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Abstract: Knowledge about population attributes, current geographic distribution, and changes over
predicted climate change for many threatened endemic vascular plants is particularly limited in
arid mountain environments. Primula boveana is one of the rarest and threatened plants worldwide,
surviving exclusively in Saint Catherine Protectorate in the Sinaic biogeographic subsector of Egypt.
This study aimed to define the current state of P. boveana populations, predict its current potential
distribution, and use the best-model outputs to guide in field sampling and to forecast its future
distribution under two climate change scenarios. The MaxEnt algorithm was used by relating 10
occurrence-points with different environmental predictors (27 bioclimatic, 3 topographic, and 8
edaphic factors). At the current knowledge level, the population size of P. boveana consists of 796
individuals, including 137 matures, distributed in only 250 m2. The Canonical Correlation Analysis
(CCorA) displayed that population attributes (density, cover, size index, and plant vigor) were
positively correlated with elevation, precipitation, and pH. Based on the best-fitting model, most
predicted suitable central sites (69 km2) of P. boveana were located in the cool shaded high-elevated
middle northern part of St. Catherine. Elevation, precipitation, temperature, and soil pH were the
key contributors to P. boveana distribution in Egypt. After field trips in suitable predicted sites, we
confirmed five extinct localities where P. boveana has been previously recorded and no new population
was found. The projected map showed an upward range shift through the contraction of sites between
1800 and 2000 m and expansion towards high elevation (above 2000 m) at the southern parts of the St.
Catherine area. To conserve P. boveana, it is recommended to initiate in situ conservation through
reinforcement and reintroduction actions.

Keywords: global warming; in situ conservation; population size; Sinaic biogeographic sector;
threatened species

1. Introduction

Three main challenges face the survival and persistence of rare and threatened endemic vascular
plants: Where are they currently distributed? What are the main environmental drivers for their
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distribution? How can they interact with the predicted future climate changes? Since their level
of threat is typically high, endemics are considered as indicators for assessment and conservation
of biogeographical regions and biodiversity hotspots [1,2]. Knowledge about the population size,
current distribution, and changes over time for many of these species is particularly limited in
arid environments. Likewise, field surveys for unknown populations are time-consuming, resource
intensive, and most of them are difficult to reach [3,4]. Accordingly, it is crucial to use models that
allow more efficient field studies [4]. Model-based sampling is utilized to guide surveys in similar
environments where there is a high probability of species presence [3,5].

In mountain areas, global warming is forecasted to affect vascular plants’ diversity [6,7]. In
particular, climate changes may result in shifts in the distribution range of rare and threatened endemic
species, which might become endangered or even extinct [8]. In order to achieve an effective long-term
conservation plan, it is critical to predict the distribution of future climatically suitable areas for rare
and threatened species [9].

Species distribution models (SDMs) have increased rapidly in the last two decades and become
one of the most commonly used tools in ecology and conservation [10,11]. SDMs operate by correlating
a set of known species occurrences with environmental variables to predict where a species is currently
found and/or will be found throughout an area of interest [12]. SDMs applications include the study of
ecological niche patterns, recognition of suitable localities for conservation and translocation concerns,
prediction of future distribution as a result of climate and land-use changes, and to assess fundamental
ecological and evolutionary issues [4,13,14]. For unknown populations, the predictive maps of SDMs
can help to guide field surveys, search for new populations of poorly known species and better
identify spatial distribution areas for monitoring or reintroductions [4,15–20]. Conceptualization
(e.g., model objective, taxon, location, predictors, scale), data (presence data), model fitting (variables
selection, model setting and selection, threshold selection), assessment (performance statistics), and
predictions (outputs) are the main steps for building SDMs [21]. SDMs outputs are frequently
expressed as the probability of presence or as habitat suitability indexes, ranging from 0 (unsuitable) to
1 (optimal/suitable) [11].

Modelling species with presence-only data has been mostly applied for species with a narrow
distribution range and a small number of occurrence records [22]. Maximum entropy (MaxEnt) was
preferred among SDMs, due to many reasons. First, the input data are only presence records and its
prediction is robust and accurate even with small sample sizes, so that the distribution of endangered
species can be predicted well [23]. Furthermore, it provides an explicit spatial map for potential
habitats, and allows replicated runs regardless of threshold rules and the contribution percentage of
each environmental variable can be computed using the jackknife test [11,23].

In order to obtain meaningful SDMs results, it is necessary to select abiotic variables that relate to
the species ecological niche. Different species may have special restrictions related to their reliance
on environmental factors and no single variable is assumed to only be important for all species [24].
Climate, topography, edaphic factors, and biotic interactions have been accepted as the main drivers
for species distributions at different geographical scales [16,25–32]. As the climate is one of the
main driving for species distribution, the bioclimatic variables of the WorldClim database are often
used because of its high resolution (~1 km) and quality [33]. In mountains, topography variables
(elevation, slope, and aspect) are mostly linked with temperature, wind, UV radiation, and solar
radiation quantity; therefore, they play a vital role in the survival and persistence of plant species [7,34].
Soil-related variables are also considered as important agents for the growth and distribution of plant
species [24,35].

Primula boveana Decne. ex Duby (P. boveana hereafter) deserves special attention because it was
globally assessed as critically endangered (CR) according to the International Union for Conservation of
Nature (IUCN) guidelines [36]. The first step towards the implementation of a conservation strategy for
endemic plants is to recognize the geographical distribution, current population status, and threats [37].
To our knowledge, no previous studies have addressed the current and future geographic distribution
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of P. boveana; accordingly, predicting its habitat suitability and unknown populations are critical to
conserve or reintroduce this plant species.

In this study, we addressed the following three questions: What is the current state of the
population size and range of P. boveana? Could SDMs, in particular MaxEnt, guide field sampling
to discover unknown populations of P. boveana? Finally, will the suitable range of P. boveana reduce
according to the climate change scenarios? Hence, our objectives were to: (1) Know the current status
of P. boveana in terms of the size and distribution range; (2) explore the respective power of climate,
topography, and edaphic features to predict the current distribution of P. boveana; (3) use the best-fit
model results to guide field surveys for searching unknown populations; and (4) forecast the potential
future distribution (over two time-periods 2050 and 2070) of P. boveana under two minimum (RCP2.6)
and maximum (RCP8.5) emission scenarios.

2. Results

2.1. Population Status, Original Habitat Features, and Influencing Variables

The overall known surface area occupied by P. boveana is only 250 m2. P. boveana is distributed in
six localities within St. Catherine: Wadi Shaq Mousa (WSM), Wadi Garagenia (WG), Ain Shennarah
(AS), Kahf El-Ghoula (KG), Gebal Alahmar (GA), and Sad Abu Hebeik (SH) (Table 1). Six fragmented
populations and 10 subpopulations (three each in WSM and WG, and one in each other locality)
were recorded. These current locations represent the global population of P. boveana. The population
size of P. boveana consists of 796 individuals, including 137 mature individuals, distributed in the
above-mentioned localities. The highest numbers of total and mature individuals were recorded in
WSM (547 and 78 individuals, respectively) and WG (176 and 37 individuals, respectively). Similarly,
the highest values of plant density, cover, and size index were attained in WSM and WG (Table 1).

P. boveana is restricted to a narrow high-elevation range between 1687 and 2208 m above sea level.
This species is confined to rock crevices within gorges, slopes, and caves that face NE-E (25.2–70.2◦)
with a slope above 60◦ (Table 1). The highest values of plant density and cover were recorded
in both gorge and slope microhabitats. The associated species in P. boveana populations include,
among others, Scrophularia libanotica Boiss., Adiantum capillus-veneris L., Hypericum sinaicum Hochst.
ex Boiss., Origanum syriacum L., Mentha longifolia (L.) L., and Nepeta septemcrenata Ehrenb. ex Benth.
Our field observations displayed that P. boveana is severely threatened by a shortage of rainfall and
human activities (human-derived aridification, overcollection for scientific studies, and overgrazing).
Occasionally, it is threatened by tourist activities, uprooting by sudden rare floods, and ants attack
(local Bedouin observations).

A Pearson correlation matrix (Table S1) displayed that only the size index is positively correlated
with density. On the other hand, along with the Canonical Correlation Analysis (CCorA) (Figure 1),
density and cover are positively correlated with elevation, the cover is positively correlated with the
precipitation of the driest month (Bio14), while pH and organic carbon are positively related to the
size index. Plant vigor is separated in the lower left quarter and positively related to precipitation
seasonality (Bio15). Furthermore, bulk density (BD) is negatively correlated with density, cover, and
the size index, while the aridity index is negatively correlated with cover.
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Table 1. The known current locations, population field parameters (mean ± SD), topography, and
microhabitat of Primula boveana in Egypt.

Parameter
Location

Wadi Shaq Mousa (WSM) Wadi Garagniah (WG)
Maen

Shennarah
(MS)

Kahf
El-Ghoula

(KG)

Gebal
Alahmar

(GA)

Sad Abu
Hebeik

(SH)

Population parameters

Total individuals 408.3 ± 12.6 77.7 ± 1.5 61.3 ± 3.1 74.7 ±
0.6

91.6 ±
1.5

10.0 ±
1.0 54.0 ± 1.0 4.0 ± 0.0 7.0 ± 0.0 5.0 ± 0.0

Mature individuals 55.0 ± 2.0 15.0 ± 2.0 8.0 ± 1.0 11.3 ±
1.5

22.7 ±
1.5

2.7 ±
0.6 14.0 ± 1.0 0.7 ± 0.6 5.0 ± 1.0 0.7 ± 0.6

Density
(individuals/25 m2) 16.8 ± 1.3 3.1 ± 0.3 2.5 ± 0.1 3.0 ±

0.5
3.7 ±
0.8

0.4 ±
0.0 2.2 ± 0.2 0.2 ± 0.0 0.3 ± 0.0 0.2 ± 0.0

Cover (%) 45.0 ± 1.5 25.0 ± 0.5 26.7 ± 2.5 25.0 ±
3.0

35.0 ±
5.0

5.0 ±
0.9 25.0 ± 1.0 2.0 ± 0.0 5.0 ± 0.0 1.0 ± 0.0

Size index (cm) 22.7 ± 2.1 12.0 ± 2.6 16.0 ± 3.0 12.3 ±
1.5

10.0 ±
2.6

14.3 ±
2.0 16.3 ± 1.5 12.0 ± 2.0 10.0 ± 2.0 12.0 ± 2.6

Plant vigor 1.1 ± 0.2 1.2 ± 0.6 1.4 ± 0.0 1.6 ±
0.2

2.7 ±
0.5

1.1 ±
0.0 1.3 ± 0.0 1.0 ± 0.0 1.6 ± 0.2 1.0 ± 0.1

Topography

Elevation
(m) 2065 2050 1950 2165 2208 1890 2032 1803 1915 1687

Slope
(degree) 90 90 85 70 90 60 90 90 80 90

Aspect
(degree,

direction)
40.3 (NE) 25.2 (NE) 30.3 (NE) 33.2

(NE)
25.5
(NE)

30.3
(NE) 45.5 (NE) 69.7 (E) 70.2 (E) 27.9 (NE)

Microhabitat gorge gorge gorge gorge slope gorge gorge cave slope gorge

Figure 1. Canonical Correlation Analysis (CCorA) ordination plot between field population parameters
(density, cover, size index, and plant vigor) and environmental variables. Variance percentages are
indicated after the axes. Environmental variables include minimum temperature of coldest month
(Bio6), temperature annual range (Bio7), precipitation of driest month (Bio14), precipitation seasonality
(Bio15), organic carbon (OC), and bulk density (BD).
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2.2. Models Evaluation and Contributions of Variables

The use of various predictors (climatic, topographic, and edaphic), solely or together, significantly
influenced the model’s performance (p < 0.05) as measured by the area under the curve (AUC)
and true skill statistics (TSS) values. All models except the edaphic-only model indicated high
degrees of predictive performances with high values of AUC (>0.90) and TSS (>0.80) (Table 2). The
climate-topography-edaphic model showed the best performance as compared with other models
(AUC training = 0.993 ± 0.00 and TSS = 0.895 ± 0.02). As expected, the response of each individual
predictor was influenced by the different combinations of variables inputted in MaxEnt. For instance, in
the climate-only model, the precipitation of the driest month (Bio14), precipitation seasonality (Bio15),
and minimum temperature of the coldest month (Bio6) were the highest contributing predictors, while
elevation and slope were the most important predictors in the topography-only model (collectively,
contributed by 96.4%). For the edaphic-only model, pH, organic carbon, and clay content were the best
predictors. The best predictive climate-topography-edaphic model showed elevation, Bio14, Bio15,
Bio6, pH, organic carbon, clay, and slope as the eight most important environmental predictors (Table 2).
In total, climate variables (contribution of 50.9%) and topographic variables (34.5%) contributed more
to the climate-topography-edaphic model than soil variables (14.7%). Of the individual climate,
topography, and soil variables, Bio14, elevation, and pH were the most influential for P. boveana,
respectively. On the other side, the aridity index, aspect, and soil bulk density appeared to be the
lowest contributors to the P. boveana distribution.

Table 2. Area under the curve (AUC) and true skill statistics (TSS) of models’ performance (±SD),
average percent contribution of the different predictors, and predicted habitat suitability class (in km2)
for P. boveana under different MaxEnt models.

Climate-Only
Model

Topography
-Only Model

Edaphic-Only
Model

Climate-
Topography

Model

Climate-
Edaphic Model

Topography-
Edaphic Model

Climate-
Topography-

Edaphic Model

Model performance
AUC training 0.991 bcd

± 0.00 0.990 abc
±0.00 0.845 a

± 0.01 0.992 cd
± 0.00 0.990 cd

± 0.00 0.989 ab
± 0.00 0.993 d

± 0.00
AUC test 0.989 b

± 0.01 0.990 b
± 0.01 0.833 a

± 0.07 0.991 b
± 0.01 0.985 ab

± 0.01 0.987 ab
± 0.01 0.990 b

± 0.01
TSS 0.889 cd

± 0.07 0.884 abc
± 0.02 0.725 a

± 0.30 0.893 b
± 0.05 0.887 ab

± 0.09 0.882 bc
± 0.20 0.895 d

± 0.02

Average percent contribution
Bio6 (◦C) 25.2 15.1 12.8 15.2
Bio7 (◦C) 3.8 0.6 1.4 1

Bio14 (mm) 40.4 24.5 31.7 18.1
Bio15 28.6 17.5 25.1 16.4

Aridity index 2 0 1.8 0.2
Elev. (m) 80.3 38.3 68.4 30.4

Slope (degree) 16.1 4 3 4
Aspect (degree) 3.6 0 0.1

BD (g/cm3) 2.4 0.2 0 0.6
Clay (%) 22 1.3 6.2 3.5

OC (g/kg) 36.2 10.1 7.3 4.6
pH 39.4 15.5 13 6

Predicted habitat suitability class

<0.20 4816 4158 1804 4210 4000 2697 4303
0.20–0.40 201 698 1980 679 722 813 632
0.40–0.60 106 262 1090 225 296 332 192

>0.60 73 78 322 82 178 159 69

Different letters in the same raw mean significant difference at p < 0.05. Predicted habitat suitability classes include
unsuitable (<0.20), low suitability (0.20–0.40), moderate suitability (0.40–0.60), and high suitability (>0.60).

The response curves of the highest eight contributors for the P. boveana distribution are shown
in Figure 2. Each response curve shows the relationship between each environmental variable and
the logistic probability of presence. According to the response curves of topography variables, the
most suitable elevations were above 2000 m and no reduction in suitability was found at the highest
elevations, whereas suitable slopes were above 35 degrees with an optimum at about 75 degrees. As
regards the climatic variables, the optimum minimum temperature of the coldest month (Bio6) was −5
◦C, the precipitation of the driest month (Bio14) was above 0.75 mm, and the precipitation seasonality
(Bio15) was above 65, and no reduction in suitability by increasing both values of Bio14 and Bio15.
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Regarding the edaphic predictors, the suitable habitats were attained at a clay content above 11%, soil
organic carbon equal to 6 g/kg, and pH value of 7.4. By increasing the values of Bio6 and pH, the
habitat suitability of P. boveana decreases (Figure 2).

2.3. Predictive Potential Current Habitat Suitability of P. boveana

The potential distribution maps of P. boveana are displayed in Figure 3A–G. Before refining the
models’ outputs, we rejected three edaphic-based models (edaphic-only model, climate-edaphic model,
and topography-edaphic model) due to a high false-positive rate (Figure 3A–G, Table 2). We therefore
kept the following four models with acceptable performances: climate-only model, topography-only
model, climate-topography model, and climate-topography-edaphic model.

According to the climate-only model, out of the 5196 km2 of the St. Catherine area, 4816 km2

(<0.20) was unsuitable for P. boveana, 201 km2 with a low habitat suitability (0.20–0.40), 106 km2 with
moderate suitability (0.40–0.60), and only 73 km2 with the highest suitability (>0.60). Similar to the
climate-only model, the other three acceptable models (topography-only model, climate-topography
model, and climate-topography-edaphic model) predicted the majority of central suitable habitats of P.
boveana in the high-elevated middle northern sector of St. Catherine. By considering the best-fitting
model (climate-topography-edaphic model), the total predicted area of the current highly suitable
habitats for P. boveana is 69 km2, representing 1.33% of the total St. Catherine protected area. For other
predictions from different models, see Table 2 and Figure 3A–G.

2.4. Potential Areas for New Population Survey or Reintroduction

The cumulative potential areas to survey for unknown populations of P. boveana at two thresholds,
the maximum training sensitivity plus the specificity and lowest presence threshold (LPT), are shown
in Figure 3H. With more than 60% of the probability of presence, the survey areas were lowered to
63 grid cells (63 km2). With the exception of current localities, the model predicted as suitable Gebal
Catherine, Gebal Mousa, Gebal Safsafa, Gebel Umm Shaumer, Wadi Eltalaa, Abu Tweita, Shaq Itlah,
and Elgalt Elazrak. After several field surveys (April to July 2019) in the predicted sites, specifically
inside the microhabitats of P. boveana (gorges, slopes, and caves) near water springs, we unfortunately
did not find any new population. Nonetheless, the models’ outputs confirmed the five extinct localities,
which were previously mentioned in the literature (Gebal Catherine, Gebal Mousa, Gebal Safsafa,
Gebel Umm Shaumer, and Elgalt Elazrak). In addition to the current localities, the predicted sites
could be suitable for translocation activities. Wadi Shaq Mousa was regarded as the best site for the
translocation of P. boveana according to its high current suitability, which is predicted to persist in
the future.
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Figure 2. Response curves for the highest contributed predictors in Primula boveana current distribution
models. The red curves show the mean response of the 10 replicated runs and the blue shades represent
+/− one standard deviation. Y-axis values are the predicted probability of habitat suitability, as provided
by the logistic output format.
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Figure 3. Predictive map for the current habitat suitability (A–G) of P. boveana using seven sets of
predictor variables (climate only: C. model, topography only: T. model, edaphic only: E. model,
climate-topography: CT. model, climate-edaphic: CE. model, topography-edaphic: TE. model,
climate-topography-edaphic: CTE. model) in the St. Catherine area; habitat suitability classes include
unsuitable (0–0.20), low suitability (0.20–0.40), moderate suitability (0.40–0.60), and high suitability
(0.60–1.0); and (H) potential area probabilities for the survey of unknown, new, or historic populations
of P. boveana. Cumulative percentage according to the lowest presence threshold (LPT) and restrictive
threshold of 60% of the probability of presence. 0–60% unsuitable and >60% suitable.

2.5. Impact of Climate Change Scenarios on the Future Distribution of P. boveana

The binary future potential distribution area (0: unsuitable/1: suitable) of P. boveana for 2050
and 2070 by two representative concentration pathways (minimum RCP2.6 and maximum RCP8.5)
are compared with the current climatically suitable areas (climate-only model) in Figure 4. All the
predicted suitable sites in the future were included in the range of the study area. In detail, sites of
>2500 m elevation that were not included in the training data but present in the study area were not
excluded from the predicted future distributions and considered with a suitability value of 0.90. The
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multivariate environmental similarity surfaces (MESS) function in MaxEnt outputs displayed that the
areas occupied by P. boveana may lack novel climatic conditions in the future.

Figure 4. Future potential distribution area of P. boveana predicted for 2050 and 2070 under two
representative concentration pathways (RCP2.6 and RCP8.5), compared with the current climatically
suitable areas (binary predictive map of the climate-only model). The values in the figures represent
the area (in km2) of the suitable and unsuitable climatic areas, and the loss range (in both km2 and
percentage).

However, the predicted climatically suitable areas (73 km2) for P. boveana by 2050 will decrease by
9.6% (loss = 7 km2) and 12.33% (loss = 9 km2) under the two representative concentration pathways
(RCP 2.6 and 8.5, respectively). A similar trend is observed for 2070 by loss percentages of 16.43% (12
km2) and 24.66% (18 km2), respectively. The projected climatic map showed a gradual upward range
shift with a contraction in the northern parts at sites between 1800 and 2000 m and a range expansion
towards high-elevation sites (above 2000 m) in the southern parts of the St. Catherine area.
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3. Discussion

3.1. Limitations of the Study and the Best Set of Predictor Variables

Both the current and future distribution models for P. boveana showed a very high accuracy
and predictive capacity, supported by both values of AUC and TSS [19]. However, it is necessary to
conduct a full assessment of the models’ fitness and understand the limitations of these models to
avoid misapplication of their outputs and avoid errors when prioritizing habitats and conservation
design [38]. Two of the main limitations of SDMs are the choice of algorithms/methods and predictor
variables. In our study, we applied the MaxEnt algorithm, which outperformed other methods with
a high accuracy, particularly in the case of rare species [38–40]. Moreover, other modelling methods
require a large number of occurrence points and some require true absence data, which are often
unavailable and assumed to be problematic for low-dispersal rare species [41,42].

In this study, we took advantage of using regional edaphic data as predictors, together with
climatic and topographic variables. Although many studies recommended the inclusion of soil factors
when modelling plant distributions at local scales [24,35,43–47], it is preferable to use combinations
of variables in order to obtain better predictions [48]. Otherwise, the edaphic factors alone are not
enough to model habitat suitability for P. boveana, but they can help to fine-tune the model that captures
the strong influences of climate and topography. In this study, the use of the edaphic-only model
produced an unrealistic predictive map, where the suitable habitats are incompatible with the defined
habitats and distribution range of P. boveana in the St. Catherine area. These results are comparable to
Hageer, Esperón-Rodríguez [49], who applied MaxEnt to model the distribution of 29 Australian plants
and emphasized the significant importance of climatic variables over soil variables. Some ecological
explanations may be missed because of the lack of a large set of variables at a higher resolution. Indeed,
the use of high-resolution soil predictors with topo-climatic predictors improved, in some cases, the
predictive power of plant SDMs [50–52].

3.2. The Predicted Current Suitable Sites for Survey or Translocation of P. boveana

Our results demonstrated that the current habitat suitability of P. boveana extends within the
middle northern boundaries of the St. Catherine area. Based on the LPT threshold, the potential
distribution areas for the search for unknown populations of P. boveana are minimized, rendering
the efforts feasible. After several field surveys during the flowering seasons (April–July), we did
not find any new population, but we confirmed five extinct localities/populations, namely Gebal
Catherine (2113 m), Gebal Mousa (2285 m), Gebal Safsafa (2166 m), Gebel Umm Shaumer (2090 m),
and Elgalt Elazrak (2150 m). This finding fits with the known historical distribution reported in
previous literature [53–61]. In detail, Danin (1983) [53] indicated that P. boveana has been found in
Gebal Catherine, Gebal Safsafa, and Gebel Umm Shaumer while St. Catherine rangers also reported its
presence in both Gebal Catherine and Elgalt Elazrak between 2007 and 2012, but then it completely
disappeared. Such local extinction in suitable sites may be attributed to drought, habitat fragmentation,
and human activities (aridification by the collection of water for consumption, sheep and goat grazing,
and overcollection) [56,58]. However, additional annual field samplings are recommended in suitable
sites for searching new P. boveana populations or to examine the factors that shared in blocking the
colonization and recovery of this plant in all suitable historic sites.

All of the current predicted sites satisfy the P. boveana growth conditions of a high elevation
(~>2000), slope > 35 degrees, with an optimum precipitation seasonality of ~75 and not less than ~65.
Consequently, warm and dry sites with an elevation < 2000 m are less suitable for P. boveana. These
results are in complete accordance with [56,59,61], who reported that P. boveana largely occurs in moist,
shaded, and north-facing rock crevices at low temperature with an elevation range from 1800 up to
2210 m.
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3.3. Main Environmental Predictors for the Distribution of P. boveana

The CCorA ordination and variable’s contribution percent in MaxEnt indicated that the P. boveana
distribution was more sensitive to topographic variables (elevation and slope), precipitation (Bio14 and
Bio15), temperature (Bio6), and soil factors (pH, organic carbon, and clay). The best population status
of P. boveana is at high elevation and in alkaline and moist soils. Our results are congruent with other
studies that dealt with rare, endangered, and medicinal mountain plants, where they addressed the
crucial role of low temperature, high precipitation, and elevation in plant distribution and fitness. For
instance, Artemisia sieberi Besser and A. aucheri Boiss. [52], Primula scandinavica Brunn [7], and Daphne
mucronata Royle [62]. Specifically, in the study area, climate and elevation are the main contributing
environmental variables for the distribution of endemic taxa, in particular, Rosa arabica Crép. [9], Nepeta
septemcrenata, and Hypericum sinaicum [63,64]. Moreover, the elevation is regarded as the main driver
for the survival and persistence of mountain plant species [7,65,66], but also to some degree, slope and
aspect have played important roles in the microclimate of narrow-range species [67]. The elevation is
often connected with changes in temperature and solar radiation, which might affect plant growth [34].
Among soil factors, pH is considered the main predictor for plant distributions and significantly
improved the predictive capacity of SDMs [35,49,50,68]. Soil pH is frequently associated with nutrient
availability [69].

All previously published literature confirmed a continuous decline in the habitat quality of
P. boveana, with evidence of a decline in size and number with time [54,56,58,59,61]. In detail, the
population size has fluctuated as follows: 2000 individuals in 1991 [54], 336 individuals in 2007, 268
individuals in 2011, 115 individuals in 2013 [58], 1010 individuals in 2014 [59,60], and 796 individuals
in the current study. The fluctuating population size, especially between 2007 and 2013, may be more
probably due to a sampling and/or detectability artefact, because perennial rocky species, such as P.
boveana, uncommonly show such a high annual fluctuation. In contrast, the trend highlighted by field
surveys conducted in 1991, 2014, and 2018 (current study) seems to really be a sign of a continuous
decline. The alarming reduction in the P. boveana population is apparently related to the growing
aridification (natural or human-derived); human activities; rare gene flow between nuclei; deep seed
dormancy; high level of inbreeding, which frequently causes a drop in fitness; limited seed dispersal;
habitat fragmentation; and an increase in temperature [56,58]. All of these threats may force P. boveana
toward extinction.

3.4. Future Predictive Distribution Area of P. boveana under Two Global Warming Scenarios

Habitat suitability decline and upward range shifts due to future global warming for the years 2050
and 2070 are predicted for P. boveana. This is in agreement with Hoyle and James [70], who expected
such a decline for all species endemic to the Sinai mountains. Furthermore, a recent study in the same
area confirmed this pattern of range shifts for the endemic plant Rosa arabica [9]. The mountaintop
and range-restricted species will respond to the predicted global warming by shifting their range
boundaries towards high elevations [71]. Subsequently, predicted global warming might adversely
affect endemic species that currently survive at the highest elevation of St. Catherine mountains [15].
Less annual precipitation would inevitably reduce water availability and moist soils, therefore lowering
the quality and size of P. boveana-suitable habitats. Moreover, increasing human disturbance on St.
Catherine mountains would exacerbate the water availability problems, which affects the survival
of this plant [71]. Following previous studies [57–59], our field observations displayed that grazing
is a key pressure on P. boveana and this might explain why this species is often found on very steep
cliffs. In mountainous environments, site properties vary greatly at a small scale due to differences in
elevation and aspect, thus P. boveana was at a north-facing site and hence it annually receives little solar
radiation. Therefore, its current presence inside shaded and cool microhabitats (gorges, slopes, caves)
may represent refuges for future conservation against the expected increases in temperature. Finally,
in future projections, uncertainty may increase, especially when the environmental predictors (such as
elevation in our study) need to be extrapolated outside the range of the training data of the species’
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response; therefore, physiological, biological, and distributional attributes of the species should be
considered [72].

4. Materials and Methods

4.1. Study Area and Species

Our study was conducted in Saint Catherine Protectorate (St. Catherine) in the Sinaico-Arabian
biogeographic sector and, more specifically, in the Sinaic subsector [73]. It is located in the northeastern
corner of Egypt and occupies an area of ca. 5196 km2 (Figure 5A,B). The Sinaic subsector supports
remarkable biodiversity, with a high percentage of endemic and rare vascular plants, distributed in
a wide range of mountain microhabitats (e.g., slopes, gorges, cliffs, terraces, and caves) [67,74]. The
Sinaic subsector is a smooth-faced outcropping igneous massif, with an elevation up to 2640 m a.s.l [75].
The rainfall is scarce, intermittent, and reaches monthly averages of 37.5 mm (October–May, 1970–2017),
even though unpredictable one-day flash floods reaching c. 300 mm recently occurred (2012–2014) [76].
The average monthly temperature ranges from 8.6 ◦C in January to 25.5 ◦C in August. The Sinaic
biogeographic subsector hosts 14 endemic vascular plants, about a quarter of the endemic plants to
Egypt, so it is considered the most important micro-hotspot in Egypt [9,73,77]. The most important
threats to biodiversity are drought and human activities [78].

The Sinai primrose, Primula boveana (Primulaceae), is the only species included within the genus
Primula in the flora of Egypt (Figure 5c). P. boveana is a glabrous rhizomatous perennial herb up to 40
cm in height with an erect unbranched stem, sessile leaves, and capsule-type fruit with dust seeds [79].
Globally, P. boveana is one of the rarest and critically endangered vascular plants [58,59,80]. It is exclusive
to the St. Catherine Protectorate in the Sinaic biogeographic subsector of Egypt [53,81]. As most of
the mountainous species of this genus [82], this plant generally grows in cliffs near water-springs,
where the interstitial soils are rich in moisture content and organic matter [55,56,60]. The vegetative
growth of P. boveana blooms over the four seasons with maximum activity in September [56]. For the
long-term conservation of P. boveana, two managed enclosures (Kahf El-Ghoula and Gebal Alahmar)
were established [56].

Figure 5. (A) Map of Egypt showing the location of St. Catherine Protectorate (red shaded) inside the
Sinaic biogeographic subsector. (B) Current occurrence points of Primula boveana and (C) habitat of
Primula boveana.
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In this study, the current georeferenced occurrence points of P. boveana were obtained from field
data (from April 2016 to September 2018) using a Global Positioning System (GPS; Garmin e-Trex 20)
and after consulting all the previous literature [36,53–60,80], local Bedouins, and experts’ knowledge.
All the currently known localities with the species were visited and 10 permanent plots of 5 × 5 m each
were centrally positioned to measure the following parameters: population size (estimated number of
individuals in each subpopulation), plant density (number of individuals per plot area), size index
(average of heights and diameters (cm) of three randomly individuals per plot), plant vigor (the ratio
between the plant size and number of leaves), and cover percent (visually estimated) [83]. Moreover,
the associated species and threats were recorded in each subpopulation.

In order to reduce spatial autocorrelation and the associated inflation of model performance, P.
boveana occurrence records were filtered by excluding redundant occurrence points in each 1 × 1 km
grid. Occurrence records were assessed in the ArcGIS 9.3 environment to eliminate spatially correlated
points [13,14]. Consequently, 10 occurrence points of P. boveana were used to create SDMs (Figure 5b).
These occurrence points represent the total known occurrence of P. boveana in Egypt.

4.2. Environmental Predictors

Three sets of environmental variables were used for predicting the potential suitable distribution of
P. boveana: bioclimatic variables (27), topography (3), and edaphic factors (8) (Table S2). Out of 27 climatic
variables, 19 variables for the current period (1950 to 2000) were downloaded from the WorldClim
v.2 database (http://www.worldclim.org) [84] at a resolution of 30 arc-seconds (~1 km2), while the
remaining eight variables were obtained from the ENVIREM dataset v.1.0 (http://envirem.github.io) [85]
at the same resolution. These data have been widely used to generate species distribution models,
as they are relevant to the ecology and physiological response of different plant species [9,14,73].
Elevation was downloaded from the DIVA-GIS online database (https://www.diva-gis.org/gdata) at a
90-m resolution, while slope and aspect were extracted from elevation data in the ArcGIS and then
resampled into a 1-km spatial resolution [86]. Edaphic factors related to physical and chemical soil
properties at depth intervals of 0–0.30 m were obtained from the SoilGrids database v.0.5.3, available
from ISRIC-World Soil Information [87] at the same resolution (1 km2) (Table S2). All of these predictors
were a continuous type.

To avoid collinearity problems among variables, the variance inflation factor (VIF) of 38
environmental variables was tested using the ’sdm’ package [88] in R-environment [89]. We performed
a stepwise variable selection: First, VIF values for all variables were calculated, then the variable with
the highest VIF was iteratively removed until no variables with VIF greater than the threshold (5)
remained [9,14]. As a result, 12 variables were kept to develop the models (Table 3). These variables
comprised five bioclimatic (Bio6: minimum temperature of the coldest month, Bio7: temperature
annual range, Bio14: precipitation of the driest month, Bio15: precipitation seasonality and aridity
index), three topographic (elevation, slope, and aspect), and four edaphic factors (bulk density, clay,
organic carbon, and pH) (Table 3). Similar to the other mountain species of St. Catherine that are
sensitive to high altitude, temperature, rainfall, and soil features [75,78], we assumed that the selected
variables were appropriate for defining the ecology and spatial distribution of P. boveana.

http://www.worldclim.org
http://envirem.github.io
https://www.diva-gis.org/gdata
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Table 3. The environmental predictors used in the habitat suitability modeling for P. boveana with their
variance inflation factors (VIFs < 5). Units were reported for dimensional variables.

Category Code/Unit Predictors VIF Source and Resolution

Bioclimatic

Bio6 (◦C) Min temperature of coldest month 4.80

WorldClim v.2 (~1 km2).
Bio7 (◦C) Temperature annual range (Bio5-Bio6) 2.73

Bio14 (mm) Precipitation of driest month 2.30

Bio15 (unitless) Precipitation seasonality (coefficient
of variation) 4.23

Aridity index
(unitless)

Degree of water deficit below water
need 3.65 ENVIREM (~1 km2).

Topographic
Elev (m. a.s.l) Elevation 3.62 DIVA-GIS (90 m)
Slope (degree) Slope 1.58 Derived from Elev.

Aspect (degree) Aspect 4.17 Derived from Elev.

Edaphic

BD (g/cm3) Bulk density 3.18

SoilGrids (1 km2)
Clay (%) Clay content 3.44

OC (g/kg) Organic carbon content 4.50
pH pH in H2O 1.38

Prior to the modelling step, a Pearson correlation matrix among population field parameters
(density, cover, size index, and plant vigor) was conducted. Moreover, a multivariate Canonical
Correlation Analysis (CCorA) was used to investigate the effect of the selected environmental variables
on the different population parameters of P. boveana.

For future climatic projections, the climatic variables of the Community Climate System Model
(CCSM4) over two periods 2050 (average for 2041–2060) and 2070 (average for 2061–2080) under two
representative concentration pathways (RCPs 2.6 and RCPs 8.5) of the 5th report of Intergovernmental
Panel on Climate Change [90] were downloaded from the WorldClim v.2 (http://www.worldclim.
org) [84]. The CCSM4 model has been used broadly in referring to the impacts of climate change on
plant distribution [9,91–93].

4.3. MaxEnt Modeling Procedures

MaxEnt software version 3.4.1, [11] (https://biodiversityinformatics.amnh.org/opensource/maxent/)
was utilized to predict the current and future suitable habitats’ distribution of P. boveana in Egypt. To
predict the potential occurrence of P. boveana, we built seven MaxEnt models depending on the selected
environmental variables. We used climate variables only, topography variables only, edaphic variables
only, and both climate and topography, climate- edaphic variables, topography- edaphic variables, and
finally climate, topography, and edaphic variables. We employed 10 replicates, with cross-validation
replicates for each model type [9,94]. The relationships between selected variables, and the probability
of the presence of P. boveana were displayed in MaxEnt’s response curves. The percent contribution of
each environmental variable was calculated, and jackknife procedures were executed to assess each
variable’s contribution [95]. The remaining MaxEnt settings were set to default values.

To measure the predictive performance of the model, two metrics were used, the area under the
curve (AUC) derived from the receiver operating characteristic (ROC) curve [96] and true skill statistics
(TSS, threshold value = 0.5) [97]. Higher values of AUC and TSS (closer to 1) indicate higher accuracy
and confirm a relationship between model prediction and distribution. The significant difference
between values of AUCs and TSS among different models was tested using the Kruskal–Wallis one-way
ANOVA test. All descriptive statistics and CCorA were performed using the XLSTAT 2016.

The predictive map with four classes of habitat suitability for P. boveana was defined using natural
breaks in ArcGIS: Unsuitable (<0.20), low suitability (0.20–0.40), moderate suitability (0.40–0.60), and
high suitability (>0.60) [9,98,99]. Differences in the predicted current ecological range of P. boveana
among the different MaxEnt models in four classes were computed in ArcGIS using selection by
attributes and the total number of grid cells in each class was counted and converted into surface areas
(km2). The selection of the best-fitting model was based on the minimal predicted highly suitable
areas [41].

http://www.worldclim.org
http://www.worldclim.org
https://biodiversityinformatics.amnh.org/opensource/maxent/
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To validate our model and discover unknown populations for P. boveana, we carried out a new
MaxEnt model using the highest contributed environmental predictors (Bio6, Bio14, Bio15, elevation,
slope, clay, organic carbon, and pH). We selected the cumulative outputs with values of relative
suitability from 0% to 100%, to preclude assumptions about species prevalence [11]. Two thresholds
were considered to generate binary maps of presence/absence. The first threshold was the maximum
training sensitivity plus the specificity [100]. The second was the lowest presence threshold (LPT),
which was used to identify both the predicted minimum area and unknown distribution areas [4,17,22].
The resulting two maps were superimposed to generate a map of potential areas for field surveys. All
predicted sites with a relative suitability of more than 60% were considered as highly potential suitable
sites for ground-truthing [17,99]. We made a set of georeferenced field trips from April to July 2019 to
the high-suitable sites to search for unknown populations/localities of P. boveana.

For future projections, in order to increase the reliability of models, we ran the multivariate
environmental similarity surfaces (MESS) analysis in MaxEnt [23]. The MESS function investigates the
univariate extrapolation under the different future scenarios, determines novel climatic conditions,
and assesses if values of every single variable under a projection scenario are out of its range of values
under current conditions. Moreover, to predict distributional changes due to future climate change, we
compared distribution changes between current climatically suitable habitats and two future scenarios
in the ArcGIS environment. Firstly, we converted the climate-only model map into a binary map (1:
suitable/0: unsuitable) by choosing a threshold value of 0.60 using SDM toolbox v.2.4 [101]. Then, the
loss or gain in the suitability area was calculated given the difference between the current and future
climatically suitable areas [9].

5. Conclusions

This study demonstrated that, for more realistic predictions of the distribution of P. boveana, it
is better to include soil variables, not alone, but together with climate and topographic variables in
the modelling procedure. Even if the values of MaxEnt models’ AUC and TSS scores were closely
high, it is critical to emphasize the value of ground-truthing validation of model outputs, rather than
depending uniquely on common metrics for accuracy assessment. This is especially true when models
are constructed from original presence records of the native locations for the species. However, we
obtained predicted results consistent with their actual distribution. Additionally, the models provide
valid information on the ecological preferences of the taxa. In particular, this study showed that the
geographic distribution of P. boveana might undergo an upward range shift via a contraction of sites
between 1800 and 2000 m and expansion towards high-elevation sites (above 2000 m) at the southern
parts of St. Catherine. P. boveana distribution was more sensitive to topographic variables (elevation),
precipitation (Bio14 and Bio15), temperature (Bio6), and soil pH. To overcome the predicted fluctuation
or extinction in the population size of P. boveana, it is recommended to initiate in situ conservation
through translocations (reinforcements or reintroductions) or the establishment of suitable managed
fenced enclosures, and further, it is important to protect it against grazing. Even if some efforts were
already overtaken in this sense, our results might support further future conservation plans. For
instance, Wadi Shaq Mousa was found to be the best site for the translocation of P. boveana, since it has
the most suitable current conditions, which were predicted to persist in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/8/957/s1,
Table S1. A Pearson correlation matrix among measured population parameters of P. boveana. Bold values are
significantly different at p < 0.05, Table S2. Environmental datasets used in the analysis.
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