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Abstract. MicroRNAs (miRNAs/miRs) are a novel class 
of gene regulators that may be involved in tumor chemore-
sistance. Recently, specific miRNA expression profiles have 
been identified in adult glioblastoma (aGBM), but there are 
only limited data available on the role of miRNAs in pediatric 
GBM (pGBM). In the present study, the expression profile of 
miRNAs was examined in seven pGBMs and three human 
GBM cell lines (U87MG, A172 and T98G), compared with 
a non‑tumoral pool of pediatric cerebral cortex samples by 
microarray analysis. A set of differentially expressed miRNAs 
was identified, including miR-490, miR‑876‑3p, miR‑876‑5p, 
miR‑448 and miR‑137 (downregulated), as well as miR‑501‑3p 
(upregulated). Through bioinformatics analysis, a series of 
target genes was predicted. In addition, similar gene expres-
sion patterns in pGBMs and cell lines was confirmed. Of 
note, drug resistant T98G cells had upregulated nuclear casein 
kinase and cyclin-dependent kinase substrate 1 (NUCKS1) 
expression, a protein overexpressed in many tumors that serves 
an important role in cell proliferation and progression. On the 
basis of the present preliminary report, it could be intriguing 
to further investigate the relationship between each of the 
identified differentially expressed miRNAs and NUCKS1, in 
order to clarify their involvement in the multi-drug resistance 
mechanism of pGBMs.

Introduction

Glioblastoma (GBM) is a highly aggressive, invasive and poorly 
responsive brain tumor. At present, the median survival time 
for children that have received chemotherapy and radiotherapy 
is reported between 11‑24 months; the five‑year survival rate 
is below 20% (1). Adult (aGBM) and primary pediatric GBM 
(pGBM) show distinct molecular pathways of tumorigenesis 
and genetic profiling (1-6); pGBM appears to be more similar 
to secondary aGBM that has evolved from diffuse grade II 
or grade III gliomas. Indeed, similarly to secondary aGBM, 
pGBM exhibits transcriptional regulator ATRX, histone H3.3 
and cellular tumor antigen p53 mutations and only rarely shows 
epidermal growth factor receptor amplification/overexpres-
sion (7,8) or phosphatase and tensin homolog mutations (9).

Chemoresistance is the main obstacle to successful chemo-
therapy for brain tumors. Drug resistance is the main cause 
of tumor recurrence and patient relapse; this phenomenon 
is associated with several biological mechanisms, including 
apoptosis, DNA damage and repair, epigenetic regulation, 
alteration in ATP‑binding cassette transporter family and 
dysregulation of microRNAs (miRNAs/miRs). A limited 
number of studies have investigated the underlying mecha-
nisms of pGBM chemoresistance, although in recent decades, 
increasing amounts of data report the involvement of miRNAs 
in drug sensitivity and chemoresistance (10-17).

miRNAs represent a novel class of gene regulators that 
are involved in several physiological processes, including cell 
differentiation, proliferation, stress response and anti-viral 
defense, as well as pathological conditions such as cancer (18). 
They are a large family of evolutionary conserved, short 
(19-24 nucleotides), single-stranded, non-coding RNAs that 
also exhibit strong tissue and cellular specificity to develop-
mental stages. They are able to regulate gene expression at the 
post-transcriptional level, leading to mRNA degradation, with 
consequential downregulation of encoded protein by transla-
tional repression. miRNAs regulate 3% of the human genome 
and up to 30% of protein-coding genes (19,20). Many miRNAs 
could regulate multiple mRNAs and a single miRNA could 
regulate multiple mRNA targets (21).
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The etiological role of miRNAs in tumor development is 
supported by the observation that half of miRNA genes are 
localized in cancer-associated genes, fragile genome sites (22) 
or regions that are often amplified (23), acting as tumor suppres-
sors or as oncogenes, depending on which genes/pathways 
they control (24). Aberrant microRNA expression profiles 
have been identified in aGBM (25-32), but few studies have 
investigated the role of miRNAs in pGBM (33,34).

In order to better understand chemoresistance mechanism 
and regulation in high‑grade glioma (HGG), the present study 
generated a microRNA profile of pGBMs, through a TaqMan® 

Human MicroRNA Array v2.0 approach. A set of differentially 
expressed miRNAs in pGBMs and in GBM cell lines (A172, 
U87MG and resistant‑T98G) was identified, in comparison to 
non‑tumor pediatric cerebral cortex samples.

The present preliminary study may contribute the 
biological understanding of pGBM chemoresistance, which 
represents the most common causes of relapse (35), and may 
provide biomarkers for therapeutic strategies.

Materials and methods

Patients and samples. Patients with pGBM seen between 
April 2008 and May 2013 at the Meyer Children's University 
Hospital (Florence, Italy) were eligible for the present study. 
Histological diagnosis and tumor grading was performed based 
on the 2007 World Health Organization criteria (36). In total, 
five non‑tumor pediatric cerebral cortex samples (non‑tumoral 
pool) and seven pGBMs were obtained at the Neuro‑Surgery 
Unit of the Meyer Children's University Hospital. The present 
study was approved by the institutional Ethical Committee. 
Informed consent was obtained from the parents or legal 
guardians in all cases. Diagnosis was confirmed by the 
review of the CNS national panel of pathologists (Umberto I, 
Policlinico General Hospital Sapienza University, Rome, 
Italy). The median age at the time of diagnosis was 8±4.6 years 
(age range, 1‑15 years; 4 females and 3 males). All patients had 
been treated with chemotherapy and/or radiotherapy according 
to consolidated pediatric treatments (37-39) and underwent 
surgery for resection of disease. The median follow‑up was 
10±6.1 months (range, 3-24 months).

Cell lines. Three human GBM cell lines, A172 (CRL‑1620™; 
ATTC, Manassas, VA, USA), U87MG (HTB‑14™; ATTC) and 
resistant‑T98G (CRL‑1690™; ATCC) were obtained. U87MG 
and resistant‑T98G were cultured in Eagle's minimum essen-
tial medium (Thermo Fisher Scientific, Inc., Waltham, MA, 
USA), while A172 cells were grown in Dulbecco's modi-
fied Eagle's medium (Thermo Fisher Scientific, Inc.). Each 
medium was supplemented with 10% fetal bovine serum (cat. 
no. ECS0180L; EuroClone SpA, Via Figino, Milan, Italy) and 
1% penicillin‑streptomycin (Penicillin/Streptomicin 100X; 
cat. no. ECB3001D; EuroClone SpA). All cell lines were 
maintained in a humidified atmosphere of 5% CO2/95% air at 
37˚C. Cells from exponentially growing cultures were used for 
all experiments.

Expression study. miRNA and mRNA were extracted using 
the mirVana™ miRNA Isolation kit (cat. no. AM1560; Thermo 
Fisher Scientific, Inc.) from tumor (pGBM 1‑7) and non‑tumor 

pediatric cerebral cortex samples (pool of 5 samples), as 
well as pellets of the three cell lines (A172, U87MG and 
resistant‑T98G). Cells were trypsinized (Trypsin‑EDTA 1X, 
cat. no. ECB3052D, Euroclone SpA) from the culture surface 
(6‑well Primo multiwell plate; Euroclone SpA) and transferred 
to 15 ml conical tubes (TC Tube, 15 ml; SARSTEDT 
AG & Co. KG, Nümbrecht, Germany). The tubes containing 
cells and media were centrifuged at 800 x g for 5 min at 4˚C to 
pellet cells and decant culture media. Subsequently, cells were 
washed in PBS (cat. no. ECB4004L; EuroClone SpA) and 
further centrifuged at 800 x g for 5 min at 4˚C for pelleting. 
Finally, PBS was decanted and cell pellets were stored at 
‑80˚C.

MicroRNA expression profiles of three pGBMs and 
non‑tumoral pool of 5 samples were generated using TaqMan® 
Human MicroRNA A Cards v2.0 (cat. no. 4398977; Thermo 
Fisher Scientific, Inc.) according to manufacturers' protocol, 
using the 7900HT Fast Real‑Time PCR system (Thermo 
Fisher Scientific, Inc.).

Bioinformatic analysis. Raw data were analyzed with the 
R computational environment by using the HTqPCR package 
version 1.0 (40). The package HTqPCR is designed for the 
analysis of cycle threshold (Ct) values from quantitative 
PCR (qPCR) data. The heatmap was generated using the 
R version 3.5.1 (41) and the HTqPCR package. Raw data 
were first normalized by using the quantile normalization 
approach and then analyzed for differential expression with 
the two‑tailed t‑test. miRNAs with statistically significant 
differential expression were analyzed with the miRanda algo-
rithm, (www.microrna.org; version 3.3a) to search for miRNA 
gene targets (42).

Finally, gene targets were analyzed for enrichment in 
Gene Ontology (www.geneontology.org) (43,44) and Kyoto 
Encyclopedia of Genes and Genomes database (www.genome.
jp/kegg/kegg1.html) (45-47) with a Fisher's exact test.

Validation of miRNAs by quantitative polymerase chain 
reaction (qPCR). miRNA was extracted using the mirVana™ 
miRNA Isolation kit (cat. no. AM1560; Thermo Fisher 
Scientific, Inc.) from tumors (pGBM 1‑7) and non‑tumor 
pediatric cerebral cortex samples (pool of 5 samples), as 
well as pellets from three cell lines (A172, U87MG and 
resistant‑T98G). The expression of previously identified 
dysregulated miRNAs were determined using commercial 
assays (miR‑137, cat. no. 001129; miR‑216a, cat. no. 477976; 
miR-490, cat. no. 001037; miR‑501‑3p, cat. no. 002435; 
miR‑521, cat. no. Hs99999903_m1; miR‑525‑3p, cat. 
no. 478995_mir; miR‑873, cat. no. 478204_mir; miR‑876‑3p, 
cat. no. 002225; miR‑448, cat. no. 001029; all, Thermo Fisher 
Scientific, Inc.; included forward and reverse primers).

cDNA was synthesized using the TaqMan® MicroRNA 
Reverse Transcription kit (cat. no. 4366596; Thermo Fisher 
Scientific, Inc.) according to the manufacturers' protocol 
(30 min at 16˚C, 30 min at 42˚C and 5 min at 85˚C) with the 
GeneAmp® PCR System 9700‑Applied Biosystems (Thermo 
Fisher Scientific, Inc.).

qPCR was performed using the aforementioned commer-
cial, ready to use assays according to the protocol instructions 
(10 min at 95˚C, 40 cycles at 15 sec at 95˚C, 60 sec at 60˚C) 
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of the 7900HT Fast Real‑Time PCR system (Thermo Fisher 
Scientific, Inc.). All assays were performed in triplicate. 
For each miRNA, the expression was normalized to that of 
RNU48 (cat. no. 001006; Thermo Fisher Scientific, Inc.) and 
calculated using the 2‑∆∆Cq method (48). GBMs were subse-
quently normalized and compared with the non-tumoral pool.

Validation of target genes by SYBR-Green PCR. mRNAs 
were extracted using the mirVana™ miRNA Isolation kit 
(cat. no. AM1560; Thermo Fisher Scientific, Inc.) from 
tumor (pGBM 1‑7) and non‑tumor pediatric cerebral cortex 
(pool of 5 samples) samples, as well as pellets (obtained as 
aforementioned) of the three cell lines (A172, U87MG and 
resistant‑T98G). cDNA was synthesized using the High 
Capacity RNA‑to‑Cdna kit (cat. no. 4387406; Thermo Fisher 
Scientific, Inc.) according to the manufacturers' protocol 

(60 min at 37˚C and 5 min at 95˚C) with the GeneAmp® PCR 
System 9700‑Applied Biosystems (Thermo Fisher Scientific, 
Inc.). Primers were designed using Primer3web version 4.1.0; 
(http://primer3.ut.ee/). The primer sequences utilized are 
presented in Table I. Validation of the expression of hypo-
thetical target genes was performed using the LightCycler® 
480 SYBR‑Green I Master mix (Roche Diagnostics, Basel, 
Switzerland) on a LightCycler® 480 II (Roche Diagnostics) 
according to the manufacturers' protocol (10 min at 95˚C, 
40 cycles at 15 sec at 95˚C, 45 sec at 60˚C, 60 sec at 72˚C; 
melting curve at 10 min at 95˚C, 60 sec at 65˚C) and quantifi-
cation was obtained using 2-ΔΔCq method (48).

Statistical analysis. Statistical analysis of nuclear casein kinase 
and cyclin dependent kinase substrate 1 (NUCKS1) expression 
was performed using one-way analysis of variance followed 

Table I. Primer sequences for validation of target genes by SYBR‑Green.

Primer Forward sequence (5'‑3') Reverse sequence (5'‑3')

GRIA1‑EXON13 AGTCAGCAGAGGCATCAGTT TGGGTGTTGCAATGCCATAG
GRIA1‑EXON10 CGTTACGAGGGCTACTGTGT TCCATAGACCAGCTCTCCC
SORL1‑EXON46 TCACAGCTTACCTTGGGAATACT GACCCCAGCTCATCGTACAG
SORL1‑EXON35 TGGTTGGAGAGAGCATATGGA GGTCCTCAGGGTCACAAAGT
NUCKS1‑EXON5 AAAATGTGCGCCAACAACG AATGGTGCCTCATCCTCCTC
NUCKS1‑EXON7 GTCCAGTGAAAGGCAAAGG TCAGACCCTTCATCCCCAG
SOX11‑EXON1 AATTTCTCTCAAAGCGCGCA GTGCAGTAGTCGGGGAACT
SOX11‑EXON1.2 ACATCAAGCGGCCGATGAA GGATGAACGGGATCTTCTC
SAP30L‑EXON1 GCTTCAGCACGGAGGAGGA CTTCTGGACCCTCTTGCTGA
SAP30L‑EXON4 CGACACTTCAGGAACATACCTG CCCTCCGATTTCTGGTCCAG
HTT‑EXON63 TGTGGGGTGATGCTGTCTG GTTCACTCTGTCCACACTCA
HTT‑EXON48 GTTCAACCTAAGCCTGCTAGC GGGCTGGAAGACATGATGGA
PXMP4‑EXON3 TGCAGGCCACATATATCCACT CGTGTGCTGGGTAGGTCTT
PXMP4‑EXON4 CTGGCTGTAGAGAAGGGCTA TGTCGTGCCATACATTGCTG
THRB‑EXON8 GAGAAAAGACGGCGGGAAGA CATGGGCTTCGGTGACAGTT
THRB‑EXON10 GCGCTATGACCCAGAAAGTG GGAGGGCTACTTCAGTGTCA
PSD3‑EXON5 TCTGAAATGGGGAGCACTGA TTCTTGCCAAGGTGTTTTGC
PSD3‑EXON11 ACTGAGGAGAAAGCTAACGGA TCTTTCCATCCATATCTGCATGA
SPN‑EXON2 CCCTACCTCCCTCAACTTCC CTGGTTGCATGAGGGGTTTC
SPN‑EXON2.1F GTGACAGTGACCGTGGGAG GACCCAGACTTCAGCTCCTC
AGPAT4‑EXON2 ACCTGGTCTTCTGCTACGTC AGGACAGTCTGCAGTTGATCT
AGPAT4‑EXON4 AAGGTCCTGGCCAAGAAAGA AAAATACTTCTCGGGGTAGTCC
USP31‑EXON1 CTTCATGAACGCCACGCTG AGCTGCTCAGTGACCTCG
USP31‑EXON13 AGACAGGCGCATGAAACTTC ATGTAGTCCTCAGGGTCCCT
GRIK3‑EXON3 CAATGCCGTCCAGTCCATCT CTGACCGCCACTTGAGGTA
GRIK3‑EXON14 TTCGAGAAGATGTGGGCCTT ATCTGGGTGAGGTTGCAGTT
TNRC6B‑EXON11 CCAAATCAAGATGGGTGCCTT CTAGCAGCGAAGTTTTGGGG
TNRC6B‑EXON20 TGGTCCCCAGATCCCATAGG GATCGGGGTGCTGTGCTG
SNX29‑EXON5 CCGTGTTCTGGTACTACGTG GGAGTGTTCGTTGAGGGCA
SNX29‑EXON8 CCAATGGAAGTGAGAGCAGC CCCTGTGCTTCCTTCCTGAT
HIPK2‑EXON2 CGTGCTTGGTCTTCGAGATG GCGTGGATAAGACCTAGGCT
HIPK2‑EXON13 CCCTACTCCGACTCCTCCA ACCAATACTTCGCTGGCCT
RIMKLA‑EXON1 CAGCTCTGGTTCCTGACGG GCGATCTGGTCCATAAGCAC
RIMKLA‑EXON5 TGACAGAACAAGGCAAGCAG GCAATGATCCCACCCACATC



GIUNTI et al:  miRNA ANALYSIS IN PEDIATRIC GLIOBLASTOMA334

by a Newman‑Keuls post hoc test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Bioinformatics analysis. Bioinformatics analysis of TaqMan® 

Human MicroRNA array version 2.0 revealed a set of 
miRNAs (miR‑137, miR‑216a, miR-490, miR‑501‑3p, miR‑521, 
miR‑525‑3p, miR‑672, miR‑873, miR‑876‑3p and miR‑448) 
that exhibited a statistically significant differential expres-
sion in three pGBMs (GBM 1‑3) when compared with the 
non-tumoral pool (Fig. 1; significance cut‑off level, two-tailed 
t‑test with P<0.01).

Validation of miRNAs and target genes. In all tumors (pGBMs 
1‑7) and GBM cell lines (U87MG, A172 and resistant‑T98G), 
the downregulation of miR‑137, miR-490, miR‑876‑3p, 
miR‑876‑5p and miR‑448 was confirmed, and the upregula-
tion of miR‑501‑3p was demonstrated.

Concerning the expression of the other dysregulated 
miRNAs (miR‑216a, ‑521, ‑525‑3p, ‑672 and ‑873), the 
interpretation of these results were unsuccessful due to poor 
reaction efficiency of the commercial assays.

The validation of dysregulated miRNA expression was 
obtained via commercial assays. Moreover, the expression 
of all following predicted target genes was validated: Gluta-
mate ionotropic receptor AMPA type subunit 1 (GRIA1), 
sortilin related receptor 1 (SORL1), NUCKS1, SRY‑box 11 
(SOX11), SAP30 like (SAP30L), huntingtin (HTT), peroxi-
somal membrane protein 4 (PXMP4), thyroid hormone 
receptor beta (THRB), pleckstrin and Sec7 domain containing 
3 (PSD3), sialophorin (SPN), 1-acylglycerol-3-phosphate 
O-acyltransferase 4 (AGPAT4), ubiquitin specific peptidase 31 
(USP31), glutamate ionotropic receptor kainate type subunit 
3 (GRIK3), trinucleotide repeat containing 6B (TNRC6B), 
sorting nexin 29 (SNX29), homeodomain interacting protein 
kinase 2 (HIPK2) and ribosomal modification protein rimK 
like family member A (RIMKLA).

Finally, NUCKS1 was expressed in the tumor tissues and 
cell lines of the current study. Furthermore, using one‑way 
analysis of variance followed by a Newman‑Keuls post hoc 
test, NUCKS1 expression was compared in T98G vs. GBM1, 
GBM2, GBM3, U87MG and A172 cell lines. Statistically 
significant differences were observed P<0.05; Fig. 2) in T98G 
vs. GBM1, vs. GBM3, vs. U87MG and vs. A172 (all P<0.05; 
Fig. 2). In particular, NUCKS1 was overexpressed in T98G 
cells.

Discussion

In the present study, a microRNA expression profile of pGBM 
was generated using TaqMan® Human MicroRNA Array v2.0. 
in GBM tumors (7 pGBMs) and cell lines (U87MG, A172, 
resistant‑T98G). The results demonstrated that miR‑137, 
miR‑490, miR‑876‑3p, miR‑876‑5p and miR‑448 were down-
regulated, and miR‑501‑3p was upregulated. Concerning the 
expression of the other dysregulated miRNAs (miR‑216a, ‑521, 
‑525‑3p, ‑672 and ‑873), the interpretation of these results 
was unsuccessful due to the poor reaction efficiency of the 
commercial assays used.

Furthermore, it was determined that the aforementioned 
miRNAs were involved in the regulation of the following 
target genes: GRIA1, SORL1, NUCKS1, SOX11, SAP30L, 
HTT, PXMP4, THRB, PSD3, SPN, AGPAT4, USP31, GRIK3, 
POM121L8P, TNRC6B, SNX29, HIPK2 and RIMKLA. All 

Figure 2. Expression of NUCKS1 in GBMs (GBM1‑3) and GBM cell lines 
(A172, U87MG and resistant‑T98G cells). *P<0.05 in the T98G vs. the GBM1, 
GBM2, GBM3, U87MG and A172 cell lines. GBM, glioblastoma multiforme; 
NUCKS1, nuclear casein kinase and cyclin dependent kinase substrate 1; 
POOL, non‑tumoral pool group.

Figure 1. Heatmap of microRNA expression across tumors (GBM1, GBM2 
and GBM3) and the non‑tumoral control. The color key describes the color 
associated with each level of expression (0‑40 indicates the normalized 
Cq values). The heatmap was generated using R software v3.5.1 and the 
‘HTqPCR’ package. GBM, glioblastoma multiforme; POOL, non‑tumoral 
pool group.
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hypothetical target genes were identified in tumors and cell 
lines and the overexpression of NUCKS1 was detected in drug 
resistant T98G cells.

NUCKS1 is a highly phosphorylated nuclear DNA-binding 
protein that is involved in cell cycle progression and 
proliferation (49). It serves as a substrate for casein kinase 2 
and cyclin‑dependent kinase (CDK) ‑1, ‑2, ‑4 and ‑6 (49-53). 
NUCKS1 also serves a role in the response to DNA damage, 
homologous recombination and DNA repair mechanisms that 
are critical for tumor suppression (54). The increased expression 
of NUCKS1 has been reported in several different types of 
cancer, including breast, colorectal, cervical and hepatocellular 
carcinoma (50,55-57). However, its exact role in cancer 
development remains unclear. The NUCKS1 gene is located 
on chromosome 1q32.1 (chr 1, 205,712,819‑205,750,276), 
which undergoes recurrent duplication/amplification in 
several different types of tumor (58,59), including that of 
the brain (60-63). It is well established that genes amplified 
in specific copy number variants are associated with tumor 
progression and poor prognoses (58-63).

Recently, Shen et al (64) demonstrated that NUCKS1 was 
a target of miR‑137 in human lung cancer tissue and resistant 
lung cell lines. They also revealed that the tumor suppressive 
role of miR‑137 is mediated via the negative regulation of 
NUCKS1 protein expression. miR‑137 is a tumor suppressor 
and a number of its target genes, including cell division 
control protein 42, CDK6, cyclooxygenase‑2, paxillin, AKT2 
and induced myeloid leukemia cell differentiation protein are 
involved in cancer pathogenesis (64). The loss of miR‑137 
expression has been determined in several different types of 
tumor (65-69), including GBMs (28,30,32,69-72). In addition, 
the restoration of miR‑137 expression has been demonstrated 
to be associated with the inhibition of tumorigenesis (64). In 
glioma cell lines that overexpress miR‑137, cell cycle arrest 
in the G1 phase is promoted via CDK6 suppression and 
retinoblastoma-associated protein-1 phosphorylation (26).

miR‑137 expression increases during the glioma stem‑like 
cell differentiation in neurosphere cultures (70). The low 
expression of miR‑137 observed in GBM may reflect the 
loss of tumor cell differentiation, which may contribute to an 
increased cell proliferation, whilst maintaining an undifferen-
tiated state (70).

At present, few data assess the differential expression of 
the remaining miRNAs that were determined in the present 
study. miR-490 is involved in the development and invasion of 
different types of tumor (73-76) and in the drug resistance of 
ovarian cancer (77). miR-448 functions as a tumor suppressor 
gene in osteosarcoma, where it is downregulated in tissues 
and in vitro models (78). miR-448 is also downregulated in 
hepatocarcinoma and is associated with tumorigenesis (79). 
This association has also been reported in ovarian cancer 
tissues and cell lines (80), breast cancer (81) and in T‑cell 
acute lymphoblastic leukemia (82). Conversely, miR-488 is 
overexpressed in lung cancer (83).

miR‑501‑3p has been determined to be a potential biomarker 
associated with the progression of Alzheimer's disease (84). 
In cancer however, it may serve as a potential biomarker 
for pancreatic ductal adenocarcinoma (85) and lymph node 
metastasis in gastric cancer (86). Additionally, miR‑876‑3p/5p 
has been associated with papillary thyroid carcinoma (87), 

Hodgkin's lymphoma (88) and lung cancer (89). The miR‑876 
gene is located on the 9p chromosome, which is deleted in various 
types of cancer (90,91). Furthermore, pGBMs in particular 
exhibit a recurrent homozygous or heterozygous 9p21.3 deletion, 
including the MIR876 gene (60). Thus, the association between 
each of the dysregulated miRNAs, NUCKS1 overexpression 
and chemoresistance mechanisms in pGBMs requires further 
investigation. Furthermore, it may be important to evaluate the 
role of NUCKS1 protein expression in pGMB tumor progression 
in a larger and independent group of pediatric high grade glioma 
samples. NUCKS1 overexpression in the resistant‑T98G cell line, 
in comparison with other non‑resistant cell lines, U87MG and 
A172, indicate its potential involvement in drug sensitivity and 
pGBM response. The T98G cell line represents a useful in vitro 
model, which may be utilized to determine the mechanism of 
acquired chemoresistance in patients with pGBM. In a previous 
study, it was demonstrated that T98G cells exhibit a different 
biological response to antineoplastic treatments (doxorubicin) 
compared with other GBM cell lines (92).

Chemoresistance represents an important challenge in 
pGBM treatment and overcoming this phenomenon may 
improve patient prognosis and increase survival rate. miRNAs 
are promising clinical biomarkers, which may produce a 
greater understanding of the biological processes associated 
with the development and progression of pGBMs.
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