equivalent to say that a given amount of
heat current is perfectly dissipated every time that a single phonon is scattered.
This assumption is in contradiction to the fact that the normal N-processes
(Eq. (2.4)) are momentum-conserving. As a consequence, this approximation
fails in describing heat flux exchange among the various phonon modes, provid-
ing an approximate treatment of the heat transport theory. SMA is a reliable to
describe thermal transport in 3D crystal structures at temperatures above the
room temperature where phonon population is restored isothermally thanks
to the high number of scattering.Beyond the SMA

In order to correct the inadequacy of the SMA at low temperatures Callaway
combined the procedure of Klemens [71] and Ziman [46] splitting the relax-
ation process in two steps. His idea relies on the assumption that, since N
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scattering rates are very large, an out-of-equilibrium distribution will mostly
decay first into a drifting distribution, and from this state it will relax towards
the static equilibrium (the Bose-Einstein distribution) thanks to the other
resistive scattering events. With this model Callaway correctly describe the
germanium experimental data at low temperatures [72].
In more recent years different approaches have been developed for solving

exactly the BTE [47, 48]. The exact solution becomes mandatory when study-
ing systems, such as 2D systems [49, 73, 74] where the high abundance of
N-processes makes the SMA completely unreliable.

2.2 molecular dynamics

The above described approach represents a powerful and reliable tool when
dealing with thermal transport in crystalline systems. However, the drawback
is represented by the fact that in case of defected or nanostructured systems
(such the ones proposed in Chpt. 3, 4 and 5), the description of the system
would require either a very large unit cell or the whole system itself, making the
reciprocal space analysis useless. Moreover, solving the BTE within the empir-
ical potential framework, i.e, by computing interatomic force constant empiri-
cal potential, often results in thermal conductivity values in open disagreement
with experimental ones [75], Thus, it is always preferable to adopt an ab initio
or, better, a self consistent approach which, however, strongly limit the class
of addressable systems. Whenever the system of interest lacks of translational
invariance, atomic vibrations cannot be any longer described as collective
modes but it is possible to exploit a direct approach, which require the calcu-
lation of atomic trajectories in real space. To this aim, a force field describing
atomic interactions is needed; such a force field can be developed at very differ-
ent levels of sophistication, varying from fully-quantum ab initio techniques
[76, 77] (the most fundamental methods), to quantum semi-empirical [78]
schemes (a compromise between accurate but expensive ab initio methods
and light but somewhat inaccurate empirical ones), to fully classical empiri-
cal potentials [79] (taking full profit from their low numerical complexity but
suffering in terms of accuracy and transferability). Newton equations of mo-
tion are numerically solved for all interacting particles by taking under control
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the thermodynamical ensemble, for any given state of temperature. volume
and pressure (or strain). Some physical quantities can be calculated on-the-
fly during the simulation as ensemble averages over the atomic trajectories,
according to standard statistical mechanics, while others (e.g. transport coef-
ficients) require the knowledge of the entire trajectory before being computed.
The method is known as MD and shows an extremely high degree of applica-
bility, regardless of state aggregation, lattice disorder and thermodynamical
configuration. A detailed description of the MD framework is reported in Appx.
A. In this section, MD simulations will be taken under consideration in all their
different flavors: Equilibrium Molecular Dynamics (EMD) (or Green-Kubo (GK)
method), which relies on the linear-response theory and fluctuation-dissipation
theorem, and Non-Equilibrium Molecular Dynamics (NEMD), which address κ
through the Fourier law, have been adopted to perform the calculations and
the investigations reported in this thesis. Moreover, here will be illustrated the
importance of the transient regime, which analyze the system during its ap-
proach to the equilibrium, and a spectrally resolved method, which influences
only selected regions of the vibrational spectrum. Both these system have
been developed and implemented for the first time during the investigation
here proposed.

2.2.1 Equilibrium Molecular Dynamics

From a system of interacting atoms subjected to a time-independent perturba-
tion ∇n, it is possible to obtain the corresponding time-dependent response
I(t). At the first order, a transport coefficient η can be defined as the ratio
between the system response and the perturbation observed ideally for an
infinite time

η ∼ lim
t→∞ I(t)

∇n
(2.15)

The fluctuation-dissipation theorem, in a steady state response regime, proves
that [80, 81]

η ∼ lim
t→∞

∫t
0

〈ξ(t ′)ξ(0)〉dt ′ (2.16)
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stating that any transport coefficient is related to the time auto-correlation
function of a physical quantity ξ(t). The GK relations give the exact mathe-
matical expression for transport coefficients of several transport mechanisms
and, if the perturbation is a thermal gradient, Eq. (2.16) becomes the GK
formula for thermal conductivity [80, 82–84], which is obtained from the auto-
correlation function of the heat flux

κGKλµ (T) =
1

3VkBT2
lim
t→∞

∫t
0

〈jλ(t ′)jµ(0)〉Tdt ′ (2.17)

where 〈. . . 〉T is the ensemble average taken at constant temperature T, V is
the system volume, and κGKλµ denotes the λµ-component (λ,µ = x,y, z).

The aim of the EMD approach is to implement the GK solution in a MD
simulation, a non-trivial task for two main reasons: the convergence (in time
and system size) of the auto-correlation function 〈jλ(t ′)jµ(0)〉, which however
strongly depends on the nature of the system investigated, and the actual
calculation of j(t), which depends on the microscopic theory of heat flux. Microscopic

theory of heat
flux

Problems in the calculation of j(t) arise when using empirical many-body
potentials, which are the foundation of classical MD. Singe-atom energies

Ei(t) =
1

2
miv

2
i (t) +Ui(t) (2.18)

where mi are atomic masses and Ui(t) is the on-site potential energy at time
t, are needed to calculate the heat current during an EMD run, according to
the microscopic definition

j(t) =
d

dt

∑
i

ri(t)Ei(r) =
∑
i

[
vi(t)Ei(t) + ri(t)

d

dt
Ei

]
. (2.19)

On the second right hand side of this equation two contributions can be
identified: jconv(t) =

∑
i vi(t)Ei(t) is the kinetic contribution (also called

the convective term), which is negligibly small in solid-state materials [85],
and

jpot(t) =
∑
i

ri(t)
d

dt
Ei =

∑
i

ri(t) [Fi(t) · vi(t)]+
∑
i

ri(t)
dUi(t)

dt
(2.20)

the potential contribution, where Fi(t) is the net force acting on the i-th
atom at time t. In what follows, the kinetic term will be discarded.
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A many-body potential U can be decomposed in terms of single site con-
tributions Ui [86]

U =
∑
i

Ui({rj6=i}) (2.21)

where the pair potential between particles i and j, only depends on the distance
rij between the particles. Hence for any particle pair (i, j) a pairwise force can
be defined

Fi =
∑
j6=i

Fij,

Fij =
∂Uij

∂rij
=
∂Ui
∂rij

−
∂Uj

∂rji
= −Fji

(2.22)

where Fij is the force on particle i due to particle j and the convention rij ≡
rj − ri for the relative position between two particles is adopted. If periodic
boundary conditions (PBC) are applied in a given direction, the minimum
image convention is used to all the relative positions in that direction (see
Appx. A). Equation (2.22) allows to cast the potential contribution in its
most general form

jpot(t) =
∑
i

∑
j6=i

rij(t)
[
∂Uj(t)

∂rij
· vi(t)

]
(2.23)

which is known also as the Hardy formula [87]. This relation for the heat
current applies to any many-body potential, because the condition that the
many-body bond energy Uij (or the site potential Ui) is only a function of
the set of vectors {rij}j6=i, is satisfied by any empirical potential: any other
position difference vector can be expressed as the difference of two vectors in
this set. Practical implementations have been worked out for the most popular
empirical potentials [86], including the Stillinger-Weber [88], the Tersoff [89],
and the Brenner [90] potentials.

Classical MD simulations are based on model potentials which have sim-
plified analytical forms and, furthermore, their parameters are obtained by
fitting macroscopic quantities (e.g. structural, mechanical properties) which
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are not necessarily connected to third-order (or higher) derivatives of the en-
ergy with respect to the atomic displacements. This results in a poor descrip-
tion of anharmonic forces and, consequently, in not always accurate thermal
conductivity values. These considerations hold whenever model potentials are
adopted instead of computing the interactions self-consistently, as already
stated above for BTE. However, model-potential MD is suitable in obtaining
trends like (thermal conductivity vs. temperature or vs. system size or vs.
chemical composition), since it can deal with very large and complex systems,
and thus this methodology is better suited for getting physical insight, rather
than reliable absolute numbers. An alternative is represented by the combina-
tion of the GK approach and the ab-initio MD, which provide a much accurate
description of the interatomic interactions. Although this has been done only
recently [91–93], since this implementation has always been considered unfea-
sible due to the ill definiteness of quantum mechanical energy densities and
currents at the atomic scale, its application is in any case confined to small
scale systems and hence homogeneous and/or scale invariant systems. The issue of

convergenceThe computation of κGKλµ requires a well-converged auto-correlation func-
tion, which is related to very nature of the system itself. For example, consid-
ering bulk c-Si containing 1728 atoms as a test system, Fig. 2.2a shows how at
least 106 time steps are required for the heat current autocorrelation function
to reach a converged value. This calculation, performed adopting the Stillinger-
Weber potential [88], shows how the slow convergence of the autocorrelation
function is reflected on the thermal conductivity behavior, which converges
rather slowly. The obtained value of ∼ 197 W m−1K−1 is appreciably larger
than the experimental one of ∼ 150 W m−1K−1: such a disagreement is not
due to any failure of the GK formulation or any inaccuracy in its implemen-
tation, rather it is due to the limited accuracy of the adopted interaction
potential in providing the vibrational spectrum of c-Si, and to the purity of
the simulated sample, which is ideally elemental with no defects, impurities
and surfaces. However, the slow-convergence issue is not always a limiting
factor, as obtained for a sample of liquid methanol containing 216 molecules:
as shown in Fig. 2.2b, the converged value κ is definitively reached within
the first 500000 time steps. Moreover, for c-Si a time step of δt = 2.0 fs was
adopted, while for methanol δt = 0.5 fs; only 25% of simulation time of the
crystalline sample was required for the liquid one. It is possible to conclude
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Figure 2.2. a: Thermal conductivity convergence for a bulk c-Si sample containing
1728 atoms during a GK run performed at T = 500 K. In the inset is
shown the convergence of the auto-correlation function for the heat flux,
which is used to compute κ. b: Thermal conductivity convergence for a
methanol sample containing 216 molecules: in contrast with the behavior
obtained for c-Si, thermal conductivity reaches a converged value within
the first 500000 time steps. The final conductivity value is in very good
agreement with the experimental one [94].

that a drawback of the EMD approach is that extremely long simulations are
needed, representing an exceedingly large computational effort for larger sys-
tem sizes. However, the EMD method is not completely disadvantageous: when
dealing with systems with no long-range order, such as liquid methanol (see
Chpt. 6) or organic glasses (see Chpt. 7), considerably shorter simulations are
sufficient to correctly converge the heat flux autocorrelation function. Further-
more, it represents a powerful tool to distinguish the contribution of different
directions to thermal transport, when addressing the role of anisotropies or
peculiar structural geometries (see Chpt. 7).

2.2.2 Non-Equilibrium Molecular Dynamics

In contrast to the GK formalism, simulations performed according to NEMD
methods compute κ in analogy to what happens in an experimental set up,
when a perturbation is applied to the system in order to observe its response in
terms of flux to study transport phenomena. Studying heat transport requires
the fulfillment of two fundamental hypothesis:
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Figure 2.3. a: Top, setup of a NEMD simulation. Bottom, the resulting temperature
drop (dashed white line), once that a steady state condition has been es-
tablished. Both the resulting heat flux jz and thermal gradient dT(z)/dz
are shown. The color palette is chosen according to temperature gradient
from the hot reservoir, T1, and the cold one, T2. b: Calculated temper-
ature profile along the simulation cell, according to the procedure here
described. NB: although in a uniform and isotropic material the estab-
lished temperature profile between the thermostats is a straight line, in
this case it deviates from linearity since the system is non-homogeneous,
due to an increasing content of germanium along the z direction (see
Chpt. 5).

1. it is necessary that the non-equilibrium condition corresponds to the
steady state, which results in a stationary configuration and the pertur-
bation, in this case a temperature gradient, does not change in time. The
steady state requires a transient time, during which the system is setting
up its own response and which duration depends on the actual pertur-
bation and, of course, on the very physics of the system under investi-
gation. The stationary configuration allows to perform time-averaging
of the response physical quantity, namely the heat flux;

2. it is necessary that the system obeys to the Fourier law (Eq. (2.8)),
which is a transport equation and it is valid locally and at any time as
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well, provided that the only heat transport mechanism is the conduction
(no convection or chemical reactions inside the system)

The most common approach for NEMD simulations relies on choosing a direc-
tion for heat flux propagation (in this case the z direction). First of all, the
system is thermostatted at a suitable temperature T(0) and then the two ends
of the simulation cell are coupled to two thermostats at temperature T1 and
T2, with T2 6 T(0) 6 T1, as shown in Fig. 2.3a.

In achieving the stationary condition, the two thermostats act as a hot and
cold reservoir and the PBC are only applied in the plane normal to the heat
flux direction. The simulation cell is then aged by keeping the two reservoir
at constant temperature, in order to provide a heat source and a sink, while
the equations of motion in the central region are integrating according to
the NVE ensemble, i.e. without any thermostatting. After a sufficient time, a
temperature gradient is established along the sample, as shown in Fig. 2.3b.

A very useful quantity to calculate during NEMD simulations is the local
temperature profile T(z, t): the kinetic energy of each atom in the system is
averaged over a suitable set of thin material slabs at positions {z1, z2, . . . , zN}.
The width of these slabs should be large enough to allow a proper kinetic
temperature calculation, and it is usually defined include at least ' 102 atoms.
This allows to define a spatial dependent kinetic temperature, as reported in
Fig. 2.3c, which is further averaged over time periods much shorter than the
total duration of the NEMD simulation. In Fig. 2.4a is reported the kinetic
temperature as a function of time of several slabs defined in a nanostructured
system of Si and Ge (an alloy with z-dependent stoichiometry, see Chpt. 5)
with Lz = 69.46 nm: the two reservoir are kept at T1 = 700 K and T2 = 500
K. Here the initial temperature of the central region was set at T(0) = 0 K:
this allows for an effective visualization of the establishment of the steady
state regime and the corresponding temperature drop across the sample, but
usually it requires very long simulations time. Figure 2.4c instead shows the
same situation but with T(0) = (T1 + T2)/2 = 600 K. This choice can be
useful to save simulation time, since it allows to reach the steady state at
least 300 ps earlier, as demonstrated also by the exchanged energy between
the thermostat and the system in Fig. 2.4b and d, respectively.
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Figure 2.4. a: Kinetic temperatures for the hot and cold thermostats and for seven
different slabs inside the central region, with different zi, for a NEMD run
where T(0) = 0 K. b: The work done by the two thermostats, i.e. the
energy exchanged with the central region, for a NEMD run where T(0) = 0
K. c and d: The same quantities shown in a and b, but relative to a NEMD
run where T(0) = (T1 + T2)/2 = 600 K, with T1 = 700 K and T2 = 500

K.

As a matter of facts, establishing the temperature gradient in the simulation
cell could represent a bottleneck of NEMD as for its resulting computational
workload: the lower the material thermal conductivity, the longer the simula-
tion time. Furthermore, an additional time is required once reached the steady
state in order to accumulate data for computing with enough accuracy the
heat flux, as explained below. This is a non-trivial drawback of the method,
especially when dealing with large simulation cells. Calculation of κ
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Figure 2.5. Top: Injected (violet) and extracted (green) energy in a silicon-germanium
graded system subjected to a temperature offset of 200 K [95]. Middle:
Heat flux coming out from/going into the hot/cold thermostat obtained
by performing the time derivative of the injected/extracted energy and
dividing by the cross section. Bottom: Relative difference between the
extracted and the injected heat flux. Dashed black lines represent the
time average of all the corresponding quantities

During the stationary condition, thermal conductivity is computed accord-
ing to the one dimensional Fourier law (see also Eq. (2.8))

κNEMD(T) =
〈jz(T)〉
∆T/Lz

(2.24)

where 〈. . . 〉 indicates time averages taken over a suitable time interval and
the temperature gradient ∇T has been replaced with the ratio between the
temperature offset and the distance between the two thermostatted regions.
The temperature drop ∆T within the core region is evaluated directly from
the local kinetic temperature profile T(z, t) already mentioned, which is also



2.2 molecular dynamics 31

shown in Fig. 2.3c, while heat flux jz is computed as explained in Sec. 2.2.1
or, alternatively, by considering the work done by the thermostats. The lat-
ter option is more straightforward because is directly calculated by the MD
code for any thermostat implemented, without ambiguities for the calcula-
tion of the heat flux. The instantaneous energies injected/extracted by the
hot/cold reservoir into/from the system, hereafter indicated as Lin and Lout

respectively, are computed from the beginning of the simulation, as shown in
Fig. 2.4b and d. Their time derivatives, divided by the cross section of the
simulation cell

jin,out
z =

1

Σ

∂Lin,out

∂t
(2.25)

have opposite sign and correspond to the fluxes coming from/going into the
central region from the two thermostats (see Fig.2.5).
A steady state condition is proclaimed only when |jinz | = |joutz | within the

accepted numerical error. This procedure requires additional simulation time
after the steady state is settled. Once reached such a condition, the heat
current is calculated as the average (|jinz | + |joutz |)/2. Deviations from the
asymptotic relative difference (|jinz |− |joutz |)/|jinz | are used for estimating the
error on the heat current. Thus, the computation of the thermostat work
provides also a quick and useful way to check the progress in reaching the
stationary condition, i.e. whether if the two curves plotted in Fig. 2.4b and d
have the same slope.

NEMD method provides also a useful tool to investigate several phenom-
ena related to thermal transport, e.g. interface thermal resistance or thermal
rectification, as extensively explained in Sec. 5.1. Reverse

Non-Equilibrium
Molecular
Dynamics

For sake of completeness, in what follows it will be discussed an alterna-
tive formulation of the non-equilibrium MD method. The advantage of this
approach relies on the fact that there is no need to compute the heat flux:
the main idea of the reverse NEMD (also known as the Müller-Plathe method
[96, 97]) is imposing through the system a given energy current and then
evaluating the ∆T temperature drop once the steady state regime has been
established.
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Lz0

T(0)

Figure 2.6. Top: Within an equilibrated system a hot and cold reservoir regions are
identified; there, atomic kinetic energies are rescaled or atomic velocities
are swapped. Middle: The resulting energy (heat) flux generates a time-
evolving temperature distribution. Bottom: Eventually, a steady state con-
dition is established, characterized by a time-independent temperature
profile.

The simulation starts from a system with imposed PBC and previously ther-
malized at an initial temperature T(0). Then, two different regions in the
systems are defined in order to provide the hot˝ and cold˝ thermostat: the
kinetic energy of the atoms there contained is rescaled by a fixed amount
∆ekin during a time interval ∆t [97], according to the scheme illustrated in
Fig. 2.6. This results in a net energy flux in the system of

j =
∆ekin
2Σ∆t

(2.26)

where Σ is the cross section of the simulation cell.
A periodic temperature profile is thus established, which is used to obtain

the temperature gradient. A similar procedure requires to select the coldest
atom, with velocity vcoldest, from the hot thermostat and the hottest atom,
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with velocity vhottest, from cold reservoir, and to swap their velocities [96].
A energy flux is obtained by iterating this vhottest ←→ vcoldest over a time
interval ∆t

j =
1

2
m

∑
swaps(v

2
hottest − v

2
coldest)

2Σ∆t
(2.27)

where m is the atomic mass and the sum runs over the number of swaps
performed. Also in this case the steady state can be proclaimed by detecting
a constant temperature profile or by evaluating the work done in the reservoir
regions, and thermal conductivity is calculated with the same Eq. (2.24).

2.2.3 Approach-to-Equilibrium Molecular Dynamics

Equilibrium and non-equilibrium methods portrayed so far suffer from sev-
eral drawbacks which often limit their applications to atomistic models large
enough to properly describe a given complex nanostructure. In particular, both
require very long simulation times in order to converge or to establish the
steady-state. A rather different approach involves simulations in the transient
regime which stands between the equilibrium state and a non-equilibrium con-
figuration. The AEMD method is based on the solution of the one dimensional
heat equation and starts by imposing an out-of-equilibrium condition and then
studying the evolution of the system [98–101]. A step-like temperature profile
with an initial offset T1− T2, i.e. the Heaviside function, is imposed along the
z direction

T(z, 0) = H(z) =

T1 if 0 < z < Lz/2

T2 if Lz/2 < z < Lz
(2.28)

where Lz is the sample length.
This configuration, depicted in Fig. 2.7, plays a central role in solving the

heat equation when conduction is the only transport mechanism and when no
heat source or sink is present

∂T

∂t
= κ̄

∂2T

∂z2
(2.29)
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Figure 2.7. Sketch of the step-like temperature profile imposed in the simulation cell,
with PBC along the three directions. The hot (0 < z < Lz/2) and cold
(Lz/2 < z < Lz) regions are initially set at temperature T1 and T2,
respectively, with T1 > T2.

By separating the variables T(z, t) = Z(z)Θ(t), and applying the PBC

Z(0) = Z(Lz)

∂Z

∂z

∣∣∣∣
z=0

=
∂Z

∂z

∣∣∣∣
z=Lz

(2.30)

Equation (2.29) is readily solved and the most general solution is expressed
in terms of Fourier series and reads as

T(z, t) = A0 +
∞∑
n=1

[Ancos (αnz) +Bnsin (αnz)]e
−α2nκ̄t (2.31)

where αn = 2πn/Lz, κ̄ is thermal diffusivity and the coefficients A0, An and
Bn depend only on the initial condition T(z, 0) = H(z) through the following
expressions

A0 =
1

Lz

∫Lz
0

H(z)dz

An =
2

Lz

∫Lz
0

H(z)cos (αnz)dz

Bn =
2

Lz

∫Lz
0

H(z)sin (αnz)dz

(2.32)

Thus, the analytic solution T(z, t) depends on the geometry of the problem,
on initial conditions and on thermal diffusivity which is related to thermal
conductivity through κ̄ = κ/ρcv.
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According to the aforementioned initial conditions, it is easy to prove that
An = 0 ∀n > 0 and the solution given in Eq. (2.31) becomes

T(z, t) = A0 +
∞∑
n=1

Bnsin (αnz) e
−α2nκ̄t (2.33)

where

A0 =
T1 + T2
2

Bn =
T1 − T2
αnπ

[1− cos(αnπ)]
(2.34)

Implementing
AEMD in a
simulation

This protocol can be easily implemented in a MD simulation: once that the
left and right regions of the simulation cell have been initially thermostatted
at temperature T1 and T2 respectively, in order to impose the temperature
profile according to Eq. (2.28), the system is then aged in a microcanonical
run and the initial step-like temperature profile is progressively smoothed by
thermal conduction. It is therefore possible to define the average temperatures
〈T1〉 and 〈T2〉 in the two semi-cells

〈T1(t)〉 =
∫L/2
0

T(z, t)dz

〈T2(t)〉 =
∫L
L/2

T(z, t)dz
(2.35)

which will vary in time toward approaching a uniform temperature (i.e. equi-
librium) configuration. During such a transient regime the time-dependent
difference in average temperatures ∆T(t) = 〈T1〉− 〈T2〉 is defined by exploit-
ing Eq. (2.33) and displays as

∆T(t) =

∞∑
n=1

Cne
−α2nκ̄t (2.36)

where the coefficients Cn include informations on the geometry and on the
initial conditions

Cn = 8(T1 − T2)
[cos(αnLz/2) − 1]

2

α2nL
2
z

(2.37)
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Figure 2.8. a: Time evolution of the temperature profile across a crystalline silicon
sample with Lz = 545.71 nm and a section Σ = 2.18× 2.18 nm2; black
smooth lines represent the analytic solutions of Eq. (2.29), while the
colored noisy lines are obtained by computing the temperature on-the-fly
across the simulation cell. b: Average temperature difference computed
during the NVE run.

Equation (2.36) is the core of the AEMD method and of its implementa-
tion in a simulation: temperature difference is computed on-the-fly during
the NVE run, as shown in Fig. 2.8b, and the collected data is then fitted
with the analytic solution in order to obtain the system thermal diffusivity κ̄.
The corresponding thermal conductivity is eventually evaluated as κ = κ̄ρcv.
For T > ΘD we have cv = 3NkB/V and quantum corrections, taking into
account the deviations from the Maxwell-Boltzmann distribution below the
Debye temperature [66, 101], are usually inserted by renormalizing cv by a
factor q̄ defined, in turn, as the ratio between the actual temperature and the
Debye temperature. In particular, for c-Si at 600 K we get q̄ = 0.947.

Figure 2.8a shows also what happens during the transient regime by com-
paring the analytical solution of the heat equation and the numerical result
obtained by AEMD simulation: the time evolution of the temperature profile
across a crystalline silicon sample with Lz=545.71 nm and Σ = 2.18× 2.18
nm2 reveals how the step-like initial profile smooths towards equilibrium, i.e.
a constant temperature along the whole simulation cell. This picture provides
robust evidence that the transient regime is rather well captured by an AEMD
run.
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Figure 2.9. a: Calculated κ for c-Si samples with Lz = 108.61 nm, but different cross
sections Σ. The initial temperature difference between the hot and cold
regions is ∆T(0) = 200 K. b: Calculated κ for a crystalline silicon sample
with Lz = 108.61 nm and Σ = 3.80× 3.80 nm2 as function of the initial
temperature difference between the hot and cold regions [98].

In order to prove the reliability of the method, systematic calculations of
thermal conductivity have been performed under several conditions. In par-
ticular, Fig. 2.9 shows the dependence of the thermal conductivity upon the
cross section of the sample and the initial temperature offset imposed in the
simulation cell: a weak dependence in the former case is observed and thermal
conductivity results independent for Σ > 4.72 nm2, while in the latter case
data seem scattered and no trend is observed. However, a good choice for
silicon and solid state systems is generally T = 200 K, although this results
depends on the system investigated [98].
An important feature of AEMD method lies in the transient regime itself: the

system need to be aged for a time comparatively much shorter than in a typical
EMD or NEMD setup, a feature that has indeed favored large-scale applications
up to O(107). This allowed to investigate system with an experiment-like
structural complexity [102, 103] and dimensions [104] as well. Moreover, there
is no need to compute thermal fluxes and to define local˝temperatures, which
could, in principle, constitute important conceptual barriers.
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2.2.4 Size effects

It is well known that in MD calculations κ depends on the actual length L
of the simulated sample [97, 105]. In particular, when L is shorter than the
average phonon MFP a ballistic-like transport where κ = κ(L) is expected. By
increasing L the probability that phonons are scattered before reaching the
cell boundaries increases, eventually driving to a diffusive regime where κ is
independent of the sample length. In NEMD hot and cold reservoirs (placed
at the opposite boundaries of the simulation cell) are used to guarantee a
temperature gradient. When phonons enter into the reservoir regions they
lose their orientation since the local temperature is there kept constant by
stochastic thermostats. Therefore, the system/reservoir boundary acts as an
(artificial) diffusive interface. On the other hand, in EMD the dimensions of
the simulation cell dictates the actual sampling of the phonon population:
the smaller L, the less complete is such a sampling. This results into a κ(L)
dependence which, however, is comparatively weaker than in the NEMD case.
In AEMD the scenario is more complex: an explicit phonon scattering source
as in NEMD is missing; nevertheless a strong κ size dependence (up to the µm
range) similar to NEMD is always observed. As pointed-out in reference [106]
the different κ(L) dependence between EMD and NEMD is mainly due to the
distinct phonon population either equilibrium or non-equilibrium. The actual
AEMD phonon population corresponds to a non-equilibrium condition which,
in addition to the presence of PBC, results in an effective size effect similar
to the NEMD one. In particular, in AEMD method the phonon scattering takes
place at the sample boundaries, which actually show different temperatures
due to the presence of PBC. Due to this similarities among NEMD and AEMD,
the analysis of the κ(L) dependence here adopted is the same as the one
followed by reference [105] for NEMD.

Accordingly, the κ dependence on L is described by the following equation

κ(L) =
∑
k,s

ck,sv2k,sτ∞,k,s

[
1+

2|v|k,sτ∞,k,s

L

]−1
(2.38)

where the sum takes into account all the phonon modes labeled by their mo-
mentum k and polarization s. The terms ck,s, vk,s and τk,s are, respectively,
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the heat capacity, the group velocity and the relaxation time (for intrinsic
phonon-phonon bulk-like scattering) of each vibrational mode. According to
Eq. (2.38) it is possible to write 1/κ = f(1/L), i.e. it is possible to define a
f-function converging to the inverse bulk value of thermal conductivity 1/κ∞
when L is large enough to mimic an infinite sample. Accordingly, it is possible
to estimate κ∞ by considering the Taylor expansion

1

κ∞ = f(0) −
f ′(0)

L
+
f ′′(0)

2L2
+ . . . (2.39)

where apices indicate the order of derivation of the f−function. The result-
ing usual way of predicting κ∞ consists in: (i) truncating Eq. (2.39) at the
first order term and (ii) plotting 1/κ versus 1/L for a suitable range of sample
lengths; κ∞ is then obtained by extrapolating with a linear fit the data down
to the 1/L→ 0 limit.

Thus, the presence of size effects is ubiquitous in MD simulations, especially
when dealing with thermal transport. For this reason in the following chapters,
particular care was paid to deeply investigate the role of a finite simulation
cell and to possibly overcome this limitation.

2.2.5 Generalized Langevin Equation Thermostat

In the framework of classical MD simulations, Ceriotti et al. developed a novel
approach based on the GLE to obtain dynamical trajectories whose properties
are devised to achieve specific sampling features [107–112], such for example
an improved convergence during the advanced sampling of the DOF withing a
system or an implementation of quantum heat baths both in equilibrium and
out-of-equilibrium MD simulations. The most common approaches to con-
stant temperature MD are those based on the introduction of an extended
Lagrangian such as Nosé thermostat [113, 114]. This approach provides the
correct Boltzmann distribution. However, it does not satisfy the ergodic hy-
potheses in some cases, such as harmonic systems. Several different extensions
of the Nosé-Hoover method have been introduced, for example the Nosé-
Hoover chains [115], which addresses the ergodicity issue but with increased
complexity in the algorithm. An alternative approach is to adopt stochastic
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MD methods. The first stochastic approach to sample the canonical ensemble
is represented by the Andersen thermostat [116]. It couples the system to a
heat bath via stochastic forces that modify the kinetic energy of the atoms
or molecules. The number of collisions per unit of time is chosen randomly,
following a Poisson distribution. Between two subsequent collisions the sys-
tem evolves with constant energy. When a collision˝ between the heat bath
and the system occurs, the momentum of the atoms are taken according to
a Boltzmann distribution at temperature T . The disadvantage of this thermo-
stat is that it can be used only for time-independent properties. Dynamical
properties, such as the diffusion, suffer of bad prediction when computed using
Andersen thermostat [117].

The most common form of stochastic MD is represented by the implemen-
tation of Langevin dynamics [118]. The Langevin thermostat is local and
ergodicity can be proven to be always fulfilled [119]. However, since the fric-
tion and noise terms alter significantly the Hamiltonian dynamics, it cannot
be used to compute dynamical properties, unless an extremely small friction
is used. Moreover, the effect of the friction and noise terms on the sampling
efficiency is non trivial. The Langevin equation has been extensively adopted
in MD simulations as an efficient tool to obtain trajectories which sample the
constant-temperature, canonical ensemble. It is based on the assumption of
instantaneous system-bath interactions, which stands for the random force
being uncorrelated at different times. The Langevin equations that describe
the Brownian motion of a particle with position x and momentum p, subject
to a potential V(x), can be written as:

ẋ = p(t)/m

ṗ = −V ′(x) − γp+
√
2mγ/βξ(t)

(2.40)

where β = 1/kBT is the inverse temperature, while the friction coefficient γ
determines the interaction between the system and the Langevin heat bath
and the fluctuations of the total energy. ξ(t) is a Gaussian-distributed random
force, delta-correlated, such that 〈ξ(t)ξ(0)〉 = δ(t), and with zero mean,
〈ξ〉 = 0. The delta-correlation of the stochastic forces implies that past events
have no influence on the present state of the system, i.e. the dynamics is
Markovian.
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Stochastic thermostats are a good choice for modeling the interactions with
an external heat bath because of their random nature which results in a good
ergodic behavior. Generalizing Eq. (2.40) results in a non-Marcovian stochas- Introducing a

non-Markovian
dynamics

tic equation, allowing to improve and extend the performances of MD simu-
lations. A Generalized Langevin Equation can be casted in a non-Markovian
form by introducing history dependent terms [120]

ẋ = p(t)/m

ṗ = −V ′(x) −

∫t
−∞ K(t− s)p(s)ds+ ζ(t)

(2.41)

where the friction coefficient was replaced by an integral over time of the
momentum weighted by a memory kernel K(t) that describes dissipation and
must be related to the time correlation of the noisy force via the fluctuation-
dissipation theorem [121, 122]

H(t) = 〈ζ(t)ζ(0)〉 = mkBTK(t) (2.42)
in order to be consistent with constant temperature thermodynamics condi-
tions.
The numerical integration of this equation is a hard task, especially for

the computation of the friction integral in Eq. (2.41), since it would require
the complete storage of the past trajectory of the momenta. According to
the Mori-Zwanzig theory [120, 123], it is possible to recast a non-Markovian
problem in an extended phase-space, supplementing the physical variables with
a set of n auxiliary momenta s, linearly coupled to the physical momentum
and among themselves. It has been proven that a Markovian dynamics in an
extended phase-space is a practical method to simplify the treatment of non-
Markovian problems [123–125]. The resulting Markovian Langevin equation
can be written as(

ṗ

ṡ

)
=

(
−V ′(x)

0

)
−

(
app aTp
āp A

)(
p

s

)
+

(
bpp bTp
b̄p B

)
ξ. (2.43)

Here, ξ is a vector of n + 1 uncorrelated Gaussian random numbers with
〈ξi(t)ξj(0)〉 = δijδ(t). All momenta are linearly coupled via thedrift matrix˝

Ap =

(
app aTp
āp A

)
(2.44)
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while the noise components are coupled via the diffusion matrix˝

Bp =

(
bpp bTp
b̄p B

)
(2.45)

Given the phase-space vector x = (x,p, s), it is useful to distinguish between
a matrix acting on the full vector x and one connecting subsets of its com-
ponents. Thus Ap and Bp are defined according to the compact notation
introduced in Ref. [109], in order to refer to the portions of the matrices
which describe the coupling between different parts of the state vector. Con-
sidering the extended phase-space vector x = (q,p, s), it is possible to distin-
guish between a matrix acting on the full x and one connecting subsets of its
component, according to the scheme

q p s

q mqq mqp mTq
p m̄qp mpp mTp
s m̄q m̄p M

}
Mp

}
Mqp

(2.46)

In this context, referring to Eq. (2.43), the vectors ap, āp, bp, b̄p represent
the coupling between the p and s variables; app and bpp act only on the
momentum p and the submatrices A and B account for the coupling between
the additional momenta. Integrating out the s DOF in Eq. (2.43), a non-
Markovian equation of motion for the physical variables (x,p) is recovered
and it was shown [107] that the memory kernel is related to the drift and
diffusion matrices via

K(t) = 2appδ(t) − aTpe
−|t|Aāp (2.47)

as well as the noise correlation is:

H(t) = dppδ(t) + aTpe
−|t|A [Zap − dp] (2.48)

where Dp = BpBTp and Z =
∫∞
0 e

−AtDe−ATtdt. The details of the integra-
tion of the auxiliary momenta s are reported in Ref. [107].
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The elements of the matrices Ap and Bp control the memory functions
of the equation, thus determining the dynamics and the stationary distri-
bution of the system. It is then possible to introduce the conditions for Canonical

samplingcanonical, constant-temperature sampling. A further matrix is introduced
Cp = 〈(p, s)T (p, s)〉, which is the static covariance matrix and is related
to the drift and diffusion matrices by

ApCp + CpATp = BpBTp (2.49)

Parts of Cp enter the expression for the Fourier transform of the memory
kernels of Eqs.(2.47) and (2.48)

K(ω) = 2app − 2aTp
A

A2 +ω2
āp

H(ω) = K(ω)

(
cpp − aTp

A
A2 +ω2

cp

)
+

+ 2ω2
(

aTp
A

A2 +ω2
cp

)(
1+ aTp

A
A2 +ω2

āp

) (2.50)

Equations (2.50) show that, in order to satisfy the fluctuation-dissipation
theorem [120], which requires H(ω) = kBTK(ω), it is necessary to choose
cpp = KBT and cp = 0. Since the kernels, and therefore the dynamics of
(q,p), do not depend on the C block in Cp, Cp = kBT can be chosen which
lead to a fluctuation-dissipation theorem in the form

Dp = BpBTp = kBT(Ap + ATp) (2.51)

Together with Eq. (2.49), the fluctuation-dissipation theorem fixes Dp once
Ap is given. However different interesting features can be investigated if the
fluctuation-dissipation theorem is violated: in particular, the possibility of im-
plementing the GLE thermostat in its hot-spot˝ version will be explored in
Chapter 6.
The above method has been originally developed by the group of Ceriotti,

Bussi and Parrinello and a detailed derivation of the GLE thermostat, together
with benchmarks and different applications, can be found in Refs. [107–111].
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A mong many other intriguing properties, porous silicon (PS) is charac-
terized by a thermal conductivity κ up to three orders of magnitude

smaller than in c-Si [126] and by the ease of increasing the concentration
of charge carriers by gas adsorption [127, 128]. These features make it very
promising for thermoelectric conversion [129]. As already stated in the Intro-
duction, thermoelectric materials can convert a thermal gradient into elec-
tricity. They represent one of the most appealing clean energy sources, as
they allow transforming waste heat, normally regarded as a source of loss,
into useful energy that can be easily harvested and stored. Unfortunately, the
low efficiency of these materials has prevented their widespread use, confin-
ing them to niche applications. Therefore, the design of new materials whose
lattice thermal conductivity is more largely affected than the electrical conduc-
tivity by some additional structural features is one of the most active research
lines in thermoelectricity. PS is also a perfect candidate for thermal insulation
[130, 131] and, therefore, is under extensive investigation as a key energy
material.
In this section, an detailed investigation about the role of porosity in thermal

transport is given. Moreover, it will be taken into account the interplay with
other morphological defects (MoDs), such as grain boundaries, and reduced
dimensionality, as occurs in porous nanowires (NWs).

47
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3.1 porous silicon

Several experimental studies have been performed, reporting a wide range of
κ values, depending either on doping and on fabrication techniques [132]. The
lowest values 0.04 6 κ 6 1.2 W m−1 K−1 have been achieved for p- and p+-
doped silicon in disordered porous samples with porosity varying from 40%
to 80% [133–135]. Tang et al. [136] instead focused on the thermoelectric
properties of samples with cylindrical pores arranged in a hexagonal pattern,
reporting that κ is reduced by a factor 100 with respect to c-Si, reaching
a figure of merit of ZT∼ 0.4. From a theoretical point of view, Lee et al.
[131, 137] used a combination of classical MD and ab initio DFT to study the
thermoelectric properties of nano-PS, characterized by periodically arranged
circular and square pores, estimating 0.6 6 κ 6 2.5 W m−1 K−1, and ZT=
0.4. He et al. [126] performed MD and lattice dynamics calculations in thin
films with cylindrical pores, showing that κ could be reduced up to a factor
20 with respect to bulk c-Si.
Although the above scenario offers quite a number of reliable determinations

of κ in many PS samples differing by morphology, a general picture is still miss-
ing in that the correlation between heat transport properties and some overall
feature related to porosity is still unclear. This is detrimental to understanding
possible general structure-property trends. In particular, comparatively little
attention has been so far given to characterize by atomistic simulations ther-
mal transport in samples with disordered porosity, a configuration closer to
the experimental situation. As a matter of fact, it is very unlikely to obtain
a real sample with an ordered array of pores especially when using etching
fabrication processes which do not allow to control the spatial and shape dis-
tribution of voids. Another important feature is that etching introduces oxide
layers on the pore surfaces. This section is addressed to investigate some as-
pects of the above introduce open problems: atomistic simulations are used
to inform an effective model describing on a general basis the relationship be-
tween κ and interface density (i.e. the ratio between porosity and average pore
diameter). The model here developed, including and extending the previous
Eucken model valid only for macroporous composites [138, 139], is applied to
both ordered and random nano-PS structures, providing a robust rationale to
understand and predict κ values, once the system morphology has been given.
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3.1.1 Nanopores generation

A bulk c-Si matrix has been modeled by a simulation cell with length Lz
varying in the range 24 6 Lz 6 136 nm (see below) and fixed 13.6×13.6
nm2 section in the xy-plane. The resulting number of atoms varied therefore
from 0.2× 106 to 1.3× 106, corresponding to simulation cells large enough
to reproduce all the main structural features of PS. Two different kinds of
systems were investigated: ordered porous silicon (OPS), where the porosity is
created by arranging a periodical array of spherical pores, and random porous
silicon (RPS), with randomly distributed, sized and shaped pores.
In general, the porosity

ϕ ≡
Vpores

Vsystem
(3.1)

is defined as the ratio between the total volume Vpores of the regions where Si
atoms have been removed and the system volume Vsystem [140]. The porosity
itself does not provide any relevant information on the system morphology
since, at least for OPS, it depends on two parameters, namely: the number of
the pores Np, and the pore diameter dp, i.e. ϕ = ϕ(Np,dp).In principle, the
same given porosity ϕ can be obtained by creating a large number of small
pores or by just few larger ones. Three examples of OPS are shown in Fig. 3.1a, Ordered porous

siliconcharacterized by the same porosity ϕ=0.14, but different pore size dp. As
extensively explained in the next section, the quantity that identifies accurately
the porous system and its inner surfaces is the interface density Ψ. In particular,
it will be shown that the overall thermal conductivity monotonically depends
on Ψ.
As for OPS, spherical pores with diameter dp were arranged in a simple

cubic lattice or in a tetragonal lattice: the array of pores was created by
assigning the positions of the center of the pores and then by removing the
atoms contained in the sphere with radius dp/2 (see Fig. 3.1a).
As for RPS, educated guesses were added to the above procedure in order

to enforce a twofold character of the resulting spatial distribution of pores,
namely: randomness and uniformity. Such distribution is achieved by defining Random porous

siliconcontiguous subregions in the simulation cell: inside each region atoms are ran-
domly selected and a surrounding sphere is drawn by considering an average
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(a)

dp= 5.0 nm  - = 0.14

dp
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Figure 3.1. a: OPS samples with same porosity ϕ = 0.14, but different pore diame-
ter dp. Pictures show a 1.36 nm-thick longitudinal section. Heat flux is
generated along the z-direction (see text). b: RPS samples with different
porosity ϕ. The zoomed frames provide additional details on the atomic
scale structure. Pictures show a 1.36 nm-thick longitudinal section and,
therefore, matter is not discontinuous. Heat flux is generated along the
z-direction (see text).

diameter of 4.0 nm, sampled from a Gaussian distribution with a standard
deviation of 1.5 nm. All atoms lying inside the sphere are removed and further
iterations, where additional small pores are created or small portion of mate-
rial restored, are then carried out until the desired porosity is obtained within
a certain tolerance. Such procedure is repeated for every subregion defined in
the system. The uniform distribution of pores is not only intended to mimic
a typical experimental condition [132], but it is also required by the assump-
tion underlying the AEMD method adopted here to calculate κ [98–100]. Both
structures were carefully equilibrated by simulated annealing up to 900K, fol-
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Figure 3.2. Red triangles: local porosity of a typical RPS sample calculated along the
z-direction. Horizontal solid line: average porosity. Shaded area: standard
deviation for porosity.

lowed by a further equilibration at room temperature for a total simulation
time of 0.6 ns. This procedure allows inner surfaces to fully relax towards a
highly-defected structure, very similar to amorphous silicon. In Fig. 3.2 are
reported the calculated ϕ along the z direction of a typical RPS, showing that
the deviation around the pre-set value of ϕ=0.30 is indeed very small.
Finally, when dealing with disordered structures like RPS (which are shown in

Fig. 3.1b) configurational averaging is requested in order to provide quantita-
tive information. Therefore, for each value of porosity the thermal conductivity
was averaged over four different samples (with fixed size and porosity).

The equations of motion have been integrated by the velocity-Verlet algo-
rithm with a time step as short as 2 fs and simulations have been performed
using the LAMMPS [141] package and the EDIP potential [142]. This interac-
tion scheme has been adopted since it is accurate in describing noncrystalline
forms of silicon, as indeed required for the present investigations. More im-
portantly, it has been elsewhere established its accuracy in predicting the
thermal transport properties of disordered silicon forms, like, e.g., amorphous
and nanocrystalline ones [98]. See Appx. B for a detailed discussion about this
interatomic potential. Finally, the reliability of the present simulation protocol
is also proved by the good agreement found for the AEMD thermal conduc-
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Lz [nm] Np κ [W m−1 K−1]

ϕ = 0.15 ϕ = 0.25 ϕ = 0.35 ϕ = 0.45

dp = 3.0 nm dp = 3.5 nm dp = 3.9 nm dp = 4.3 nm

54.3 99 3.91 2.12 1.09 0.65
81.5 153 4.26 2.26 1.28 0.73
108.6 198 4.67 2.37 1.20 0.70
135.8 252 4.77 2.48 1.31 0.75∞ (extrapolated) 5.6±0.2 2.8±0.1 1.5±0.1 0.8±0.1

Table 3.1: Thermal conductivity κ for various OPS samples, differing in porosity ϕ,
pore diameter dp, pore number Np and size Lz. These data are also
reported in Fig. 3.3a.

tivity of c-Si with the BTE prediction of Refs. [105, 126, 143] based on the
same EDIP potential, although the actual value (i.e., κ = 294 W m1K1) is
somewhat larger than the experimental one.

3.1.2 Size dependence in porous systems

As already explained in 2.2.4, MD simulations performed on cells with finite
length Lz it occurs that κ = κ(Lz) due to a fraction of the heat carriers
having a MFP longer than Lz [97, 105].
By adopting the usual 1/κ(Lz) procedure [97, 105], size effects in OPS were

investigated by considering four values of porosity in the range 0.15 6 ϕ 6
0.45 and by calculating κ(Lz) for systems with 54.3 6 Lz 6 135.8 nm. The
results are shown in Fig. 3.3a and are also reported numerically in Table 3.1.
A linear 1/κ vs. 1/Lz trend is found, although its slope is comparatively much
smaller than in c-Si [98], providing evidence that, for the system dimensions
here considered, size only marginally affects thermal conductivity predictions.
Consistently with previous findings [126, 144], this suggests that pores in-
deed act as very efficient scatterers for heat carriers, causing a considerable
reduction of their MFP.
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Figure 3.3. a: Inverse thermal conductivity 1/κ vs. inverse cell size 1/Lz for OPS
samples with different porosity. b:Thermal conductivity κ as a function
of cell size Lz for RPS system with different porosity. The horizontal solid
lines (shaded area) represent the average values (standard deviation).

As for RPS, a larger range of system sizes was explored, corresponding to
24.4 6 Lz 6 135.8 nm. The results are summarized in Table 3.2: interestingly
enough, a really weak dependence of κ on Lz is observed (even at very low
porosity), as confirmed by Fig. 3.3b. The conclusion is straightforward: a
random distribution of unequally shaped and sized voids fully inhibits the
long range features of any vibrational modes, regardless the actual value of
ϕ.
Based on the benchmark calculations described in this section, it is possible

to argue that in PS the estimation of the thermal conductivity by AEMD is only
marginally affected (OPS), or even not at all affected (RPS), by the selected
length Lz of the simulation cell. Therefore,the following investigations is fo-
cused to just one reference system size, namely Lz = 81.6 nm. This offers the
best compromise between numerical convenience and accuracy (as shown in
Figs. 3.3a and 3.3b)
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Lz [nm] κ [W m−1 K−1]

ϕ = 0.15 ϕ = 0.25 ϕ = 0.35 ϕ = 0.45

24.4 3.2±0.1 2.2±0.5 0.8±0.2 0.9±0.3
32.6 3.5±0.1 2.0±0.5 1.2±0.2 0.8±0.3
40.7 4.8±0.1 1.7±0.5 0.8±0.2 0.7±0.3
54.3 3.1±0.1 2.0±0.5 1.0±0.2 0.4±0.3
81.5 5.8±0.1 2.9±0.5 0.9±0.2 0.7±0.3
108.6 4.3±0.1 1.6±0.5 1.0±0.2 0.4±0.3
135.8 4.6±0.1 2.2±0.5 1.2±0.2 0.4±0.3
〈κ〉 4.2±0.1 2.1±0.5 1.0±0.2 0.6±0.3

Table 3.2: Thermal conductivity κ for various RPS samples, differing in porosity ϕ and
size Lz. These data are also reported in Fig. 3.3b. The indicated errors
reflect a configurational average over 4 different samples. The average
thermal conductivity 〈κ〉 is reported for any porosity.

3.1.3 κ vs. porosity - ordered systems

As mentioned before, in OPS ϕ only depends on Np and dp. Therefore, the
porosity can be varied either by fixing the number of pores and by varying
their diameter or, conversely, by distributing a different number of equally
sized pores.

The first option was exploited by generating seven different samples with
0.03 6 ϕ 6 0.34, each containing as many as Np = 750 identical pores
(with suitable dimension to accommodate any assigned porosity) arranged in
a simple cubic lattice. The second option, instead, was exploited by generating
a new set of seven different samples, where an increasing number of pores
was placed on a tetragonal lattice so to span the 0.02 6 ϕ 6 0.27 porosity
range. In this case all pores have the same dimension dp=3.3 nm. For this
second case-study, the procedure was also repeated by choosing dp=5.0 nm.
The results for the two procedures are summarized, respectively, in Table 3.3
and in Tables 3.4 and 3.5.
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ϕ dp [nm] κ [W m−1 K−1]

0.03 1.0 8.67
0.06 1.3 6.24
0.09 1.6 4.93
0.14 1.8 2.70
0.22 2.0 1.71
0.31 2.3 0.87
0.34 2.4 0.73

Table 3.3: Thermal conductivity κ for various OPS samples with increasing porosity
ϕ and pore diameter dp. The number of pores is fixed at Np = 750.

The common feature is that the thermal conductivity of OPS is greatly
reduced with respect to the bulk crystalline value. However, samples obtained
by following the first procedure have, on average, a much smaller κ, precisely:
as small as 50% or 30% of the corresponding one for samples obtained by the
second procedure with dp = 3.3 nm or dp = 5.0 nm, respectively. Although
these results are expected and qualitatively explained by the presence of several
internal interfaces (at each matrix/pore boundary) which provide an efficient
phonon scattering mechanism, a more quantitative picture is definitely needed
in order to elaborate a rationale for the observed trends.

3.1.4 Effective thermal conductivity in porous media

There have been many attempts to provide a general law κ = κ(ϕ). The
most widely referenced model was originally proposed by Eucken, based on an
effective medium approximation for two-phase porous media [138, 139, 145–
147]. There, the first- and second-phase are, respectively, the material forming
the host matrix and the embedded voids. By assuming that the second phase
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ϕ Np κ [W m−1 K−1]

0.02 18 22.22
0.05 36 11.01
0.09 72 6.15
0.14 108 4.61
0.18 144 3.75
0.23 180 3.22
0.27 216 2.96

Table 3.4: Thermal conductivity κ for various OPS samples with increasing porosity
ϕ and number of pores Np. The pore diameter is fixed at dp = 3.3 nm.

is organized in spheres and that the distance between the spheres is much
larger than dp, the Eucken model leads to the relation

κeff(ϕ) = κbulk
1−ϕ

1+
ϕ

2

(3.2)

that accounts for the reduction of the thermal conductivity κbulk of the
first-phase material, caused by the presence of the pores. Eq. (3.2) accurately
describes the thermal conduction properties of composites with macropores,
i.e. when the MFP of the vibrational modes of the pristine (first phase) ma-
terial is smaller than the typical pore size. Conversely, in porous materials
the situation is just the opposite. Furthermore, Eq. (3.2) is basically scale-
invariant, as typical of effective medium theories. Therefore, it does not carry
any information about the dependence of thermal conduction on structural
details like, e.g., the pore size (as indeed reported experimentally [148, 149]).
Any model aimed at improving the Eucken one must fully exploit the above
two features, namely: the actual presence of pores (common to both macro-
and nano-porous systems) and their nanoscale features (which additionally
affect, through atomic-scale details).
As for the first issue, the standard picture is that the diffusion of microscopic

heat carriers is affected by pores as well as by their mutual scattering. A differ-
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ϕ Np κ [W m−1 K−1]

0.03 8 24.62
0.05 12 12.17
0.07 16 9.54
0.12 28 7.06
0.14 32 6.64
0.17 40 5.98
0.21 48 5.16

Table 3.5: Thermal conductivity κ for various OPS samples with increasing porosity
ϕ and number of pores Np. The pore diameter is fixed at dp = 5.0 nm.

ent maximum MFP for the carriers is therefore associated to each scattering
mechanism, respectively: Λpores and Λbulk. While for systems obeying Eq. Accounting for

nanoscale
features

(3.2) it is easily found that 1/Λpores = 2Λbulk/ϕ, the evaluation of Λbulk
requires an anharmonic lattice dynamics calculation. This second scattering
mechanism is the dominant one in the pristine material (i.e. in the first phase
matrix with no voids). Applying Matthiessen rule [46, 66] Λeff reads as

1

Λeff
=

1

Λbulk
+

1

Λpores
(3.3)

which is the effective distance traveled by heat carriers when both the above
mechanisms limiting their diffusion are properly taken into account.
As for nanoscale features, it is convenient to consider the interface density

Ψ easily defined as

Ψ =
Ninterface
Vsystem

4π(dp/2)
2 =

6ϕ

dp
(3.4)

A new scattering length Λinterface (associated to interface-specific scatter-
ing events) is accordingly defined, that can be written in the following form

Λinterfaces =
1

Ncoll
=
4

Ψ
=
2dp

3ϕ
(3.5)
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where

Ncoll =
πd2p

4

Npores

Vsystem
(3.6)

is the number of interface scattering events per unit length. The factor πd2p/4
is the cross section for scattering at spherical pore of diameter dp. By adding
this new scattering contribution to Eq. (3.3), Λeff for a porous system can
be written as

Λeff =

[
1

Λbulk
+

1

Λbulk

ϕ

2
+
Ψ

4

]−1
=

Λbulk

1+
ϕ

2
+
3Λbulk
2dp

ϕ

(3.7)

In order to proceed further, it is necessary to recall that the thermal conductiv-
ity of an homogeneous (i.e. containing no voids) material with heat capacity
Cv is usually approximated as [66]

κ ∼
1

3
CvvgΛ (3.8)

where only the dominant heat carrier with MFP equal to Λ and propagating
with speed vg is considered. When considering a (nano)porous material, the
heat capacity can be usefully replaced with an effective value Cv,eff = (1−

ϕ)Cv,bulk (where Cv,bulk is the specific heat of the first-phase material),
since the heat capacity of the pores is negligible [150]. Furthermore, phonon
group velocity is mostly determined by short-range interactions and it is correct
to assume that is not that much affected by the presence of the pores; this
is confirmed by MD simulations and lattice dynamics calculations [126].In
conclusion, under these assumptions and by combining Eqs. (3.7) and (3.8)
the following relation is obtained

κeff(ϕ) = κbulk
1−ϕ

1+
ϕ

2
+
3Λbulk
2dp

ϕ

(3.9)

which provides a simple, but very informative general expression for the effec-
tive thermal conductivity in a porous material. Interestingly enough, Eq. (3.9)Effective thermal

conductivity not only contains informations about the pristine matrix (through κbulk and
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Figure 3.4. Thermal conductivity κ as a function of porosity ϕ in OPS samples with
fixed number of pores. Black solid line: effective model provided by Eq.
(3.9). Red dashed line: standard Eucken model provided by Eq. (3.2).
Dots are typically as large as the standard deviation on κeff.

Λbulk terms) and the overall porosity ϕ, but it also properly takes into ac-
count the actual morphology of the pores through the dp parameter. This fea-
ture represents a major step forward since it makes Eq. (3.9) able to describe
porous systems, at variance with Eq. (3.2) which is limited to macroporous
composites. Nevertheless, the functional form of κeff(ϕ) is the same of the
Eucken model: in fact it is worth noting that for dp � Λbulk it reduces back
to the Eucken model. The factor β =

3Λbulk
2dp

can be enclosed in a single
parameter to be fit on the results of AEMD simulations.
In Fig. 3.4 are reported the κ values obtained by AEMD (black squares) for

OPS with fixed pores; the solid black curve represent the effective thermal
conductivity relation given in Eq. (3.9) that has been used to fit the data and
the red dashed curve is the Eucken model. Fig. 3.4 clearly stands for the major
improvement of the present model to the conventional Eucken one. The value
for the β parameter obtained by fitting the AEMD data is 55.3± 4.4. As dp
is known for each point in the plot, β can be used to calculate the values for
Λbulk. This order-of-magnitude estimate predicts 40 . Λbulk . 90 nm, in
nice agreement with Ref. [105] where the dominant contribution to thermal
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Figure 3.5. Thermal conductivity κ as a function of porosity ϕ in OPS samples with
either fixed number of pores Np (black squares) and fixed pore diameter
dp=3.3 nm (red triangles) and dp=5.0 nm (green dots). Solid lines:
effective model provided by Eq.(3.9).

conductivity in c-Si is calculated to come from phonons with MFP as long as
∼102 nm.
In Fig. 3.5 is shown a comparison between the two different classes of OPS

here investigated, namely: those with fixed Np (black symbols) and those
with fixed dp (red and green samples). For both dp = 3.3 nm and dp = 5.5
nm, the agreement between calculated AEMD data and Eq.(11) is definitely
less good than by keeping Np fixed. This can be explained considering the
local morphology of the samples: the structural relaxations at the pore/matrix
interface result in the formation of an amorphous or highly-defected spherical
shell surrounding the pore. The amount of defected matter increases with
growing pore diameter, as shown in Fig. 3.6.
It is worth remarking that the Eucken model for κeff(ϕ) has been de-

rived by assuming a two phase composite structure, while the observed de-
fected/amorphous shell is in fact a third phase: in the case of OPS with fixed
Np the agreement is good because the pores are very small and there is little
defected medium, while in the case of OPS with fixed dp (both values) the
actual amount of a third-phase material is too large to be neglected. This
statement is validated by counting the number (per pore) of atoms forming
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Figure 3.6. Detail of the microscopic structure nearby a typical spherical pore with
increasing diameter dp. The yellow circle identifies approximately the shell
corresponding to the highly-defected region.
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Figure 3.7. Number of defected atoms (per pore) as function of the pore diameter in
OPS samples. Red squares: systems with constant number of pores. Green
dots (blue triangles): systems with pore diameter fixed at dp = 3.3 nm
(dp = 5.0 nm).

the third phase, as shown in Fig. 3.7. Defected atoms have been identified by
evaluating their on-site energy, as calculated by the adopted EDIP potential:
while in an ideal c-Si lattice at room temperature atoms have a configurational
energy of about ∼ −4.6 eV/atom, in the highly defected shells this value is
raised above −4.3 eV/atom. Fig. 3.7 clearly indicates that high-energy atoms
have a much smaller occurrence in OPS with fixed Np: in this case Eq. (3.9)
works at its best.

Another interesting feature of Fig. 3.5 worth of further investigation is that
the larger are the pores, the worst is the agreement between calculated AEMD
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samples with ϕ =0.28.

data and the model provided by Eq. (3.9), as indicated by the reduced χ2 of
the fit reported in figure. Since κ ∼ (3Λbulk/2dp)

−1 it is obvious that, for
fixed porosity, the smaller are the pores the smaller is the thermal conductiv-
ity.This is also related to the interface density Ψ = 6ϕ/dp: for a given value
of porosity it increases with decreasing pore diameter. In order to better pointInterface density
out this issue, in Fig. 3.8 is reported the thermal conductivity of six OPS with
same porosity ϕ = 0.28, but different pore number and dimension. The corre-
sponding values are listed in Table 3.6. The main conclusion is that, although
the porosity in these system is constant, thermal transport is highly affected
by an increasing interface density to which the probability of scattering is
directly linked.

3.1.5 κ vs. porosity - random systems

In RPS it is hard to define the position, size, and shape of each pore. Therefore,
their porous structure is rather characterized by providing the distribution of
the pore dimensions which, by construction, is a gaussian distribution with
average value 〈dp〉 = 4.0 nm and a standard deviation of 1.5 nm, as reported
above. Table 3.7 lists the results for several RPS with 0.05 6 ϕ 6 0.50,
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Np dp [nm] κ [W m−1 K−1]

6 11.0 7.00
28 6.6 1.75
108 4.2 1.36
224 3.3 0.78
500 2.5 0.83
1116 2.0 0.70

Table 3.6: Thermal conductivity κ for various OPS samples with same porosity ϕ =

0.28, but varying number of pores Np and pore diameter dp.

showing, similarly to OPS, a monotonic decrease in thermal conductivity by
increasing porosity. A direct comparison to experimental data is very hard,
since little information is available for samples characterized at the nanoscale
by a pore distribution similar to the one here investigated. However, in Ref.
[151] the thermal conductivity in PS crystallites has been measured by the
micro-Raman technique reporting κ-values well below 5 W m−1 K−1 for any
ϕ > 0.3. This is a further convincing argument supporting the results here
presented. Furthermore, the κ = κ(ϕ) trend there reported is very similar
to these findings. Furthermore, in Refs. [133, 135], it is reported a thermal
conductivity for high-porosity samples lower than 2 and 1.5 W m−1K−1, re-
spectively. Once again these results are in good agreement with those ones
reported in Table 3.7. Finally, in Ref. [152], a direct measurement of thermal
conductivity in p+-doped mesoPS is reported with ϕ ∼ 0.5 as small as 1
W m−1K−1 while, for a similar porosity, the rather different value of 3.9 W
m−1K−1 is reported in Ref. [153], which further indicates the large scattering
of experimental data.

It is remarkable that, as shown in Fig. 3.9, the thermal conductivity values in
RPS are slightly larger than in OPS with fixedNp, indicating a reduced interface
density. This is due to the fact that, since pores do not overlap, the interface
density is maximum in OPS. Furthermore, AEMD results for RPS are in good
agreement with Eq. (3.9). This suggests that, for samples containing a random



64 nanostructured silicon

ϕ κ [W m−1 K−1]

0.05 9.8±0.9
0.10 5.2±0.3
0.15 4.6±0.1
0.20 2.7±0.4
0.25 2.0±0.4
0.30 1.3±0.5
0.35 0.9±0.2
0.40 0.7±0.2
0.45 0.5±0.2
0.50 0.2±0.1

Table 3.7: Thermal conductivity κ for various RPS samples with increasing porosity
ϕ. Reported errors reflect a configurational average over four samples.

array of pores, κ is neither affected by their actual shape, nor by their spatial
distribution. As a further sanity check for these calculations, the average pore
diameter in RPS was evaluated from the corresponding β parameter. The
result is 〈dp〉 = 4.3± 1.3 nm, fully consistent with the values used during the
samples generation. Incidentally, these results suggests a possible practical
procedure for estimating the pore average size, indeed a relevant information
hard to get through thermal transport measurements [154].

3.1.6 Beyond the Eucken model

All the present calculated AEMD data are in fact very accurately predicted by
a model where the key structural parameter is the interface density Ψ. By
generalizing Eq. (3.9) κeff can be casted in the form

κeff(Ψ) = κbulk
1− dpΨ/6

1+ dpΨ/12+ΛbulkΨ/4
(3.10)



3.1 porous silicon 65

0

5

10

15

20

25

30

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

φ

κ
[W

 m
 

K
-1

]
-1

Random distribution
<dp> = 4.0 nm - χ2= 0.33

Ordered distribution

p=750 - χ2=0.20N

Figure 3.9. Thermal conductivity κ as function of porosity ϕ in random (red dots) and
ordered (black squares) PS samples. Solid lines: effective model provided
by Eq. (3.9). Symbols are typically as large as the standard deviation of
the calculated thermal conductivity.

where Ψ now replaces all the structural parameters so far considered. It is
necessary to stress that although the interface density has been previously
defined for spherical pores, it is actually independent from their shape and it
can be used to identify universal trends in keff. A natural consequence is that
interface density, rather than the overall porosity, is a more effective quantity
to fully describe thermal conductivity as a function of system conformation.
As a matter of fact, samples with comparable interface density tend to have
similar thermal conductivities, although having a different porosity. This is
illustrated in Table 3.8 where systems with same porosity, but unlike interface
density, show remarkably different thermal conductivity. On the other hand,
when the interface density is similar, then so is thermal conductivity, regardless
of the porosity.
In Fig. 3.10 is shown κ for the whole set of samples studied so far (namely,

any OPS and RPS) as a function of interface density (left) and porosity (right).
The two curves are obtained by fitting the data using Eq. (3.10) and Eq. (3.9)
for Ψ and ϕ, respectively. The use of interface density, rather than porosity,
as the main structural parameter in Eq. (3.10) gives a more accurate fit
of the data, as reflected by the reduced χ2 values, respectively: χ2Ψ = 1.2
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Ψ [nm−1] dp [nm] Np ϕ κ [W m−1 K−1]

0.153 11.0 6 0.28 7.0
0.164 3.3 72 0.09 6.2
0.840 2.0 1116 0.28 0.7

Table 3.8: Thermal conductivity κ for three PS samples differing by interface density
Ψ, pore diameter dp, pore number Np, and porosity ϕ.
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Figure 3.10. Symbols: Thermal conductivity κ as function of the interface density Ψ
(left panel) and porosity ϕ (right panel) for all systems here investigated.
Solid lines: effective model provided by Eq. (3.10) and by Eq. (3.9) for
the top and bottom panel, respectively. Shaded area: the deviation of
the calculated AEMD data (symbols) from such models.

and χ2ϕ = 3.5. The shaded regions in Fig. 3.10 top and bottom represent the
deviation of the calculated AEMD data from the models provided by Eq. (3.10)
and by Eq. (3.9), respectively. The smaller area of the red region stands for
a better agreement, i.e. for the improved accuracy of the extended Eucken
model provided by Eq. (3.10) based.
The main result of the present investigation is that the thermal conductivity

κ in PS does depend on porosity, as well as it is affected by the interface
density Ψ, namely by the ratio between porosity and average pore diameter.
Interestingly enough, Ψ is identified as the real key structural characteristic of
a porous sample, fully determining its ability to transport heat. The effective
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model based on the interface density fully describes the trends in thermal
conductivity reduction due to the increase of the interface scattering in porous
systems and provides evidence that Ψ is indeed a comparatively more effective
parameter in describing trends in κ than the overall sample porosity. The
agreement between the present simulation data and the effective atomistic
model here developed is very good, suggesting a possible way to measure the
average size of the voids in a typical experimental PS sample.

3.2 porous nanowires

Similarly to porous materials, semiconducting NWs [155–157] are a good exam-
ple of how lattice thermal conductivity is engineered without severely affecting
electronic transport. In fact, a suitable distribution of voids, whose typical size
is smaller than the MFP of heat carriers, but still larger than the charge carrier
one, results in strong scattering of the former, with negligible effects on the
electrical conductivity [102, 136]. In NW, on the other hand, heat carriers are
scattered at the wire surface, while charge carriers are comparatively much
less affected. Accordingly, this effect is stronger in thin NW, with a larger
surface-to-volume ratio [158], and in the presence of rough surfaces [30, 159]
or other kinds of modulations [160]. The possibility to bring these two fea-
tures together is very appealing. From a few years on, single crystalline porous
silicon nanowires (PSNWs) can be fabricated [161] and have been proposed for
different applications, ranging from lithium-ion batteries [162] to solar cells
[163]. However, their use as thermoelectric materials is to date still largely un-
explored. The goal of the following section is filling this gap and quantifying
the reduction of the thermal conductivity in PSNWs, as well as investigating
its dependence on some specific features of the pore distribution, the over-
all porosity, the pore mean diameter and of the NW, such its diameter and
length. To this purpose, a simple model describing the leading effects of all
these factors is presented, followed by the comparison to MD simulations.
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3.2.1 Effective thermal conductivity in nanowires

A first attempt at capturing both the effects of nanosized pores and the finite
NW diameter can be easily constructed by adding a boundary scattering term
[26, 164] to the expression for the MFP through Matthiessen rule, extending
the modification to the Eucken model proposed in the previous section [102]

Λ−1 = Λ−1
anharmonicity +Λ

−1
porosity +Λ

−1
boundaries

= Λ−1
bulk +

(
1

Λbulk

φ

2
+
3φ

2dp

)
+
1− p

1+ p

α

dNW

(3.11)

where Λ is the MFP of heat carriers accounting for all scattering mechanisms,
Λi is the MFP due to the i-th scattering mechanism (i ∈ {anharmonicity,
porosity, boundaries}), dp is the pore diameter, Λbulk is the MFP limited by
phonon-phonon scattering in bulk material, ϕ is the above defined porosity,
where V is volume, dNW is the NW diameter, and β = α(1 − p)/(1 + p)

accounts for the shape of the NW cross section, a = 1 (a = 1.12) for circu-
lar (square) cross section, [164] and the surface polish (p = 1 for perfectly
reflecting surfaces and p = 0 for ideally rough surfaces).
When Eq. (3.11) is entered into the kinetic expression for the thermal

conductivity κ =
1

3
CeffvgΛeff, and taking into account the modified value of

the specific heat capacity C due to the presence of pore Ceff = (1−ϕ)Cbulk,
the model expression is obtained

κ

κbulk
=

1−ϕ

1+
ϕ

2
+
3ϕ

2dp
Λbulk +

β

dNWΛbulk

(3.12)

It is important to remark that the model given in Eq. (3.11) is addressed
to the leading scattering mechanisms, i.e., it is by construction adopting the
same treatment of the boundary scattering as in NWs, thus assuming the
gray˝ Matthiessen rule [165] for phonon MFP to be valid in the presence
of anharmonic, pore, and boundary scattering. The failure of Eq. (3.12) to
describe all situations here investigated (see Fig. 3.13b) leads to relax the
assumption of the validity of Matthiessen rule, especially in light of previous
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works where appreciable coupling between anharmonic and boundary scatter-
ing in thin films [166] and anharmonic and surface roughness scattering in
ultra-scaled NWs [167] was found.

So, in order to account for the anharmonic-boundary coupling, a simple lin-
ear expression Λbulk = Λbulk,0(1−γ1ϕ) is adopted, where Λbulk,0 is now
the bulk MFP limited by phonon-phonon scattering in bulk material and γ1
encodes the reduction of the average anharmonic MFP due to the disturbance
in the distribution function because of the presence of pores. Similarly, in order Pore-boundary

couplingto account for the pore-boundary coupling, β = β0 − γ2ϕ is set, where γ2
describes the change in surface polish as porosity increases, and an empirical
expression to adjust the coupling between porosity and surface scattering is
introduced

Λ−1
ϕ−dNW

= γ3ϕ/d
α
NW (3.13)

via a parameter γ3 and an exponent α. When all terms are included, the
final version of the model is

κ =
κbulk(1−ϕ)

Q
(3.14)

where

Q =
1+ϕ/2

1− γ1ϕ
+
3ϕ

2dp
Λbulk,0+

+
β0 − γ2ϕ

dNW
Λbulk,0 + γ3

ϕ

dαNW
Λbulk,0

(3.15)

While there have been some experimental measurements of the thermal
conductivity of PSNWs [168, 169] its lack of complete characterization in terms
of NW diameter and porosity renders comparison to this model difficult. Thus,
the model in Eq. (3.12) is compared to the thermal conductivity from AEMD
simulations [98].
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(a)

(b) (c) (d)

Figure 3.11. a: Side view of a PSNW with 0.3 porosity. Dark blue spheres represent Si
atoms, while the atoms that have been removed are displayed as light
yellow spheres for visualization purposes. b, c, and d: Cross-section views
at z = Lz/4, Lz/2 and 3Lz/4, respectively.

3.2.2 Nanowires structure construction

The starting reference structure is a NW oriented along the [111] crystallo-
graphic axis, with a diameter of 15 nm and a length of 90 nm. As discussed
in the following, diameters and lengths of up to 35 and 900 nm, respectively,
are also considered in some selected cases. Similarly to what described in
Sec. 3.1, pores are created by randomly selecting atoms and drawing a sphere
around them whose diameter is sampled from a Gaussian distribution with
given mean value and variance, taken to be 1.5 nm. Atoms inside the sphere
are removed, creating a pore; the probability of creating a pore is adjusted to
achieve a target porosity. Further iterations, where additional small pores are
created or small portion of material restored, are then carried out until the
desired porosity is obtained within a certain tolerance. As the AEMD method
requires a uniform thermal conductivity along the transport direction, the pore
generation procedure above described is applied within sequential regions of
the sample, in order to guarantee a uniform porosity along the wire axis. Con-
sidered porosities are 0.05, 0.15, 0.3, and 0.5, with average pore diameters,
i.e., the mean value of the Gaussian distribution, of 2, 3, and 4 nm. A typical
structure is shown in Fig. 3.11.
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Due to the random nature of pore formation, all the thermal conductivities
here discussed have been obtained averaging over 3-4 independently generated
configurations with the same target porosity and pore diameter. While this
generation procedure is easily tailored on any arbitrary distribution of pore
shapes and sizes, it still does not account for the oxidation at the pore surface.
On the other hand, as already pointed out for PS, an amorphization of the
regions closest to the pore surfaces is observed, which might mimic some
characteristics of the native oxide, especially as the thermal conductivity of
amorphous Si is similar to that of amorphous SiO2 [170]. After generating
the pores, metastabilities in the structure were minimized by first performing
a structural relaxation followed by a heating/cooling cycle up to 900 K. This
cycle was performed with periodic boundary conditions, so that unattached
atoms or clusters eventually collided with the wire. After cooling back to 300
K, further thermalization proceeded for 200 ps, after which the thermostat
was removed and the simulation continued for 400 ps without appreciable
temperature drift, indicating successful thermalization. At this point, a step-
like temperature profile was set up by velocity rescaling for 200 ps for each
half, after which the AEMD procedure was allowed to proceed for 1 ns. Also in
this case the EDIP potential [142] was adopted for the calculation of the energy
and forces, and a time step of 2 fs was used throughout all the simulation
protocol [141, 171].

3.2.3 κ in porous nanowires

In what follows, the AEMD results are compared to the model expressions for
the thermal conductivity κ using the parameters in Table 3.9.
The parameters for Eq. (3.12) were obtained by a fit to the data in Figs.

3.12 and 3.13a only because inclusion of the points in Fig. 3.13b in the target
dataset brought an insignificant improvement in Fig. 3.13b, while significantly
worsening the adjustment in Figs. 3.12 and 3.13a. On the other hand, the
parameters in Eq. (3.14) were chosen taking into account results in 3.13b
in addition to Figs. 3.12 and 3.13a. The main result of this investigation is
displayed in Fig. 3.12, where is reported the thermal conductivity, κ, of a
15 nm diameter PSNW as a function of the porosity, achieved by randomly
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Parameter Eq. (3.12) Eq. (3.14)

Λbulk,0 [nm] 65.4 68.5

γ1 . . . 1.55

β0 0.24 0.22

γ2 . . . 75.5
γ3 [nmα−1] . . . 104.0

α . . . 1.11

Table 3.9: Fitted parameter values for Eqs. (3.12) and (3.14).

introducing pores of 3 nm diameter, comparing it to the fits through Eqs.
(3.12) and Eq. (3.14). Notice that the value of Λbulk,0 agrees well with
the one fitted for bulk PS, 40 < Λbulk < 110 nm [102]. It is clear that
the presence of nanovoids results in a very strong reduction of the thermal
conductivity and a bare 5% of porosity is enough to decrease it approximately
to half of the value of the pristine wire. The sample variation of κ is a few
percent. Notice that boundary scattering alone accounts for a reduction of a
factor of two for the pristine (ϕ = 0) NW with respect to bulk (κ/κbulk ∼ 0.5
in Fig. 3.12), but the rather low porosity ϕ = 0.3 results in an additional
reduction of one order of magnitude (κ/κbulk ∼ 0.05). In the case of the
highest porosity considered, ϕ ∼ 0.5, the influence of the pore diameter was
studied (inset of Fig. 3.12), comparing 2, 3, and 4 nm pores. A trend emerges,
indicating that smaller pores result in slightly stronger reduction of κ. This
effect was also observed in bulk PS, and it is a manifestation that at the
nanoscale the interface density plays a crucial role in the behavior of κ [102].
Since Eq. (3.14) provides a good fit to the data, the gray˝ Matthiessen
rule for the MFP is valid when combining anharmonic and pore scattering
mechanisms.
Fig. 3.13 shows the NW diameter dependence of κ for (a) a pristine NW and

(b) a PSNW with ϕ = 0.31. The red (blue) lines correspond to the expression
in Eq. (3.12) (Eq. (3.14)). So, the predictive power of the model is clearly
established for the case finite diameter NWs without pores (Fig. 3.13a). The
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Figure 3.12. Thermal conductivity as a function of the total porosity for pores of
average diameter of 3 nm in a 15 nm diameter and 90 nm long NW.
The estimated values of κ are referred to the thermal conductivity of
bulk c-Si, calculated in a computational cell of the same length and
cross-section. The dashed red (dashed-dot blue) line corresponds to Eq.
(3.12) [Eq. (3.14)] with the parameter values in Table 3.9. The symbols
in the main panel indicate the thermal conductivity of each sample. Inset:
dependence of κ on the pore diameter in the case of porosity ϕ = 0.5.

predictions of the model Eq. (3.12) are much less satisfactory for the case of
the NW with finite porosity (Fig. 3.13b); while the order of magnitude of κ
is correctly obtained, the model fails to reproduce the almost doubling of the
conductivity as the NW diameter increases from 15 nm to 35 nm. From this, the
necessity to introduce terms in the model not conforming to Matthiessen rule
is evident. The failure of Matthiessen rule in ultra-scaled NWs in the presence of
surface roughness and anharmonic scattering has been tentatively attributed
to anharmonic scattering allowing the decay of high-energy non-propagating
(due to roughness) phonons into lower energy propagating states [167]. It is
conceivable that a similar mechanism might be at work in PSNWs, with the NW
surface redistributing the number of vibrational modes (propagons, diffusons,
and locons according to formalism introduced in Ref.[172]) expected to be
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Figure 3.13. a: Thermal conductivity as a function of the nanowire diameter, dNW ,
for a pristine NW. b: Thermal conductivity as a function of the nanowire
diameter for a PSNW with porosity ϕ = 0.31 and pores of average
diameter of 3 nm. Values are referred to the thermal conductivity of
bulk c-Si. Lines have the same meaning as that in Fig. 3.12.

present in these systems with impaired translational symmetry due to the
presence of pores.

Finally, as explained in Sec.2.2.4, heat carriers with a wavelength larger
than the simulation cell cannot be described, a well-known fact that results
in an underestimation of the thermal conductivity [97, 173]. This is why, to
be consistent, the reduction of all the values of κ discussed so far has been
calculated relatively to a cell of bulk Si of the same length. In general, the
cell required to obtain a converged estimate of κ in Si-based systems, where
phonons with MFP of up to hundreds of nm can contribute to heat transport
[174], requires a very significant computational workload. The usual κ−1(L−1z )

procedure [175] is followed for the pristine and a porous nanowire with porosity
ϕ = 0.3.

As seen in Fig. 3.14, for the pristine nanowire, the linear dependence of
κ−1(L−1z ) is obtained, which allows extrapolating a value of κ∞ = 6.0 W
m−1K−1. The PSNW, on the other hand, exhibits a very poor dependence
on Lz, indicating that the smallest cell size considered already accounts for
the MFP of all phonons contributing to the thermal conductivity. In this case,
the plot reports just the mean value of the calculated data points, because
of the large uncertainty of the (small) fitted slope of κ−1(L−1z ). Notice that
this means that the reductions of κ discussed so far would be even larger,
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Figure 3.14. a: Inverse of the thermal conductivity as a function of the inverse of
the nanowire length along the transport direction, Lz, for a pristine NW.
A linear fit of the κ−1(L−1z ) allows extrapolating the value of κ∞ for
L−1z → 0. b: Inverse of the thermal conductivity as a function of the
inverse of a PSNW with porosity ϕ = 0.3 and pores of average diameter
of 3 nm. In absence of a clear Lz dependence, just the mean value of
the data points is reported.

because the thermal conductivity of the non-porous wire is being underesti-
mated: κ0.0

Lz=90 nm
/κ0.3
Lz=90 nm

∼ 10 for the Lz = 90 nm cell was obtained,
while for the ideally infinite-long NWs it results κ∞0.0/κ0.3∞ ∼ 20.

3.3 porous polycrystalline silicon

The results discussed so far provide evidence that the thermal conductivity κ
of a crystalline material may be significantly reduced by the introduction of
MoDs such as pores. However also dislocations, internal surfaces, precipitates
and other extended (2D and 3D) defects are known to strongly influence ther-
mal transport. As already mentioned, in the development of high-performance
thermoelectric materials it is of paramount importance to optimize the effi-
ciency of scatterers, that in principle should be selected so as to decrease κ
while marginally impacting the electrical conductivity σ. Possibly the most
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dramatic display was provided in the case of silicon NW [30, 159], where a
proper choice of nanowire wall roughness led to a more than tenfold decrease
of κ while retaining σ values close to those of bulk c-Si. It is therefore not
surprising that over the last few years a large number of papers have appeared
proposing more sophisticated theoretical approaches to the analysis of phonon
scattering. A key question they addressed was regarding the contributions of
optical and acoustic phonons to the macroscopic thermal conductivity, and
how they were suppressed by MoDs.

In lithographically-defined c-Si membranes it was shown that the introduc-
tion of cylindrical pores with diameters ranging from 1.9 to 10.9 µm leads
to a reduction of κ depending on the pore diameter up to room temperature
[147]. This is a non-trivial observation if one considers that in the gray model,
the phonon MFP at room temperature in bulk silicon is around 0.2 µm [176].
A recent experiment carried out in p-type polycrystalline silicon (pc-Si) films
[177] reported a decrease of κ with the hole radius, ranging from 120 nm
down to 30 nm, in periodic structures with a fixed period of 300 nm. Grain
sizes were widely-distributed, extending from 10 to 100 nm, thus overlapping
with hole radii. Analysis led to the conclusion that thermal conductivity was
controlled by volume reduction, sensibly through the heat capacity. However,
a more detailed evaluation of the scattering mechanisms was not possible.
The analysis of the reduction of thermal conductivity due to grain bound-

ariess (GBs) and porosity also motivated a revision of the standard kinetic
model. Wang et al. [178] showed that below the Debye temperature ΘD,
the thermal conductivity of nanocrystalline silicon pellets obtained by spark
plasma sintering followed a quadratic (rather than cubic) dependence on tem-
perature. This suggested an ω-dependent MFP, with Λ ∝ ω−1. Hua and Min-Frequency-

dependent
MFP

nich [179] refined the model using Monte Carlo simulations, and confirmed a
frequency-dependent phonon transmissivity at grain boundaries. Simulations
showed that up to ≈ 60% of the total heat is carried by phonons with MFP
longer than the grain size. A similar temperature dependence at T < ΘD
was also reported in PS. Silicon inverse opals [180] displayed κ ∼ T1.8 while
mesoporous nanocrystalline silicon thin films [181] reported κ ∼ T2. In the
former case, the low-temperature κ(T) was explained by invoking a quadratic
frequency dependence of the scattering rate at grain boundaries due to co-
herent phonon reflection, while in mesoPS the quadratic increase of κ with
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T was explained using the minimum thermal conductivity model derived by
Cahill and Pohl in 1988 for amorphous or strongly-defective crystals [182]. No
frequency-dependent transmissivity at pore surfaces was proposed.
The impact of theω-dependence on the MFP at room temperature or above

is still unclear in polycrystalline materials. According to Wang et al. [178], the
spectral dependence of the MFP is of practical relevance with respect to the
thermal conductivity only at low temperatures. On the other hand, Hua and
Minnich [179] as well as Jiang et al. [183] have noted the importance of ac-
counting for the frequency dependence of the MFP over the whole temperature
range.
This state of affairs provides evidence that there is still an open issue about

the best physically sound model to describe the effect of MoDs on the MFP
of microscopic heat carriers. The question is whether it is better to treat
the full phonon spectrum through effective concepts or, rather, if it is neces-
sary to treat each single mode individually, since defects operate differently
at different frequencies. Hereafter the first kind of model will be referred
to as gray, while addressing each mode independently depending on its fre-
quency as non-gray. This issue also impacts the actual usability of the adopted
model. Simplified, effective models, characterized by ease of implementation
and by a reduced computational workload, may enable computational anal-
yses of materials of high structural complexity. On the contrary, a rigorous
model treating each frequency mode independently may be practically appli-
cable only to smaller systems, disallowing structurally accurate simulations of
micromorphologically complex solids.
This section addresses the usability of the gray model to model phonon

scattering in defective solids around and above room temperature by explor-
ing the dependence of the thermal conductivity on the size and density of MoDs.
First, single-crystalline and pc-Si films, both porous and non porous, were sim-
ulated to compute κ. These values and the derived model are compared also
to experimental measurements for pc-Si films which were He+-implanted and
thermally-processed to promote the formation of pores [184]. By keeping the
characteristic length scale of grains approximately fixed in both the compu-
tational and experimental investigations, the effects of the pores on phonon
filtering were isolated. Silicon was chosen as the material in which to study
these effect due to its well-assessed intrinsic thermal properties [42, 185–189]
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and renewed interest in silicon and Si-based systems for thermoelectric appli-
cations [190–196].

3.3.1 Theoretical background

The standard kinetic model [66] relates the lattice thermal conductivity at
temperature T to phonon MFP Λ(ω, s, T) and velocity v(ω, s), both quantities
depending on phonon frequency ω and on polarization s

κ(T) =
1

3

∑
s

∫∞
0

C(ω, s, T)v(ω, s)Λ(ω, s, T)dω (3.16)

where C(ω, s, T) is the spectral specific heat of the material and the sum
runs over all polarizations. In addition to phonon-phonon and phonon-electron
scattering, the phonon MFP is limited by the presence of defects, which have
different scattering capabilities depending on ω and on a typical length scale
` associated with the defect itself. In single crystals, phonons are uniquely la-
beled by their wavevector k and by their polarization s, namely ω = ω(k, s).
For the thermal conductivity to be described in the MFP (direct) space, it was
suggested [176] that also the MFP Λ of a phonon might be labeled using the
same four scalars, i.e. Λ = Λ(k, s). Under the (widely verified) assumption
that both ω = ω(k, s) and Λ = Λ(k, s) be at least locally monotonic func-
tions of kx, ky, and kz , one may then invert Λ(k, s) so that ω = ω(Λ, s).
Thus a MFP spectral function of the thermal conductivity may be defined

K(Λ, T) = −
1

3

∑
s

C(Λ, s, T)v(Λ, s, T)Λ
(
dΛ

dω

)−1

(3.17)

where both C(Λ, s, T) and v(Λ, s, T) are here written as a function of the MFP.
Thus

κ(T) =

∫∞
0

K(Λ, T)dΛ (3.18)

The normalized thermal conductivity accumulation function α(Λ, T) is further
defined as

α(Λα, T) =
1

κ

∫Λα
0

K(Λ, T)dΛ (3.19)
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In the presence of a single morphological defect (MoD), thermal conductiv-
ity scales as

κMoD(T) =

∫∞
0

Kb(Λb, T)BMoDb (Λb, `MoD)dΛb (3.20)

where b refers to the MoD-free material and BMoDb (Λb, `MoD) is some func-
tion of the ratio Λb/`MoD that depends on the type of defect.

In the construction of the B term, an important role is played by the
way different scatterers contribute to set the MFP. Although B is in no way
constrained to any specific rule of MFP combination, in practice the use of
Matthiessen rule has almost no alternative, in spite of the increasing number
of papers noting its limits [165, 167, 197]. Matthiessen rule assumes that in
the presence of several scattering events each characterized by a scattering
time τi, an effective scattering time τ may be defined as

τ−1 =
∑
i

τ−1i (3.21)

or, equivalently, it is assumed that there is no interplay among scattering
mechanisms. Thus

Λ =
1∑
iΛ

−1
i

(3.22)

This implementation of Matthiessen rule will be referred to as the integral
Matthiessen rule. As known, its proposal moves from the gray hypothesis, Integral

Matthiessen rulenamely that a dominant phonon mode of frequency ωG exists, so that Eq.
(3.16) reduces to its simplified kinetic form (see Eq. (3.8). It is instead well-
known [46] that phonon modes are not independent, so that scattering events
mix up modes both by normal and Umklapp processes.
An alternative, in order to estimate the MFP in the presence of several

scattering phenomena, is to use the spectral Matthiessen rule. An effective Spectral
Matthiessen rulespecific scattering time τ(ω, s) is defined for each phonon mode of frequency

ω and polarization s as

τ(ω, s)−1 =
∑
i

τi(ω, s)−1 (3.23)
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(where τi(ω, s) is the scattering time for phonon modes of frequency ω and
polarization s due to the i-th scattering event) so that, since Λi(ω, s) =

v(ω, s)τi(ω, s),

Λ(ω, s) =
v(ω, s)∑
i τi(ω, s)−1

=
1∑

iΛi(ω, s)−1
(3.24)

It should be noted that not even the spectral Matthiessen rule provides a
rigorous way to compute the effective MFP Λ(ω, s) as it also neglects mode
mixing. Nonetheless, it does not rely upon the dominant mode assumption,
so that it may be more properly and consistently used when non-gray MFP
models are introduced.
In what follows two MFP spectral functions Kb(Λb, T) will be used. For theSpectral

function gray model it is consistently assumed that

K(Λb) = κbδ(Λb −Λb,G) (3.25)

with Λb,G = 205 nm at room temperature for silicon [176]. In the gray model
Λb,G is the Λ-independent MFP of phonons that is set by scattering from
extended defects [46]. For the non-gray models it will be instead adopted
the MFP spectral function obtained by complementing computational data by
Esfarjani et al. [198] and Jiang et al. [183].

3.3.2 Sample preparation

Three different prototypical silicon structures were generated, namely: (a)
samples containing both a random and an ordered distribution of pores, but
no GBs; (b) samples containing a GB network as well as a random distribution
of pores; and (c) samples where pores are pinned at GBs. The generation
of such a library of samples required two distinct procedures for pores and
GBs, respectively. The pores are created according to the usual procedure,Pore generation
i.e. by randomly selecting a suitable number of lattice sites and removing all
atoms within a distance dp. This generates pores and, since they are randomly
distributed, the probability of creating a pore is adjusted to achieve a target
porosity ϕ, defined according to Eq. (3.1). Further iterations are carried out
until the desired porosity is obtained within a certain tolerance. Similarly to
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dp
dg

Figure 3.15. Illustration of the atomic-scale structure of a porous polycrystalline sam-
ple with randomly distributed pores. Different colors represent differently-
oriented crystalline grains; darker areas identify defect-rich pockets, e.g.
amorphous spots or grain boundaries. Two relevant morphological fea-
tures discussed in the paper, dp and dg, are shown. The picture shows
a 0.9-nm-thick longitudinal section, corresponding to just ' 1/3 of the
overall sample thickness. The simulation cell is as thick as 2.72 nm and,
therefore, matter is in fact not discontinuous, although some atoms seem
to be unbound.

what explained for PS, as the AEMD simulation protocol requires a uniform
mass distribution along the transport direction, the generation of pores is
similarly applied within sequential regions of the sample, so as to obtain a
uniform porosity. Following this procedure, samples with suitable pore density
have been generated, with diameter ranging from 0.47 to 2.6 nm, resulting
in an overall porosity of ϕ = 0.005. A similar procedure has been applied
to obtain ordered pore distributions, with the only difference that the pore
seeds were placed according to a cubic lattice. In this case two porosity values
ϕ = 0.028 and ϕ = 0.005 have been considered. All samples required an
accurate structural optimization protocol. The potential energy was at first
minimized by means of conjugate gradient optimization. Next, a simulated
annealing process was applied, heating the samples up to 900 K and cooling
them back to room temperature for a total simulation time of 900 ps, with a
final equilibration time of 400 ps at 300 K.

The generation of GBs required an ad-hoc multistep computational proto-
col: a crystalline sample with dimensions Lx = 2.72 nm, Ly = 27.15 nm and
Lz = 135.76 nm (containing as many as 5× 105 atoms) was fully amorphized
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following a standard quenching-from-the-melt approach. Then, Ng sites wereGrain generation
selected at random in the yz plane and around each of them a cylindrical re-
gion (passing across the full Lx dimension of the simulation box) was created
in order to replace the amorphous matter with a crystalline cylinder, randomly
rotated in the yz plane. The resulting structures (amorphous matrices deco-
rated by crystalline seeds) were annealed at constant T = 1200 K for 3.0 ns.
In this way seed grains could undergo a growth until a nanocrystalline silicon
system was eventually created. The number Ng of initial seeds was chosen in
order to fill the yz plane with grains of average size dg = 25.0 nm. A detailed
description of this protocol is reported in Refs. [199] and [103].
By combining the above two procedures a number of systems were ob-

tained, differing in atomic scale nanostructure while keeping the same porous-
polycrystalline morphology, as shown in Fig. 3.15.Pores at grain

boundaries A third kind of porous polycrystalline sample was realized, where pores
were pinned at GBs. For this purpose, pore generation was slightly modified.
As already mentioned in this section, atoms in an amorphous structure are
characterized by a higher configurational energy, with respect to atoms in a
crystalline lattice. According to the EDIP interaction potential adopted in this
work [142], the average energy for a c-Si atom is 〈Ec−Si〉 = −4.6 eV, thus a
further requirement for the generation of pores was to involve only atoms with
energy greater than 〈Ec−Si〉. It is worth stressing that this interaction scheme
has been adopted since it is accurate in describing non-crystalline forms of
silicon, as well as in predicting the thermal transport properties of disordered
silicon forms, e.g., amorphous and nanocrystalline ones [98, 102, 103, 200].
Porous polycrystalline samples of categories (b) and (c) are characterized by
porosity values ϕ = 0.005, with 0.47 6 dp 6 2.6 nm.
Since present thermal conductivity data for nanocrystalline porous samples

are calculated for finite-size simulation cells, the actual normalizing value κsc
corresponding to pristine silicon was evaluated for a system with the same
length along the direction of thermal transport as nanocrystalline porous ones,
similarly to previous investigations [104, 201, 202]. Since in the present case
this length was as short as 162.92 nm, the corresponding conductivity of
pristine silicon was set to 45.4± 0.2 W m−1K−1, as obtained by the present
simulations.
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3.3.3 Single MoD in silicon

In polycrystalline materials it is quite natural to assume that GBs limit the
phonon MFP to the grain size dg so that Λ−1

P ≡ Λ−1
b +Λ−1

GB = Λ−1
b + d−1g . Polycrystalline

siliconHowever, such an assumption is possibly too clear-cut. First, more than a sin-
gle scattering event may be needed to fully thermalize phonons. Furthermore,
phonons may be scattered with different efficiencies by grain boundaries de-
pending on the misorientation of adjacent grains. Even in a gray model, grain
boundaries may be assumed to transmit phonons with variable transmissivity
TG depending upon the grain pair misorientation. Both factors suggest to
write

ΛGB = β

〈(
1

TG
− 1

)−1
〉
dg ≡ βγGdg (3.26)

with β(> 1) counting the average number of scattering events needed by
phonons to recover their equilibrium distribution, while γg(> 1) scaling the
effective grain size by the grain boundary transmissivity. The use of β, which
accounts for the difference between scattering and relaxation times, is remi-
niscent of the approach developed by Das Sarma and Stern for the analysis of
electron scattering [203]. Therefore, within the limits of validity of the integral
Matthiessen rule, the gray model leads to

Λ−1
P,G = Λ−1

b + (βγGdg)
−1 (3.27)

where the subscript P labels the polycrystalline material. Thus one gets

BP,G
b =

(
1+

Λb
βγGdg

)−1

(3.28)

In view of Eq. (3.20) this leads immediately to

κP,G = κb

∫∞
0

δ(Λb −Λb,G)

(
1+

Λb
βγGdg

)−1

dΛb

= κb

(
1+

Λb,G

βγGdg

)−1
(3.29)
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which is the sought expression of the thermal conductivity in the gray approx-
imation. From an alternate perspective, following Wang et al. [178] and Hua
and Minnich [179] phonons may be transmitted by GBs with a transmissivity
T(ω)

T(ω) =
1

γω/ωmax + 1
(3.30)

where γ is a fitting parameter and ωmax is the maximum phonon frequency.
Therefore, ΛGB(ω) = γ−1(ωmax/ω)βdg, namely GBs are transparent to
phonons in the long-wavelength limit. Thus the non-gray model predicts, still
within the limits of validity of the spectral Matthiessen rule, that

Λ−1
P,NG = Λ−1

b + (γ/β)(ω/ωmax)d
−1
g (3.31)

where the subscript NG refers to the non-gray model.
The use of Eq. (3.31) is less straightforward as the MFP depends explicitly

upon ω. This implies that

BP,NG
b =

(
1+

γω

βωmax

Λb
dg

)−1

(3.32)

For the most common bulk scattering mechanisms [204]

Λb = A(T)ω−n (3.33)

where n is a non-negative integer depending on the dominant scattering mech-
anism, and A(T) is independent of ω. In the whole numerical analysis here
reported, phonon-impurity scattering is assumed to dominate scattering in
bulk (single-crystalline) silicon due to the high doping level. Regardless of the
phonon dispersion relation, it was shown [72, 198, 204] that setting n = 4 in
Eq. (3.33) leads to a satisfactory description of the bulk MFP. Then one may
write

BP,NG
b =

ΛP,NG

Λb

[
1+

γ/β

ωmax

Λb
dg

(
Λb
A

)−1/4
]−1

(3.34)

so that

κP,NG =

∫∞
0

Kb(Λb)

[
1+

γ/β

ωmax

Λb
dg

(
Λb
A

)−1/4
]−1

dΛb (3.35)



3.3 porous polycrystalline silicon 85

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600 700

Claudio et al.
Wang et al.
gray model

non-gray model

Figure 3.16. Fit of the normalized experimental values κ/κsc vs. grain size in pc-Si
to the gray (dashed lines) and non-gray (full lines) models. Experimen-
tal data are from Wang et al. [178] (green circles, microcrystalline sili-
con) and from Claudio et al. [191] (purple squares, nanocrystalline sili-
con). Thermal conductivity κsc of c-Si was respectively 142 and 87.34
W m−1K−1 in the two works.

which states the dependence of the thermal conductivity in pc-Si according to
the non-gray model.
Figure 3.16 displays the fits of Eqs. (3.29) and (3.35) to experimental data

reported by Wang et al. [178] for microcrystalline silicon and by Claudio et al.
[191] for nanocrystalline silicon.
Both models are in good agreement with data for nanocrystalline silicon,

although the non-gray model fits them more closely. Instead, only the non-gray
model returns an acceptable fit for microcrystalline silicon. Setting ωmax =

12 THz [178, 205] it results A = (5.3± 1.2)× 1050 µm s−4 for both sets of
data, along with γ/β values of 2.39± 0.07 and 0.28± 0.02, respectively.
A model for the MFP in PS was already proposed in Sec. 3.1. As already

stated, from Eq. (3.2), one may easily verify that the pertinent MFP Λpores Porous
monocrystalline
silicon
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relates to porosity and boundary MFP as

1

Λpores
=

(
ϕ

2Λb

)
(3.36)

This is only the effect of macroscopic pores and results from the reduction of
the filled volume in the medium.

An additional component arises for micro-/nano-pores, that relates instead
to the density of scattering centers at the pore-solid interface (Eq. (3.7)).
Thus the gray scattering length Λinterfaces (Eq. (3.5)) can be taken to sum
up through the integral Matthiessen rule, yielding

1

ΛH,G
=

(
ϕ

2Λb

)
+

1

βΛinterfaces
(3.37)

where β counts the number of scattering events needed to fully thermalize
phonons. Therefore

1

ΛH,G
=

1

Λb
+

(
ϕ

2Λb
+

3ϕ

2βdp

)
(3.38)

and

BH,G
b =

ΛH,G

Λb
=

[
1+

ϕ

2

(
1+

3Λb
βdp

)]−1
(3.39)

so that finally

κH,G = κb

∫∞
0

δ(Λb −Λb,G)

[
1+

ϕ

2

(
1+

3Λb
βdp

)]−1
dΛb

= κb

[
1+

ϕ

2

(
1+

3Λb,G

βdp

)]−1 (3.40)

which is the expression for κ in the presence of nanopores and in the gray
approximation.

For the non-gray model it is necessary to account for the probability that
phonons are elastically reflected at the pore surface. Actually, phonon trans-
missivity through a vacuum gap is exactly zero, while even at the nanoscale
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Figure 3.17. a: κ values obtained for OPS two different porosity values. b: κ values
obtained for RPS. The dashed and full lines represent, respectively, the
fit to gray and non-gray scattering modes of the normalized values of
κ(dp) .

the near-field thermal radiation contribution may be easily verified to be neg-
ligible [206]. Using the so-called Ziman formula [46], reflectivity R at pores
reads

R(ω) = exp

(
−
16π3d2pω

2

v2

)
(3.41)

Thus

BH,NG
b =

ΛH,NG

Λb
=

{
1+

ϕ

2
+
3ϕΛb
2βdp

[1−R(ω)]

}−1

(3.42)

that, using again Eq. (3.33), leads to the explicit expression for κH,NG:

κH,NG =

∫∞
0

Kb(Λb)×

×

1+ ϕ
2
+
3ϕΛb
2βdp

1− exp

−16π3d2p
v2

(
Λb
A

)−
1

2





−1

dΛb

(3.43)
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which is the needed formula for κ in PS in the non-gray model. Note that in
the gray model, where the MFP spectral function is a Dirac delta-function, Eq.
(3.41) would lead only to an additional constant factor in the third term of
the right-hand-side of Eq. (3.37).

Fitting of Eq. (3.40) to computed data (Fig. 3.17) reports an excellent
agreement of the gray model with simulations. When pores sit on a cubic
lattice one gets β = 4.9± 0.5 for ϕ = 0.028 and β = 7.6± 1.4 for ϕ = 0.005.
Instead, for randomly distributed pores β = 6.8± 1.2 for ϕ = 0.005. Also the
non-gray (reflective) model, Eq. (3.43), shows a more than fair agreement with
computational data. One gets A = (4.6± 2.0) µm s−4 independently of pore
distribution and porosity. The fitting process returns β values of 12.6± 2.5
and 51.7± 11.0 for ϕ = 0.028 and 0.005 with ordered pore distributions; and
β = 46.6± 12.4 at ϕ = 0.005 for randomly distributed pores.

It should be noted that, despite their agreement with computational data,
the two models predict a completely different behavior of κ(dp) for dp → 0 at
constantϕ. Thermal conductivity in the gray model tends to zero for vanishing
pore diameters while it recovers the single-crystal value in the non-gray model,
as physical intuition would actually suggest.

3.3.4 Multiple MoDs in silicon: porous polycrystalline silicon

Multiple defects impact thermal conductivity by introducing two classes of
scattering bodies in addition to the scattering entities natively present in single-
crystalline media. In the gray model one may use the integral Matthiessen rule,
immediately getting from Eqs. (3.27) and (3.38) that

κHP,G = κb
2βγGdpdg

γGdg[βdp(ϕ+ 2) + 3Λbϕ] + 2dpΛb
(3.44)
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Figure 3.18. a: Fitting of gray (dashed lines) and non-gray (full lines) scattering
models to normalized values of κ(dp) obtained by simulating random
distributions of pores in porous pc-Si. b: Fitting of gray (dashed lines)
and non-gray (full lines) scattering models to normalized values of κ(dp)
measured in He+-implanted nanocrystalline silicon [184].

Instead, in the non-gray model spectral Matthiessen rule leads to

κHP,NG =

∫∞
0

{
1+

ϕ

2
+
3ϕΛb
2βdp

×

×

[
1− exp

(
−
16π3d3p

v2

(
Λb
A

)− 1
2

)]

+
γΛb

βωmaxdg

(
Λb
A

)− 1
4

}−1

dΛb

(3.45)

In Eq. (3.45) the same β was used for both scattering mechanisms as the
effectiveness of a specific type of scattering event is already accounted for by
R for the pores and by γ/ωmax for the grains.

Figure 3.18 directly compares the experimental and computed thermal con-
ductivities, both normalized to the thermal conductivity of c-Si. A value of
κSC = 120 W m−1K−1 was used, which is appropriate for sub-micrometric
thin films [207]. For computer simulations a clearly better agreement is found
using the non-gray model, reporting β = 30.0± 0.1 and 27.4± 4.2 for pores



90 nanostructured silicon

at GBs only or randomly distributed, respectively, and values of γ = 4± 1

and A = (3.00± 0.99)× 1051 µm s−4 in both cases. The gray model returns
instead β = 1.85± 0.59 and γG = 1.00± 0.36 when pores sits at GBs only;
and β = 1.90± 0.51 and γG = 1.00± 0.31 for randomly distributed pores.

Experimental data from Dunham et al. on He+-implanted nanocrystalline
thin films [208, 209] are fitted instead with β = 1.0± 0.5 and γG = 0.5± 0.3
in the gray model, and with β = 1.0± 0.6, γ = 7.0± 3.9, and A = (2.29±
1.31)× 1046 µm s−4 in the non-gray model. Note that, since the experimental
thermal conductivity was measured cross-plane, grain size used in the fitting
referred to the grain height, namely dg = 150 nm. It should also be remarked
how the gray model predicts an almost constant κ for d > 5 nm, in good
agreement with with gray Monte Carlo simulations reported previously [184].
Comparison of fits to both experimental and computed data suggests that

non-gray models are more accurate than gray ones. This is not completely
obvious, as it is reported that relevant differences between gray and non-
gray models should be observed mostly at low temperatures [178]. Instead,
even around room temperature and in the presence of a single MoD it is
evident that, although the gray model may provide an acceptable quantitative
prediction of the thermal conductivity [184, 197], a more precise analysis of
morphologically-limited thermal conductivity requires relaxing the assumption
of a single dominant phonon mode governing heat transport.
However, in spite of its ability to describe the dependence of κ upon the

density of the pertinent MoD, the non-gray model also raises questions when
applied to porous crystals. Specifically, concerns may be raised about its phys-Comparing gray

and non-gray
models

ical soundness in the description of κ dependence on dp over the whole range
of pore sizes. Gray and nongray models, while mostly showing the same ex-
pected decrease of κ with decreasing dp, dramatically differ from each other
in the zero-size limit. It is worth noting that, while in porous c-Si this differ-
ence occurs at pore sizes comparable to the size of a single vacancy, in porous
pc-Si the departure between the two models shows up instead for dp ≈ 1 nm,
i.e. when pores are well-defined, extended MoDs. The gray model predicts a
vanishing thermal conductivity while the non-gray model predicts a recovery
of κ to the pore-free value. Such a difference is clearly explained by inspec-
tion of Eqs. (3.39) and (3.42). In both cases the MFP is dominated by phonon
scattering at pores. However, the gray model considers all scattering events as
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effective while the non-gray model accounts for the probability that phonons
are elastically reflected at pore surfaces. In the latter case, when both dp and
`p tend to zero (as needed to keep ϕ constant), no collision remains effec-
tive, so that the material recovers the conductivity pertaining to the pore-free
material. However, both predictions are questionable. In the gray model, the
assumption that all collisions are effective (namely that in no case phonons
may be elastically reflected at pore surfaces) sensibly overestimates the ef-
fectiveness of pores as scattering centers. Conversely, Eq. (3.41) provides an
oversimplified description of the actual reflectivity at internal surfaces [46]
that in turn underestimates scatter efficiency in the low dp limit. A more fun-
damental limitation of both models arises when considering non-local effects.
Since for dp → 0 at fixed ϕ the pore density abruptly increases, one may
expect lattice distortions due to pores to extend over a larger portion of the
crystal, a feature that is not accounted for in either gray or non-gray models.
At high porosity this should lead to an increase of positional disorder, up to
a quasi-amorphization of the solid. Thus, κ may be expected to approach the
Casimir limit. At low porosity, instead, pores will degenerate into a collection
of sparsely distributed vacancies, imparting a negligible increase of lattice dis-
ordering and simply increasing the vacancy density. Thus, κ should almost
recover its pore-free value: neither gray nor non-gray models are adequate at
accounting for the effect of pores at any porosity, as neither of them properly
encompasses non-local effects due to pore-related lattice disorder. Non-gray
models possibly better qualify in the current case because of the relatively
small ϕ considered in this study. One would then draw the conclusion that
while the non-gray model is a more appropriate choice even at non-cryogenic
temperatures, it is the use of Matthiessen rule (either integral or spectral)
which determines the limits of applicability for either model. Earlier in this
section, it was shown that MoD-related scattering lengths (`p and γGdg)
sensibly depend not only on the distribution of scattering centers within the
medium but also on the medium itself. Thus, non-local descriptors accounting
for the lattice distortion around MoDs are needed.

Finally, concerning the usability of more MoDs to tailor the thermal con-
ductivity,it results that the addition of a morphological defect to an already
defective material causes a further decrease of its thermal conductivity if the
two sets of defects have different characteristic sizes. Experimental results
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show the conductivity to drop by about 30%, with smaller decreases (≈ 10%)
being reported by simulations. It is possible to conclude that the use of a vari-
ety of MoDs to control a material thermal conductivity may be safely planned
by the use of non-gray models and of the spectral Matthiessen rule. This
result is consistent with the conclusions of previous publications [184, 208,
209] and further stresses how the introduction of pores in heavily boron-dope
nanocrystalline silicon showing enhanced power factors [193, 194, 210] may
lead to large thermoelectric efficiencies in a fairly geo-abundant material.
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A s extensively explained in the previous chapters, Thermoelectric Ef-
fect (TE) devices have many attractive features for heating/cooling

purposes or power generation that could lead to potential applications such
as waste-heat energy harvesting. The main challenge for TE devices is repre-
sented by the overall efficiency which is still too low [211]. In order to achieve
high ZT values, several chemical and physical approaches have been proposed
so far. One of the most popular and effective consists in using nanofabri-
cation techniques so as to increase phonon scattering by internal interfaces.
Different types of nanostructures have been explored so far, such as quan-
tum wells [212], superlattices [24, 213], quantum wires [214], and quantum
dots [215]. An overview about superlattices and the role of the interface in
silicon-germanium nanostructures, is provided in this chapter.

4.1 silicon-germanium superlattices

This section will focus on superlattices (SLs) i.e. periodic structures made
by layers of two (or more) different materials where the thickness of each
layer is usually of the order of the nanometer. The idea is to use quantum-
confinement effects to obtain an enhanced electronic density of states and
to exploit interfaces and boundaries to scatter phonons more effectively than
electrons. It is known that in SL structures phonon transport is much more
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affected than the electronic counterpart, resulting in a distinct reduction of
thermal conductivity [216–218]. The reduction of κ is mainly due to three
mechanisms: (i) increased scattering of the lattice vibrations due to the large
number of interfaces [219, 220]; (ii) increased diffuse reflection at the interface
due to acoustic impedance and phonon spectrum mismatches [221]; and (iii)
wave interference due to the periodic nature of the structure [222]. Several
experimental studies have demonstrated a ZT increase up to 2.4 in a wide
variety of SLs such as Bi2Te3/Sb2Se3 SLs and PbTe/PbTeSe quantum-dot SLs
[24, 215]. However these chemically complex systems have large costs of pro-
duction which strongly limit their large scale commercial use. For this reason
SLs composed by conventional semiconductors such as Si and Ge, represent a
promising low-cost alternative due to their relative abundance, structural sim-
plicity and the possibility to exploit standard manufacturing processes. Several
parameters in superlattice design should be optimized in order to obtain the
lowest thermal conductivity. The effect of the Si/Ge SL geometrical and mor-
phological parameters on thermal transport have been extensively explored
both experimentally and theoretically. In particular, Savić et al. [223] focusedExperimental

results on
superlattices

on the effect of the SL dimensionality on thermal transport showing that planar
SL have the lowest κ with respect to nanowire and nanodot superlattices.
From an experimental point of view, Chakraborty et al. [224] studied the

effect of the period thickness in strain symmetrized Si/Ge superlattices show-
ing that κ can be reduced by a factor ∼ 2 by reducing the period thickness
from 16 to 7 nm. Moreover, they noticed that thermal conductivity in these
systems has a minimum for period thickness of 7 nm, arguing that under
this limit phonons in SL behave wave-like instead of moving ballistically [224].
Borca-Tasciuc et al. [40], instead, studied the effect of doping in Si/Ge super-
lattices providing evidence that κ of doped samples decreases with respect to
the undoped ones.
An alternative way of reducing κ in Si/Ge based SL has been recently ex-

plored by Ferre Llin et al. [225] that proposed the substitution of the pure
silicon layer with a sort of phonon barrier composed by a Si0.5Ge0.5 alloy which
is a well-known phonon glass, having a κ ∼ 7 times lower with respect to pure
Ge. The presence of such phonon barriers should in principle strongly decreaseThe role of

stoichiometry the overall thermal conductivity. In their work a range of p-type Ge/Si0.5Ge0.5

SL was fabricated using low-energy plasma enhanced chemical vapor deposi-
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tion. The maximum value obtained for ZT is ∼ 0.08 that, although being
almost 8 times greater than that of pure Ge, is too low for TE applications.
The two main reasons for this are the relatively high thermal conductivity of
κ ∼ 4− 6 W m−1K−1 and the low electrical conductivity σ ∼ 2220− 17600 S
m−1 [225] (electrical conductivity of p-doped germanium is ∼ 30000 S m−1

[226]). Despite the fact that the overall ZT is still too low, such a SL presents
the possibility of effectively tuning both the electronic and thermal transport
properties by modifying several morphological and geometrical parameters.
By adopting this idea as a conceptual guideline, model potential MD simula-

tions were carried, addressed to predict κ in several Ge/SixGe1−x SL samples
as a function of the alloy stoichiometry and PR, i.e. the ratio between Ge
and SixGe1−x layer thicknesses. In particular, the final goal is to predict the
minimum Si concentration (which guarantees a small σ reduction with re-
spect to pure Ge) providing a sizable reduction of κ and consequently an
overall ZT increase. The results show that the presence of the alloy barriers
greatly reduce thermal conductivity with increasing stoichiometry. Moreover,
a non-monotonic dependence of the thermal conductivity on the period ratio
is predicted.

4.1.1 Pseudomorphic growth and elastic constant calculation

Typical Ge/Si SLs samples are grown by chemical vapor deposition technique
[225], which gives rise to the so-called pseudomorphic structure, where the
substrate composition controls the in-plane lattice parameter a‖, which re-
mains unchanged in the whole structure [227]. The lattice mismatch between
the substrate and the epitaxially grown SixGe1−x barrier generates a strain
along the growth direction leading to a lattice constant a⊥ which, in turn,
depends on the elastic properties of the alloy. According to the macroscopic
theory of elasticity [228], the lattice constants of a pseudomorphic structure
can be written as

a
alloy
‖ = asubs‖ ≡ asubs (4.1)
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Figure 4.1. a: SixGe1−x elastic constant C11 as a function of stoichiometry x. b:
SixGe1−x elastic constant C12 as a function of stoichiometry x. A Vegard-
like law (CSi −CGe)x+CGe accurately fits MD results

for the direction parallel to the substrate, and

a
alloy
⊥ = aalloy

[
1− 2

(
C12

C11

)alloy(
asubs

aalloy
− 1

)]
(4.2)

for the growth direction, where aalloy‖ and asubs‖ represent, respectively,
the barrier and substrate in-plane lattice parameters, aalloy⊥ is the alloy out-
of-plane lattice parameters and aalloy is the bulk alloy lattice parameter
(calculated using the Vegard law).

In order to prepare realistic pseudomorphically grown Ge/SixGe1−x SLs it is
necessary to estimate the C11 and C12 elastic constants provided by Tersoff
potential. The calculations have been performed by computing the secondPseudomorphic

elastic constants derivatives of the total energy with respect to suitable deformations. Figure
4.1 shows C11 and C12 of a SixGe1−x alloy as a function of stoichiometry.
The results indicate a clear linear Vegard-like dependence of C11 and C12
in good agreement with experimental data [229]. The corresponding values
for pure Si and Ge show relative deviations with respect to the experimental
data of 14% and 8%, respectively for C11, and 17% and 8% for C12. Such
a discrepancy is attributed to the Tersoff model potential as already pointed
out in reference [230].
Using the above procedure several Ge/SixGe1−x SLs having the in-plane

and out-of-plane lattice constants as predicted by Eqs. (4.1) and (4.2) were
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Figure 4.2. Schematic representation of the Ge/SixGe1−x SL for two different PRs.

realized. In detail, a set of samples with varying alloy stoichiometry (x = 0, 10,
20, 35, 50, 70 and 100%) and the total length Lz in the range 44.3− 803.4 nm
was generated. Correspondingly, the number of atoms varied from 1.6× 104
to 1.54× 106. The PR was also varied considering 1 : 1, 2 : 1, 3 : 1 and
5 : 1 superperiodic structures. Therefore, the Ge layer thickness varied from
1.13 nm for 1 : 1 PR to 5.66 nm for 5 : 1 PR, while the barrier thickness
was 2aalloy⊥ , with aalloy⊥ depending on the stoichiometry as predicted by Eq.
(4.2). Figure 4.2 shows a schematic representation of the SL samples with two
different PRs.

4.1.2 κ dependence on sample section

In order to choose an appropriate section of the sample, a set of preliminary
AEMD calculations (see Sec.2.2.3) were performed: κ was estimated as a func-
tion of the sample section in the range 0.3− 251 nm2 in a Ge/Si0.5Ge0.5 SL
having a fixed total length Lz = 54.3 nm and a 2 : 1 PR. Figure 4.3a provides
evidence that for sections greater than 128 nm2 κ does not depend on the
sample geometry. For this reason, a section value of 128 nm2, was kept in the
following AEMD calculations, except the case x = 100% as explained below.
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Figure 4.3. a: κ vs. sample section for a Ge/Si0.5Ge0.5 SL with Lz = 54.3 nm and
2 : 1 PR. Thermal conductivity converges for sections greater than 128
nm2. b: κ vs. sample section for a Ge/Si SL with Lz = 54.3 nm and 2 : 1
PR. Thermal conductivity converges for sections greater than 8.0 nm2.

4.1.3 κ∞ linear vs. quadratic extrapolation

In order to verify size effects in a SL-like system, κ was calculated in a set of
10 samples of pure Ge/Si, with 44.3 6 Lz 6 803.4 nm with period ratio 3 : 1
and 5 : 1. In order to minimize the computational cost while spanning the
interval 44.3− 803.4 nm, the sample section was reduced to 8.0 nm2. Note
that such a reduction does not affect κ as shown in Fig. 4.3b.
Figure 4.4 shows 1/κ vs. 1/Lz for the 3 : 1 and 5 : 1 PRs. Both the linear

(only first term of Eq. (2.39) is considered) and quadratic (both linear and
quadratic terms of Eq. (2.39) are considered) extrapolations were tested. The
results show that for this system the simple linear extrapolations fails in pre-
dicting κ∞, with numerical uncertainties up to 90% which are in fact reduced
by a quadratic fit down to ∼ 10%. For this reason all the κ∞ values collected
in this section have been obtained by means of the quadratic extrapolation.
The resulting values for κ∞ for the benchmark Ge/Si system are 5.44± 0.32

W m−1K−1 and 11.01± 0.32 W m−1K−1 for 3 : 1 and 5 : 1 PR, respectively.
It is possible to conclude preliminarily that by reducing the relative thickness
of the Si barrier the corresponding thermal conductivity of the SL is increased.
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Figure 4.4. a: 1/κ vs. 1/Lz and the corresponding linear fit provided by Eq. (2.39)
for a pure Ge/Si SL for the 3 : 1 (black) and 5 : 1 (red) PRs and 44.3 6
Lz 6 803.4 nm b: Quadratic fit provided by Eq. (2.39) for the same set
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This is in good agreement with experimental results which provide 3 6 κ 6 5
Wm−1K−1 for 1 : 1 PR Ge/Si SLs [224].

4.1.4 Thermal conductivity in Ge/SixGe1−x superlattices

Motivated by the experimental work of Ferre Llin et al. [225], SixGe1−x barri-
ers instead of pure Si layers were considered in order to explore both the role
of the barrier stoichiometry and the PR.

Figure 4.5 shows 1/κ versus 1/Lz plot for Ge/SixGe1−x SLs with x = 10,
20, 35, 50 and 70% for the 3 : 1 (Fig. 4.5a) and 5 : 1 (Fig. 4.5b) PR with Lz
ranging from 44.7 to 269.1 nm. As previously described, κ∞ was obtained via a
quadratic extrapolation; the corresponding values are shown in Table 4.1. The
value for 3 : 1 PR and x = 50% is in rather good agreement with experimental
value κ = 5.1± 0.4 W m−1K−1 reported in reference [225]. This agreement
stands for the overall quantitative reliability of the present investigation, as
further confirmed by the case of bulk Ge where the experimental value of 59.5
W m−1K−1 [226] compares well with this prediction.

All the results are summarized in Fig. 4.6a where κ∞ vs. stoichiometry
is plotted for both 3 : 1 and 5 : 1 PR. Starting from pure Ge, a dramatic
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κ [W m−1 K−1]

Si% 3 : 1 5 : 1

0% 65± 6
10% 17.4± 0.9 25.8± 0.8
20% 10.2± 0.3 15.9± 0.8
35% 7.2± 0.3 12.4± 0.4
50% 5.4± 0.1 8.7± 0.5
70% 4.0± 0.1 6.7± 0.3
100% 5.4± 0.3 11.0± 0.7

Table 4.1: κ∞ quadratically extrapolated values for the Ge/SixGe1−x SL with x = 10,
20, 35, 50 and 70% for the 3 : 1 and 5 : 1 PR.

decrease of κ by substituting Ge with Si0.1Ge0.9 alloy is observed. The overall
κ further decreases by increasing the Si content, reaching a minimum value of
3.99 (6.69) W m−1K−1 for 3 : 1 (5 : 1) PR. This confirms that as expected
the alloy barrier acts as a strong scattering center for phonons in the SL. By
increasing the stoichiometry up to 100% (pure Ge/Si SL) κ slightly increases
up to 5.44 (11.01) for 3 : 1 (5 : 1) PR. This trend is similar to the one obtained
for bulk SixGe1−x alloy [103, 231], although in this case the effect is smaller
(reflecting the fact that the alloy represent just a small portion of the SL).

The main result deduced from Fig. 4.6a is that the overall SL thermal con-
ductivity can be reduced by a factor 4 by increasing the Si concentration from
10% to 70%. However, this factor could be hardly reflected in the overall ZT,
since it has been shown that the electrical conductivity of the alloy decreases
with increasing Si stoichiometry [232]. Therefore, in order to maximize ZT
one should in principle find a compromise between the κ reduction due to
the SixGe1−x barrier and the corresponding σ reduction. Based on Fig. 4.6a
and considering the values reported in literature, such an optimal concentra-
tion was identified as 10% 6 x 6 20%. This value guarantees a κ reduction
with respect to pure Ge up to a factor of 6; moreover the intrinsic electrical
conductivity and the electron mobility of the SixGe1−x alloy is found to be
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Figure 4.5. a: 1/κ vs. 1/Lz and the corresponding quadratic fit provided by Eq. (2.39)
for a Ge/SixGe1−x SL with x = 10, 20, 35, 50 and 70% with a 3 : 1 PR.
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only marginally affected at this concentration, as reported in reference [232].
This could represent an interesting point for a TE device based on SixGe1−x.
Furthermore, SixGe1−x alloy with x ∼ 20% shows the Seebeck coefficient and
the power factor (S2σ) almost unaffected by the presence of Si, with respect
to pure Ge [225]. Figure 4.6a emphasizes also the role of PR: in fact by in- The role of the

period ratiocreasing it from 3 : 1 up to 5 : 1, i.e. increasing the Ge layer thickness from
3.39 to 5.66 nm, a κ increase of ∼ 1.5 was observed, which slightly depends
on the stoichiometry.
Driven by these results also smaller values for PR, i.e. 2 : 1 and 1 : 1,

were considered in order to understand how thermal conductivity is affected
by further reducing the period ratio. For the reason described above, the
investigation was limited to two cases, namely x = 10% and x = 20%. The
results are shown in Fig. 4.6b.
A non-monotonic trend with a minimum for 2 : 1 PR corresponding to a

Ge layer thickness of 2.26 nm is obtained. This minimum shows a further
reduction in thermal conductivity of ∼ 30%: if this behavior would be re-
flected on electronic transport, then this should be the ideal configuration of
Ge/SixGe1−x SLs for TE applications.
By changing PR from 5 : 1 to 2 : 1, κ is overall reduced by a factor 2. This

result is indeed very promising since, for these Si concentration, a small σ and S
reduction is expected. The slight increase in thermal conductivity obtained by
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further reducing the PR can be explained considering that probably the Ge layer
thickness is under the limit of ballistic-like phonon transport, as extensively
explained in references [23, 233]. By means of BTE, it has been shown that
phonon thermal conductivity in SLs can be modeled by considering two distinct
regimes: a wave-like and a ballistic-like one. The difference depends on the SL
Ge layer thickness LGe: if LGe is greater than the minimum MFP (λmin), then
phonons are treated as particles; conversely, if LGe < λmin, phonons show a
wave-like nature. This could rise to interference phenomena between reflected
and transmitted phonons at the interfaces between the SL layers, leading to
an overall κ increase.

4.2 silicon-germanium interfaces

The prediction of the thermal transport properties of a bulk semiconductor ma-
terial (where the main heat carriers are phonons or, more generally, vibrational
modes) usually proceeds through the calculation of its thermal resistivity R
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(or, equivalently, its inverse quantity κ, namely the thermal conductivity) [234,
235]. While the most fundamental theory to accomplish this task is provided by
the BTE [46, 236] (which is now numerically solvable either in the usual single-
mode relaxation-time approximation [46, 72] or even exactly [47, 48, 237]),
MD simulations [238] represent in fact the most popular tool for computing
the thermal transport coefficients, due to their versatility, ease of implementa-
tion and comparatively small computational effort. The resistivity is typically
evaluated by assuming the Fourier law ∂T/∂z = −RJ (see also Eq. (2.8)) and
by explicitly computing the heat flux J and the temperature gradient ∂T/∂z
in a steady-state condition of thermal transport (for further convenience it is
worth remarking that for a sample with total thickness Lz and cross section
S the bulk thermal resistance is defined as R = RLz/S). This approach is
largely exploited by non equilibrium MD (NEMD, see Sec. 2.2.2) [105, 239]. Al-
ternatively, the thermal diffusivity κ̄ = κ/ρCv (where ρ and Cv are the system
mass density and specific heat, respectively) is evaluated during the system
approach to equilibrium (AEMD, see Sec. 2.2.3) [98]. Finally, equilibrium statis-
tical mechanics offers a direct way to compute thermal conductivity through
the general Green-Kubo theory of transport coefficients (EMD, see Sec .2.2.1)
[75, 105]. Overall, this panoply of methods allows for computing, in a large
variety of (in principle) equivalent ways, the thermal transport coefficients as
function of temperature, atomic structure, defect-induced disorder, or chem-
ical composition, thus providing a full characterization of materials thermal
properties. It is also possible to include as well quantum features [240–242] if
the system is simulated well below its Debye temperature. However, concerns
have been raised about the actual reliability of the proposed methods [243].
The case of heat transport across an interface is intriguingly different and

much more subtle [57, 58, 244, 245]. Here a temperature gradient is applied Heat transport
across an
interface

across a HT between two semiconductors which behave differently as for their
heat transport properties. Because of this and of interface-specific properties,
across the interface region a sudden temperature drop ∆T occurs, giving rise
to a TBR RTBR which is phenomenologically described as RTBR = ∆T/J, as-
suming a steady-state condition. This phenomenon is nowadays widely referred
to as Kapitza resistance [58, 244–246], although this expression originally re-
ferred to the thermal resistance occurring at the interface when heat flows
from a solid into a liquid. While casting the problem in this way could seem
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straightforward, actually there are a number of subtleties indeed requiring a
deeper understanding, which basically defines the main goal of this section
(incidentally, it is worth warning against a widely common abuse of notation:
while using the same term resistance˝ for both the bulk and interface case,
the two quantities have in fact different units: K/W and Km2/W, respec-
tively).
This issue is a really key feature in nanoscience. In fact, interfaces are

everywhere at the scale where most of the present-day semiconductor tech-
nology deploys: their role can hardly be underestimated since the fabrication
methods of the electronics industry are continuously refined to produce ever
smaller devices in the nm size range. In this context, therefore, atomicallyThe role of the

interfaces well-defined interfaces represent the most important structural feature affect-
ing the transfer of energy through thermal exchange. So, the heat flux across
interfaces plays a vital role in many front-end applications, including elec-
tronics (cooling of nanodevices and optimal control of their thermal budget)
[12, 247], information technology (phononics) [248, 249] and energy harvest-
ing/production (superlattices for TE conversion) [19, 20, 103, 225, 250, 251].
In conclusion, exploring heat-related phenomena occurring at semiconductor
interfaces will facilitate the precise control of their properties and, ultimately,
their best-tailored processing for applications in the above technologies.
While the above scenario stands for the need of a detailed understanding of

interface thermal properties (possibly including thermal rectification phenom-
ena, as well [252–255]), the theoretical and conceptual paraphernalia usually
underlying direct calculations of the TBR is somewhat oversimplified, if not
even rudimentary. The most commonly used theory frames, namely the AMMAcoustic and

Diffuse
mismatch

models

[58, 256] and DMM [58, 257], in fact neglect the actual atomic-scale structure
of the interface and also estimate, under the Debye approximation, the phonon
dispersion branches as linear. They further assume that the phonon interface
scattering is purely elastic, either if it is guessed to be diffusive (DMM) or
specular (AMM). None of the assumptions is completely fulfilled by real HT
and, therefore, these models fail in predicting quantitatively the TBR in most
cases. Occasionally, improved versions of AMM and DMM have been conceived
[258–260], including some of the features neglected in the original models, but
no major step forward in understanding the underlying physics was reached
without including an all-atom treatment of the interface.
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A rather different approach is based on lattice dynamics calculations of TBR,
where either the spectral density of phonon transmitted across the interface
is computed [261] or the phonon interface scattering is calculated directly
(see, e.g. Ref. [262] and references therein). This is typically done under the Lattice

Dynamics
calculations

assumption of elastic scattering (i.e. anharmonicities are disregarded) and ne-
glecting the actual junction width. This amounts to approximate the TBR as
a junction thermal resistance˝and, therefore, both the left and right material
segments emit phonons to the junction, as well as they absorb phonons from it.
A corresponding net heat flux can be calculated by following a Landauer-like
approach, either by assuming that the phonon distributions are equilibrium
(i.e. Bose-Einstein) ones or by assuming non-equilibrium (but bulk-like) ex-
pressions for them. Although more fundamental and superior than AMM and
DMM (for instance, it directly accounts for quantum effects in the phonon
population), even this approach does not provide a satisfactory quantitative
prediction of TBR, as found by confronting its predictions for a symmetrically
strained Si/Ge interface to the results of a MD simulation with no guess about
the phonon scattering events [262]. In addition, in case of non-abrupt inter-
faces the assumption of specular scattering is questionable. More recently, an
anharmonic non-equilibrium Green function approach was developed; this ap-
proach overcomes most of the above limitations, but it has been applied to
single-molecule junction rather than to solid-solid interfaces [263].
A third and last approach is entirely based on MD simulations, making

no direct use of the phonon language, i.e. not requiring any explicit calcu-
lation of phonon frequencies, populations, scattering rates or lifetimes. Ba- Molecular

Dynamics
simulations

sically, the TBR of the HT of interest is described as a series of thermal
resistances, corresponding to two materials leads A and B embedding an in-
terface layer, whose morphology is fully defined by the sample preparation
stage [214, 264, 265]. The resulting TBR is therefore written as RTBR =

N[Lz/κ
HT − lA/κ

A(lA)− lB/κ
B(lB)], where κHT is the overall thermal con-

ductivity of the HT of total thickness Lz, while κA,B(LA,B) are the thermal
conductivities of the leads at their actual thickness lA,B. The factor N = 1 or
1/2 reflects, respectively, the fact that the HT is non-periodic or, rather that
periodic conditions are imposed along the z direction. While this approach
makes no a priori assumptions about the behavior of phonons, it is affected
by finite-size effects similar to those ones found in any EMD, NEMD or AEMD
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calculation of transport coefficients [75, 97, 98, 105]. As a matter of fact, a
set of three different calculations is required, namely the l-dependent conduc-
tivities of the two materials forming the leads, as well as the overall thermal
conductivity of the simulated sample. This could likely result into a heavy com-
putational effort. In any case, the estimated value of TBR actually depends
on Lz and, therefore, different calculations must be repeated for increasing
Lz so as to properly extrapolate the TBR value for two semi-infinite leads as,
outlined, for instance, in Ref. [264]. Furthermore, in some instances the ap-
plication of the NEMD protocol is problematic because it does not provide a
sizable ∆T at the interface from which to compute TBR. In these cases, AEMD
has proven to be a valuable alternative [101].
In this section, an alternative formulation of the TBR problem is illustrated,

based on the non-equilibrium thermodynamics of transport phenomena as for
its theoretical formulation, and non-equilibrium MD as for its actual imple-
mentation. This approach combines at best the merits of a general theory
to a robust numerical tool which, albeit operating at the true atomic scale,
does not require any simplifying assumption about the interface morphology
nor about the physics of the scattering of the thermal energy carriers at such
boundary. The method also presents a practical advantage, reducing the com-
putational effort.

4.2.1 Non-equilibrium thermodynamics theory for TBR

In order to properly define the conceptual framework for a predictive thermo-
dynamical theory of heat transport across an interface, it is useful to consider
at first a homogeneous system (not containing any interface), subject to a
temperature gradient. It is assumed that no mass or charge transport phenom-
ena occur, as well as chemical reactions, without any loss of generality since
the focus is on pure heat transport in solid semiconductor materials. If such a
homogeneous system is in a steady-state condition of thermal transport and
a linear response regime is assumed, then local equilibrium holds anywhere
and, therefore, all thermodynamics equations can be cast in local form and
all relevant quantities can be given in units of volume (i.e. as a density). By
selecting a volume region in the system, the corresponding change of entropy
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density ∂s/∂t is given by the sum of the net flow of entropy Js in and out that Entropy
continuity
equation

volume element and an entropy production term σ provided by any possible
source inside the same volume (entropy continuity equation)

∂s

∂t
= −

∂Js

∂z
+ σ (4.3)

The rate of generation σ is usually expressed in the Onsager form σ =
∑
i JiXi

[266], i.e. as a sum of products between the i-th flux Ji and the corresponding
generalized force Xi. Here the index i spans the different transport mecha-
nisms occurring in the system. By using the Gibbs equation du = Tds (where
u is the internal energy density and a constant-volume situation is depicted)
and the energy balance equation ∂u/∂t = −∂J/∂z, Eq. (4.3) is easily trans-
formed into

∂s

∂t
= −

∂

∂z

(
J

T

)
+ J

∂

∂z

(
1

T

)
(4.4)

where T is the temperature. By comparing Eqs. (4.3) and (4.4), the entropy
density production term for the case here considered can be immediately iden-
tified (no mass or charge transport), as given by the product between the
heat flux J and its generalized force X = ∂(1/T)/∂z. Such a force, in princi-
ple, is a linear combination of all fluxes Ji occurring in the system. However,
in the present case it results X =

∑
i riJi = rJ since, as assumed, no trans-

port phenomena other than the heat current are present. The ri terms are
called Onsager resistivity coefficients: in this context they describe all trans-
port mechanisms and, in particular, r is ascribed to pure heat conduction (in
other words, that the non-diagonal resistivity terms ri would describe the pos-
sible coupling of heat to charge and mass transport and, therefore, they are
null due to the present assumptions). By inserting in the flux-force equation
the explicit form of the generalized force provided by Eq.(4.4), the key result
is obtained

∂

∂z

(
1

T

)
= rJ (4.5)

where it is shown by very general arguments that the actual thermodynamic
driving force for thermal transport is the gradient of an inverse temperature



108 silicon-germanium nanostructures

ho
t 

co
nt

ac
t

co
ld

 c
on

ta
ct

heat flux ΔT

z direction

thermal bias condition temperature profile

Figure 4.7. Schematic illustration of the appearance of TBR at an interface across
which a temperature gradient is established. This cartoon conceptualizes
a steady-state condition and, therefore, the temperature profile T(z) far
away the interface region is linear (with different slopes at left and right,
mimicking an heterojunction between two materials with unlike thermal
properties).

[267]. Although somewhat surprising, this result is consistent with the Fourier
equation ∂T/∂z = −RJz (normally used in predicting thermal transport fea-
tures in homogeneous materials) by simply developing the z-derivative of the
inverse temperature and obtaining ∂T/∂z = −T2rJ. This unveils the link be-
tween the Onsager r and the ordinary R thermal resistivity, namely T2r = R.

The application of the above theory to the case of an interface is not trivial,
since the system is no longer homogeneous (see Fig. 4.7).The case of an

interface In the following, the prototypical situation of two semi-infinite material
leads meeting at a nominal interface will be considered. By selecting any
suitable property P(z) having two different values in the bulk-like regions far
away from the interface, it is possible to draw its variation along the direction
normal to it, as shown in Fig. 4.8, top. This will clearly identify both the
left and right interface boundaries (and, therefore, the actual thickness of
the interface region) once that it is assumed to define such an interface as
that region where P(z) differs from the pure material values (respectively:
Pleft and Pright ) by some arbitrary amount. This procedure is named theThe Gibbs

construction Gibbs construction [266]. For instance, in the case of an interface between
two lattice mismatched semiconductors P(z) could be the interplanar lattice
constant along z. Alternatively, P(z) could represent the actual content of
a dopant, or a given chemical species, or any other structural defect. For a
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T(z)
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z

z

Figure 4.8. Top: Gibbs construction for the definition of the interface; the grey shad-
ing mimics the variation of a suitable property P(z) along the growth
direction of an HT between unlike leads (where it has values Pleft and
Pright , respectively). Bottom: temperature profile T(z) in a steady-state
of thermal conduction; the color shading indicates the applied thermal
gradients (red: hot region; blue: cold region).

crystalline/amorphous interface P(z) could, finally, represent the local average
atomic coordination. As schematically shown in Fig. 4.8, while the P(z) is
normally well behaved in the Gibbs interface region, there is in principle no
reason for such portion being symmetrically extended into the two facing
leads nor to be centered at their nominal interface. The Gibbs construction,
therefore, provides a robust definition of the interface which is treated as an
autonomous thermodynamical system [49,51].
Applying a temperature gradient along z and plotting the temperature pro-

file T(z) once the steady-state regime has been reached, a situation similar to
what is pictured in Fig. 4.8 (bottom) is obtained. This figure directly defines
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three relevant temperatures in this problem, namely the left Tleft and right
Tright temperatures just at the boundaries of the interface region, as well
as the interface temperature Ts , defined as the average value in the same
volume. This is a quantity easy to compute within a MD simulation using the
kinetic energy of the atoms placed in the interface region.

Once that the interface is identified, Eq. (4.3) is recast in the form

∂sint

∂t
= −(Js,left − Js,right) + σ

int (4.6)

where the superscript int indicates an interface quantity, while Js,left and
Js,right are the entropy density flux through the left and right boundary of
the interface, respectively. By developing the same algebra as in the previous
section and exploiting the fact that a steady-state condition of thermal trans-
port is considered, the entropy density production term σint for the interface
reads as

σint = J

(
1

Ts
−

1

Tleft

)
+ J

(
1

Tright
−
1

Ts

)
(4.7)

This result is quite interesting since it shows that two different flux-force
equations are indeed necessary to correctly describe the interface problem,
namely(

1

Ts
−

1

Tleft

)
= rleftJ ,

(
1

Tright
−
1

Ts

)
= rrightJ (4.8)

each one defining its own Onsager resistivity coefficient. Therefore, the total
TBR RTBR is in fact a series of two Onsager resistances

RTBR = T2s
(
rleft + rright

)
= T2s

1

J

(
1

Tright
−

1

Tleft

)
(4.9)

This approach is very clean and robust, since: (i) it is based on very general
and elegant thermodynamical arguments; (ii) it does not imply any guess or
assumption or approximation about the atomic-scale mechanisms ruling over
the thermal energy exchange at the interface; (iii) it does not rely on such a
concept as phonon, which only stems from crystals, and therefore can deal
with systems lacking of order; (iv) it allows, through the Gibbs construction,
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to unambiguously define where the interface indeed occurs and how large it
is.
It is worth clarifying the relationship between the standard definition of

Kapitza resistance RTBRKapitza = (Tleft − Tright)/J given in the introduction
of Sec. 4.2 and the corresponding Onsager definition RTBR provided by the Relationship

with the Kapitza
resistance

above development. As a matter of fact, Eq. (4.9) can be recast in the form

RTBR = RTBRKapitza

T2s
TleftTright

(4.10)

where it is clearly shown that the two definitions only differ by the term
T2s /TleftTright. It is now convenient to distinguish between the opposite
cases of thick and thin interface. When the interface has a non-vanishing
width, like in the case of a rough boundary or when interdiffusion of some
chemical species indeed occurs, the ratio T2s /TleftTright may be significantly
different from unity since, as explained above, Ts is evaluated through the
average kinetic energy of the entire boundary region. Also, if the interface is
large enough it could possibly host an additional heat source or a sink, which
contributes to the actual value of Ts (definitely no longer related to Tleft or
Tright in this configuration). The case of a sharp interface is more subtle. For
an infinitesimally thin boundary, it can be assumed with no loss of generality
that

Tleft = Ts +∆Tleft and Tright = Ts −∆Tright (4.11)

so that

∆T = Tleft − Tright = ∆Tleft +∆Tright (4.12)

According to Eq. (4.11)

TrightTleft = T
2
s + Ts(∆Tleft −∆Tright) −∆Tleft∆Tright (4.13)

and therefore

T2s
TleftTright

=

(
1+

∆Tleft −∆Tright
Ts

−
∆Tleft∆Tright

T2s

)−1

∼ 1+O

(
∆T

Ts

)
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(4.14)

Equation (4.14) indicates that even in the case of a sharp interface, the
factor T2s /TleftTright is not unity when ∆T is an appreciable fraction of the
interface temperature, which in turn falls between Tleft and Tright.

4.2.2 Addressing TBR through computer experiments

The numerical implementation of the procedure described in the previous
section basically requires a threefold task: (i) the Gibbs construction for the
interface; (ii) the set up of a steady state of thermal conduction; and (iii) the
evaluation of heat flux in this condition.

The first task is really straightforward and simply requires the calculation of
the property P(z). Likely, such a selected property is a structural one and this
simply implies that some care must be devoted in preparing the computational
sample in a fully relaxed configuration prior to any further calculation.

As for the setting up of a steady-state thermal transport condition, it can be
generated by adopting the NEMD framework (see Sec.2.2.2), i.e. by adopting
the left and right terminal ends of the system to two heat reservoirs set at
different temperatures [75, 105, 214]. By MD simulation, the system is so
aged for a long enough time to reach the steady state which is assessed by a
constant-in-time temperature profile (see Fig. 4.8, bottom). However, the fact
that some details of the profile established across the simulated sample slightly
depend on the kind of heat bath used: this, in principle, could somewhat affect
the estimation of the temperature drop at the interface (and, therefore, the
estimation of Tleft , Tright, and Ts). In general, Langevin thermostatting is
recommended since it provides more consistent results with experiments for a
large set of simulation parameters [268].
The calculation of the heat current vector is not at all a trivial matter. J is

needed in Eq. (4.9) and it is defined, likewise the definition given in Sec.2.2.1,
as J ≡ d/dt(

∑
i riEi), where ri is the position i-th and Ei its energy. By usingCalculating the

heat current empirical potentials, it is possible to elaborate non equivalent heat current
formulas for the same many-body force field, because of the ambiguity in
defining the onsite energy Ei . This problem has been recently solved [86]
by working out a general pairwise force expression valid for any potential,
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which avoids the partition of the potential itself into arbitrary single-particle
contributions. The same difficulty in uniquely decomposing an ab initio total
energy functional (as typically provided by density functional theory) into
individual contributions from each atom is usually reported; however, such
a misconception has been eventually clarified and a computable expression
of the heat current is now available for ab initio MD calculations [91] as
well. A different solution to this problem [214, 269] consists in calculating
instead the work Whot and Wcold spent by the hot and cold thermostat,
respectively, and evaluating the corresponding heat fluxes as Jhot,cold =

(1/S)(∂Whot,cold/∂t) (see Sec. 2.2.2), where S is the cross section of the
simulated sample. The steady-state condition is now proclaimed when Jhot =
Jcold within the accepted numerical error. In this way, there is no need to
make use of any atomic-scale formulation for the heat current, which is always
preferable.
Whatever solution is adopted to calculate the key ingredients of Eq. (4.9),

as many as O(106) MD steps could be needed for reaching the through steady-
state condition [214, 269]. Therefore, the direct calculation of RTBR by means
of non-equilibrium thermodynamics, while simple in principle, is made non triv-
ial by such a heavy computational demand. Nevertheless, the method outlined
previously offers the advantage of requiring the calculation of the relevant
quantities just for the HT system, without need to calculate the correspond-
ing properties for the two leads. This translates into a dramatic reduction in
the overall computational workload as compared, for instance, to the method
based on the treatment of the TBR problem as a series of thermal resistances.

4.2.3 TBR at the Si/Ge interface

Thermal transport across Si/Ge HT can be tailored by engineering their super-
periodicity [270], as well as the stoichiometry of the barrier layers [200, 271].
As stated earlier in this chapter, while high-frequency phonons are efficiently
scattered by Si-Ge alloying, mid- and low-frequency ones are affected by a
suitable distribution of Si/Ge interfaces. Overall, this state of affairs makes
SiGe superlattices systems with tunable thermal conductivity, a feature useful
for the design of TE generators [225, 250, 251] or nanocooling in Si-based
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Figure 4.9. The Gibbs construction for an interface between Ge (left) and pseudomor-
phic Si (right): the nearest neighbors distance dnn is calculated along the
growth direction z. The nominal position of the interface (correspond-
ing to the chemical discontinuity) is marked by a vertical red line at
z = 56.567 nm. The inset provides a magnified view of the interface re-
gion, represented as a red shaded area, whose left (at z = 56.3 nm) and
right (at z = 58.0 nm) boundaries are marked by two parallel red lines.

devices [12, 247]. The thermal resistance at the Si/Ge interface represents
in this framework the key feature, which is here addressed in order to show
the potential of the theory outlined in the previous section in a case of great
practical interest. In Fig. 4.9, is reported the Gibbs construction for a planar
Si/Ge abrupt interface. Inspired by an experimental work [225], the growth
of a (001)-oriented Si/Ge HT on crystalline Ge was modeled; therefore, the in-
plane lattice constant was set at aGe0 = 5.6567 Å, namely the bulk-like value
predicted for Ge by the adopted Tersoff force field [89]. The cross section of
the sample was 5a0 × 5a0. The Si slab is modeled according to the pseud-
morphic growth, meaning that its interplanar spacing is given by Eq. (4.2).
After a careful conjugated gradient structural relaxation, the resulting sample
length was 108.48 nm. For this configuration, the nearest neighbors distance
dnn was calculated along the z direction as an average taken over a passing
window as wide as aGe0 , corresponding for the present case to the property
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Figure 4.10. Temperature profile calculated for an interface between Ge (left) and
pseudomorphic Si (right) in a steady-state condition of thermal trans-
port (the hot and cold thermostats are placed at the Ge and Si ends,
respectively, and are set at a nominal ∆T = 300K).

P(z) discussed previously. Far away from the nominal (or, equivalently, chem-
ical) interface, dnn recovers the Ge (left) and p-Si (right) bulk-like values, as
expected, while the central segment where such a distance deviated by more
than two standard deviations from the reference values was selected as the
interface region. This procedure proves that the interface, while chemically
abrupt, has in fact a finite thickness of about 17 Å; interestingly enough, it
is also observed that the interface region is not symmetrically spread in the
two facing leads but, rather, it is almost entirely hosted by the Si one. This is
a system where the chemical interface does not necessarily overlap the ther-
modynamical one, as anticipated above. All data needed for computing the
TBR are contained in Fig. 4.10 where the corresponding temperature profile is
shown, as calculated during a NEMD simulation lasted for 5 ns (the first 2 ns
are used to set up the steady-state condition). In particular, the numbers are
Tleft = 296.8 K, Tright = 271.7 K, and Ts = 284.3 K; the calculated station-
ary heat current is J = 8.32 GW/m2 for a nominal temperature offset of 300
K between the hot (Ge side) and cold (Si side) thermostats. Overall, through
Eq. (4.9), they provide RTBR = 3.02 m2K/GW. This result is nicely consis-
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Figure 4.11. Temperature profile calculated for an interface between Ge (left) and
pseudomorphic Si (right) in a steady-state condition of thermal trans-
port (the hot and cold thermostats are placed at the Ge and Si ends,
respectively, and are set at a nominal ∆T = 300K).

tent with previous calculations [262, 264] based on the more conventional
NEMD prediction performed with the same interatomic potential, although in
somewhat different structural conditions (in Ref. [43] symmetrically strained
interfaces were considered, while in Ref. [262] no interface relaxation was al-
lowed, while clamping atomic planes at the position predicted by continuum
elasticity for a pseudomorphic configuration).

The application of the Gibbs construction and the corresponding calculation
of the TBR is very robust, since it does not depend on the actual structure of
the investigated systems, nor on the thermal bias conditions. In order to proveThe Gibbs

construction in a
Si/Ge nanowire

this, a Si/Ge interface is realized in a nanowire with total length of 40 nm
and diameter of 5 nm, where the hot and cold thermostats are coupled to the
Si and Ge end, respectively. The nominal temperature offset is now larger, i.e.
400 K. The NW system, at variance with the previous bulk-like interface, can
laterally accommodate the lattice mismatch between the component materials
and, therefore, a situation inherently different than the pseudmorphic one is
here experienced.
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Figure 4.11 summarises both the Gibbs construction (see inset) and the
resulting temperature profile in the steady state. The resulting TBR is now
RTBR = 2.55 m2K/GW. The difference with respect to the bulk-like case is
easily accounted for by considering that the interface temperature Ts is 284.3
K and 323.4 K for the bulk-like and nanowire system, respectively. The key
point here is that, thanks to the Gibbs construction above, the interface cor-
responds to an autonomous thermodynamical system; therefore, its thermal
resistance can be treated as a system variable, only depending upon the inter-
face temperature Ts (calculated, once again, through the Gibbs construction).
In other words, as discussed in [272], Ts in fact represents a tunable interface
property suitable to fully engineer the thermal resistance at a Si/Ge boundary.
Interface alloying, here not considered, provides an additional tool [200, 214,
264].
The present formulation draws a direct link between the Onsager and the

phenomenological resistivity and allows to attribute to the interface region its
own temperature, making in fact such an interface an autonomous thermody-
namical system according to non-equilibrium thermodynamics. While here not
addressed, this issue could be important when studying heat transport across
an interface in a non-stationary regime and/or for assessing the dependence
of boundary resistance upon the local temperature at the interface.





5
S I L I C O N G R A D E D S Y S T E M S

In this chapter, the concept of thermal rectification is explored for bulk-like
systems. In particular, by NEMD simulations, the thermal rectification fac-

tor R in Si bulk structures containing a gradual distribution of compositional
or structural defects is addressed. The reason to select Si for the present in-
vestigation is twofold, namely, (i) it has an impact on the emerging phononic
nanotechnology quoted above and (ii) it has very well-known thermal proper-
ties.

5.1 thermal rectification in graded systems

Thermal rectification [253–255] occurs whenever the heat flux is affected by
the actual direction of the thermal gradient applied to the system. The amount
of rectification of the heat current is usually quantified by the factor

R = |Jfwd|/|Jrev|− 1 (5.1)

where Jfwd and Jrev are the heat fluxes corresponding to the forward and
reverse thermal bias conditions, respectively. The situation is conceptualized
for the prototypical configuration corresponding to an interface between two
materials A and B. In Fig. 5.1, it is assumed that Jfwd > Jrev, but the defi-
nition of forward˝ or reverse˝ bias condition is only a matter of convention.
While the thermal rectification has been first observed experimentally long
ago [273], recently it started attracting an increasing interest since it is a key
feature in the emerging nanotechnology referred to as phononics [245, 248,
249]. Here, the generation, control, and manipulation of lattice heat (or, equiv-
alently, phonon flux) are the main tools to engineer devices with functionality
similar to their electronic counterparts (like electrical diodes or transistors).
As explained in the previous chapter, in most cases of practical interest [245],
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Figure 5.1. Left: schematic representation of the forward˝and reverse˝thermal bias
conditions. Rectification occurs whenever Jfwd 6= Jrev. Right: zoomed
interface region where the temperature drop ∆T occurs (full red line),
generating localized thermal resistance.

thermal rectification is observed when two materials with unlike thermal con-
duction properties are interfaced, as indeed shown in Fig. 5.1. In this config-Avoiding

interfaces uration, the role played by the sharp interface is crucial: here a temperature
drop ∆Tfwd,rev occurs in whatever bias condition, giving rise to an inter-
face thermal resistance (ITR) quantified by the ratio |∆Tfwd,rev|/|Jfwd,rev|

as extensively discussed in Refs. [254], [255], and [58]. While ITR is largely
referred to in semiconductor systems, also interfacial hybrid systems like met-
al/superconductor [274] or crystal/polymer [275] junctions have been shown
to provide thermal rectification. However, the actual rectifying properties of
an interface are affected by many features (structural details, chemical con-
tamination, and interdiffusion to name just a few) which require nontrivial
nanofabrication techniques for their government, possibly resulting in a rather
difficult technological task to be accomplished.

This scenario suggests that it would be interesting to observe thermal rec-
tification without any localized (i.e., abrupt) temperature drop. This basically
requires that such a sharp interface is not present in the rectifying device. In
this regard, low-dimensional systems (either model or realistic) prompt several
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possible rectifying configurations, such as non-uniform mass loading, suited
distributions of defects, and tailored shaping [214, 265, 269, 276–283], where
the above combination is actually realized.

5.1.1 Generating the graded structures

The NEMD simulations have been performed on the Si tetragonal cells with
section S = (n×n)a20 (with n = 10 or 13 as indicated below) normal to the
(001) direction of heat transport (hereafter named z) and a total length Lz
varying in the range of 100− 350a0 (as indicated below). At the left and right
extrema of such a simulation cell, two further slabs of thickness 10a0 were
added and coupled to thermostats (according to th extensively NEMD con-
figuration, Sec.2.2.2). Periodic boundary conditions have been applied along
the two directions normal to z. Lattice constant was set to a0 = 5.4305 Å
as predicted by the Tersoff potential providing the force field for the present
investigation [89]. The simulation cells have been at first filled by a diamond
lattice of silicon atoms. Then, a nonuniform dispersion of defects was obtained:
(i) by randomly replacing Si atoms with Ge ones, up to a 20% of Ge content,
which is the minimum doping corresponding to the maximum reduction of lat-
tice thermal conductivity in a SiGe alloy [103, 231] or (ii) by removing clusters
of Si atoms so as to create voids with a random position, size, and shape up
to a maximum 31% porosity. In any case, the two thermostatted slabs were
not affected by Si→Ge replacements or void generation. This procedure gen-
erated a defect distribution characterized by different concentration profiles
along the z direction, as shown in Fig. 5.2 (where the thermostatted slabs are
not shown for the sake of clarity).

A structural relaxation followed, respectively, (i) through a careful energy
minimization by conjugate gradients or (ii) through a high-temperature sim-
ulated annealing at 900 K. The latter procedure (implemented over 5× 105
time step of duration 0.5× 10−15 s) was indeed required in order to allow for
the full reconstruction of dangling bonds created by atom removals. In turn,
the reconstruction generates a shell of amorphous matter at the void surface,
providing an important source of phonon scattering in nanoporous Si [102]
(see also Sec. 3.1). In the case of a SiGe graded alloy, care was also taken of
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Figure 5.2. a: Graded distribution of substitutional Ge defects in a Si lattice. b:
Graded distribution of pores in a Si lattice. From top to bottom, it is
shown a linear, quadratic, exponential, and step-like distribution of de-
fects. Their average concentration is shown by a black dots. Pictures
show a 4a0-thick longitudinal (xy-plane) section of each sample.

any possible structural relaxation along the z direction due to the Si-Ge lat-
tice mismatch by further performing constant pressure, constant-temperature
MD simulations as long as 5× 105 time steps, each lasting 1.5× 10−15 s.
Since just a very minor variation of the cell length was observed and, in any
case, no detectable effect in the calculation of the heat flux (see below), the
result here presented are obtained with constant-volume cells. To this aim,
fixed boundary conditions were imposed along z by adding one more plane
on both sides where atomic positions have been clamped anytime during the
simulations. Finally, for the sake of comparison in both cases, it has generated
a sharp interface between pure Si and, respectively, a homogeneous SiGe alloy
with a 20% of Ge content or a nanoporous Si sample with 31% porosity.

The desired steady state condition where to investigate possible rectifica-
tion effects was generated (according to the procedure explained in Sec. 2.2.2)
in each system by coupling its left and right 10a0-thick terminal slabs (seeThe steady-state
above) to a heat reservoir, respectively, set at Th = 700 K and Tc = 500 K
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by using Nose-Hoover thermostats. These temperature values guarantee that
most part of the system stays above the Si Debye temperature and, therefore,
quantum effects play a very minor role. While the initial temperature of each
sample was set at the average (Th + Tc)/2 value, the MD simulation was
aged until a steady state regime was reached for the selected thermal bias
condition (assigned by the relative position of the hot and cold thermostats).
Given the very small resulting thermal conductivity, this required as many
3× 106 or 7× 106 time steps of MD for the Ge-doped and nanoporous struc-
tures, respectively. The simulation was run for further 1× 106 or 3× 106,
according to the system, in the steady state condition in order to calculate
heat fluxes coming out and going in the hot and cold thermostat. By invert-
ing the two thermostats and repeating the calculation, the other heat flux
was similarly calculated and, according to Eq. (5.1), the rectification R was
eventually obtained. In all samples investigated here, forward˝ was the bias
condition where the pure silicon part of the system (i.e., the left end in Fig.
5.2), all panels) was set at Th. All simulations have been executed by using
the LAMMPS code [141].

5.1.2 Achieving rectification

Table 5.1 summarizes the results obtained for the configurations shown in Fig.
5.2, reporting rectifications in the range of 2.0%− 3.5% and 1.4%− 3.2% for
Ge and pore distributions; on average, the error in estimating rectification is
about 0.45% and 0.32%, respectively. These data provide evidence that not
only a rectification is indeed found but also it is ruled over by changing the
distribution of Ge atoms or pores along the z direction. Overall, the predicted R
is comparable to what was observed in other low-dimensional Si-based systems
[284–288] proving that rectification is indeed possible in a bulk-like system
lacking sharp interfaces. Interestingly enough, rectifications as small as 3%−

4% have been indeed measured in the Si-based systems [277]; an even smaller
rectification of about 1%− 2% has been experimentally reported, although in
a rather different system as reduced graphene oxide [281]. So, the rectification
values predicted in this work should be within the experimental capability of
measure.
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Linear Quadratic Exponential Step-like

Ge 2.0% 2.8% 3.5% 2.0%

Pores 1.6% 1.4% 3.2% 1.2%

Table 5.1: Rectification calculated for the graded distributions of Ge atoms or pores
shown in Fig. 5.2. On average, the error in estimating rectification is about
0.45% and 0.32%, respectively. For all samples, the temperature offset
between the hot and cold thermostats is set at ∆T = 200 K and it is
centered at an average temperature of 600 K. Simulation cells have a
13× 13a20 section and a length Lz = 100a0.

∆T = 200 K ∆T = 150 K ∆T = 100 K ∆T = 50 K

3.5% 3.3% 2.8% 2.7%

Table 5.2: Rectification calculated for the graded distributions of Ge atoms with an
exponential profile (see Fig. 5.2) as a function of the temperature offset
∆T between the hot and cold thermostats (in all cases, the average tem-
perature is 600 K). On average, the error in estimating rectification is
0.37%. The simulation cells have a section S = 13× 13a20 and a length
Lz = 100a0.

Varying the profile of the defect distribution is an effective way to control
the resulting R, and the present simulations suggest that the exponential
profile turns out to be the most efficient in generating different values for
|Jfwd| and |Jrev|. This is not, however, the only way to tune rectification
features. In fact, the dependence of the rectification on the value of theVarying the

temperature
offset

imposed temperature offset Th − Tc = ∆T was calculated, as shown in Table
5.2 for the same Lz = 100a0 sample containing a graded distribution of Ge
defects with similar exponential profile.

The results are along the expectations: by decreasing the temperature offset
between the hot and cold thermostats, the rectification is reduced from 3.5%
to 2.7%. On average, the error in estimating the rectification for these systems
is 0.37%. However, such a reduction is weak: while the temperature offset
was reduced by a factor 4, the calculated rectification is only reduced by
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Figure 5.3. a: Temperature profiles calculated for the graded distributions of Ge
atoms. b: Temperature profiles calculated for the graded distributions
pores. The profiles are shown in the same order of Fig. 5.2 (the step-like
profile is omitted here for sake of clarity). For all systems, which recti-
fication factor are reported in Table 5.1, it has been set Th = 700 K
and Tc = 500 K. The forward and reverse thermal bias conditions corre-
spond to the empty (blue) and full (red) symbols, respectively. Errors are
indicated by vertical bars.

a factor 1.3. This is an interesting result, making clear that the predicted
rectification feature is robust. Interestingly enough, the rectification is also
affected by varying the absolute temperature of the two thermostats, but still
preserving their offset: as a matter of fact, by repeating the calculation for an
exponential profile of Ge substitutional defects with Th = 900 K and Tc = 700
K, R = 4.3% was obtained. Such an increased rectification can be attributed
to the different average interface temperatures [272].
Another intriguing feature of the rectification phenomena reported here

is that they are not paralleled by the onset of any interface temperature
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Figure 5.4. Zoomed temperature profiles nearby the interface (positioned at z =

50a0) calculated for a step-like distribution of Ge atoms (left) and pores
(right) in the Th = 700 K and Tc = 500 K thermostatting condition. The
resulting temperature drop ∆T is shown for both the forward (empty blue
symbols) and reverse (full red symbols) thermal bias conditions. Errors
are indicated by vertical bars.

drop, possibly causing ITR effects. Fig. 5.3 reports the calculated temperature
profiles in the steady state conditions for all graded systems shown in Fig.
5.2, both in the forward (open blue symbols) and reverse (red full symbols)
thermal bias conditions. The profiles have been obtained by calculating the
local temperature of slabs as thin as 2.7 nm aligned along the z direction,
over which the atomic velocities have been averaged for 1× 106 and 3× 106
time steps, according to the system.

5.1.3 Nonseparability of thermal conductivity

The present results can be interpreted in terms of a nonseparable dependence
of the thermal conductivity upon the z-coordinate and temperature T which,
in turn, defines a non-linear heat transfer regime. Such a non-linear regime
is the key feature for rectification, which cannot be simply ascribed to an
asymmetric scattering of the heat carriers by defects when inverting the ther-
mal bias. As a matter of fact, the structural inhomogeneity generated by the
graded distribution of compositional or structural defects makes the thermal
conductivity a function of z. On the other hand, it turns out that the same
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quantity is explicitly a function of T as well, since the system is out of equi-
librium (although in steady state). In other words, it is taken for granted that
each single portion of the system is transmitting heat while experiencing a
different local temperature with respect to the temperature of its neighbor-
ing regions. This is tantamount to say, that in all investigated samples the
function κ = κ(z, T) is non-separable. In what follows it will be assumed that,
contrary to the above conclusion, the thermal conductivity is separable, i.e., it
can be written κ(z, T) = f(z)g(T), where f(z) and g(T) are known functions.
In the steady state condition (whatever thermal bias) investigated here, the
heat equation for 1D transport along the z direction,

κ(z, T)
dT

dz
= f(z)g(T)

dT

dz
= −Jz (5.2)

can be easily integrated by variable separation since the one-dimensional heat
flux Jz is a constant and, therefore∫Tr

Tl

g(T)dT = −Jz

∫zr
zl

1

f(z)
dz (5.3)

where Tl and Tr are the temperatures of left and right terminal ends of the
system, respectively, located at positions zl and zr. Equivalently, Eq. (5.3)
can be cast in the form

Jz = −

∫Tr
Tl
g(T)dT∫zr

zl

1

f(z)
dz

(5.4)

By inverting the thermal bias condition, the upper and lower limits in the
temperature integral are just switched: this will only affect the sign of the
heat flux, leaving unaffected its absolute value. This implies a null rectifi-
cation, i.e., R = 0 since |Jfwd| = |Jrev|. Therefore, the assumption that
κ(z, T) = f(z)g(T) is separable has in fact defined a sufficient condition for
no rectification [283].
This is the key concept that allows to understand these results, providing a

rationale for them. Sure enough, the above statement can be logically inverted Necessary
condition for
rectification

to say that a nonseparable κ = κ(z, T) form of the thermal conductivity does
represent the necessary condition for rectification. This is precisely what is
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Figure 5.5. Local content of Ge substitutional defects along the direction z of heat
transport for four samples with different length Lz. Symbols (connected
by thick lines) represent the actual Ge content; thin lines represent a guide
to the eye, corresponding to an ideal exponential profile.

exploited by the combination of (i) a graded distribution of defects and (ii)
a thermal bias condition. Therefore, the bulk structures here investigated
must rectify a thermal current: as a matter of fact, their thermal conductivity
is a complicated and non-linear convolution given by a z-dependence of the
temperature which, in turn, is a function of the local stoichiometry or porosity.

The present picture on rectification is robust since it does not qualitatively
depend neither on the nature of the defects (compositional or structural)
distributed in the bulk structure nor on their actual distribution profile. It is
also found for no matter what thermostatting condition is set: by simulating
a graded exponential distribution of Ge defects under two different conditions
(namely, Th = 700 K with Tc = 500 K and Th = 900 K with Tc = 700 K) in
both forward and reverse bias, a smooth continuous temperature profile was
found in all the samples, similar to that shown in Fig. 5.3. When the same
analysis is applied to the systems characterized by a step-like distribution of
defects (Fig. 5.2, bottom panels), a small (but definitely non-vanishing) and
abrupt temperature offset at the interface was found, as reported in Fig. 5.4.
In the case of Ge doping, such an interface temperature drop was estimated
to be as large as ∆Tfwd = 18.1 ± 2.3 K and ∆Trev = 21.6 ± 2.6 K for
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Lz = 100a0 Lz = 200a0 Lz = 300a0 Lz = 350a0

4.3% 4.1% 3.6% 3.3%

Table 5.3: Rectification calculated for the graded distributions of Ge atoms with an
exponential profile (see Fig. 5.2) as a function of the length Lz of the
simulation cell. On average, the error in estimating rectification is 0.75%.
In this case, the cross section was reduced to 10× 10a20 for computational
convenience. The temperature offset between the hot and cold thermostats
is set at ∆T = 200 K and centered at an average temperature of 600 K.

the forward and reverse bias situation, respectively. Similarly, for a step-like
distribution of pores ∆Tfwd = 11.9± 4.2 K and ∆Trev = 17.8± 3.0 K was
obtained, resulting in a more relevant difference between the two thermal bias
conditions.
Another important issue worth of investigation is how the predicted rectifi-

cation is affected by the gradient of the defect distribution. To this aim, it was Tuning the
gradient of the
distribution

once again selected an exponential profile of Ge substitutional defects which,
as in the previous cases, was varied from the minimum 0% to the maximum
20% content over a sample length Lz. However, in this case four different
samples with increasing thickness along the direction of heat transport were
considered, corresponding to Lz = 100, 200, 300, and 350a0, respectively.
The resulting defect profiles are shown in Fig. 5.5. The two largest increased
lengths correspond to quite a big simulation cell, and therefore, in order to
keep the corresponding computational workload sustainable, the sample cross
section was reduced to 10× 10a20. This reduction makes unfair the direct com-
parison with the previously investigated sample with same Lz but larger S, and
therefore, the rectification was recalculated for the new section. Results are
shown in Table 5.3, indicating that the rectification is predicted to decrease
from 4.3% (Lz = 100a0) to 3.3% (Lz = 350a0), i.e., a 3.5 increase of the
sample length has reduced rectification by only a factor 1.3. On average, the
error in estimating rectification is 0.75%. So, as expected, there is indeed a
reduction in the rectification features, but even in this case the dependence
on the sample length is weak.
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It is hard to assess whether this reduction is due to the increased (because
of the increased sample length) scattering of heat carriers or, rather, to the
decreased gradient in the defect distribution. In order to further substantiate
the argument that the interplay between the sample length and the gradient
of the defect distribution is complex, thermal rectification was investigated in
one more configuration with S = 13× 13a20, Lz = 100a0 and an exponential
profile of Ge substitutional defects which, however, was now varied from 0% to
60% of Ge-content. Interestingly enough in this case, a smaller rectification
than reported in Table 5.1 was found, a value in fact very similar to the
rectification calculated for the step-like profile. A systematic set of simulations
exploring various combinations of length and gradient effects would be needed
to fully clarify this issue, which will follow in future works. Finally, by increasing
the maximum Ge content of the doped region up to 60%, or by enlarging
the (Th − Tc) difference up to 400 K, or even by reducing the thermostats
temperature to Th = 400 K and Tc = 200 K (and neglecting possible quantum
effects), a full confirmation of the picture outlined above it is found, namely,
rectification up to ∼ 5% is always observed in graded bulk structures without
any ITR (once again, because of the missing sharp temperature drop anywhere
in the system).
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V ibrational spectroscopy, in particular time-resolved pump-probe in-
frared spectroscopy, is a powerful tool to investigate the dynamics of

molecular systems. In particular, hydrogen-bonded (HB) liquids are among the
most studied systems, as they exhibit intricate energy dissipation dynamics
due to the strong directionality of hydrogen bonds and the complex topology
of their network [289, 290].
Hydrogen bond interaction can be probed in detail by exploiting the stretch-

ing mode frequency of specific functional groups, for example the hydroxyl
groups in liquid alcohols or water [291–294]. Time-resolved one-dimensional
nonlinear spectroscopy is based on a pair of laser pulses, which are used to
excite the sample, inducing a change in infrared absorption, and to probe the
time dependent optical response. Time-resolved dynamical information is ob-
tained by probing the evolution of an excited vibrational state as a function
of delay time. Such dynamics are dominated by the dissipation of vibrational
energy and by spectral diffusion. Both effects result from anharmonicity and
from coupling among vibrational modes. The corresponding molecular tran-
sitions probed during the excitation and relaxation processes involve excited
states, where the stretching mode is coupled with lower frequency modes via

133
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hydrogen bonding, causing spectral diffusion and non-trivial changes in spec-
tral line shapes and width [295–298]. Furthermore, polarized infrared spec-
troscopy makes it possible to study the rotational dynamics of such molecules
[299–301].
To obtain the underlying molecular-level details of pump probe experiments,

vibrational relaxation dynamics has been extensively investigated in computer
simulations and several approaches have been proposed. On the one hand,Vibrational

spectroscopy in
computer

experiments

equilibrium simulations have helped in the study of rotational dynamics, by
means of autocorrelation functions using the fluctuation-dissipation formalism
[302, 303]. On the other hand, non-equilibrium simulations have been already
adopted in relaxation processes, providing physical insight on the origin of
spectral diffusion in the ultra-fast dynamics of water [304–309].
However, the non-equilibrium approaches proposed so far either were de-

signed ad hoc for a specific system [304], or introduced an explicit oscillating
electric field potential in the Hamiltonian, the implementation of which poses
fundamental and technical issues in systems with periodic boundary conditions
[310].

In this chapter, a general approach based on the GLE (previously introduced
in Chpt. 2), is proposed to simulate pump-probe processes in non-equilibrium
MD simulations. This approach consists of using a non-Markovian thermostat
that couples to the to a selected subset of vibrational modes (pump), while
the rest of the system remains at the equilibrium temperature. When the
thermostat is switched off, the system relaxes to equilibrium, redistributing
the excess energy among the other DOF. Such transient regime is monitored
(probe) providing quantitative insight into relaxation energy transfer processes
at the molecular scale. The method proposed, based on classical MD, lacks
the possibility of directly simulating quantum phenomena, but it can still be
connected to vibrational energy relaxation rates [311], and it is suitable to
simulate long-time thermal relaxation.
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6.1 the hotspot˝ thermostat

6.1.1 Pumping the system

While it is possible to define proper conditions for Eqs. (2.43) to sample the
canonical ensemble, i.e. to satisfy the fluctuation-dissipation theorem as in
Eq. (2.42), the aim is to achieve a non-equilibrium steady state for a finite
time. In order to selectively excite a subset of the DOF, one has to use a
GLE that does not satisfy the fluctuation-dissipation relation. Specifically, a
modified version of the so-called δ-thermostat [110] is used, which induces
frequency-dependent fluctuations of the momentum in a selected range of
vibrational modes, while keeping the remaining ones almost completely frozen.
The goal is to reproduce a laboratory set-up where the infrared laser pumps
energy into modes at a specific frequency, whereas the other DOF are not
coupled directly to the laser source and remain at the equilibrium temperature.
To this end a white-noise Langevin thermostat at Tbase, characterized by a
friction parameter γbase, is combined with the δ-thermostat with a target
temperature of Tpeak, acting on a set of given frequencies centered around
ωpeak.
A memory kernel whose Fourier spectrum combines a white-noise baseline

and a Lorentzian shape peak can be obtained with the following parameteri- Memory kernel
zation for the matrices Ap and Dp:

Ap =


γbase

√
γpeakωpeak

2π
0

−

√
γpeakωpeak

2π
∆ω ωpeak

0 −ωpeak 0

 (6.1)

Dp =

2Tbaseγbase 0 0

0 2Tpeak∆ω 0

0 0 0

 , (6.2)
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that gives a (friction) memory kernel whose power spectrum reads

K(ω) = 2γbase +
γpeak

π

ωpeak∆ωω
2

(ω2 −ω2peak)
2 +∆ω2ω2

. (6.3)

For small ∆ω, this kernel tends to δ(ω−ωpeak). Thus, the thermostat will
affect the frequencies falling in the interval ∆ω centered around the frequency
ωpeak, injecting energy corresponding to Tpeak, while the white noise contri-
bution tends to keep the other modes at the target baseline temperature Tbase.
The effect of this hotspot˝ thermostat can be predicted analytically, when
applied to a harmonic oscillator of frequency ω̄ [111]. Normal modes with
ω̄ � ωpeak and ω̄ � ωpeak equilibrate at the temperature Tbase. A maxi-
mum in temperature is reached for ω̄ = ωpeak, which however corresponds
to a different temperature than Tpeak, due to the presence of the white-noise
baseline that also interferes with the selected modes. Such maximum temper-
ature Tmax, for ω̄ = ωpeak, can be computed analytically, and it is thus
possible to set Tpeak to

Tpeak = Tmax −
γbase

(
Tmax − Tpeak

) [
2π∆ω (∆ω+ γbase) + γpeakωpeak

]
∆ωγpeakωpeak

.

(6.4)

so that, in the harmonic limit, normal modes with frequency ωpeak equili-
brate at the desired temperature Tmax. These predictions for the behavior of
a hotspot˝ thermostat are qualitatively fulfilled in realistic systems, in which
vibrational modes are coupled with each other by anharmonicity.

Figure 6.1 shows the effect of the excitation of the OD stretching mode
in deuterated methanol (left panel) and of the OH stretching mode in water
(right panel) on the temperature of the D/H species. The temperature TbaseMode excitation
corresponding to the other atomic species is reported as well. The details of
how the kinetic temperatures reported in Fig. 6.1 are computed are given in
the next section. In both cases Tmax = 400 K and Tbase = 300 K was chosen.
For both examples, after a characteristic transient time, the system reaches a
steady-state, in which the species most coupled to the thermostat (D and H)
have a higher kinetic energy, while the other atoms, CH3O atoms in methanol
and O atoms in water, equilibrate at ∼ Tbase. In the transient time after the
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Figure 6.1. a: Kinetic temperatures during a hotspot˝ thermostatting for deuterated
methanol. b: Kinetic temperatures during a hotspot˝ thermostatting for
water. In both cases the purple (green) curve represents the temperature
of the excited atoms (the remaining ones) which correspond to deuterium
in left panel and hydrogen in right panel.

hotspot˝ thermostat is switched on, the two systems respond in different
ways. While most of the kinetic energy is effectively transferred to the modes
at the target frequency, also the baseline temperature increases, due to the
anharmonic coupling among different vibrational modes. In addition, the joint
action of a δ-thermostat and of a white-noise Langevin thermostat results in
an effective temperature of the excited modes lower than the nominal Tpeak.

However, TD in methanol does not correspond exactly to the temperature of
the OD stretching that is excited. Using Eq. (6.4) one can tune the interaction
between Tpeak and Tbase so to achieve the desired mode temperature Tmax.
For example, in the case of methanol, with the parameters used to obtain Fig.
6.1, Tpeak = 1460 K was set to obtain (in the harmonic limit) Tmax = 400

K: the temperature of the stretching mode reported (TOD) reported in Fig.
6.16 turns out very close the one predicted by Eq. (6.4) in the harmonic
approximation. Whereas in the general case this harmonic prediction is not
exact,an excellent agreement between the predicted Tmax and the energy
resolved on the stretch mode of CH3OD was observed (see Sec. 6.4, Fig.
6.16)
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6.1.2 Probing the relaxation

Experimentally the relaxation dynamics that follows the pump phase is probed
by a second laser pulse. Vibrational spectra are collected as a function of the
time delay of the probe pulse. To model the probe phase the GLE thermostat
is switched off and the system evolves in the microcanonical ensemble, so that
the energy redistributes among all the DOF, to reach classical equipartition.

During relaxation the kinetic temperature of the excited modes is the most
natural quantity to probe. However, further information can be obtained com-
puting the vDOS from the Fourier transform of the velocity autocorrelation
function. In order to reproduce the time delay between pump and probe, the
NVE trajectory is divided in intervals of the same duration, during which
atomic velocities are sampled and the transient vibrational spectrum is com-
puted. This protocol allows to probe the whole range of vibrational frequencies
as a function of time, thus monitoring the real time energy diffusion between
the different vibrational modes. The hotspot thermalization implies an excess
energy in the selected mode, resulting in an enhanced peak intensity in the
spectrum that directly reflects the population of the vibrational mode. Relax-
ation dynamics eventually causes the redistribution of this surplus energy and
a change of the intensity of the peaks coupled to the vibrational excited mode.
The computation of the time-dependent area for peaks centered at a givenTransient

spectra frequency ω̄

A(ω̄, t) =
∫ω̄+δω

ω̄−δω

[∫t2
t1

〈v(t)v(t+ τ)〉e−iωτdτ
]
dω (6.5)

provides time-resolved quantitative information about the dynamics and the
characteristic time scale of energy transfer. In what follows vibrational spectra
were always calculated considering only the velocities of hydrogen or deuterium
atoms, in order to better highlight the dynamics of the vibrational modes of
interest.
Although the calculation of power spectra as the Fourier transform of ve-

locity autocorrelation functions is rigorously justified only at equilibrium [120],
here it is used to probe non-equilibrium transient regimes. In the following,
it is verified that the Green-Kubo formalism provides quantitatively reliable
information about the physical properties of systems out of equilibrium, pro-
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vided that the chosen time window is long enough to guarantee a suitable
statistical accuracy.

6.2 case study: methanol

As a case study methanol in its liquid phase is considered, since it is a widely
studied representative of HB liquids. Hydrogen-bonded liquids are excellent
solvents, in part due to the highly dynamic character of the directional inter-
action associated with the hydrogen bond. A detailed comparison with the
experimental case is also presented.

6.2.1 Simulation details

Methanol was modeled using the COMPASS force-field [312]: the presence
of high-order (cubic and quartic) and cross-coupling terms provides an accu-
rate description of intramolecular interactions. Detailed information about the
force-field are given in the Appendix A. Electrostatic interactions are modeled
as fixed charges, obtained by fitting the electrostatic potential of an all electron
Hartree-Fock calculation performed with a medium-sized basis set 6− 31G∗.
The fitting was performed using the RESP method [313, 314]. Molecular dy-
namics simulations are carried out for systems of 216 CH3OD molecules in
a cubic box with periodic boundary conditions with a fixed density ρ = 0.80
g/cm3. All the simulations have been performed using the LAMMPS package
[141], in which the equations of motion are integrated with a time step of 0.5
fs. The pump-probe results are obtained by averaging over up to 128 different
trajectories.
To simulate the excitation, the GLE thermostat has been applied for 5 ps in

order to reach a non-equilibrium steady state. A fully anharmonic force-field
results in a transient behavior of the excitation that depends on the details of
the system. The dynamics of HB liquids is usually investigated by labeling the
highest frequency vibrational mode [291], namely: the OH stretching mode.
For the sake of comparison with experimental results [315, 316] it was consid-
ered 100% fully deuterated methanol, CH3OD and the excitation of the OD
stretching mode.
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Figure 6.2. vDOS of deuterated methanol CH3OD.

In the equilibrium vibrational spectrum shown in Fig. 6.2, as stated above,
the frequency of the OD stretching mode is centered around ωpeak = 2477

cm−1. The power spectrum is calculated considering only deuterium veloc-
ities. Interestingly, two peaks not related to the hydroxyl group appear in
the spectrum: the first one, around ω ∼ 1080 cm−1, corresponds to the CO
stretching mode, whereas the other one, centered at ω ∼ 1200 cm−1, is the
CH3 rocking mode. The reason for these two additional peaks can be at-
tributed to the functional form for the bonded interactions of the force-field:
in addition to the anhamornicity up to the fourth power, COMPASS provides
terms for cross-interactions as, for example, a bond-bond and a bond-angle
cross term. This explains how the motion of the hydroxyl group cannot be
completely decoupled from the effect of other vibrational modes, which involve
the surrounding bonds or angles. The vibrational spectra computed here are
in good agreement with those obtained by Car-Parrinello simulations [317] as
well as with experiments [318].

The colored noise contribution of the thermostat was characterized by
Tmax = 400 K, 1/γpeak = 0.5 ps and ∆ω = 1 cm−1, while the white
noise Langevin part was characterized by Tbase = 300 K and 1/γbase = 0.5
ps. Although the excitation is tuned with a narrow width, the response of theThermostat

parameters mode is broader and a small but noticeable effect on lower frequency modes
can be observed (see Fig. 6.1). This feature depends on specific thermostat
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settings (see Sec. 6.4), it is the hallmark of the intrinsic coupling between
the vibrational modes involving the OD bond and the other modes of the
system. Furthermore, TD is ∼ 10% lower than Tpeak. As a matter of fact TD
is a measure of the energy of all vibrational modes involving deuterium atoms,
including those not affected by the thermostat. Alternatively, one can monitor
the kinetic energy of the OD stretching mode, defined from the mode velocity
vstretch = (vO − vD) ·

dOD
dOD

, where dOD is the vector parallel to the OD
bond and dOD its modulus. However, it was verified that the relaxation dy-
namics of TD and TOD has the same time scale and the results are reported
in the Sec. 6.4.

Eventually, the relaxation is monitored in 50 ps long NVE runs, during which
atomic velocities are sampled to compute the kinetic temperature of different
atomic species and the vDOS.

6.2.2 Relaxation mechanisms

When the GLE thermostat is switched off TD decreases rapidly as the energy
in the OD bond redistributes over the other DOF. The decay time of the
temperature fits a simple exponential model

TD(t) = T
eq
D (1+ δe−t/τK) , (6.6)

where TeqD is the temperature of deuterium atoms at the end of the relaxation
process (i.e. the equilibrium temperature), δ is a dimensionless factor that
quantifies the excess energy at t = 0, and τK is the decay time, which turns
out to be 8.7 ± 0.1 ps. The result is shown in the left panel of Fig. 6.3.
To assess the contribution of hydrogen bonding interactions to vibrational
relaxation, the pump-probe virtual experiment was repeated switching off the
electrostatic interactions. The results reported in the right panel of Fig. 6.3
show that the relaxation dynamics in a non-HB system becomes three to
four times slower, thus suggesting that energy redistribution in this system is
mainly controlled by intermolecular hydrogen bonding.
Transient vibrational spectra are computed in time windows of 1.5 ps, span-

ning the relaxation trajectory each 0.5 ps: peak areas have been computed for
the three main bands related to the vibrational modes involving the OD bond,
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namely OD stretching, in-plane bending, and out-of-plane bending modes
[318, 319]. The result is shown in Fig. 6.4, where areas, computed with Eq.
(6.5), are reported in a relative fashion as A(ω̄, t) −Aeq(ω̄) (where Aeq(ω̄)

is the peak area at the end of the equilibrium process), for the OD stretching
mode, and A(ω̄, t) − A(ω̄, 0) (where ω̄ is the frequency of the peak and
A(ω̄, 0) is its area right after the excitation) for the bending modes, for a
better comprehension. Peak intensities show an exponential trend, which is
well fitted by Eq. (6.6), so as to obtain the characteristic time scale of these
processes. The area of the excited stretching mode decreases with a lifetime
of τstretch = 8.5± 0.5 ps, which is statistically equivalent to the decay time
of the kinetic temperature TD, thus crossvalidating this analysis. This is a key
result, as it justifies a posteriori the use of time-correlation functions to calcu-
late response functions, e.g. power spectra, from non-equilibrium trajectories.
While this is a rather common practice [305, 306], it often lacks a compelling
verification: extensive tests lead to the conclusion that a time window of 1.5
ps is the shortest possible to achieve meaningful results, which also means
that it is impossible within this framework to probe faster decay mechanisms
by this approach.
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Figure 6.4. Peak areas as function of time as obtained from Eq. (6.5). In y-axis is
reported relative intensity for sake of clarity: purple squares show the
amount of intensity lost by stretching mode, whereas blue triangles and
green circles represent the intensity gained by the bending modes. Dashed
lines represent the relative fit.

The dimensionless pre-factor in Eq. (6.6) turns out to be δstretch = 0.37±
0.01, which means that the excitation enhances the population of the OD
stretching mode by about 37% with respect to the equilibrium population.
The dynamics of the low-frequency part of the spectrum shows that energy is
transferred in equal amounts to the two bending modes: δin−plane = 0.14
and δout−of−plane = 0.16. Furthermore the calculated lifetimes show that
the transferring process occurs simultaneously, τin−plane = 8.8± 0.5 ps and
τout−of−plane = 8.8 ± 0.5 ps. The remaining energy contributes to the
overall temperature increase of the system, by spreading into the remaining
modes of the molecule.
The simulation protocol described above aims at modeling pump-probe

spectroscopy [315, 320], but since it is based on classical MD, substantial dif-
ferences with experiments emerge, stemming from the quantum-mechanical
nature of molecular vibrations.In what follows, analogies and differences be-
tween modeling and experiments will be highlighted.
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The excitation-relaxation process occurring in pump-probe experiments is
usually represented as a quantum-mechanical kinetic model, in which a laserComparison with

experiments pulse excites the target mode from its ground state |0〉 to its first excited state
|1〉. The population of the excited state relaxes rapidly to an intermediate
state |0∗〉 with a time constant τ∗. In this intermediate state, the excess
vibrational energy is not yet fully equilibrated over the system. Eventually this
intermediate state relaxes to a heated ground state |0 ′〉 with time constant
τeq, as the energy redistributes thermally among all the modes of the system.
In HB liquids the higher temperature of the system in the |0 ′〉 causes an average
weakening of the hydrogen bonds, accompanied by a faster vibration of the
OD stretching, i.e. a blue shift of the corresponding band. These processes
were analyzed by computing the amplitude difference between the transient
vDOS and the equilibrium vDOS at T = 300 K (Fig. 6.5).
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The excitation from |0〉 to |1〉 is purely quantum-mechanical, and classical
simulations cannot reproduce its spectral features. In fact, the quantum exci-
tation causes a depopulation of the ground state in favor of the excited state
[321], producing an immediate change in the optical absorption spectrum, in
which the intensity of the band corresponding to the excitation frequency de-
creases [322]. This effect, referred to as bleaching˝, cannot be observed in
a classical MD simulation. Moreover, there are a number of non-thermal pro-
cesses involved, such as non-Fermi-like distribution of the excited electrons,
electronic scattering which cannot be sampled within a classical framework.
On the contrary, pumping colored˝ energy in an ensemble of coupled classical
oscillators populates˝ the vibrational modes at the corresponding frequency,
therefore enhancing the intensity of the band in the absorption spectrum. At
short time scales after the excitation (t 6 5 ps) the intensity of the OD
stretching band out of equilibrium is indeed higher than that at equilibrium
(Fig. 6.5), as a consequence of the excitation of classical OD oscillators with
enhanced amplitudes. At later times the differential spectra are characteristic
for an equilibrated, heated liquid, with a blue-shifted OD stretching frequency:
the spectra display reduced intensity at 2470 cm−1 (the absorption maximum
before excitation) and enhanced intensity at 2550 cm−1, as heated methanol
molecules form weaker hydrogen-bonds (Fig 6.5, t = 50 ps).
Experimentally, the dynamics of the two relaxations occurs over different

time scales: the excited state is short-lived and is characterized by a sub-
picosecond lifetime; on the other hand the intermediate state relaxes with a Assessing the

relaxation
timescale

longer time constant. Here, the vibrational energy redistribution occurs over
longer time scales, since this set-up and analysis tools are not suitable to inves-
tigate τ < 1 ps. However, sub-picosecond processes have been investigated in
previous theoretical papers for water [304–306], while, according to the state-
of-the-art, methanol relaxation has not been studied theoretically. Whereas
the differences in the excitation mechanism between experiments and simula-
tions may affect the fast relaxation dynamics from |1〉 to |0∗〉, the subsequent
thermal energy relaxation from |0∗〉 to |0 ′〉 is essentially classical and can
be probed by MD. The time scale calculated for the relaxation of deuterated
methanol, 8.5 ps, agrees well with the experimental thermal relaxation time
τeq ∼ 6.0, 7.0 ps in Refs. [315, 320]. The small difference may be ascribed to
the approximate classical forcefield.
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Figure 6.6. Comparison between the spectrum relative to the final configuration (t =
50 ps) and the equilibrium vDOS computed at T = 318 K. The amplitudes
are reported as a difference with respect to a equilibrium configuration at
T = 300 K, in order to highlight the thermal induced blue shift.

Such an agreement suggests that the underlying relaxation processes at the
molecular level unraveled by these simulations are similar to the thermalization
that occurs after the depopulation of the excited state of the (quantum)
oscillator in experiments. Thus, even though simulated transient spectra show
unlike signatures of classical excitations as compared to experiments [315], the
good agreement in the time scales ruling the observed phenomena indicates
that the simulation accounts for the correct mechanism and rate limiting step
of the experimentally observed thermalization dynamics.

By the end of the relaxation, i.e. after 30 ps, the whole energy pumped
into the OD stretching is converted into thermal energy. Specifically, with the
parameters chosen for the excitation discussed in the previous section, the
temperature of the system increases from 300 K to 318 K. The blue shift
observed at the end of the relaxation is thermal, as it is suggested by the
agreement between the transient spectrum taken at t = 50 ps and the vDOS
computed at equilibrium for T = 318 K (Fig. 6.6),

Furthermore the behavior of the bending modes confirms that the system
state at t = 0 corresponds to the intermediate state |0∗〉, in which the vibra-
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tional ground state of the stretching mode is coupled with lower frequency
modes [323, 324] determining the main channel for energy redistribution. In-
terestingly, this relaxation mechanism is independent on the isotopic dilution
of the mixture: the same dynamics is observed for different isotopic dilution,
10%, 25% and 50% of deuterated molecules, as showed by Fig. 6.7.

Different peak intensities at t = 0 correspond to different mode populations,
which depend on the number of oscillators in the system. This is in agreement
with previous experimental results [315], showing that the relaxation from the
intermediate state does not depend on the isotopic composition of the system.
The dependence on the isotopic dilution of the fast relaxation time, instead,
is still debated [315, 316, 320].

6.3 case study: water

The second case study is liquid water. While still a HB liquid, its dynamics is
considerably different from that of methanol, since each molecule forms more
hydrogen bonds [325, 326].
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6.3.1 Simulation details

Liquid water is modeled via a force-field fitted to first-principles MD simu-
lations by force-matching [327]. This force-field has shown to accurately re-
produce the structural and dynamical properties of water simulated by DFT
using the generalized gradient functional by Perdew, Burke and Ernzerhof
[328]. Simulations have been performed on a system of 343 molecules in a
periodically repeated cell with a density of ρ = 1.0 g/cm3, averaging over 256
statistically independent trajectories.The same GLE thermostat settings as in
the methanol case were adopted: the colored excitation was characterized by
Tmas = 400 K, 1/γpeak = 0.5 ps and ∆ω = 1 cm−1, while the white noise
Langevin has Tbase = 300 K and 1/γbase = 0.5 ps. Here the focus is on the
OH stretching mode which, gives a broad vibrational band centered at 3211
cm−1, as shown by the vDOS in Figure 6.8. After a 5 ps-long excitation, the
system relaxation was monitored for 30 ps.
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6.3.2 Relaxation mechanisms

As mentioned above, the response of water to the thermostat shows a no-
ticeable difference with respect to methanol (Fig. 6.1): frequency-dependent
thermalization reaches the steady state in a few hundreds time step. This
difference is attributed to the relatively larger number of DOF involved in
the excitation, compared to methanol. Since the thermostat forces the exci-
tation over an oscillator surrounded by a number of other oscillators damped
by γbase, the difference in the relative number of DOF affects the transient
regime prior to the steady state.
The analysis of the transient power spectra highlights further differences be-

tween water and methanol. As shown in Fig. 6.9 the decay of the excited OH
stretching vibration occurs on a faster time scale with τstretch = 2.4± 0.5 ps,
which is slower than the experimentally observed equilibration time of ∼ 0.7
ps [300]. The slower relaxation observed in simulations may be related to ad-
ditional relaxation channels, such as Fermi-resonances [329], which classical
simulations cannot account for. Notably, τstretch is significantly faster for
water than for methanol. This difference may be traced back to the fact that
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water molecules form from 3 to 4 hydrogen bonds [217], while methanol has
only 2. Hence, stronger coupling among water molecules and higher connec-
tivity of the hydrogen bonds network provide more channels for vibrational
relaxation, leading to shorter relaxation times. Also the relaxation mechanism
is different from that of methanol. Fig. 6.9 reports the intensity of the accept-
ing modes, where librations are preferred with respect to bending modes. In
fact, the pre-factors in the fitting Eq. (6.6) result in δstretch = 0.16± 0.01,
δbend = 0.021± 0.009 and δlibr. = 0.08± 0.01, which indicates that most
of the energy relaxes into librational modes.

In addition, in water the amount of excess energy that is converted into
heat is noticeably larger, thus explaining the higher temperature increase. This
energy relaxation time scale of 2.5 ps compares well with experiments that
show diffusive rotations in water to occur in . 3 ps [330, 331]. The dynamics
of these low frequency modes associates with collective reorientation of the
HB network, and the time scale is in agreement with the diffusive rotational
dynamics of water.

6.4 technical features

To prove the reliability of the simulation protocol, the thermostat parameters
were tested over a reasonable range of values in order to address its reliability
in terms of physical prediction and to to identify the range of parameters
that give physically meaningful results. As stated in the previous section, the
hotspot thermostat has a total of five different tunable parameters: two of
them are related to the white noise contribution (standard Langevin equation)
and were kept fixed (Tbase = 300K and 1/γbase = 0.5 ps). Hence, each
parameter for the colored contribution of the thermostat has been tested
separately over the following ranges of value:

• excited mode temperature in the range 320 6 Tmax 6 600 K;

• spectral width in the range 0.1 6 ∆ω 6 75 cm−1;

• thermostat friction in the range 0.1 6 1/γpeak 6 5 ps.
Choosing the GLE parameters within the given range ensures physically mean-
ingful and reproducible results. No appreciable trend was observed in the phys-
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Figure 6.10. Kinetic temperature of deuterium atoms during the excitation phase, for
different values of Tpeak.

ical observable as a function of such parameters, suggesting that the method
is solid against the choice of different arbitrary parameters, and it reproduces
the correct physics.
The convergence of the results upon the system size was also addressed. The

GLE protocol was applied to systems ranging from 27 to 512 molecules. Small
systems are affected by finite size effects, and size convergence is reached for
systems of 216 molecules or larger.

6.4.1 Peak temperature

Changing Tpeak affects the total amount of energy that the molecules receive
from the thermostat. This is clearly shown in Fig. 6.10, where the temperature
TD is plotted during the excitation for different value of Tpeak.
However, it is worth noting that since the OD oscillators are all coupled via

hydrogen bonds, and are interacting with a number of other oscillators (other
vibrational modes of the molecule), the efficiency of the frequency dependent
thermalization is limited and a small but appreciable temperature rise is ob-
served also for the other DOF. This increase is negligible for Tpeak < 400K
and anyway is reasonable (< 10K) for small Tpeak. Despite this temperature
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Figure 6.11. a: Decay times calculated from OD stretching relaxation decay for differ-
ent values of Tpeak. The results are independent from Tpeak. b: Decay
times calculated for different values of ∆ω. The results show no ap-
preciable trend. c: Decay times calculated decay for different values of
1/γpeak. The results show no trend. d: Decay times calculated for dif-
ferent number of molecules. The results show convergence for systems
with a number of molecules > 216.

dependence, the relaxation time for the temperature decays does not show a
definite trend, as shown in Fig. 6.11a the relaxation toward the equilibrium
does not depend on the amount of energy supplied by the thermostat.
Although the involved mechanism is different, the results is in good agree-

ment with femtosecond infrared spectroscopy experiments, which show that
equilibration time τeq, as shown in the previous section, is independent on
the amount of energy to be equilibrated.
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6.4.2 Spectral width

The way how ∆ω influences the coupling of the thermostat is straightforward:
it determines the range of frequencies that are thermostatted at Tpeak. Fig.
6.12 shows how changing the spectral width of the hotspot thermostat affects
the vibrational spectrum: a narrower excitation results in a more efficient
coupling between the thermostat and the OD stretching mode, which means
an increased population and an enhanced peak of the excited mode.
Furthermore, the lower frequency part of the stretch peak, becomes more

populated as the thermostat spectral width decrease. This is related to what
happens to low frequency modes involving the deuterium atoms, which are
less populated after a very narrow excitation, indicating that such a con-
figuration affects appreciably other vibrational modes rather than only the
stretching one: the response of the system to the thermostat is wrong, caus-
ing Tbase to increase far above the selected baseline temperature (Fig 6.13).

A reasonable choice is to keep ∆ω > 1 cm−1, as shown in Fig. 6.13.
However no appreciable dependence of τstretch on ∆ω is observed (Fig.
6.11b).
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6.4.3 Peak friction

Finally, 1/γpeak is a damping parameter, which determines the coupling be-
tween the system and the thermostat: small values of 1/γpeak, which mean
high friction, will result in a strong coupling and wide fluctuations of the ki-
netic energy, and longer simulation time required to reach the steady state,
as show in Fig. 6.14a
Furthermore, reducing considerably 1/γpeak value will affect also the sam-

pling efficiency: choosing 1/γpeak < 1/γbase will cause a broader response of
the system, affecting also vibrational modes with lower frequency involving dif-
ferent atomic species; Fig. 6.14b shows how 1/γpeak = 0.1 ps determine the
baseline temperature to rise up to 335 K, whether 1/γpeak = 1/γbase = 0.5
ps results in temperature increase for Tbase lower than < 10 K. However, Fig.
6.11c reports how the relaxation time is not affected, because the vibrational
relaxation requires energy exchange with other modes and varying 1/γpeak
will only change the final equilibrium configuration.
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6.4.4 Size effect

The GLE protocol was applied to system of increasing size, ranging from 27

molecules (with box size L = 1.2 nm) to 512 molecules (with box size L = 3.4
nm). In this case the set of parameters where chosen as the main simulations
in this work Tpeak = 400 K, ∆ω = 1 cm−1, 1/γpeak = 0.5 ps. For each
system size the results have been averaged over 128 different trajectories. The
first result that is worth to remark is that the thermostat injects an amount
of energy which is independent from the number of molecules, as shown in
Fig. 6.15: each molecules has a total energy increase around 0.55 kcal/mol.
The calculated decay time are shown in Fig. 6.11d: increasing the system

size reduce the uncertainty because fluctuations are inversely proportional to
the number of atoms in the system. Furthermore an appreciable decreasing
trend is observed: for the number of molecules > 216, the calculated τstretch
is unchanged. However, it is necessary to remark that the uncertainty on the
decay time here reported is the fit error, while it should be the time interval
between each peak area calculation (since it constitutes the shortest time
which can be probed by this method). Thus 216 molecules was chosen as a
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Figure 6.15. Total energy per molecule injected by the thermostat as a function of
time, during the excitation phase. The inset shows the average increase
of total energy, with respect to the equilibrium configuration, calculated
during the steady state.

compromise between an accurate statistical average and a low computational
workload.

6.4.5 Kinetic temperature vs. Mode temperature

All analysis were performed by considering the kinetic temperature of the
atomic species for convenience. Kinetic temperature is a measure of the atomic
energies, thus TD will include all the motions involving deuterium atoms, even
those which in principle are not excited by the thermostat. This will result in an
effective temperature which is lower than the predicted Tpeak. In the same
way, in considering the temperature TCH3O for the unperturbed DOF, it is
necessary to keep in mind that oxygen atoms carry a fraction of the kinetic
energy of the stretching mode resulting hotter than the room temperature.
The exact amount of energy carried by the OD stretching mode can be

computed considering the mode velocity

vstretch = (vO − vD) ·
dOD
dOD

(6.7)
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Figure 6.16. a: OD stretching mode temperature, computed according to Eq. (6.7),
during system excitation. Final temperature is 〈TOD〉 = 400 K. b: OD
stretching mode temperature, computed according to Eq. (6.7), during
system relaxation. The black dashed line is the fit obtained by means of
Eq. (6.6).

and by computing the temperature of the mode from its kinetic energy TOD =
2KOD
kB

. The OD stretching temperature during system excitation is shown in
Fig. 6.16a.
The behavior of the mode temperature is basically the same of that reported

in Fig. 6.1: after almost 2 ps the system reaches the steady-state. Furthermore,
it is easy to verify that the final temperature corresponds exactly to the pre-
dicted temperature Tpeak = 400 K. The exponential decay is observed also
in this case, providing the same time scale obtained considering the kinetic
temperature, as shown in Fig. 6.16b. This further guarantees the accuracy
of the analysis performed on the kinetic temperature and on the transient
vibrational spectra.

6.5 assessing the interplay between energy relax-
ation and thermal diffusion in liquid methanol

Spectroscopy experiments performed on deuterated liquid methanol by excit-
ing the OD stretch vibration [315], report that even though the vibrational
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Figure 6.17. a: Schematic representation of the radial geometry, where the laser (the
GLE thermostat in a MD simulation) excite a specific spot, with radius R,
of the sample causing a temperature rise which relaxes according to a
spherical symmetry . b: 1D set up of the simulation cell, where the GLE
thermostat is adopted in the AEMD framework for a system with length
L.

excitation has already relaxed, there is a residual memory at long times, where
the transient signals are dominated by heating (see above). The locally dissi-
pated energy effectuates spectral changes of the excited OD oscillators. The
transient thermal excitation can decay via diffusion of the thermal energy from
an initially excited OD group to a unexcited OD group in the vicinity, which
depends on the average distance between OD groups in the sample.
A continuum-based model [332–334], which approximate the locally heated

OD group by a sphere of radius R having temperature T + ∆Tmax, while
the surrounding bath has a temperature T , correctly describes the trend but
predicts a thermal diffusivity eight times lower than the macroscopic values
κ̄exp. = 10.1 Å2/ps [335]. The disagreement may be related to the fact that,
basing on the average distance between oxygen atoms of two neighboring
HB molecules (rOO = 0.28 nm [336]), the radius of the heated complex in
the excited sample was approximated to R = 0.3 nm. Hence, adopting a
continuum model for such a microscopic level of thermal diffusion may lead
to a wrong description of the phenomenon.
The results reported above were obtained by exciting each molecule in the

sample, thus each OD bond was influenced by the thermostat. This approach
was needed to understand the coupling between the OD stretching mode and
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the unexcited vibrational modes. However, in order to investigate the interplay
between energy relaxation and thermal diffusion, the GLE excitation needs to
be applied locally. In a typical laboratory set-up, the laser hits the sample in
a specific spot and, therefore, it excites only a subset of the molecules. Thus
a straightforward computational implementation would be a radial configu-
ration, as shown in Fig. 6.17a. Here, the GLE thermostat is applied on the
central spot of the sample, in order to investigate the heating effect follow-
ing the spectral excitation. However, studying thermal diffusion in a radial
configuration requires the heat equation Eq. (2.29) to be recast in spherical
coordinates

1

r

∂

∂r

(
r
∂T

∂r

)
=
1

κ̄

∂T

∂t
(6.8)

where κ̄ = κ/ρcv is the thermal diffusivity and T ≡ T(r, t) is the time-
dependent radial temperature profile. By separating the variables it is easy to
verify that the time dependence is the same described for Θ(t) ∝ exp (−α2κ̄t)

in Sec. 2.2.3, while the spatial part of the heat equation requires a solution ex-
pressed in terms of spherical Bessel functions of the first and of the second kind
J1(αr), Y1(αr), which is not easy to implement to fit ’on-the-fly’-computed
data of a numerical simulation. Instead, the 1D approach, although concep-
tually implies a coarser level of approximation, can be easily adopted in this
framework. In particular, putting together the AEMD geometry (see Sec. 2.2.3) The GLE

thermostat in an
AEMD
configuration

with the GLE thermostat, as shown in Fig. 6.17b, it is possible to investigate
the effect of a local spectral excitation. The initial configuration is a step-like
profile

T(z, 0) = H(z) =

Tmax = 400 K if 0 < z < Lz/2

T0 = 300 K if Lz/2 < z < Lz
(6.9)

where the left half of the simulation cell is excited with the GLE thermostat,
here implemented with the same settings previously explained (i.e. the excita-
tion of the OD stretching mode), while the right half is left unperturbed at
T0 ≡ Tbase = 300 K, which is also the baseline temperature selected for the
unperturbed vibrational modes involving CH3O atoms. In this case periodic
boundary conditions have been applied along the three directions. As usual,
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Figure 6.18. Temperature difference as a function of time for a deuterated methanol
sample, containing 10368 atoms, with Lz = 19.95 nm and a section
of 2.44 × 2.44 nm2. The green solid line is a fit performed with the
two time exponential model of Eq. (6.11), considering τcolored = 8.7 ps,
which produces τdiffusion = 136 ps and β = 0.76.

after the excitation GLE thermostat is switched off and the transient regime
is investigated by monitoring the ∆TD evolution

∆TD(t) = 〈TDL (t)〉− 〈TDR (t)〉 (6.10)

i.e. the difference between the deuterium temperature averaged over the ex-
cited half of the sample and the deuterium temperature averaged over the
unperturbed half. Isolating the temperature of the deuterium atoms helps
excluding thermal noise due to the baseline, namely the CH3O atoms.
A striking difference with respect to the traditional˝ AEMD behavior is that

∆TD(t) exhibit a two different characteristic times for the exponential decays,
which suggests the presence of two different diffusion mechanisms.

Figure 6.18 shows the time dependence of the temperature difference for
a sample of deuterated methanol, containing 10368 atoms, with Lz = 19.95
nm and a section of 2.44× 2.44 nm2. The trend is characterized by an initial
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fast relaxation followed by a slower decay at longer times. It is possible to fit
simulation data with a phenomenological relation

∆TD(t) = ∆TD0

[
βe−t/τcolored + (1−β)e−t/τdiffusion

]
(6.11)

where ∆TD0 is the temperature difference at t = 0 computed for the deu-
terium atoms between the two regions, β is an dimensional weight parameter,
which gives an estimate of the contribution of the two relaxation mechanism,
τcolored is the decay time τK already introduced in Eq. (6.6), and τdiffusion is
the characteristic time of the slower relaxation. Hence, the free parameters
in the fit functions are the diffusion time τdiffusion and the β parameter. The
interpretation of the temperature behavior is straightforward: the faster relax-
ation mechanism is the aforementioned vibrational relaxation, which involves
the coupling between the excited OD stretching mode and unperturbed modes
of the molecule, whether the slower decay is related to the thermal diffusion
which follows the vibrational relaxation. The fit produce τcolored = 8.7 ps,
τdiffusion = 136 ps and β = 0.76, indicating that the largest amount of energy
is spread out by the vibrational decay. Considering that PBC are imposed and
the function used to fit the temperature profile is expressed in terms of the
fundamental component of the Fourier series (see Eq. (2.31)), it is reasonable
to use the time associated with the heat diffusion to obtain a thermal diffu-
sivity as κ̄ = (Lz/2π)

2/τdiffusion. For the simulation cell corresponding to Fig.
6.18, the thermal diffusion time produces κ̄ = 7.4 Å2/ps.
It is interesting to focus on the relation between the two relaxation mecha-

nisms. To this aim, several simulation cells of increasing size have been real-
ized, spanning the interval 4.0 6 Lz 6 74.3 nm. The AEMD-GLE was used to The interplay

between
vibrational
relaxation and
heat diffusion

determine the two relaxation times by adopting the aforementioned approach,
producing the results reported in Fig. 6.19a and b. These results are obtained
by performing a configurational average over several independent simulations,
ranging from 160 replicas for the smallest sample to 4 replicas for the largest
one. As expected, the thermal relaxation times increases with system size.
Indeed, the diffusion time accounts for the time needed to relax the thermal
excitation along the sample and larger systems require longer times. However,
the thermal diffusivity shows a growing trend which tends to saturate after
∼ 20− 30 nm. Interestingly enough, the value obtained for thermal diffusiv-
ity is in very good agreement with Green-Kubo obtained values. Diffusivity
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Figure 6.19. a: Heat diffusion times τdiffusion as a function of system length. b: Cor-
responding diffusivity computed with the obtained τdiffusion and the re-
spective system length Lz.

values shown in Fig. 6.20 are calculated by considering the thermal conductiv-
ity values determined by Green-Kubo calculations (see Sec. 2.2.1) and using
the relation κ̄ = κ/ρcv, with cv = 85.8 J/mol K [337]. These values are
in excellent agreement with experimentally determined thermal conductivity
κ̄exp. = 10.1 Å2/ps [335], providing that the model adopted for describing
the molecule is correct.

In order to explain the weak size-dependence observed in Fig. 6.19b, the
behavior of β can be helpful. Figure 6.21 shows a size dependence also for
the β parameter, which suggest different contribution of the two relaxation
mechanism for different time scales. From Figs. 6.19b and 6.21 it is argued
that the heat diffusion occurs on a very different time scale than the vibrational
relaxation. However, if the size involved in the process are too small, it is not
possible to disentangle the two mechanisms: for Lz . 20 nm, both channel
decays contributes the to thermal redistribution (β ∼ 0.5), whereas for larger
system the major contribution comes from the vibrational relaxation. Despite
the higher amount of energy carried, the vibrational relaxations is very fast
since it occurs thanks to the coupling between the excited OD stretching
mode and the unexcited OD bending modes and the CH3 modes as well. The
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coupling between the two processes implies that on short length scales, which
means short time scales, heat transfer occurs when the vibrational excitation
has not fully decayed. This results in an amount of energy to relax considerably
larger than that competing to those lengths and resulting in a less efficient
transport mechanism. Consequently, a continuum-based model could not be
able to catch the full picture, as highlighted by the AEMD-GLE approach
which, however, can investigate spectrally resolved excitations over a suitable
range of system size.

As extensively explained in this chapter, detailed informations can be ex-
tracted from transient vDOS, hence further analysis will focus on a deep
investigation of the transient vDOS in the two regions of the sample, in order
to highlight microscopic mechanism from a spectral point of view occurring
during the two decay relaxation.
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Glasses can be conceptually considered as fluids systems that lost
their ability to flow. As a matter of facts, from a structural point of

view a glass is practically indistinguishable from the liquid phase prior to its
formation. Glassy materials combine the disordered structure of a liquid with
the mechanical properties of a solid.
Upon cooling below the freezing point Tm, molecular motion slows down.

Figure 7.1 illustrates the temperature dependence of a liquid volume (or en-
thalpy) at constant pressure. If the liquid is cooled sufficiently fast, crystal-
lization can be avoided and supercooled liquid˝ regime is achieved, that is
a metastable phase in which molecules will rearrange so slowly that they can-
not adequately sample configurations in the available time allowed by the
cooling rate [339, 340]. This characteristic relaxation time can increase of
several order of magnitude up to 102 − 103 seconds and the rate of change
of volume or enthalpy with respect to temperature decreases abruptly (but
continuously) to a value comparable to that of a crystalline solid. The tem-
perature at which these changes occur is referred to as the glass transition
temperature Tg. Typical laboratory cooling rates vary from 0.1 to 100 K/min,
considerably slower than the rates achievable in computer simulations. The
slower a liquid is cooled, the longer the time available for configurational sam-
pling at each temperature, and hence the colder it becomes before falling out
of liquid-state equilibrium. Consequently, Tg increases with cooling rate [341,

165
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Figure 7.1. Temperature dependence of a liquid volume V or enthalpy H at constant
pressure. Tm is the melting temperature. A slow cooling rate produces
a glass transition at Tga; faster cooling rate leads to a glass transition
at Tgb. The thermal expansion coefficient and the isobaric heat capacity
change abruptly but continuously at Tg. [338]

342]. The properties of a glass, therefore, depend on the process by which it
is formed.

Glassy systems can be described in terms of a potential energy landscape,
with thermodynamics and kinetics controlled by the minima and barriers on
the landscape, respectively [338–340]. Many important issues could be ad-
dressed if liquids or glasses with very low energies could be created [88, 339,
343, 344]. For example, it might be possible to definitively understand the
Kauzmann entropy crisis [345–347]. Boltzmann’s entropy formula reads as

S(N,V ,E) = kB lnΩ (7.1)

where S is the entropy, kB is Boltzmann constant, Ω is the number of mi-
crostates accessible to N particles with fixed energy E in a volume V. Because
Ω cannot be less than one, the entropy cannot be negative. When a crystal
is cooled sufficiently slowly, it approaches a unique state of lowest energy,
and hence its entropy approaches zero as T → 0. If the entropy of a super-
cooled liquid were to become smaller than that of the stable crystal at the
Kauzmann temperature, its entropy would eventually become negative upon
further cooling. This impossible scenario represents de facto an entropy crisis.
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Organic glasses are important for a wide range of scientific and technolog-
ical processes [348]. Their utilization in organic electronics applications such The importance

of organic
glasses

as organic light-emitting devices (OLEDs) [349] is no longer a lab curiosity but
rather a mature technology for high-performance displays [349, 350]. How-
ever, solid-state lightning applications that require high brightness are still to
be realized due to the insufficient thermal stability of the organic materials.
Thermal stress and degradation [351], together with the fact that the lumi-
nance and lifetime of OLEDs decreases when operated at high temperatures
[352], are widely reported facts. In this respect, an appropriate understanding
of thermal transport may help designing materials with tailored heat dissipa-
tion characteristics to minimize heat accumulation in OLEDs [353, 354] or to
reduce heat flow while increasing charge transport in search for potential ther-
moelectric applications [355–358]. Their semiconductor nature and the low
thermal conductivities make them suitable candidates to improve the thermo-
electric figure-of-merit ZT. Most of the previous studies in this direction have
been reported for polymer-based devices and fewer on small molecule organic
semiconductors [359].
A striking discovery in the field of glasses showed that vapor deposition

can bypass these kinetic restrictions and produce glassy materials that have
extraordinary energetic and kinetic stability and unusually high densities. This
was demonstrated for two organic glass formers: 1, 3-bis-(1-naphthyl)-5-(2-
naphthyl)benzene (TNB) (Tg = 347 K) and indomethacin (IMC) (Tg = 315

K) [360].
Physical vapor deposition has been shown to be a suitable tool to tailor

the properties of the deposited layers, not only for organic semiconductors
[361, 362], but also for many other small organic molecules [363–368]. When Ultrastable

organic glassesthe deposition conditions, basically substrate temperature and growth rate,
are properly set, glasses with exceptional thermodynamic and kinetic stability
[361, 363, 364, 369], high densities [362, 370–372], low heat capacities [365,
373], low water uptake [374] or high moduli [375] can be obtained. These
glasses, dubbed ultrastable, are currently gaining widespread attention within
the glass community, and a recent report demonstrates the improved packing
of these glasses can yield to outstanding improvements in OLEDs efficiency
[376]. An interesting feature of some vapor-deposited organic glasses is that
molecules can have average spatial orientations that differ from the random
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distribution of an isotropic glass. Recent studies have started to focus on the
molecular orientation in those materials and its influence on the efficiency of
OLEDs [377]. The existence of molecular packing anisotropy in vapor-deposited
organic semiconductor thin film glasses was first identified by Lin et al. [378].
Yokoyama and coworkers [379, 380] studied the degree of orientation depend-
ing on the molecular aspect ratio of the molecule and the deposition conditions.
Dalal et al. [361] performed dichroism and birefringence measurements on sev-
eral organic semiconductors, and proposed the ratio between the deposition
temperature and the glass transition temperature, Tdep/Tg, to be the pri-
mary parameter affecting the molecular orientation. In particular, it has been
shown that the lower the substrate temperature during growth, the higher
the tendency towards horizontal orientation. This tunable molecular orienta-
tion provides new opportunities to tailor the electrical, thermal and optical
properties of the glassy materials.
Many previous studies have focused on the electronic transport properties of

organic glasses and crystals, since this is a key parameter for the use of these
materials in optoelectronic devices [381]. On the contrary, thermal conductiv-Thermal

properties of
organic glasses

ity measurements in small molecule organic glasses remains largely unexplored
and only few studies are reported [382, 383]. In general, it is well known that
increasing disorder has a remarkable effect on the thermal conductivity. For
an inorganic material, such as silicon, the thermal conductivity varies from
150 W m−1K−1 in bulk Si to around 1.4 W m−1K−1 for the disordered
material [384, 385]. This low value is frequently understood through the the-
ory of the minimum thermal conductivity where atomic vibrations with mean
free paths of the order of the interatomic distance contribute to heat trans-
port [386]. In organic materials the van der Waals (vdW) interactions between
molecules have a remarkable effect on heat propagation and disorder plays
a comparatively less dramatic effect on the thermal conductivity compared
to their crystalline counterparts. However, the current understanding of heat
conduction in organic glasses is limited by the largely incomplete knowledge
about the actual mechanisms ruling over thermal energy exchange in these
systems and how the glass atomic-scale morphology affects transport. Mea-
surements on thin-film organic crystals although more abundant also lack a
proper understanding of how crystal anisotropy may affect thermal transport
along and perpendicular to the molecular chain. The growth of large crys-
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Figure 7.2. Schematic representation of a deposited organic glass, reporting the con-
cept of in-plane and through-plane thermal conductivity. The in-plane
thermal conductivity κ‖ is defined as the average of the thermal conduc-
tivity values along the direction parallel to the substrate. Similarly, the
through-plane thermal conductivity κ⊥ is the thermal conductivity along
the direction perpendicular to the substrate.

tals to minimize the strong influence of grain size on phonon transport is a
requirement to unveil the role of crystal anisotropies in heat flow propaga-
tion. Ac-calorimetry was previously used to extract the thermal diffusivity of
rubrene layers [387]. The thermal anisotropy ratio defined as the relative dif-
ference between in-plane and through-plane conductivity, (κ‖ − κ⊥)/κ⊥ (see
Fig. 7.2), was larger than 100% indicating poor thermal transport across the
phenyl groups of the rubrene molecules. On the contrary measurements on
6, 13-Bis(triisopropylsilylethynyl)pentacene, TIPSpn, show the through-plane
thermal diffusivity is larger than the in-plane one due to an excellent π-orbital
overlap [388]. The role of thermal anisotropy has been already addressed in
polymeric samples [389] where rubbing or stretching has been used to produce
the alignment of the backbone of the polymer along the fiber direction. In
this case, the conductivity along the axis of the polymeric chain can be up to
20 times higher than in the perpendicular direction [390].
In this chapter it is reported how, by tuning the molecular orientation in

glassy films of an organic semiconductor, such as toluene and TPD, the ther-
mal anisotropy ratio can be modified to nearly 30%. The achievement of
substantial thermal anisotropy in small molecule thin-film glasses is counter-
intuitive since structural disorder should lower the anisotropy ratio. Here it is
provided evidence that the change of thermal conductivity is mainly driven
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CH3

Figure 7.3. Schematic representation of the toluene molecule.

by the molecular packing anisotropy in the glass and that thermal transport
along the N-N backbone of TPD molecule is strongly preferred with respect
to the perpendicular direction due to a stronger molecular interaction in the
former.

7.1 toluene glassy film

As a validation for these simulation protocols, toluene (C7H8, with Tg = 117

K) was selected as a model material because of its simple chemical structure
and its well-characterized glassy behavior [391]. The actual molecular struc-
ture of toluene was at first generated and fully relaxed using the following
computational set-up. The toluene molecule, shown in Fig. 7.3, is modeled ac-
cording to the CVFF force field [392], where crosscoupling terms between the
various bonded terms provide an accurate description of intramolecular inter-
actions. The non-bonded interactions are in turn described by a superposition
of a Lennard-Jones potential (addressed to describing the vdW contribution)
and of a Coulomb term as follows∑

i,j

(
A

r12ij
−
B

r6ij

)
+
∑
i,j

qiqj

rij
(7.2)

where the sum is performed over all the pairs of non-bonded atoms. The
Lennard-Jones term is truncated by a cut-off set at 10.0 Å, while a particle-
particle particle-mesh solver approach is adopted to solve the electrostatic
problem in the reciprocal space. Coulomb interactions are calculated by assum-
ing fixed charges, as previously obtained by fitting the electrostatic potential
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of an all-electron Hartree-Fock calculation performed with a medium-sized
basis set 6− 31G∗. The fitting was performed using the RESP method. [313,
314]

7.1.1 Generating a glass by quenching-from-the-melt

The simulation cell adopted for the quenching-from-the-melt protocol was
obtained by replicating the molecule in the three directions: a system con-
taining 1000 molecules (15000 atoms) of toluene was obtained by replicating
the molecule 10× 10× 10 times, then a NPT simulation was performed to
optimize the density at ambient temperature and pressure. Afterwards a sim-
ulated NVT annealing was carried out at 550 K (well above toluene melting
temperature of Tm = 178 K) for 300 ps.
Toluene glasses were obtained by unconstrained quenching-from-the-melt:

the previously prepared liquid system was quenched to 10 K at four different
cooling rate of 10−3 − 100 K/fs (very slow for simulations, but still much
higher than typical experimental rates). The potential-energy landscapes are The quenching-

from-the-melt
procedure

sampled by minimization of the potential energy: configurations were then
saved on-the-fly during cooling every 18 K and further aged for 50 ps at
that temperature. Local-energy minimization was performed for a subset of
configurations generated at each temperature (see Fig. 7.4b) and finally the
inherent structure energy EIS is computed through accurate configurational
averages [88, 393–396]. The inherent structure is the structure corresponding
to the minimum energy at that temperature and, consequently, the EIS is
the energy related to that configuration. Since at any given temperature the
energy landscape is characterized by a large number of minima, the role of
the inherent structure energy is to identify the global minimum of the energy
landscape associated to that temperature.
Figure 7.4a shows the temperature-dependent average inherent structure

energy of toluene ordinary glasses prepared at different cooling rates. Three Inherent
structure energy
of toluene

different regions can be distinguished in the plot:

1. the high temperature region, in which EIS decreases progressively with
temperature but it is weakly dependent on it: at high temperature the
system explores a broad range of minimum energies, as shown for T =
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Figure 7.4. a: Average per-particle inherent-structure energy for toluene ordinary
glasses prepared by cooling the liquid at different rates. Each point of
the plot represents a configurational average performed over 50 inherent
structure. b: Individual minimum energies for the configurations at cooling
rate 10−3 K/fs. At high and intermediate temperatures, these individual
energies cover a broad range. At low temperatures the sampled energies
become narrowly distributed around the average values.

316 K and T = 172 K in Fig. 7.4b. Dynamics is dominated by free
diffusion and sufficient kinetic energy to sample the entire landscape,
characterized by shallow minima. This behavior is basically independent
from the cooling rate;

2. the glass transition region, in which the energy landscape becomes
sharply and starts being populated by deeper minima and higher barriers.
The energy landscape, in principle, changes strongly with temperature
and so does EIS. This is strictly verified for the slowest cooling rates,
while 1 K/fs seems to be too high to accurately sample the energy
landscape;

3. the low temperature region, where system gets trapped in a minimum
of the energy landscape corresponding to a specific glassy configuration.
Lowering the temperature, the sampling is progressively biased towards
lower energies, that become more narrowly distributed around the aver-
age values, as shown for T = 64 K and T = 10 K in Fig. 7.4b. Similarly
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to what found in the high temperature region, EIS is temperature inde-
pendent.

From the slope change of EIS(T) between the two last regions, it is possible to
determine the glass transition temperature for toluene which results Tg = 118,
in very good agreement with the experimental value of Texpg = 117 K.

7.1.2 Generating anisotropic samples

In order to search for anisotropy-related features in thermal transport, samples
with some in-plane preferential alignment of molecular axis were generated.
A simulation cell with 1000 toluene carefully relaxed molecules were obtained
by a super-imposed orientational order: they were placed on a regular 2D xy
grid and piled-up along the z direction. The system was gently relaxed at
low temperature by performing NVT dynamics for 200 ps. Finally, a NPT
simulated annealing was carried out: samples were heated up to the target
temperature, with a cooling rate of 10−4 K/fs and then further equilibrated for
200 ps. The resulting samples show almost identical structural features; Fig.
7.5a compares the density of the two toluene samples (quenched-from-the-
melt and anisotropic), showing that the latter is slightly less dense, while Fig.
7.5b shows the radial distribution function calculated for both samples: the
structure is almost the same, guaranteeing an overall amorphous structure
for the anisotropic system, despite an additional peaks in the C− C radial
distribution function due to the local order and an over-coordination of the
anisotropic sample beyond intramolecular distances.

7.1.3 The role of anisotropy in thermal transport

For each system thermal conductivity was calculated for different temperature,
spanning from low temperatures far below the corresponding glass transition
to values beyond Tg. Thermal conductivity was calculated using the Green-
Kubo method (see Sec. 2.2.1): the advantage of this approach lies in the fact
that, since heat current is a vector, calculating the contribution to thermal
conductivity in the three directions is straightforward. In other words: just one
calculation allows for predicting thermal transport either along the direction
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Figure 7.5. a: Density of the toluene samples as a function of temperature: the ob-
tained values are in excellent agreement with experimental reported ones
(ρexp = 0.87 g/cm3 at T = 300 K). b: Radial distribution function
obtained considering only carbon atoms: the dashed lines represent the
integrated values over the distance of the gC−C(r) function, showing a
long range over-coordination of the anisotropic samples..

of preferential alignment and normal to it. This allows for the assessment of
any possible anisotropic behavior.

Thermal conductivity for toluene has been investigated for temperatures
ranging from 10K to 200K: the system was equilibrated by NVT dynamics
at the operative temperature for 20 ps, then was aged in the microcanoni-
cal ensemble for further 200 in order to achieve the convergence of the heat
current autocorrelation function. Finally thermal conductivity values were av-
eraged over the last 50 ps of simulation. Figure 7.6a shows the temperature-
dependent thermal conductivity for the quenched-from-the-melt toluene: as
expected, by reaching the glassy state through a cooling process, a completely
isotropic system is produced; accordingly, the corresponding contribution to
thermal conductivity from the x, y, and z component of the heat current
is basically just the same. This is in sharp contrast to what found for the
aligned glass˝ case, reported in Fig. 7.6b.

Simulation results clearly show the thermal conductivity in the in-plane
parallel˝ direction (i.e. the xy-plane) is appreciably higher with respect toThermal

anisotropy of
toluene

the through-plane direction (z). At very low temperatures the difference is
rather high, reducing with increasing temperature, as expected: as a matter



7.1 toluene glassy film 175

(a)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120 140 160 180 200

κ
[W

/
m

K
]

T [K]

κxx
κyy
κzz

(b)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140 160 180 200

κ
[W

/
m

K
]

T [K]

κxx
κyy
κzz

Figure 7.6. a: Thermal conductivity along the three directions as a function of tem-
perature for a quenched-from-the-melt toluene sample. b: Thermal con-
ductivity along the three directions as a function of temperature for an
anisotropic toluene sample.

of fact, the temperature breaks the alignment of the molecules in the xy-
plane. Alignment is still appreciable provided that T < Tg. Beyond this value
the system completely loses its anisotropy and thermal conductivity approach
the value of quenched-from-the-melt samples.
Figure 7.7 shows a comparison between the two situations, by plotting the

relative difference ∆κ⊥ between the in-plane and the through-plane thermal
conductivity defined as

∆κ⊥ =
κ‖ − κ⊥

κ‖
(7.3)

where κ⊥ is the thermal conductivity along the through-plane direction and
κ‖ = 〈κin−plane〉 ≡ (κxx + κyy)/2 is the average conductivity in the xy-
plane.
Thermal conductivity obtained for quenched samples is represented as a

straight line at ∆κ⊥ = 0 with its corresponding standard deviation (grey
shaded area). In this case the difference is between in-plane and through-plane
conductivity is centered at ∼ 0. The difference in thermal conductivity values
can be explained by considering the ordering of the molecules: the interactions
between the toluene molecules in the through-plane direction is governed
mostly by the π− π interactions due to the stacking of the molecules while
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Figure 7.7. Relative variation of the through-plane thermal conductivity computed
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the isotropic sample which averages to zero and the grey shaded area
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the in-plane directions are ruled by much more stronger interactions (bonded
interactions dominate with respect to the vdW between sigma orbitals, which
however is stronger than that occurring between π ones.).

A tentative explanation of how thermal transport is influenced by anisotropy
in toluene is given in Fig. 7.8a, which shows the vDOS of toluene in the regions
of C-H stretching computed at T = 10 K. The blue curve is the vDOS of the
quenched toluene, which can be taken as a reference: the vDOS computed for
the in-plane direction shows a higher contribution in correspondence of the
C-H stretching at 2970 cm−1 (the peak centered a 2900 cm−1 is referred to
the C-H stretching of the methyl group). This suggests that greater number of
C-H oscillator are contributing to the vibrational properties of the system. The
other significant contribution to the vibrational properties of the system comes
from the C-H bending modes (either of the ring or of the methyl group) shown
in Fig. 7.8b: the intensity of the peak for in-plane directions is appreciably
higher than the through-plane one. The peak at higher frequency shows a lower
contribution for the in-plane direction: this is related to the C-C stretching
mode which however is not fundamental since the overall contribution to the
vibrational spectrum is rather low.
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Figure 7.8. a: Vibrational density of state calculated for the toluene sample in the
C-H stretching region for the isotropic and for the anisotropic sample. b:
vDOS calculated for the toluene sample in the C-H bending region for the
isotropic and for the anisotropic sample. In both case, for the anisotropic
sample the contribution coming from the in-plane and the through-plane
motion are distinguished.

7.2 tpd glassy films

Toluene glass served as a validation for the cooling protocol and the glass
modeling but also provided evidence that anisotropy can play a crucial role
in thermal conductivity of organic glasses. In fact, despite its small size and
its symmetric structure, the super-imposed planar alignment results in a less
efficient energy transfer between the through-plane DOF.

A very well-known glass former, among the organic glasses, is the TPD
molecule, already subject of investigation for stability issues [361, 395], which
has a slightly elongated structure, shown in Fig. 7.9, and which is worth of
investigating in order to highlight the mechanisms leading to orientational
anisotropy.
The same energy minimization and geometry optimization followed for

toluene was adopted in this case: the CVFF force field was adopted and the
fixed partial charges were obtained by fitting the electrostatic potential of an
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Figure 7.9. Schematic representation of the TPD molecule.

all-electron Hartree-Fock calculation performed with a medium-sized basis set
6− 31G∗.

7.2.1 The role of the substrate

Toluene structure is characterized by a planar geometry, which is also preserved
in vacuum performed simulations. TPD molecule, however, in vacuum tends to
assume a twisted configuration which introduces complications in realizing an
anisotropic structure with a preferred in-plane alignment. Thus, it is necessary
to exploit the role of the substrate to enforce anisotropy. A 20a0×20a0×5a0
silicon substrate is realized, where a0 = 5.4305 Å is equilibrium silicon lattice
constant for Tersoff potential [89]. Two kind of anisotropic samples are real-
ized: samples which will be referred to as xy-ISO and samples referred to as
ANIS. Both are characterized by a preferential in-plane molecular orientation,
where the referencez-plane is in any case the substrate surface: this feature
has been obtained by enforcing the planar alignment of molecular axis during
the sample preparation. A first layer of 47 molecules is placed on top of the
substrate, followed by a geometry optimization and a low temperature (T = 1

K) annealing for 100 ps. However, the two systems differ in that the in-plane
alignment is totally random in the xy-ISO sample or further enforced to align
to the x direction for the ANIS sample, respectively. As for xy-ISO samples, inPlanar

anisotropy fact, there was no in-plane order, while in the ANIS samples molecular axes
were mainly oriented along an in-plane direction. This procedure was then
repeated piling up to 16 layers: at each step the whole structure was very
carefully relaxed. This effectively generated a 6.9 nm-thick film of 752 TPD
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Figure 7.10. a: perspective view of the simulated TPD film deposited on Si substrate.
b and c: side view of, respectively, xy-ISO and ISO samples. d and e: top
view of, respectively, ANIS and xy-ISO samples. Yellow arrows represent
the orientation of the molecule backbone, reflecting the anisotropy of
the systems.

molecules, which resulted aligned parallel to the substrate. Eventually, the
final sample was gently heated up (at 10−4 K/fs rate) and then equilibrated
(400 ps + 100 ps) at the measurement temperature, obtaining a density in the
range 1.080− 1.085 g/cm3, for the ANIS samples, and 1.069− 1.079 g/cm3
for the xy-ISO. As for the isotropic case, which will be referred to as ISO,
the xy-ISO sample was used as starting configuration: the deposited film was
heated up to 900 K during a 300 ps-long NVT run, and then annealed at
that temperature for further 500 ps. This allowed the TPD film to completely
lose its previous anisotropic structure. The molecular orientation was care-
fully monitored on-the-fly to control that a fully isotropic sample was indeed
forming. The TPD film was then cooled (at 10−4 K/fs rate) and the equili-
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brated at the measurement temperature, resulting into a density in the range
1.059− 1.065 g/cm3. Representative views of the structures are shown in Fig.
7.10. In short, the sequence (ISO)-(xy-ISO)-(ANIS) provides an increasing
character of molecular anisotropy.

7.2.2 Anisotropic thermal conductivity

The absolute values of thermal conductivity are appreciably larger than those
obtained experimentally, κISO w 0.85 W m−1K−1 in comparison to κexp w
0.15 W m−1K−1 at T = 300 K.
This is related to the adopted force-field, which description of intra- and

intermolecular forces often can represent an approximation, especially for
molecules with such complicate geometry. However, molecular simulations are
a powerful tool to provide trend and relative values: for sake of comparison,
thermal conductivity values are normalized to the value obtained at T = 320

K such as (κxx + κyy + κzz)/κT=320K = 1, the closest value to the glass
transition temperature, which for TPD results TexpTPD = 333 K.
The resulting picture is fully consistent with experimental evidence [397]:

Fig. 7.11 shows the thermal conductivity of the three sets of TPD along the
different directions and it is clear how the system with anisotropy transport
heat along the x direction with respect to the ISO sample.

In addition, the xyISO sample is characterized by a higher thermal con-
ductivity along the y than the ANIS sample: the latter system in fact has
a preferential alignment of the molecule backbone and this suggest that, in
the direction perpendicular to the backbone, the intermolecular interactions
are poorly conductive. Interesting enough, the ISO sample shows higher val-
ues along the z direction due to the enforced planar stacking parallel to the
substrate of the xyISO and ANIS case.

As shown in Fig. 7.12a, which reports the relative difference ∆κin−plane =
(κxx − κyy)/κxx between the in-plane conductivity, thermal transport is
highly influenced by the molecular orientation, since ∆κin−plane value
for the ANIS sample is found to be around 10% and it is temperature
independent while the xyISO sample shows values very close to zero as
expected for an isotropic configuration, although some fluctuation is still
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Figure 7.11. a: Thermal conductivity values for the ANIS sample, normalized at
κANIST=320K = 0.46 W m−1K−1. The anisotropic character of the sam-
ple is reflected on the behavior of thermal transport in the three direc-
tions, highest values are obtained for the x direction along which all
the molecules in the system are aligned. b: Thermal conductivity values
for the xyISO sample, normalized at κxyISOT=320K = 0.56 W m−1K−1. In
this case, despite some fluctuation which could be reducing performing
configurational average, the x and y directions are characterized by the
same value of thermal conductivity because the molecules are randomly
oriented in the xy-plane. c: Thermal conductivity values for the ISO sam-
ple, normalized at κIS0T=320K = 0.85W m−1K−1. All the three directions
have the same efficiency in transferring heat.
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Figure 7.12. a: Relative variation of the in-plane thermal conductivity for the three
system investigated. The ANIS sample is characterized by an appreciable
difference which is basically temperature independent, while for the xy-
ISO sample ∆κin−plane averages to a value close to zero as expected,
due to the random orientation of the molecules in the xy-plane. b: Rela-
tive variation of the through-plane thermal conductivity. The results for
the ANIS sample show how the geometry of the TPD molecule is much
more anisotropic with respect to the toluene one.

present. Similarly, the through-plane difference calculated according to Eq.
(7.3) (Fig. 7.12b), assumes high values with a weak, but still appreciable,
temperature dependence. Thus the substrate drives molecules to organize
in-plane and the consequence of the more complicated geometry of TPD
molecule is that the anisotropy features are preserved at relatively high
temperature, unlike the toluene case.

7.2.3 Molecular orientation

A useful interpretation for thermal conductivity results is provided by an in-
depth analysis of the molecular orientation. The spatial orientation of TPD
molecules can be unambiguously specified by defining two vectors, namely: (i)
the vector lying along the direction linking the nitrogen atoms of the molecule
(hereafter labeled as NN-vector), shown in Fig. 7.13a, and (ii) the vector iden-
tifying thez-plane of the molecule (hereafter labeled as planar vector). This
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Figure 7.13. a: Projection of the NN-vector along x,y,z directions. b: Orientation of
the planar vector. The two vectors are represented by a red arrow.

latter is defined by considering the vector product between the two vectors
joining one nitrogen atom to two carbon atoms of the opposite aromatic ring
of the TPD backbone, as reported in Fig. 7.13b. The distribution of the angles
that vectors (i) and (ii) form with the three Cartesian coordinates (x, y, z)
will provide informations on the overall molecular orientations in the sample
(the Cartesian coordinates are defined as reported in Fig. 7.10. In Fig. 7.14 a
thorough comparison between the ANIS and xyISO samples is performed by
considering the orientation of the NN-vector (Fig. 7.14a, b and c); the ANIS
and ISO samples are in turn compared by considering the orientation of the
planar vector (Fig. 7.14d, e and f). All data are calculated at T = 280 K.
It is possible to extract quite a few information. The angular distribution of Angular

distributionsthe NN-vector in the ANIS sample is highly peaked for cos θx = ±1 which
explains the higher efficiency of thermal transport along x direction. On the
other hand, the xyISO sample shows a much flatter distribution due to its
random orientation in the xy-plane (see Fig. 7.14a). Furthermore, the ANIS
sample shows a (broad) distribution around cos θy = 0, which is a fingerprint
of a preferential normal orientation of the molecules with respect to the y
direction. Again, for the xyISO sample, the distribution is much flatter and
contains non-zero values for a greater range of cos θy values (see Fig. 7.14b).
Both samples show a distribution peaked around cos θz = 0, confirming the
π− π stacking along the z direction: this reflects in a less efficient thermal
transport (see Fig. 7.14c). Another interesting features is that ANIS sample
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Figure 7.14. a, b and c: Orientation of the NN-vector for the ANIS (purple curve)
and xyISO samples (green curve). d, e and f: Orientation of the planar
vector for the ANIS (purple curve) and ISO samples (yellow curve).

shows a distribution peaked around cosϕx = 0, suggesting that molecules
are on planar vector average parallel to the xy-plane and aligned along x. On
the other hand, the ISO sample shows a broad and flatter distribution due to
a random orientation of the planar vector (see Fig. 7.14d). The ANIS sample
also show a flat distribution, corresponding to a randomly tilted orientation
of the molecularz-plane with respect to y. This does not affect thermal trans-
port since for such a system thermal conduction preferentially occurs along
the x direction. The ISO sample has roughly the same distribution shown
for cosϕx = 0 (see Fig. 7.14e). Finally, the distribution for z component
(describing the orientation with respect to the substratez-plane) is peaked at
cosϕz = ±1 for the ANIS sample, accounting for a preferential stacking ar-
rangement along the z direction. The same distribution for the ISO sample, in
turn, is almost flat, as a consequence of the isotropy of the system. The small
shoulders at cosϕz = ±1 are relative to the molecules directly attached to
the substrate and to the molecules in the last z-plane of the TPD film, since
they preserve an overall planar arrangement (see Fig. 7.14f).
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(a) (b)

Figure 7.15. a: Structure realized organizing the TPD molecule along the backbone
direction. b: Structure realized piling up the molecule along the π− π

stacking direction.

7.3 a phenomenological model for tpd thermal con-
ductance

Anisotropic thermal transport suggests that different heat flows are experi-
enced by molecules oriented along the backbone direction or through π− π

stacking, which occurs in the normal-to-backbone direction. To validate the
idea that thermal transport is preferred along the backbone direction of molec-
ular chains two different quasi-1D structures were simulated: (i) a linear bun-
dle of TPD molecules aligned along the N-N axis and (ii) a line-up of TPD
molecules aligned along the direction of π− π bonding. Such configurations
are shown in Fig. 7.15 and hereafter will be referred to as backbone stacking
or π− π stacking, respectively. A structural unit containing 2× 2× 2 TPD
molecules is replicated along either backbone or π − π stacking directions.
The resulting structures were equilibrated with a low temperature NVT dy-
namics followed by a NPT relaxation for a total simulation time of 200 ps.
The simulation cell was relaxed only along the direction of 1D alignment. Due
to the TPD geometry, the π− π configuration results more packed than the
backbone chain and the same number of molecules produced a shorter π− π
stacking configuration. Both pseudo-1D samples were prepared with the same
density, namely: ρbackbone = 0.83 g/cm3 and ρπ−π stacking = 0.84 g/cm3.

7.3.1 Stacking vs. backbone

Thermal conductivity for these structures was calculated by means of AEMD
method (see Sec. 2.2.3). The results can be interpreted in terms of a different
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Figure 7.16. Thermal conductivity as a function of length for the quasi-1D structures.

efficiency in transmitting heat carriers, depending on the direction of the heat
flow with respect to the molecular orientation. Figure 7.16 reports the thermal
conductivity versus length for the linear chains. The overall trend shows a sat-
uration for increasing length and confirms that the direction perpendicular to
the backbone is detrimental for heat transport. Present simulations intelligibly
reported a 70% higher thermal conductivity for the backbone configuration.
Moreover, a much larger number of TPD molecules is needed to reach the
bulk˝, definitely confirming a less efficient transport mechanism along the
π− π direction.

7.3.2 Intermolecular interactions

In order to explain this result, the interaction strength between molecules in
both 1D arrangements as function of the inter-molecular spacing was cal-
culated. More specifically, the average intermolecular distance 〈rinter〉 was
varied in the range 4.75Å 6 rinter 6 7.5Å and the corresponding configu-
rational energy has been computed as shown in Fig. 7.17. Such a potential
energy nearby the equilibrium distance is basically harmonic, while at small-
er/higher distances the onset of anharmonic behavior is observed, as expected.
A parabolic fitting near the minimum yields the effective force constants char-



7.3 tpd thermal conductance 187

 4950

 5000

 5050

 5100

 5150

 5200

 5250

 5300

 5350

 5400

 4.5  5  5.5  6  6.5  7  7.5

E
vd

W 
[k

ca
l/

m
ol

]

rinter  [Å]  

Stacking
Backbone

Figure 7.17. Configurational energy due to vdW interactions as a function of the
intermolecular distance.

acterizing the intermolecular coupling within a simple spring-and-ball picture.
The quadratic fit for both set of data is a function of the form

E(r) = K(r− r0)
2 + E0 (7.4)

where K is the spring constant and E0 is the energy minimum located at a
r0. The obtained values are Kbackbone = 824.7 kcal/molÅ2, rbackbone = 6.39
Å and E0,backbone = 5047.2 kcal/mol, for the backbone configuration and
Kstacking = 312.7 kcal/molÅ2, rstacking = 5.67 Å and E0,stacking = 5202.8
kcal/mol for the stacking configuration. Consistently with the adopted pic-
ture, it can be argued that a stiffer effective spring value translates into a
more efficient thermal conduction, according to the following twofold heuris-
tic argument. In general, thermal conductivity is proportional to the group
velocity of heat carriers: since a larger force constant causes a steeper vibra-
tional branch, this reflects into a higher group velocity. On the other hand,
heat current basically represents the energy transferred by a flux of carriers
corresponding to atomic vibrations: the higher the force constant, the higher
the vibrational energy, the higher the energy of such heat carriers. The ther-
mal anisotropy reported here qualitatively agrees with observations in aligned
polymers systems where an increase in the strength of intermolecular forces
leads to an enhancement of the thermal conductivity [389]. The in-plane and
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Figure 7.18. Schematics of thermal resistance network in the in-plane direction (left)
and the through-plane direction (right). RVdW accounts for the strength
of the intermolecular interactions and Rmol represents the intramolecu-
lar thermal resistance.

through-plane conductance can be estimated considering that the molecules
and vdW interactions form a thermal resistive network, as shown in Fig. 7.18.
The interface thermal resistance (ITR), corresponding somehow to the cou-TPD as a

thermal resistive
network

pling between neighboring molecules that are joined through weak vdW inter-
actions, is assumed to dominate thermal transport if the molecule and the vdW
interactions can be seen as a thermal resistive network. A stronger molecular
interaction is represented by a lower ITR (higher thermal interface conduc-
tance) and the intermolecular π−π stacking entails higher thermal resistance
between molecules.
The total thermal resistance can be written as the sum of the two series

resistances RT = RT ,mol + RT ,VdW = NmolRmol +NVdWRVdW , where
Nmol and NVdW are the number of molecular and vdW units and Rmol and
RVdW the individual resistances associated to each unit, respectively. Writing
the above RT in terms of the individual conductivities

RT = Nmol
Lmol
κmol

+NVdW
LVdW
κVdW

(7.5)

with Lmol and LVdW being the lengths of the single units. Therefore, it is
possible to write the total conductance (along a specific direction) as

GT =
κ

L
=
1

RT
=

κmolκVdW
κVdWNmolLmol + κmolNVdWLVdW

(7.6)
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where L is the total thickness and κ is the computed thermal conductivity
(along a specific direction). Assuming that the conductance is dominated by
an ITR due to vdW interactions, it is correct to write κmol � κVdW leading
to a simplified expression

GT '
κmolκVdW

κmolNVdWLVdW
=
GVdW
NVdW

(7.7)

Putting together Eqs. (7.6) and (7.7), an expression of the thermal interface
conductance for the interatomic interactions is obtained

GVdW = κ
NVdW
L

=
κ

Lmol + LVdW
(7.8)

GVdW stands for the conductance of an individual unit (the interface ther-
mal conductance due to vdW interactions). The average distance between
molecules Lmol + LVdW in the in-plane and through-plane directions is cal-
culated from the simulated XRD profiles, reported in Fig. 7.19 and compared
to the values derived by Gujral et al. [398] that used XRD to evaluate the
structure of a TPD sample deposited at 260 K. i.e. with molecules on average
oriented parallel to the substrate surface. XRD patterns were calculated for
both the ANIS and xyISO samples at T = 300 K and estimated according to
the procedure described in [399] and implemented in LAMMPS, with an inci-
dent wavelength λ = 1.541 Å as used in similar GIWAXS studies [400, 401].
The XRD patterns were calculated by considering only the nitrogen atoms Simulated X-ray

diffractionbelonging to different TPD molecules. This choice allowed to unveil the inter-
chain structural features discarding the intramolecular peaks. The simulated
average distances are 2π/Q ∼ 4.50 Å (4.58 Å) and 5.9 Å (6.0 Å) in the
through-plane, i.e. the z-plane, and in-plane, i.e. the xy-plane, respectively,
for the ANIS (xyISO) sample. Experimentally the distance between molecules
in the through-plane direction is well defined by the low-angle XRD peak lo-
cated at Q ' 1.4 Å−1 that gives 4.5 Å. The value associated to the xy-plane
is more difficult to evaluate since several low-angle peaks or shoulders appear
at 1.2, 1.0 and 0.75 Å−1. A rough averaging gives a mean distance value
around 6 Å. The agreement between simulated and experimental data sup-
port the suitability of the simulated structure. According to Fourier law the
heat flux J is proportional to the temperature difference ∆T through J = G∆T ,
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Figure 7.19. a: XRD diffraction pattern of the ANIS sample. b: XRD diffraction pattern
of the xyISO sample. The major contribution is located around 1.4 Å−1

and is associated with the planar stacking of the molecules since it
correspond to the typical distance in the π− π stacking configurations.
The other peaks at lower angles are relative to the different orientation
of the molecule in-plane and an amplitude-weighted average produces a
distance around 6 Å. Red squared symbols correspond to the calculated
profile, while black lines provide a Gaussian fit for the different peaks.

where G is the thermal conductance. Considering the in-plane and through-
plane values of the thermal conductivity obtained for the experimental sam-
ples [397] at T = 300 K, i.e. κ‖ = 0.175 W m−1K−1 and κ⊥ = 0.110 W
m−1K−1, the results are GVdW,‖ ' 292 MW m−2K−1 and GVdW,⊥ ' 240
MW m−2K−1. Given the inherent disorder of the samples the evaluated con-
ductance should be considered as an average contribution to the thermal
boundary conductance of the various vdW interactions between different enti-
ties of nearest-neighbor molecules and therefore cannot be directly compared
to the directional force constants evaluated previously. A comparison to previ-
ous works provides significantly lower than those reported for metal/dielectric
interfaces, approximately 1 GW m−2K−1 and comparable to the calculated
thermal interface conductance between different crystallographic orientations
in crystalline dinaphtho[2, 3− b : 2, 3− f]thieno[3, 2− b]thiophene (DNTT)
that ranges between 150−300MWm−2K−1 [402] or to the interface between
myoglobin proteins that amounts to 301 MW m−2K−1 at 320 K [403]. The
data for TPD lies between those of organic–organic interfaces such as cop-
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per phthalocyanine (CuPc)–fullerene (C60) interfaces, (400 MW m−2K−1)
and organic/inorganic interfaces such as pentacene/metal (10 MW m−2K−1)
[404] or CuPc-Au (20 MW m−2K−1) that is purely a VdW-like interaction
[405].





8
C O N C L U S I O N S

A glimpse on the vast field of nanoscale thermal transport was given
in this thesis. The investigation of thermal properties of materials

is strongly stimulated by the countless applications and technological implica-
tions of thermal managements at the nanoscale. As a matter of fact the target
of this work is twofold. On the one hand, several theoretical tools have been
considered and addressed on every detail, and some of them have been here
implemented for the first time (e.g the AEMD method or the hotspot˝ based
on the GLE). As already pointed out, the computational techniques adopted
aim at accomplishing similar tasks but under different point of views. EMD ap-
proach, despite its slow convergence, proved itself a reliable tool when dealing
with anisotropic structures, relating the anisotropic thermal transport to mor-
phological features. Moreover, the convergence issue is overcome when the
system under investigation has no long-range order. NEMD, instead, exploits
a non-equilibrium steady-state configuration which has revealed a successful
strategy in the calculation of heat fluxes to compute thermal rectification.
Finally, methods involving the transient regime, such as AEMD and GLE-MD,
require a time evolution analysis of the sample thermal state: such an approach
relieve of the long simulation times needed for EMD and NEMD approach, thus
allowing the investigation of very large system or with a high degree of com-
plexity at the nanoscale.
On the other hand, a manifold of different nanostructured materials have

been thoroughly probed, each of them as representative of a state-of-the-art is-
sue in nanoscale thermal transport. In Chapter 3, the role of morphological de-
fects and dimensionality in nanostructured silicon was addressed. Nanoporous
silicon is a key material for a large number of applications, such as thermal
insulation and photovoltaic conversion. Thus, understanding how point and
extended defects, as well as dimensionality, can affect or enhance its perfor-
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mance is of paramount importance. Chapter 4 focused on silicon-germanium
nanostructures and on the interface between the two semiconductors: super-
lattices represent a promising strategy for thermoelectric conversion, since the
possibility of introducing phonon barriers (in terms of silicon concentration and
period ratio) has the twofold consequence of reducing thermal conductivity
without appreciably affecting electronic transport properties, and devising a
nanostructure which is mostly composed by germanium (which is cheaper and
more easily synthesizable than silicon). Moreover, an alternative and more pre-
cise way of determining the interface thermal resistance is proposed: interface
plays a central role in nanoscience and a rigorous estimate could be profitable
for all those production processes acting in the submicron and nanometer
regime. Chapter 5, instead, brings together nanovoids and germanium as a
substitutional defect to realize graded architectures in order to achieve rectifi-
cation in bulk semiconductors avoiding interfaces. Such a construction could
be crucial for possible building blocks of an information technology based on
phonon management at the nanoscale. This chapter concludes the first part
of the thesis, which was related to semiconductor based nanostructures. The
second part starts with Chapter 6, addressing the role of hydrogen bonds in vi-
brational spectroscopy and the relation between energy diffusion and thermal
dissipation after a spectral excitation. Here, theoretical transient method could
serve as a support to vibrational spectroscopy experiment in order to elucidate
the microscopic mechanism of relaxation underlying such phenomena. Finally,
in Chapter 7 the interplay between molecular anisotropy and thermal transport
is extensively explored in organic glasses such as toluene and TPD, in order to
come up with possible strategies for future developments to implement small
molecule thin films for its use in thermoelectric-based applications.
In conclusion, the field of nanoscale thermal transport is still evolving, beside

its huge extension and its countless applications. In this context, the possibility
of performing computer simulations at different length and time scale and
with different levels of accuracy, represents a precious and essential support
for experimental investigations and fabrication processes, which constantly
aims at improving device efficiency and minimizing energy losses.
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Molecular dynamics (MD) is a computational method, based on statis-
tical mechanics, widely used to compute the time evolution of a set

of interacting atoms by integrating Newton equation of motion. By means of
MD it is possible to calculate equilibrium and transport properties of a classical
many-body system, since the motion of the particles constituting the system
obeys to the laws of classical mechanics [238]. In this appendix a brief outline
of the MD framework will be given.

a.1 basic structure

The complete description of a many-body system requires the solution of
the time-dependent Schrödinger equation including both the electronic (with
coordinates rj = r1, r2, . . . , rNe) and the nuclear (with coordinates Ri =

R1, R2, . . . , RNn) DOF

H(Ri, rj)Ψ(Ri, rj) = EΨ(Ri, rj) (A.1)

where the Hamiltonian operator is given by

H(Ri, rj) =Tn(Ri) + Unn(Ri)+

+Te(rj) + Uee(rj) + Uen(Ri, rj)
(A.2)
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Here, the labels e and n are referred respectively to nuclei and electrons;
i = 1, . . . ,Nn and j = 1, . . . ,Ne, where Nn and Ne are the number of elec-
trons and nuclei respectively. Tn and Te operators represent the kinetic energy
of nuclei and electrons; Unn is the operator representing the potential energy
of the nucleus-nucleus interactions, Uee stands for the electron-electron in-
teractions and Uen for the electron-nucleus interactions. However, Eq. (A.1)
cannot be solved exactly for systems with more than two electrons. Due to
the mass difference between nuclei and electrons, the Born-Oppenheimer or
adiabatic approximation can be adopted to treat separately their motion: it
is in fact assumed that the electrons can instantaneously adapt their wave-
function to the nuclear positions and thus the nuclei appear as frozen˝ in
the electronic reference frame. This allows to cast Eq. (A.1) into two separate
equation, one for electrons depending parametrically on nuclear coordinates

He(Ri, rj)ψRi, rj) = Ee(Ri)ψRi, rj) (A.3)

and a second equation for the nuclei

[Tn(Ri) + Ee(Ri)]φ(Ri) = Eφ(Ri) (A.4)

where the eigenvalue Ee(Ri), obtained from Eq. (A.3), acts as a potential
energy for the nuclear motion. Quantum effects on nuclear motion can be
neglected, due to their large mass, and this enables to treat them as classical
particles, satisfying Newton equation of motion. It is then possible to obtain
the total force Fi acting on i-th particle

Fi = −∇RiU(Ri) (A.5)

where U(Ri) contains both the effects of the other nuclei and of the elec-
trons. With this approach it is possible to compute a mechanical trajectory
Ri = Ri(t), provided that the instantaneous particle positions are computable
at each time t. When dealing with condensed-matter systems, trajectories are
typically generated within a periodically repeated simulation cell, containing
the full set of N particles. Therefore, it is investigated the trajectory of any
given particle or its periodic image, in case it migrates through cell boundary.
Periodic boundary conditions (PBCs), concept illustrated in Fig. A.1a, mini-
mize the absolute number of particles to deal with and avoid the presence of
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(a)

α

α

α'

β

(b)

t

R
i(

t)

δt

Figure A.1. a: Two-dimensional example of periodic boundary conditions. The full-
line trajectory α migrates through the simulation cell (central panel)
boundaries; dashed lines represent its periodic images. The dash-dotted
trajectory β, instead, is completely contained inside the simulation cell
so it is not necessary to apply PBC. b: Discretization of the particle
trajectory by means of the introduction of the time step, the time unit
in MD simulations.

free surfaces created by simulation cell truncation at the boundaries. Further-
more, it is possible to simulate ensembles with a constant number of particles.

To implement Eq. (A.5) in a computer simulation, it is necessary to intro-
duce the discretization of the time evolution. This is achieved by defining a The

discretization of
the time
evolution

time step δt, representing the unit of time interval, and by further assuming
that the force Fi is constant over δt. This results in a linear and uniformly
accelerated motion throughout δt, as shown in Fig. A.1b. The value of the
time step depends on the investigated system: in most application it is of the
order of 10−15 s. A good rule of thumb for this choice states that the optimal
time step should be at least 10− 20 times smaller than the period associated
to the highest frequency vibrational mode, in order to allow a correct sample
of the vibrational spectrum of the system. For example, crystalline silicon has
the highest frequency vibrational mode at ν ∼ 16 THz, corresponding to a
period of τ ∼ 6× 10−14 s; thus a good choice is a time step of δt = 2 fs,
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which has always produced reliable results (see Chpt. 3, 4 and 5). On the
other hand, in the case of organic or hydrogen bonded molecules, the highest
frequency modes are always associated to hydrogen atoms. Indeed, in liquid
deuterated methanol it is found that CH stretching modes are characterized
by ν̄ ' 3000 cm−1, while for water, the OH stretching mode has 3500 cm−1.
This results in an oscillation period ranging of about τ = 9− 11× 10−15 s,
therefore the best compromise is δt = 0.5 fs (see Chpt. 6 and 7). In gen-
eral, the smaller the values of δt, the more accurate the numerical solution
of Newton’s equations of motions, but too small time steps will results in a
computational waste of time. Instead, too large time steps will cause a wrong
sampling of the particles trajectories due to the particle motions during the
time step itself (linear motion and constant acceleration).
The corresponding equations of motion are formulated according to second-

order Newton dynamicsThe equations of
motion

Ri(t+ δt) = Ri(t) + Ṙi(t)δt+
1

2
R̈i(t)δt2

Ṙi(t+ δt) = Ṙi(t) + R̈i(t)δt
x (A.6)

with the particle acceleration computed according to the interaction model

R̈i(t) =
1

Mi
Fi(t) = −

1

Mi
∇RiU(R1(t), R2(t), . . . , RN)(t) (A.7)

whereMj is the particle mass. From this formulation it is possible to set up a
first iterative scheme to generate the time evolution of a set of particle with
a computer simulation

1. define an initial atomic configuration (i.e. assign atomic positions and
velocities)

2. compute interatomic forces according to the initial configuration

3. update atomic positions and velocities according to Eq. (A.6)

4. go to step (2) and iterate once more the loop

Such a procedure is the core of a MD simulation.
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a.2 generation of particle trajectories

The overall reliability of the MD method critically depends on the generation
of accurate and stable particle trajectories. A crucial point is the algorithm
adopted to integrate Newton equations of motion. One of the most com-
mon integration scheme is the so-called velocity-Verlet (VV) algorithm [408],
a prototypical example of numerical integration scheme by finite difference
methods. This scheme involves a multiple-step procedure. Firstly, the parti-
cle positions Ri(t) are updated to time t+ δt following Eq. (A.6), while the
atomic velocities are computed after a half time step t+ (1/2)δt according
to

Ṙi(t+
1

2
δt) = Ṙi(t) +

1

2
R̈i(t)δt (A.8)

Then, accelerations are re-computed at time t+ δt and particle velocities are
eventually updated to time t+ δt

Ṙi(t+ δt) = Ṙi(t+
1

2
δt) +

1

2
R̈i(t+ δt)δt (A.9)

This method is correct to the order of δt4
The VV algorithm is simple and its numerical implementation is straight-

forward. Furthermore, is stable and allows to use relatively long time steps
(10−15 6 δt 6 10−14 s) providing an optimal conservation of the mechanical
time-invariant quantities. A variety of different algorithms other than VV for
the present Hamiltonian formulation of the MD method are indeed available,
which allows for a combination with hybrid Monte Carlo methods or developed
for MD simulations performed within the Car-Parrinello method [409–414].

a.3 the interaction scheme

Another key element in MD runs is the interaction potentials. A good inter-
actions scheme should be accurate (it should provide an accurate estimate of
total energy and its derivatives), reliable (it should be obtained starting from
physical and chemical characteristics of the system under investigation), trans-
ferable (it should be capable of handling the system under arbitrary conditions
of temperatures, pressure, state of aggregation, etc.)
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The simplest approach for the construction of the potential U, consists
in formally developing the total potential as a sum of two-body terms U(2),
three-body terms U(3), . . . , N-body terms U(N)Model potential

MD
U(R1(t), R2(t), . . . , RN) =

∑
i>l

U(2)(Ri, Rl)+

+
∑

i>l>m

U(3)(Ri, Rl, Rm) + . . .
(A.10)

According to the very nature of the interatomic bond treated in the investiga-
tion, the series is arrested to a given order. For example, a rough but effective
approximation to treat simple metals is to consider only the two body terms,
while to study materials characterized by directional and covalent bonds it is
necessary to consider also the third order term. A great number of interatomic
potentials have been developed for almost every kind of material, including
long range interactions (i.e. considering Coulombic interaction) for ionic and
polar compounds. A quick overview of the interatomic potentials adopted in
this thesis is given in Appx. B.

The explicit form for each functional U(2),U(3), . . . ,U(N) is assumed under
specific physical-chemical considerations of the investigated system, and also
for numeric convenience. These functionals depend upon empirical parameters
which need to be fitted to correctly reproduce system properties. In the case
of short-range interactions, it is possible to optimize the calculation of the
forces acting on each particles limiting the evaluation of the potential to the
only particles lying within a cut-off radius. The empirical character allows to
appreciably improve simulation performances, since computational workload
scales (for short-range potentials) as m×N, where m is the average number
of nearest neighbor for each of N particles constituting the simulation cell. In
this way it is possible to treat systems with a large number of particles (up to
107 atoms) for long simulation times (up to tens of nanoseconds). However,
the empirical character strongly limits the transferability of the force field,
which is usually realized ad-hoc for the investigated system.

An alternative approach consists in a more fundamental level of description.
According to the aforementioned Born-Oppenheimer approximation and to theFirst Principles

MD
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one-electron approximation, the total energy of an ionic system (nuclei+core
electrons) together with valence electrons can be expressed as

U(R1(t), R2(t), . . . , RN) = Uee +Uei +Uii (A.11)

where i and e indicates ions and electrons, respectively. In order to compute
this expression, it is necessary to know electronic energies εn and wavefunc-
tions ψ. Once that they are known by solving numerically the single-electron
Schrödinger equation, the total potential energy U can be written as

U = 2

occ∑
n

εn +Uii −Uee (A.12)

where the sum is performed over the energies of the occupied states (the
factor 2 accounts for the spin degeneracy) and the −Uee contributions cor-
rects the double counting of the electron-electron interactions in the first term.
Then, by applying the Hellmann-Feynman theorem it is possible to obtain the
interparticle forces within a full quantum mechanical picture of particle inter-
actions. In this framework, which is called first principles molecular dynamics
(FPMD), the most computationally expensive steps are

• the Schrödinger equation solution

• the self-consistent evaluation of Uee

The resulting CPU workload typically scales as N3 with a large prefactor,
strongly limiting the number of addressable particle in a typical FPMD run
(6 102 particles).

An approximation of the first-principles approach is represented by the tight-
binding (TB) picture. Accordingly, the electron wavefunction ψ are expanded Semi-empirical

MDas linear combinations of atomic orbitals {φlα}

ψ =
∑
lα

cnlαφlα (A.13)

where l is the quantum number index and α identifies the crystal basis atom
of position dα. The matrix elements

〈
φl ′β

∣∣h |φlα〉 of the single-electron
Hamiltonian are then treated as disposable constants to be fitted, instead of
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computed self-consistently. The result is a semi-empirical molecular dynamics
(SEMD) scheme with improved accuracy and transferability with respect to
model potential MD. The computational workload is dramatically reduced with
respect to FPMD simulations since no self-consistency is required. However,
it is still significantly heavy and the overall procedure scales as N2, due to
the tight-binding matrix diagonalization, making SEMD simulations typically
performed on systems containing many as several hundreds particles.
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Force field methods ignore the electronic motions and calculate the en-
ergy of a system as a function of the nuclear positions (and velocities)

only. MD is thus invariably used to perform calculations on systems containing
significant numbers of atoms. In some cases force fields can provide answers
that are as accurate as even the highest-level quantum mechanical calcula-
tions, in a fraction of the computer time. However, MD cannot of course
provide properties that depend upon the electronic distribution in a molecule.
The validity of these methods relies on several assumptions. One of these is
the already mentioned Born-Oppenheimer approximation, without which it
would be impossible to contemplate writing the energy as a function of the
nuclear coordinates at all. Transferability is a key attribute of a force field,
for it enables a set of parameters developed and tested on a relatively small
number of cases to be applied to a much wider range of problems. Moreover,
parameters developed from data on small molecules can be used to study
much larger molecules such as polymers.
In this appendix will be proposed a quick overview about the force-fields and

the model potentials adopted in this thesis. In particular, for nanostructured
semiconductors the Tersoff [89, 415] and the EDIP [142, 416] were adopted,
while for organic molecules the COMPASS [312] and the CVFF [392] force-field
have been the best choice due to molecular complexity.
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b.1 tersoff

In real systems, the strength of each bond depends on the local environment,
i.e. an atom with many neighbors forms weaker bonds than an atom with
few neighbors. Thus, Tersoff developed a pair potential the strength of which
depends on the environment. The form of the energy E, as a function of the
atomic coordinates, reads as

E =
∑
i

Ei =
1

2

∑
i 6=j

Vij (B.1)

with

Vij = fC(rij)[fR(rij) + bijfA(rij)] (B.2)

where the potential energy is decomposed into a site energy Ei and a bonding
energy Vij, rij is the distance between the atoms i and j, fA and fR are the
attractive and repulsive pair potential respectively

fR(r) = A exp (−λ1r)

fA(r) = −B exp (−λ2r)
(B.3)

and fC is a smooth cutoff function

fC(r) =


1, r < R−D
1

2
−
1

2
sin
[π
2
(r− R)/D

]
, R−D < r < R+D

0, r > R+D

(B.4)

The parameters R and D are not systematically optimized but are chosen so
as to include the first-neighbor shell only for several selected high-symmetry
bulk structure of silicon, namely for Si2, graphite, diamond, simple cubic, and
face-centered cubic structures. The fC function, thus, decreases from 1 to 0
in the range R−D < r < R+D. The main feature of this potential is the
bij term, since the idea is that the strength of each bond depends upon the
local environment and is lowered when the number of neighbors is relatively
high. Such a dependence is expressed by the explicit form of bij appearing in
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Eq.(B.3), which can increase or decrease the attractive force relatively to the
repulsive one, according to the environment, such that

bij =
1

(1+βnζnij)
1/2n

ζ =
∑
k6=i,j

fC(rij)g(θijk) exp [λ33(rij − rik]
3]

g(θ) = 1+
c2

d2
−

c2

[d2 + (cos θ− cos θ0)2]

(B.5)

The term ζij define the effective coordination number of atom i, i.e. the
number of nearest neighbors, taking in account the atomic environment, thus
the relative distance of two neighbors rij − rik and the bond-angle θ. The
function g(θ) has a minimum for cos(θ0), d determines the sharpness of the
angle dependence, and c expresses the strength of the angular effect.

This potential and the parameters were chosen to fit theoretical and exper-
imental data obtained for the cohesive energy of several high-symmetry bulk
structures previously mentioned, the lattice constant and bulk modulus of the
silicon lattice in the diamond configuration. Later it was parametrized also for
carbon [417].

b.2 edip

The Environment Dipendent Interatomic Potential (EDIP) is an efficient and
realistic model for interatomic forces in covalent solids and liquids which
incorporates recent theoretical advances in understanding the environment-
dependence of (sigma) chemical bonding in condensed phases [416, 418]. The
parameterization for silicon [142] provided significantly reliable results when
tested for bulk phases (amorphous, liquid, crystal elasticity, thermal expan-
sion,...), defects (point defects, stacking faults, dislocations,...) and phase
transitions (crystal phases, amorphous, liquid).
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Figure B.1. f(r) function determining the contribution of each neighbor to the effec-
tive coordination number Z.

Configurational energy can be expressed as a sum of site energy (as ex-
plained for Tersoff potential) E =

∑
i Ei, each containing a two body and a

three body term

Ei =
∑
j6=i

V2(Rij,Zi) +
∑
j6=i

∑
k6=i,k>j

V3(Rij, Rik,Zi) (B.6)

where V2(Rij,Zi is an interaction term between atoms i and j and represents
pairwise bond, while V3(Rij, Rik,Zi) is the interaction term between atoms
i, j and k, centered on the i-th atom and represents angular forces. Both
interactions depend on the local environment of the i-th atom by means of
its effective coordination number, defined as

Zi =
∑
m 6=i

f(Rim) (B.7)

where f(Rim) is a cutoff function, which measures the contribution of m-
th neighbor to the i-th atom coordination number in terms of Rim. Such a
function is shown in Fig. B.1 and reads as

f(r) =


1, r < c

exp
(

α

1− x−3

)
, c < r < a

0, r > a

(B.8)
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where x = (r − c)/(a − c). A neighbor of atom i at a distance r < c is
considered a full neighbor, while the neighbors between c and a give only
a partial contribution to Zi. The cutoffs are constrained to reproduce the
coordinations of important crystal structures, e. g. Zi = 4 is the diamond
lattice.
The two body term includes an attractive and a repulsive term

V2(r,Z) = A
[(
B

r

)ρ
− p(Z)

]
exp

(
σ

r− a

)
(B.9)

which go to zero at the cutoff r = a with all derivatives continuous. The bond
strength adapts to changes in the local atomic environment. The coordination
dependence introduces an asymmetry, V2(Rij,Zi) 6= V2(Rji,Zi), similar to
the Tersoff potential in that the strength of the attractive force is controlled
by a bond order function p(Z) that depends on the local coordination. Theo-
retical calculations showed the weakening of the attractive interaction and the
corresponding increase in bond length for increasing coordination [416, 418,
419]. Such theoretical dependence is captured by a Gaussian function [416]

p(Z) = exp
(
−βZ2

)
(B.10)

The three-body term contains radial and angular factors

V3(Rij, Rik,Zi) = g(Rij)g(Rikh(lijk,Zi) (B.11)

where lijk = cos θijk = Rij ·Rik/RijRik. The radial function has the form
[88]

g(r) = exp
(

γ

r− a

)
(B.12)

and goes to zero smoothly at the cutoff distance a. The angular function
h(l,Z) is strongly dependent on the local coordination through two functions
τ(Z) and Q(Z) that control the equilibrium angle and the strength of the
interaction, respectively

h(l,Z) = λ
{(
1− exp

[
−Q(Z)(l+ τ(Z))2

])
+ ηQ(Z)l+ τ(Z))2

}
(B.13)
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withQ(Z) = Q0 exp (−µZ), which controls the strength of angular forces as a
function of coordination, and τ(Z) = −l0(Z) = − cos θ0(Z), which controls
the equilibrium angle θ0(Z) of the three-body interaction as a function of
coordination.

A variation of Zi causes a variation in the two-body and three-body inter-
actions, resulting in a dependence of Zi from equilibrium distance between
atoms and from bond angles. An increase of coordination number weakens
the bonds and thus reduces their equilibrium length. At the same time, an
increase of Zi causes a reduction in bond angles.

In summary, this implementation of EDIP for bulk silicon has 13 adjustable
parameters: A, B, ρ, β, σ, a, c, λ, η, γ, Q0, µ and α. The functional form
already contains informations about chemical bonding in bulk silicon taken
directly from theoretical studies, mostly of ideal crystal structures. The ad-
justable parameters provide the necessary freedom to extrapolate these bond-
ing dependences for defect structures strictly outside the theoretical input,

b.3 compass

Condensed-phase Optimized Molecular Potentials for Atomistic Simulation
Studies (COMPASS) [312, 420–423] is a member of the consistent family of
force fields (CFF91, PCFF, CFF), which are closely related second-generation
force fields. They were parameterized against a wide range of experimental
observables for organic compounds containing H, C, N, O, S, P, halogen
atoms and ions, alkali metal cations, and several biochemically important
divalent metal cations. Moreover, they present a broad coverage of organic
polymers, (inorganic) metals, and zeolites. COMPASS is the first force field
that has been parameterized and validated using condensed phase properties in
addition to various and empirical data for molecules in isolation. Consequently,
this force field enables accurate and simultaneous prediction of structural,
conformational, vibrational, and thermo-physical properties for a broad range
of molecules in isolation and in condensed phases.
The COMPASS functional form includes high-order (cubic and quartic) force

constants and off-diagonal cross-coupling terms. The force field parametriza-
tion is able to describe, using the same functional form, organic as well as
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inorganic materials [312, 424]. The functional forms are the same as those
used in consistent force-fields (CFF)[425] and are given by

Etotal = Eb + Eθ + Eφ + Eχ+

+ Eb,b ′ + Eb,θ + Eb,φ + Eθ,φ+

+ Eθ,θ ′ + Eθ,θ ′,φ + Eq + EvdW

(B.14)

where:
Eb =

∑
b

[
k2(b− b0)

2 + k3(b− b0)
3 + k4(b− b0)

4
]

Eθ =
∑
θ

[
k2(θ− θ0)

2 + k3(θ− θ0)
3 + k4(θ− θ0)

4
]

Eφ =
∑
φ

[k1(1− cosφ) + k2(1− cos 2φ) + k3(1− cos 3φ)]

Eχ =
∑
χ

k2χ
2

Eb,b ′ =
∑
b,b ′

k(b− b0)(b
′ − b ′0)

Eb,θ =
∑
b,θ

k(b− b0)(θ− θ0)

Eb,φ =
∑
b,φ

(b− b0) [k1 cosφ+ k2 cos 2φ+ k3 cos 3φ]

Eθ,φ =
∑
θ,φ

(θ− θ0) [k1 cosφ+ k2 cos 2φ+ k3 cos 3φ]

Eθ,θ ′ =
∑
θ,θ ′

k(θ− θ0)(θ
′ − θ ′0)

Eθ,θ ′,φ =
∑
θ,θ ′,φ

k(θ− θ0)(θ
′ − θ ′0) cosφ

Eq =
∑
ij

qiqj

rij

(B.15)

and

EvdW =
∑
ij

εij

2(r0ij
rij

)9
− 3

(
r0ij

rij

)6 (B.16)
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with the following combining rules

r0ij =

(
(r0i )

6 + (r0j )
6

2

)1/6
εij = 2

√
εi · εj

(
(r0i )

3 · (r0j )3

(r0i )
6 · (r0j )6

)
(B.17)

The functions are divided into two types: valence terms including diago-
nal (Eb,b ′ , Eθ,θ ′) and off-diagonal cross-coupling terms (Eb,θ, Eb,φ, Eθ,φ,
Eθ,θ ′,φ), and non-bonded interaction terms. The valence terms represent in-
ternal coordinates of bond (b), angle (θ), torsion angle (φ), and out-of-plane
angle (χ), while the cross-coupling terms include combinations of two or three
internal coordinates. The cross-coupling terms are important for the predic-
tion of vibrational frequencies as well as structural variations associated with
conformational changes. In Eq. (B.15) the subscript 0 indicates the reference
values of the bond, angle, dihedral angle and out-of-plane angle, while k, k1,
k2, k3, k4 are the force constants estimated by quantum mechanical calcula-
tions. Terms involving explicit internuclear distances, r, represent non-bonded
interactions which are composed by a EvdW Lennard Jones (LJ) 9-6 function
for the vdW term and a Eq Coulombic function for an electrostatic interaction.

b.4 cvff

The Consistent-Valent Force Field (CVFF) is a generalized valence force field
[392]. Parameters are provided for amino acids, water, and a variety of other
functional groups.
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The analytic form of the energy expression used in CVFF is given by Etotal

Etotal =
∑{

Db [1− exp−α(b− b0)]
2 −Db

}
+

+
1

2

∑
H0(θ− θ0)

2+

+
1

2

∑
H0(1+ s cosnφ) +

1

2

∑
Hχχ

2+

+
∑∑

Fbb ′(b− b0)(b
′ − b ′0)

+
∑∑

Fθθ ′(θ− θ0)(θ
′ − θ ′0)+

+
∑∑

Fbθ(b− b0)(θ− θ0)

+
∑

Fφθθ ′ cosφ(θ− θ0)(θ ′ − θ ′0)+

+
∑∑

Fχχ ′χχ
′

+
∑
ij

εij

2(r0ij
rij

)9
− 3

(
r0ij

rij

)6+
∑
ij

qiqj

rij

(B.18)

The terms in Eq. (B.18) represent the energies required to deform the in-
ternal coordinates (which are labeled as b, θ, φ, and χ) from their unstrained
standard values, denoted by the subscript 0, or the energies of non-bonded in-
teractions (which are the same as in the case of the COMPASS force field). The
terms in Eq. (B.18) are illustrated schematically in Fig. B.2. Terms 1-4 are
commonly referred to as the diagonal terms of the valence force field and rep-
resent the energy of deformation of bond lengths, bond angles, torsion angles,
and out-of-plane interactions, respectively. Note that a Morse potential (Term
1) is used for the bond-stretching term. The Morse form is computationally
more expensive than the harmonic form.
Terms 5-9 are off-diagonal (or cross) terms and represent couplings be-

tween deformations of internal coordinates. For example, Term 5 describes
the coupling between stretching of adjacent bonds. These terms are required
to accurately reproduce experimental vibrational frequencies and, therefore,
the dynamical properties of molecules. In some cases, they revealed to be im-
portant in accounting for structural deformations. However, cross terms can
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(3) (4)
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Figure B.2. Graphic illustration of terms in CVFF.

become unstable when the structure is far from a minimum. Terms 10-11 de-
scribe the non-bonded interactions. Term 10 represents the vdW interactions
with a Lennard-Jones function. Term 11 is the Coulombic representation of
electrostatic interactions. In the CVFF force field, hydrogen bonds are a natu-
ral consequence of the standard vdW and electrostatic parameters, and special
hydrogen bond functions do not improve the fit of CVFF to experimental data
[426–428].
The parameters Db, Ho, Hφ, Hχ, Fbb ′ , Fθθ ′ , Fbθ, Fφθθ ′ and Fχχ ′ are the

force constants for the corresponding intramolecular deformations, εij and r0ij
are the parameters for the non-bonded repulsive and dispersive interactions,
and qi are the partial charges carried by each atom.
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