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Abstract: In the present study, mercury (Hg) concentrations were investigated in lichens (Flavoparmelia
caperata (L.) Hale, Parmelia saxatilis (L.) Ach., and Xanthoria parietina (L.) Th.Fr.) collected in the
surrounding of the dismissed Abbadia San Salvatore Hg mine (Monte Amiata district, Italy). Results
were integrated with Hg concentrations in tree barks and literature data of gaseous Hg levels
determined by passive air samplers (PASs) in the same area. The ultimate goal was to compare results
obtained by the three monitoring techniques to evaluate potential mismatches. Lichens displayed
180–3600 ng/g Hg, and Hg concentrations decreased exponentially with distance from the mine.
Mercury concentration was lower than in Pinus nigra barks at the same site. There was a moderate
correlation between Hg in lichen and Hg in bark, suggesting similar mechanisms of Hg uptake
and residence times. However, correlation with published gaseous Hg concentrations (PASs) was
moderate at best (Kendall Tau = 0.4–0.5, p > 0.05). The differences occurred because a) PASs collected
gaseous Hg, whereas lichens and barks also picked up particulate Hg, and b) lichens and bark had a
dynamic exchange with the atmosphere. Lichen, bark, and PAS outline different and complementary
aspects of airborne Hg content and efficient monitoring programs in contaminated areas would
benefit from the integration of data from different techniques.

Keywords: biomonitoring; airborne pollutants; particulate Hg; lichens; tree barks; passive air
samplers; mining area

1. Introduction

Mercury (Hg) is a widespread contaminant of much concern due to its high toxicity, persistence,
and accumulating behavior in the environment [1]. In the reduced form (Hg0), Hg displays long
residence times in the atmosphere and a consequent ability to be transported over long distances,
making it a global scale pollutant [2]. Now more than ever, the coming into force of the Minamata
convention requires the proper monitoring of airborne Hg contents in order to reduce Hg anthropogenic
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emissions. An effective estimation of environmental and human health risks to Hg exposure depends
on the development of reliable, low cost, easy-to-use monitoring networks [3].

Traditionally, the monitoring of atmospheric Hg has been accomplished by instrumental techniques,
like Light Detection and Ranging (LIDAR; [4]), and compact analyzers, such as Tekran®and
Lumex®instruments [5]. These methods are excellent to characterize point sources [6]. However, they
lack spatial resolution and provide only short-term information on Hg contamination [6,7].

Biomonitoring is the assessment of gradient of pollutants in naturally occurring living biological
material [8]. Among wildlife, mammals, birds, fish, and most recently snakes have been employed as
biomarkers for Hg [9]. In plants, Hg especially accumulates in lichens, algae and mosses, and in higher
plants. The employment of Hg concentrations in lichens and mosses in situ or after transplantation is
a long-established practice for Hg monitoring [10–15]. Recently, the use of higher plant tissues (e.g.,
tree rings, bark, leaves) has also increased [13,16,17]. In addition to the determination of total Hg in
plant tissues, some studies also investigate the adverse effects (such as alteration in transpiration and
photosynthesis, imbalance in carbohydrate metabolism and production of secondary stresses) on the
growth and metabolism of plants [18].

A recently developed technique for Hg monitoring is represented by manufactured passive air
samplers (PASs), where a bituminous coal-derived, sulfur-impregnated, activated carbon is employed
as sorbent for Hg species [19]. Passive sampling, either by employing living organisms or manmade
products, is a more sustainable and ecologically relevant approach to monitor Hg for longer periods of
time [20–22] and allows a better detection of nonpoint sources of Hg and better spatial resolution [6,7].

The different monitoring techniques, relying on different processes, do not necessarily give
compatible results. Hence, several attempts have been made to evaluate the reliability and comparability
of technical and biological methods to monitor Hg in the atmosphere [8], as well as the interchangeability
of substrata. For example, epiphytic lichens in mining areas were found to accumulate more Hg
than mosses due to differences in morphology and ecophysiology [23,24]. This has led some authors
to conclude that the best monitoring programs are achieved using more than one substratum [25].
To date, studies comparing Hg contents in tree barks and epiphytic lichens collected at the same sites
are not abundant [26–29] and have been mostly conducted in areas with low concentrations of Hg in air.
Additionally, no studies have compared lichens and tree barks with the new recently developed PAS
system. To fill this gap, epiphytic lichens and tree barks (Pinus nigra J.F. Arnold) were investigated for
Hg concentrations in the Monte Amiata area (Tuscany, Italy), a regional (possibly global) scale hotspot
for Hg because of the presence of a large abandoned mining and smelting district. These data were
compared with the gaseous Hg concentrations obtained by PASs on the same area. The comparison
was based on a limited dataset and should be regarded as preliminary. However, it sets the ground for
an optimal, and possibly complementary, use of the different techniques in monitoring programs.

2. Materials and Methods

Monte Amiata (42◦53′00”N 11◦37′00”E) is an extinct Quaternary (ca. 300 Ka) volcano reaching an
elevation of 1738 m a.s.l. The surrounding area hosts the third largest Hg mining and production district
worldwide (>100,000 tons metal produced), and a present day geothermal field [30]. Mercury mining
and smelting operated in the area from 1848 to 1982, although the main production occurred from
1900 to 1970 [31]. The largest mine and smelting plants were near the town of Abbadia San Salvatore
(ASSM), located on the eastern slope of the volcano. The environmental legacy of this extensive Hg
mining and metallurgy has been the subject of many studies (see [30] for a partial reference list).

Lichen sampling was performed concurrently with tree bark sampling at 10 sites (Figure 1) in
July 2016, making reference to grids established for deployment of PASs [6]: a closer-spaced grid near
ASSM (Abbadia grid; sites identified by lowercase a and a progressive number, e.g., a1), and a larger,
wider-spaced grid (Amiata grid; sites identified by capital A and a number, e.g., A1), covering an area
of 41.6 km2. Having previously decided to sample Pinus nigra trees (to be consistent with the previous
study of [16]), the site choice was conditioned by the presence of this species, making efforts to select
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trees as close as possible to a PAS deployment site. We obtained samples of Flavoparmelia caperata (L.)
Hale, Parmelia saxatilis (L.) Ach., and Xanthoria parietina (L.) Th.Fr., which were taken whenever possible
from the same tree sampled for barks by previous research [32], or at least from a nearby location, at
about the same height (approximately 100 cm to 150 cm). It was only possible to collect more than
one lichen species at some sites. We estimated that at each site, the lichen samples, the tree sampled
for bark, and the next PAS were all within a maximum 20 m distance (usually less). Collected lichen
samples were identified in the field and subsequently verified in the laboratory using a dissecting
microscope. The nomenclature of lichens followed [33]. For Hg concentrations, we decided to use the
whole lichen thallus of each sample in order to compare the long-term accumulation performance of
the two substrates (lichens and barks).
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Figure 1. (a) Location of sampling sites in the Monte Amiata area; (b) zoom of sampling sites in the
Abbadia San Salvatore town.

Lichen thalli were airdried and carefully cleaned under a dissecting microscope. Then, the lichen
material was manually shredded into small pieces and homogenized using a ceramic mortar to obtain
three replicates of about 40 mg for each collected species in each site. Lichens were analyzed for total
Hg in triplicate on a Milestone DMA-80 (USEPA method 7473). Results were then expressed as the
mean ± standard deviation. The local gaseous elemental Hg concentrations (GEM) in the air were
taken from [6]. A description of the analytical and computation methods and a description of PAS
have been provided by the authors of [6] and [19], respectively. As reported by the authors of [6],
deployment times were different for the Amiata and the Abbadia grids. We did not know the specific
value of GEM at the moment of bark and lichen sampling. However, the range of values in the time
interval including our sampling was fairly narrow. Therefore, they can be assumed to be representative
of conditions at sampling time, at least as an order of magnitude (see further discussion).

Because of the small number of samples, linear correlation between variables was explored by the
use of the nonparametric Kendall’s Tau test.

3. Results

Table 1 summarizes, for each site, the Hg contents (dry weight) in soil, lichens, and Pinus nigra
barks, and the range of elemental Hg concentrations in air estimated from PAS data. For the reasons
explained by the authors of [32], for barks, the Hg concentration was the mean of the four samples
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taken at 150 cm above ground. Mercury concentrations in lichens (180–3,600 ng/g) were, in general, of
the same order of magnitude for the three recognized species (Flavoparmelia caperata (L.) Hale, Parmelia
saxatilis (L.) Ach., and Xanthoria parietina (L.) Th.Fr.). For the three sites (a13, a21, and a49), where more
than one lichen species was collected, we did not observe a consistent order of enrichment by species.
For example, at each of the three sites, a different species exhibited the highest Hg content (X. parietina,
P. saxatilis, and F. caperata, respectively). Mercury contents of both X. parietina and F. caperata showed a
good (Tau = 0.8), statistically significant (p = 0.05) correlation with those of the corresponding soil. For
P. saxatilis, which had only four sample pairs, we did not perform the calculation.

Table 1. Data of Hg contents in lichens (this study) in tree barks, soils, and Hg◦ in air (literature data).

Site
Hg in lichens (ng/g) Hg in bark 1

(ng/g)
Hg in soil 1

(mg/kg)
Hg in air (ng/m3) 2

Parmelia
saxatilis

Xanthoria
parietina

Flavoparmelia
caperata Range

A3 480 ± 110 - - 1700 ± 400 3.7 ± 0.1 1.68–1.84

A19 - 1200 ± 280 - 15,700 ±
4200 66 ± 0.4 3.82–4.24

A33 - 920 ± 300 - 850 ± 280 4.1 ± 0.4 2.67–3.26

A37 180 ± 50 - - 920 ± 330 1.1 ± 0.1 1.86–2.07

A48 - - 290 ± 50 230 ± 110 1.5 ± 0.1 2.03–3.03

a11 - 2000 ± 450 - 7500 ± 980 480 ± 1 9.86–15.7

a13 1800 ± 150 3600 ± 820 3200 ± 430 19,500 ±
2700 186 ± 1 16–17.9

a21 1600 ± 300 - 1400 ± 230 7600 ± 500 97 ± 1 11.6–17.8

a22 - - 1500 ± 130 7300 ± 1300 66 ± 3 7.48–14.8

a49 - 1500 ± 120 2400 ± 330 10,700 ± 700 163 ± 1 24.7–116
1 from [32]; 2 data for June 30 through July 6, 2016 (a11–a49) and from July 4 through October 10, 2016 (A3–A48)
from [6].

Lichen concentrations were consistently lower (up to an order of magnitude) than bark
concentrations (850–19,500 ng/g) at the same location, with the exception of site A48, where
concentrations were very similar (230 and 290 ng/g for barks and lichens, respectively). In a bivariate
plot (Figure 2), Hg concentrations in lichens and barks appear positively correlated. The correlation was
strong (Tau = 0.8) and statistically significant (p = 0.05) for the species F. caperata, while the correlation
was weak (Tau = 0.4) and not significant (p = 0.3) for X. parietina.

For gaseous Hg concentrations, the highest values were observed at site a49, which was located
close to the mine (Figure 1b). Consistently, lower values (<5 ng/m3) were found in the Amiata
grid (Figure 1a), located at background sites with respect to the pollution source (Abbadia Hg mine).
However, the correlation between Hg in bark/Hg in lichens and gaseous Hg was moderate (Tau = 0.4–0.5,
p > 0.05).
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4. Discussion

Mercury concentrations in lichens were the same order of magnitude as those previously reported
for lichen species in the Monte Amiata area [34–37]. Specifically, for X. parietina, the concentrations
reported here (920–3,600 ng/g) were mostly higher than those (10–1,960 ng/g) reported by the authors
of [37]. Notably, these authors analyzed only the outermost part of the lichens. On the other hand, very
high concentrations (up to 40 mg/kg) were reported by the authors of [34,35] in samples of Parmelia
sulcata directly exposed to ventilations shafts of ASSM. Those authors also showed a decrease of
Hg contents lichen with distance from ASSM similar to our data (compare Figure 3 in [34] with our
Figure 3). Compared to other worldwide mining locations, Hg contents in lichens from Monte Amiata
were slightly lower than the values (up to 4,500 ng/g Hg) found in native lichens sampled in the
Almadén Hg district in Spain [38], but generally higher than the range of 60–520 ng/g reported for
Nova Scotia, where gold mining was active from 1861 to 1942 [7].
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Figure 3. Variations of Hg contents in barks and lichens as a function of distance from Abbadia San
Salvatore (ASSM) (consistent with [6], the origin was taken at their site a32). For a better graphical
comparison, the values for barks were divided by four. At sites where more than one lichen species
was present, the fit was calculated considering the average of values.

Mercury content in lichen showed a good correlation with local Hg soil content, which is consistent
with previous reports [35]. Working on a slightly larger bark sample set, a statistically significant
correlation was established between Hg contents in barks and soil [32]. The comparison of lichen and
bark data showed that the Hg scavenging efficiency per mass unit was generally higher for barks.
By contrast, in other studies (dealing with different lichen and plant species), Hg contents were found
to be higher in lichens than in tree barks [26–29]. At present, the mechanism regulating Hg uptake by
lichens or bark is unknown. However, the fairly good correlation between the contents in the two
matrices suggests that uptake mechanisms may be largely similar. Both substrates may take up Hg
as gaseous species (mostly Hg0) and as particulate matter. As reviewed by the authors of [39], Hg0

taken up by lichens could be rapidly oxidized to water-soluble Hg2+ by catalase, an enzyme involved
in cell protection against oxidative stress, and Hg contained in adsorbed particulate matter may also
be transformed by organic radicals into different compounds. There is no comparable knowledge of
transformations occurring in Hg speciation in bark, but preliminary results have showed a certain
degree of Hg binding with organic functional groups (mainly thiols) [40]. Both lichens and barks show
a dynamic exchange with the atmosphere, i.e., they can release part of the Hg taken up. This release
can occur through (a) mechanical removal by wind/rain of previously adsorbed particles (e.g., [41]),
(b) dissolution by rain of soluble species, and (c) re-emission of gaseous Hg [42,43], a phenomenon
which is enhanced in summer. In general, however, the released Hg is only a small fraction of that
taken up. For instance, the authors of [32] observed a negligible release of Hg by Pinus nigra bark upon
24 h of batch reaction with deionized water. The residence time of the metal in lichen was estimated to
be in the order of a few years (references in [39]). For bark, there are no data, but a weak correlation
between Hg bark content and tree age (tens of years) was observed [32], suggesting that the residence
time may be significantly shorter than tree age (i.e., possibly similar to lichen).

By contrast, PASs rapidly and irreversibly trap only gaseous Hg compounds. The upper limit of
the uptake capacity of the carbon sorbent is very high, and it was certainly not exceeded during the
deployment at ASSM [6]. The differences between PAS-derived gaseous concentrations and lichen/bark
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Hg contents may therefore be ascribed to the following factors: (a) lichens and barks picked up
Hg-bearing solid particles. This contribution is presumably more important near contaminated soils
(at Monte Amiata, soils contained ore minerals and/or smelting products, for instance, the presence of
β-HgS in barks was demonstrated by [40]); (b) lichens and barks dynamically exchanged Hg with the
atmosphere. This exchange makes lichen not very reliable indicators of Hg concentrations in air [39];
(c) some of the concentrations obtained with PAS referred to time period of one week only, and the
specific wind and temperature conditions prevailing during one of the week-long sampling periods
(July 2016) may not be reflective of the long-term average conditions [6]; (d) the time period reflected by
the different types of samples was not the same. Whereas PAS measurements represented conditions for
clearly defined deployment periods (of one week or three months in the current case), the time period
represented by the biological samples was less clearly defined. This can cause discrepancies if there
are long-term trends in the concentrations; (e) as previously noted, PAS and sampled lichens/barks
were always fairly close, but never exactly coincident. However, we believe that this last factor was of
negligible impact. Indeed, PAS data [6] suggest that the spatial air concentration variability is rather
smooth and gradual rather than noisy and spotty, so we would not expect very large differences in
concentrations over a small scale. Considering these factors, differences in the overall trends, depicted
by all three indicators, should not be interpreted as inconsistencies. It is possible that they are all
reliable witnesses of different aspects of airborne Hg contamination. PAS give more accurate estimates
of short-term local gaseous Hg concentrations, whereas lichens and barks give a measure of long-term
Hg pollution near ground level, including deposition of airborne particulate.

Gaseous Hg is the predominant (> 99%) form of Hg from natural emissions [44]. However,
in mine locations like that of Abbadia, particulate Hg may be significant due the presence of mine
waste next to the town center, where particulate Hg can be rapidly dispersed by local winds to the
surroundings. The direct measurement of particulate Hg is an expensive task, requiring sophisticate
instruments such as Tekran. The employment of barks and/or lichens can offer preliminary, spatially
extended information on the presence of such species at a low cost. Once the presence of particulate
Hg is indicated, more detailed specific investigations may be set up for this purpose.

5. Conclusions

Comparison of Hg contents in epiphytic lichens and Pinus nigra barks with gaseous Hg
concentrations in air calculated from PAS data at the same locations in the Monte Amiata area
led to the following conclusions: barks accumulated higher Hg per unit mass with respect to lichens
of the same area. However, there was an overall good agreement between lichen and bark data,
suggesting similar mechanisms of Hg uptake and residence times a significant fraction of Hg in
bark and lichens was likely present in the particulate form due to soil resuspension. PAS-derived
gaseous concentrations showed a moderate match with lichen/bark concentrations. The main factors
contributing to differences included a partly different speciation of trapped Hg, the dynamic exchange
of Hg with the atmosphere, and the rapid response of PAS to local variations compared to longer
residence times in lichen and bark the overall consistency of Hg distribution trends depicted by the
three methods suggests that they can be usefully integrated in monitoring programs. We suggest
that barks or lichens may be successfully applied to provide preliminary indirect information on the
presence of particulate Hg in different case studies (mining and urban areas, for example) before the
employment of more sophisticated and expensive techniques which can lead to its quantification.
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