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Nomenclature 
 

  
     Cost of renewable energy curtailment at node n 

  
    Cost of peak load shaving at node n 

  
     Cost of curtailing CHP power at node n 

  
          Storage investment cost at node n 

  
    ( ) 

Amount of renewable energy curtailment at node n during time 

interval t 

    Energy price in the wholesale market 

F Fuel cost for biomass CHP plant 

  
   ( ) Amount of load curtailment at node n during time interval t 

  ,    
Specific costs of energy storage in terms of energy and rated 

power respectively 

   Capital recovery factor  

  
   ( )   

   ( ) 
Expected active and reactive power production of renewables at 

time interval t, respectively 

  
   ( )   

   ( ) 
Expected active and reactive power production of CHP at node n 

during time interval t, respectively 

   ( )    ( ) 
Active and reactive power demand of the loads at node n during 

time interval t, respectively 

   ( )    ( )    ( ) 
Current, active and reactive power flows from m-th to the n-th 

bus at time interval t, respectively 

   ,     Resistance and reactance of the mn-th branch respectively 

  
 ( ),   

 ( ) 
Amount of active and reactive power provided by the upstream 

connections at node n during time interval t, respectively 

  ( ) Thermal capacity of the line at time interval t 

          Maximum and minimum voltage limits, respectively  

  
             

 
Lower bound of active power curtailment of renewables and CHP 

at node n 

  
            

 Upper bound of active power curtailment of renewables and CHP 
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at node n  

  
             

 
Lower bound of reactive power curtailment of renewables and 

CHP at node n 

  
             

 
Upper bound of reactive power curtailment of renewables and 

CHP at node n 

    Ramping rate of conventional generator  

   
 ( ) Amount of produced power from conventional generators 

    ( ) 
State of the charge of storage unit at node n during time interval 

t 

  
 ( )   

 ( ) 
Charging and discharging power of storage at node n during time 

interval t, respectively 

      Charging and discharging efficiency of storage, respectively 

  
 ( ),   

 ( ) 
Binary variables for charging and discharging of storage at node n 

during time interval t, respectively 

  
     ( )   

     ( ) 
Maximum and minimum limits of charging and discharging 

power of storage at node n during time interval t, respectively 

  
  
( )̃    

    ( )̃ ,    ( ) 
Bounded variables of PV, wind and load at node n during time 

interval t respectively  

   
  
( )̃     

    ( )̃      ( )  ̃  
Deviation from expected value of PV, wind and load at node n 

during time interval t respectively 

  
  ( )   

  ( )    
  ( )    

  ( )      
  ( )      

  ( ) 
Scaled deviations from the random electric loads, PV and wind 

power generation at time interval t 

  
 ( )  

 ( )    
 ( )    

 ( )      
 ( )      

 ( ) Dual variables of load, PV and wind at time interval t 

   The budget of uncertainty of the uncertain parameter i   
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Chapter 1 

Introduction 

1.1 Summary  
 

The threat of climate change has an impact on our quality of life and the habitability of Earth for 

many species, including humans. The intergovernmental Panel on Climate Change (IPCC) estimates 

that, in order to reduce the risk that global temperature increases more than 2°C above preindustrial 

levels, greenhouse gas (GHG) emissions in developed countries must be descent by approximately 

80% below 1990 levels by 2050 [1].  Electricity has an immense role to play to achieve this ambitious 

goal to reduce the global temperature. Electricity is a critical component in the societal aspect of our 

daily life to improve the economy, safety, security, and health around the globe. The generation of 

electricity is growing with the increase of the world population. The electricity generation will 

continue to increase and is predicted to rise by 70%, from 22126 TWh in 2011 to 37000 TWh in 2030 

[2].  At present, the primary source of the majority of electricity consumed is fossil-based fuel. This 

primary source has recently been dispute due to sustainability and threat to the climate. However, it 

is obvious to secure a future with an easy-access to high-quality electricity that is sustainable and has 

less impact on the environment. To achieve that, an energy transition from fossil fuel to sustainable 

sources is indispensable. The critical transformation of the current energy transition is the emphasis 

on decentralization as opposed to a more centralized model. 

This alteration from centralized to decentralized production will require a unique adaptation of the 

electric network, especially the distribution network. This adaptation indicates the shift of a passive 

distribution network to an active network. The active distribution network (ADN) can also be denoted 

as a smart grid [3]. 

The current electric power system is comprised of a transmission system and a distribution system. 

These two systems collectively create an interconnected network with different levels of voltage and 

currents. This sophisticated network is expensive and time-consuming to build. However, this 
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infrastructure requires to have a cost-effective model to ensure electricity access to a considerable 

number of customers.  

The planning for investment decisions follow-on in the evolution of the distribution grid are multi-

layered, long-lasting, and have a substantial influence on the end-user experience. However, these 

investments are challenging due to inherent uncertainties in the future evolution of load, generation, 

and technology. The necessity for the distribution grid to become active from a passive network 

mainly compelled by the integration of weather-dependent distributed energy resources (DER).  

DER brings new challenges in the way the power system is planned. DER can introduce bi-directional 

flow, voltage deviation, and grid congestion problems in the distribution network. These new 

challenges can affect existing grid reliability and security. Additionally, DER may be connected by 

various stakeholders that are not accountable for ensuring power quality in the distribution grid. This 

could indirectly increase the costs of the distribution system operator (DSO). Therefore, DSO is facing 

a challenging new environment concerning operations and planning of future distribution grids. 

In order for the system operator to plan for a cost-effective and intelligent network, it is essential to 

include optimization and innovative solution into consideration. New innovative solutions such as 

energy storage could play a vital role in avoiding expensive investment decisions.  

Optimization plays a vital role in the operation and planning of electric power systems. From real-time 

to long-term planning, the most critical power system decisions are supported by a variety of 

different optimization problems. In dealing with the uncertainty that affects these decisions, today's 

power system operators usually exploit deterministic optimization models that aim to maintain the 

reliability of the system and minimize costs. While this approach is valid, it can be expected that the 

development of new techniques in the area of optimization under uncertainty could yield substantial 

benefits to this practice. This is the challenge that motivates this Thesis. More precisely, this Thesis 

proposes models and algorithms to address critical optimization problems in electric power system 

operations by considering uncertainty through an emerging technique such as Robust Optimization. 

OPF is a type of optimization problems where active and reactive power of devices connected to the 

electric grid can be optimized to minimize a cost function considering the physical constraint of the 

network. It is a suitable tool to model the operation and planning of distribution systems that contain 
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active elements such as storage and demand response. Due to the high dimension of the distribution 

network characteristics, alternating current (AC) OPF is the most suitable method. In this thesis, 

convex relaxations have been chosen to guarantee a low calculation burden and globally optimal 

solutions. This thesis will emphasis on the development of operations and planning methods to 

incorporate new challenges in planning and operations for smart grids.   

1.2 Energy Transition Context 
 

An energy transition can be described as a process that leads to fundamental changes in the way 

energy is generated and consumed. Such a process is provoked by the policy and technology rather 

than the availability of resources. In the last couple of decades, the environmental strategy has been 

dominant to have a sustainable energy system. Especially in the outcome of the Kyoto Protocol, 

decarbonization has been the main focus of strategy evolution.    

An effective energy transition implies a complicated balance between sustainability, competitiveness, 

affordability, and security of supply. Such a balance is addressed, for instance, by the “trilemma” goals 

heralded by the World Energy Council [4]. 

Access to energy services is vital for progressing human advance, fostering social inclusion of the 

poorest and most susceptible in society, and meeting many of the social development goals (SDGs). In 

September 2015, 193 countries – developing and developed countries – adopted the Sustainable 

Development Goals, known formally as the 2030 Agenda for Sustainable Development. The 17 new 

SDGs goal at ending poverty, improving health and gender equality, protecting the planet, and 

guaranteeing peace and prosperity for all. For the first time, the SDGs contain a target explicitly 

focused on warranting access to affordable, dependable and modern energy for all by 2030 (SDG 

Indicator 7.1), signaling an acknowledgment of the necessity of access to advanced energy services in 

its own right, and of the significance of energy in attaining many of the other development goals. The 

SDGs identify the integrated nature of development. A deficiency of access to modern energy can 

make it challenging or impossible for a country to oppose the myriad challenges that it faces, such as 

poverty (SDG 1), air pollution, low levels of life expectancy and lack of access to essential healthcare 

services (SDG 3), delivering quality education (SDG 4), adaptation and alleviation of climate change 
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(SDG 11), food production and security (SDG 2), economic growth and employment (SDG 8), 

sustainable industrialisation (SDG 9) and gender inequality (SDG 5).  

Electricity is at the center of energy transition due to its role for economic and social improvement 

and its potential to support the decarbonisation plan [5]. Electricity is a primary connection to the 

exploitation of carbon-free energy resources such as renewables, and nuclear, and its penetration in 

areas such as transport and heating/cooling can enable their decarbonisation. 

Energy and, more specifically, electricity is a vital part of daily activity. Due to the dramatic growth of 

electrification that mainly drives to achieve deep decarbonization, electricity is now accessible by 86% 

of the global population [6]. Around 84% of those 14% without electricity access live in rural areas, 

and over 95% of those residing without electricity are in countries in sub-Saharan Africa and 

developing Asia, as presented by International Energy Agency (IEA). Since the usage of electricity was 

started, the development of a country has been closely related to the accessibility and quality of the 

electricity supply. This has motivated states to invest in the infrastructure development of the power 

transmission and distribution systems. Due to these investments, power systems have been evolved 

from small micro-networks to trans-continental networks.  

Due to the high dependency on electricity, it is essential to ensure the primary source of electricity. 

The past decades have seen an expansion of sources for electricity production. As depicted in Figure 

1, a frequent upsurge in fossil fuels, specifically coal and gas as well as electricity from nuclear energy 

is seen between 1990 and 2016. Increasing worries about the sustainability of fossil fuels and the 

security of nuclear power are the prime movers of the current energy transition. 
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Figure 1 World electricity generation by fuel from 1990 to 2016 (Source: IEA) 

 

The energy transition from "conventional" resources to renewable ones is not the first energy 

transition in the history of the industrialized world. The first significant energy transition was 

originated by the discovery of fossil fuels in the early 1700s. The transformation that makes fossil 

fuels as the primary global energy source took two centuries. In 1995, oil accounted for 50 % of 

the total primary energy used to produce electricity in Italy. However, because of various oil 

embargoes and the growing worry of dependence on Middle Eastern countries’ oil production, 

Italy adopted gas as the primary source of energy, besides, to invest more in renewables. Italy is 

one of the forerunners in the use of renewables. The massive development of renewable energy 

between 2000 and 2015 was primarily driven by the urge to have energy security and an impact 

on climate.  
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Figure 2 Electricity generation in Italy by fuel from 1990 to 2016 (Source: IEA) 

 

The major energy transition in Italy to renewables was reinforced by firm government policy, 

massive subsidies, and a strong desire to revitalize. These policies include subsidies, as well as 

research funded by the European Union, to inspire the growth of decentralized generator 

technologies and their integration into the grid. The electricity generation in Italy by fuel has been 

depicted in Figure 2.  

 

The re-invention of the current distribution grid necessitates a passive system to be evolved into 

an active network with more automation and control strategies. This new active distribution 

system is often denoted as a smart grid. The smart grid concept aims to ensure sustainability in 

the power system that includes high quality and security of supply and maintaining at the same 

time the economic productivity. The subsequent large-scale energy transition is currently 

emerging and associated in the literature with the term smart grid. 
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1.3 Planning Strategies for Distribution System 

1.3.1 Increasing demand – new customers  

 

For new customer connections or the growth of the maximum power subscribed by a client, 

studies addressing existing line capacity are necessary. These studies are often power flow 

calculations for worst-case circumstances in order to lessen the level of risks. The current 

development of electric meters allows for a more comprehensive data collection of client 

consumption. The new, more sophisticated metering devices allow for augmented controllability of 

appliances and the possibility to connect small decentralized, mostly renewable generators with 

related tariff systems. This significant push to renovate electric meters has significantly increased the 

observability and the possibility of controllability in the low voltage (LV) distribution grid. 

Nevertheless, the exploitation of the controllability is not yet widely applied. These new smart meters 

allow for the additional detailed analysis and optimization of existing architecture to avoid 

unnecessary costly infrastructure investments [7]. The progress of the distribution grid is also reliant 

on the trends of electric demand countrywide.  

1.3.2 Integration of distributed generations  

The current procedure is to connect decentralized generators includes verification of short 

circuit security, harmonics produced by the generator, perturbations of the communication system 

with safety components, flicker in voltage profile, maximum line capacity study, and representing a 

set maximum possible current injected by the generator. These regulations force the DSO to reinforce 

existing lines often when installing new generators or creating new separate lines specifically for the 

generator [7].  

1.3.3 Tools for distribution network planning with distributed resources  

There are two main sets of mathematical tools that exist for distribution grid planning. These 

tools include the tools that are adopted by current DSO and the more innovative tools that are 

proposed in the literature. The existing tools used by the DSO comprise different techno-economic 

indicators to evaluate investment choices.  
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Power flow analysis is also considered to provide intuitions into the behavior of a distribution grid. 

The presence of new decentralized generators can extensively affect the current and voltage profiles 

of a distribution grid. Therefore, comprehensive and accurate power flow models are required to 

quantify these effects for the smart planning of the decentralized generators. 

Current power flow algorithms include the forward/backward sweep, Newton Raphson method [8], 

[9], fast-decoupled load-flow method [10], z-bus matrix construction method [11], and loop 

impedance method [12]. A power flow analysis is able to calculate the currents, voltages, and losses in 

all the branches and nodes (lines, cables, and transformers). This approach provides comprehensive 

detail of the electric system for a given scenario.  

The uses of OPF algorithms for different power system applications have been described in [13]. 

These algorithms are gathered into three main groups: DC or linear approximations, non-linear 

convex approximations, and non-convex problems. In the circumstance of distribution grids, DC  or 

linear approximations are often not sufficient for planning and operations algorithms in terms of 

accuracy. Often DC approximations are used to reduce the calculation time and remove convergence 

problems by introducing linear constraints. 

The full AC power flow models are non-linear and non-convex in nature. The decomposition and 

heuristic approach is often used to solve nonconvex problems, but that can be expensive from a 

computational point of view. In the context of the non-linear convex class, there are two main convex 

relaxations: the SDP relaxation and the SOCP relaxation. Both of these relaxations have been 

proposed and applied in various cases for distribution power system study. These studies often 

consider operations of distribution grids [14] - [16]. Few are presented as planning algorithms [17] - 

[19].  

An OPF is able to calculate the optimal setpoints of controllable devices during dynamic analysis. It 

considers a centralized control that optimizes the whole network. 

This suggests that a single actor is controlling all the manageable devices with one primary objective. 

The OPF becomes unrealistic with the absence of controllability and observability in current 

distribution grids. However, the integration of decentralized generators could make this control and 

optimization more complicated. 



21 | P a g e  

1.4 Issues of renewable energy integration 
 

The integration of distributed renewable energy brings new challenges in the power system 

operation and planning.  The decentralized generators that are often connected to the distribution 

grid include PV, wind turbines, and micro-hydroelectric generators. These decentralized generators 

introduce new challenges for the DSOs. These challenges contain bi-directional or increased power 

flow within the network, voltage profile deviation, and compromised the safety of the equipment. To 

worsen these challenges, uncertainties in the distribution grid are high due to reduced aggregation 

effects in contrast to medium and high voltage grids. Random variation in load and generation can 

create high fluctuations in network power flow, therefore, causing unpredictable changes in the 

voltage profile. 

1.4.1 Bi-directional current flow increased 

DER connections into the distribution grid can cause a bidirectional current flow problem.  If 

the load is low in an area with high DG installed capacity, the current can flow in the opposite 

direction. That means current can flow towards the substation end from the decentralized node. This 

opposite current flow can have effects on safety devices, voltage regulation devices and maximum 

current limits of distribution lines. Thus, it requires to resize the electrical lines considering the peak 

load and generation. Safety devices in distribution grids can be extensively affected by an increase or 

reverse power flow created by DGs. The security devices could get malfunction if the DSs are not 

disconnected earlier in a faulty situation. And this might damage the insulators, conductors, or the DG 

plants. DG can increase the existing currents flow through the existing devices; therefore, it could 

exceed the maximum rated current limits.  

 

1.4.2 Voltage regulation devices  

DG increases the voltage profile locally where it is installed due to the injections of power into 

the distribution grid. Active power injection of DG, when associated with local loading of the feeder, 

can reduce losses in the distribution system. However, if the injection of active power far away from 

the load, then grid losses can be increased. Reactive power control to support volt/var regulators has 

been shown to be promising [20]. 
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If DG does not attempt to regulate local voltages, usually switch capacitor banks are unaffected. 

However, if DG controls local voltages or changes the downstream current of the regulating device, 

line drop compensation calculations may no longer be precise. The assumptions of downstream 

voltage are no longer correct if DG changes the local voltage or injects a substantial amount of power 

into the network. Thus, downstream voltage regulation calculations are no longer precise. 

1.5 Innovative solution for smart grid 
 

1.5.1 Energy Storage Technologies  

The influence of renewable energy unpredictability on power systems depends on the 

penetration level, which is the ratio between installed renewable capacity and peak demand. In most 

cases, at minor penetration levels, typically less than 15% to 20%, the integration of renewable is not 

a big issue provided that there is no grid capacity or stability problems. If the penetration level 

increases, i.e., more than 20%, renewables need to be curtailed during the low consumption periods 

to ensure grid stability (frequency, voltage, reactive power) [21]. Figure 3 depicts a summary of issues 

in the integration of distributed generators and their probable solutions. ESSs are one of the highest 

potentials to solve such renewable integration problems. ESSs can be integrated into power systems 

to provide all or some portions of the additional regulation control and reserves. Besides, due to its 

variable nature, renewable can be negatively correlated with load and electricity prices.  

ESSs can be installed to store a portion of renewable energy to accommodate wind/PV generation 

and improve overall system economics and stability. For instance, ESSs can be used to store the wind 

at night when the load is low and discharge it at peak load periods. Similarly, when wind power 

surpasses the minimum load at night and has to be curtailed to avoid grid stability problems, ESSs can 

help to store this curtailed amount of wind power and discharge it during the day to supply loads. 
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Figure 3 Issues with renewable integration and probable solutions [22] 

 

In general, ESSs can be an option to solve renewable integration issues by providing more flexibility 

and balancing to wind/solar generation, improving overall system economics and security. They will 

play an essential part in empowering a low-carbon electricity system with the growing penetration of 
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renewables. The subsequent development of the electricity industry with their corresponding and 

extensive transmission and distribution networks has drawn interest in using this energy storage 

technology in recent years. Up to 2005, above 200 PHS systems were in use all over the world, 

providing a total of more than 100 GW of generation capacity. Though, pressure from deregulation 

and environmental concerns have led to a decrease in significant investment in PHS facilities, and 

interest in the grid applications of other forms of ESSs is growing, due to some primary factors 

including changes in utility regulatory environment, an increasing reliance on electricity in industry, 

commerce, and the home, power quality, the development of renewable as a significant new source 

of electricity supply, and environmental requirements. These factors gathered with fast technological 

growth and reduced ESS unit cost, making their practical use cases attractive. In chapter 2, a review 

has been performed on different energy storage technologies and their potential applications.  

1.5.2 Demand Side Management  

Demand-side management can be applied passively by giving price signals to end-users and 

encouraging behavioral changes. Active control of devices is another technique to control the devices 

or tools that are time non-sensitive. For instance, the washing machine that needs to be completed by 

a specific period in the evening, but it's not necessary when the washing machine starts to operate. 

Another example could be domestic water heaters or heat pumps. An approach could be to turn off 

these devices for specified periods without affecting the comfort of the end-user.  

1.5.3 Generation and Load Curtailments   

A curtailment is an approach of an active reduction of the power of a distributed generator under 

the ideal power output operational setpoint due to the grid being not capable of using the produced 

power. This can be caused when the generation is high, and electric consumption is low. The injection 

to an unloaded feeder from large DG plants could create opposite power flow, over-voltage issues, 

and line congestion problems. This strategy is suitable when there is no other solution to absorb the 

renewable power, and it helps to keep the network stable. Often, the curtailments could be cost-

effective, but it will harm the payback period of DG.   
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1.6 Research Objectives 
 

As the use of ESSs has been increased in the grid services, and also the cost of storage is 

decreasing, thanks to the technology development, the planning decision of storage in terms of 

optimal operation and placement becomes essential for both economic and system security 

perspectives. The goal is to find a place for ESSs where their applications will be most exploited. The 

addition of ESSs introduces time correlation characteristics into the planning problem, which is a 

significant dissimilarity between ESS planning and conventional system planning. 

Moreover, the integration of renewable resources into power systems brings challenges for system 

planning, concerning the high uncertainty in renewable production. Deterministic approaches can not 

explicitly consider the stochastic nature of weather-dependent sources and hence can not make the 

right decision. Therefore, it is vital to develop probabilistic techniques for solving the uncertainty issue 

associated with renewable generations and load. This research aims at dealing with several questions 

related to the planning of ESSs in power systems with renewable penetration in the electric network: 

 Assumed scarcity of data of renewable energy and load, how to decide optimal locations for 

the ESSs to be installed? 

 What is the optimal operational schedule of the ESSs to support the network? 

 How to incorporate PV, wind, and load uncertainties into the planning of ESSs in its combined 

operation with renewables? 

 Is it economically convenient for system operators to equip their networks with ESS, instead of 

paying the DG owner or the customers for their services? 
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Chapter 2 

Energy Storage System (ESS): Application & Technologies 

2.1 Introduction  
 

Energy storage systems (ESSs) have been considered as the vital source of flexibility to support the 

integration of renewable energy. Earlier studies have revealed the substantial system cost savings by 

the deployment of ESS, containing investment and operation of generation, transmission, and 

distribution infrastructures. The challenges associated with meeting demand variations while 

providing reliable services have historically motivated the use of energy storage devices while at least 

five factors have driven recent attention in energy storage: technological development of energy 

storage systems, anomaly in the fossil fuel price, high-value of ancillary services in a deregulated 

framework of energy market, avoiding high cost of distribution and transmission network 

reinforcement, and growing penetration of variable weather-dependent renewable generation [23]. 

The current attention mainly based on potential applications coupling with renewable energy sources, 

but the usage for the network application is growing recently. In Figure 4, potential applications of ESS 

technologies have been listed.  

This chapter provides an overview of potential applications of storage devices. The leading ESS 

technologies currently available and underdevelopment are also explicitly described. The technical 

and economic characteristics of each storage technology are also presented.  
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Figure 4 Applications of ESS Technologies 

2.2 ESS Application  

 

The role of ESSs is to provide flexibility to PV and wind generations due to the variability and 

uncertainty behavior of PV and wind. Accordingly, renewable energy becomes controllable and 

dispatchable to meet system loads and meet energy bid in an electricity market. In addition, it can be 

controlled to utilize available transmission capacity efficiently. The roles of ESSs can be described by 

the number of uses (cycles) and the duration of operation, as shown in Figure 5. For power quality 

application, ESSs with high cycle stability and a short period of the operation is required; for time-

shifting application, on the contrary, longer storage duration and fewer cycles are necessary [22]. 

In this section, different ESS applications are described in detail. 
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Figure 5 Different uses of ESSs depending on frequency and duration of use [22] 

2.2.1 Time Shifting 

 

Due to its variable and weather-dependent nature, wind and solar energy might be high at 

periods of low demand and low electricity prices, and it could be low when demand is high, which 

might result in wind curtailment. In this case, ESSs can be installed to store the wind or solar energy 

generated during low demand periods and sell it later at a higher price during periods of high 

demand. Since this operation of the ESSs effectively shifts wind or solar energy in time, this 

application is called time-shifting, as shown in Figure 6.  

The benefit of using ESSs is expected to be higher with a more significant gap between peak and off-

peak of demand. For this application, ESSs are required to have a large energy capacity with an 

extended charging/discharging duration (from hours to days). Besides, their efficiency is another 

crucial factor to consider when choosing ESSs for this application, since an outstanding amount of 

power will be wasted in an inefficient storage device [23]. 
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Figure 6 Time shifting application 

2.2.2 Peak Shaving  

 

Peak Shaving is the process of decreasing the amount of electricity purchased from the utility 

during peak hours. In peak shaving, the main goal is to handle the peak demand without considering 

economic aspects, which are the main difference from energy arbitrage application. Since the energy 

storage system has a fast response and also it is low carbon emitted energy source, it is an optimal 

solution for this application. According to ABB, the benefits for this application include a reduction in 

energy cost by reducing peak demand, reduction in energy generation cost by maintaining peak 

power demand and avoiding investment cost to install more electricity generating units. Usually, the 

peak shaving application is owned by the electricity consumer, whereas the energy arbitrage 

application is installed on the supply side [24]. The recent techno-economic analysis shows the cost-

benefit study on energy storage systems such as NAS, lithium-ion, lead-acid, and flows batteries for 

peak shaving applications [25] – [26].   
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2.2.3 Frequency Support  

 

Frequency control allows for reliable power systems, and it happens during the change in the 

loads. Energy storage helps the power system to correct the frequency mismatch while changing the 

loads, depicted in Figure 7. Ref. [27] discusses three types of frequency regulation, such as primary, 

secondary, and tertiary. The primary reserve control balances the frequency in the system within 5-

30s. The secondary reserve control acts as a backup of the primary reserve and makes sure to set the 

nominal frequency, and it usually reacts for 5-15 min [28]. The tertiary control ensures the 

synchronization between load and generation and also with other generating units. Two case studies 

in [29] have demonstrated the impact of energy storage devices on frequency regulation for different 

power system networks such as single and three area power systems.  

 

Figure 7 Frequency regulation by storage devices 
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2.2.4 Energy Arbitrage  

 

The penetration of renewable energy creates energy price volatility; during the excess of 

renewable energy generation, electricity price drops, and the price starts to rise when the renewable 

generation decreases. The storage system can play an essential role during the volatile situation. The 

energy storage system can increase the efficiency of the whole power system and optimize it 

economically. The goal of this application is to store generated electricity from conventional energy 

sources when the price of renewable generation is high and sell the stored energy during peak power 

demand hours when the price is high or less renewable energy is being generated. Especially for the 

microgrid operation, the ESS will store electricity when the generation is higher than the demand and 

inject the electricity back into the grid system when the demand is higher [30]. The correlation 

between energy arbitrage with peak demand shaving and load balancing has been discussed in recent 

research [31]. Another recent case study for the European market shows the impact of PHS and CAES 

on energy arbitrage applications and also demonstrated new opportunities for energy storage 

systems on the energy market [32].   

Energy markets meet the demand for electricity both in real-time and in the near term. The electric 

energy market operates two markets of energy: the day ahead and real-time energy markets. The 

day-ahead market is a forward market; it creates financial schedules for the consumption and 

production of energy one day before the operating day. Based on demand bids, generation offers, 

and scheduled bilateral transactions, the locational marginal prices are determined for the next 

operating day. On the other hand, the realtime market is a spot market; it balances variances 

between day-ahead scheduled quantities of energy and actual real-time necessities. Based on actual 

grid operating conditions, locational marginal prices of this market are determined. The daily energy 

price fluctuations provide an excellent potential profit for arbitrage, by purchasing energy when 

prices are low during off-peak hours and selling it at higher energy prices during peak hours. Energy 

storage systems allow an offset in time between energy production and consumption. The capability 

of storing energy has a significant impact on both the physical characteristics of the electric grid and 

on the potential revenues of energy market participants. 
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2.2.5 Voltage control  

 

Voltage support is critical in order to have a stable power system and to prevent possible 

damages to the power system, such as overheating of generation and motors. One way possible to 

support the voltage is to increase reactive power in the power system. However, increasing reactive 

power to support the voltage is not always feasible and desirable, especially for the long transmission 

line, as it is a nonlinear consumer of reactive power. Therefore, the ESS can support the voltage 

locally by discharging the electricity with the desired voltage level to the power system [24]. The study 

in [33] has shown case studies where vanadium redox battery has been used to support low voltage 

(LV) network to solve the voltage rise/drop issues. Other relatively new research in [34] has discussed 

the optimal allocation of storage devices to support the voltage in the LV network. A supercapacitor 

bank has shown a potential solution for voltage support of wind plants [35].  

2.2.6 Spinning Reserve 

 

Spinning Reserve is the reserve system, which can respond quickly when the mismatch between 

generation and demand happens. The spinning reserve does not get used during the normal 

operation, but it is always online to support the power system. The spinning reserve storage system 

can supply power to the power system for more extended periods before the backup system ready to 

support the system [36]. Recently, a case study [37] has been performed where a virtual energy 

storage system has been modeled with a flywheel storage system to improve the spinning reserve, 

which is coordinated the demand response from domestic refrigerators in London.    

  

2.3 ESS Technologies  

 

Energy storage technologies can be classified in terms of forms of storage. The categorization of 

energy storage technologies according to the form of stored energy has been represented in Figure 8. 

Below a succinct description of energy storage devices that are commonly used.   
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Figure 8 Classification of ESS technologies 

2.3.1 Electrochemical Batteries  

 

The different electrochemical batteries that are commonly used in the industrial applications are 

presented in the following sections. That includes Li-ion batteries, NaS, Flow batteries, flywheel, and 

other storage systems from various technologies.  
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2.3.1.1 Li-ion Batteries 

 

Li-ion battery chemistries have the highest energy density and are considered safe. No 

memory or scheduled cycling is needed to enhance battery life. Electronic devices such as cameras, 

calculators, laptop computers, and mobile phones usually use li-ion batteries, and the uses are high 

for electric mobility sectors.  

Lithium-based batteries are extensively used in small applications, such as mobile phones and 

portable electronic devices; thus, the annual gross production is around 2 billion cells [38]. Some 

battery manufactures (SAFT, Shin-Kobe, Japan Storage, Avestor) are developing lithium-based 

batteries in both high energy and high power configurations for electric vehicles and hybrid electric 

vehicles [39]. A Lithium technology battery consists of two main types: lithium-ion and lithium-

polymer cells [40]. The high energy and power density of lithium-ion cells make them attractive for a 

wide range of applications, from portable electronics to satellite applications [41]. The ever-growing 

demand for energy storage requires further researches to improve the performance of this type of 

power resource. Numerous investigations have been carried out on electrode materials and 

electrolytes, showing the importance of the choice of these components of the battery. For lithium-

ion batteries, the self-discharge rate is shallow at a maximum of 5% per month, and the battery 

lifetime can reach more than 1500 cycles [38]. However, the lifetime of lithium-ion battery is 

temperature-dependent, with aging taking its toll much faster at high temperatures, and can severely 

shorten due to deep discharges. The deep discharge issue makes lithium-ion batteries inappropriate 

for use in back-up applications where they may become completely discharged. Although Li-ion 

batteries take over 50% of the small portable devices market, there are some challenges for making 

large-scale Li-ion batteries. The main hurdle is the high cost due to the special packaging and internal 

overcharge protection circuits [42].  

Regarding its self-discharge, this much relies on temperature, but it has been reported to be around 

5% per month [38]. Compared to the Li-ion battery, the lithium–polymer battery operational 

specifications dictate a much narrower temperature range, avoiding lower temperatures. However, 

lithium–polymer batteries are lighter, and safer with minimum self-inflammability. Basic chemistry 

suggests that lithium-based cell technologies are likely to represent the pinnacle of cell development 

in terms of specific energy density [43]. Lithium-based cell technologies may benefit in the future 
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from better electrodes, plates, current collectors, and seals, complemented by developments in 

materials processing, fabrication, and manufacturing techniques. 

 

2.3.1.2 NaS 

 

In order to achieve much higher power and energy density, some novel energy storage 

technologies are under research [44]. NaS battery is one of these types, and it has already been 

employed in power systems for more than 20 projects in Japan and many other worldwide 

constructions since the 1980s [45].  

 

Figure 9 NaS technology [46] 

 

A NaS, as shown in Figure 9, consists of liquid (molten) sulfur at the positive electrode and liquid 

(molten) sodium at the negative electrode as active materials separated by a solid beta alumina 

ceramic electrolyte [46]. Compared with the other leading battery technologies, NaS shows much 

more attractive energy density (four times that of lead-acid battery) and has an extended cycle 

capability (2500 cycles upon 90% depth of discharge) and a millisecond response for full charging and 

discharging operations, which presents good potentials to be applied in microgrid applications for 

power regulations. The energy density and the energy efficiency of this type of batteries are very high 

151 kWh/m3 and 85%, respectively [47]. Additional notable features of NaS batteries are no self-

discharge, low maintenance, and their 99% recyclability. NaS battery can be widely used in 

aggregated energy storage. This battery needs particularly useful thermal insulation to reduce heat 

loss. The structure of the cell is generally used in the form of glass, and the materials used are 
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precious because of the corrosive capacity of liquid sulfur. It is also equipped with an internal heating 

system that is activated when the temperature drops below a certain limit. With the battery at rest, 

the thermal autonomy may be a few days. This forces the heating system to be active and connect the 

battery to the power supply to power it. 

This type of battery, characterized by a high typical discharge regimen and high specific energy, is 

typically used for "energy" applications.  

 

2.3.1.3 Flow Batteries  

 

 

Figure 10 Flow Batteries 

 

Flow batteries (often called redox flow batteries) are a relatively new system. Unlike, 

conventional batteries, the flow battery store energy in the electrolyte solution. The concept of a flow 

battery is, the electrolyte consists of electroactive materials are run through a reactor to perform the 

chemical reaction. The chemical reaction is reversible, which allows charging, discharging and 

recharging capability. The storage capacity of flow batteries can be increased by merely utilizing larger 

storage tanks for the electrolyte. Several chemistries are possible for the battery: Vanadium (VRB), 

Zinc-Bromine (Zn-Br), Polysulphide-Bromide (PSB), Iron-Chromium (Fe-Cr) and Zinc-Cerium (Zn-Ce) 

[48]. 
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Since 1970 Redox-Flow batteries have been developed. In the US the NASA started development in 

the early 70s. Different chemistries have been developed (iron chrome, all vanadium, etc.). In the 

1980s, mostly the University of New South Wales (UNSW) developed several prototypes. In the 90s, 

several prototype systems have been tested in the multi kWel range. Especially Asian companies like 

Mitsubishi Chemicals, Kahima Kita Power Corporation, and Sumitomo, installed and tested these 

systems. Plants up to 200 kWel and 800  kWh storage capacity have been constructed and operated. 

In Asia, there are some commercial suppliers of these systems like Golden Energy Fuel Cell (GEFC), 

Prudent, and Ronke Power. In Europe, AF Gildemeister produces systems within a power range of 10 

kWel – 200 kWel. The development work is focused on the cost reduction of these flow systems 

further. One of the significant cost drivers is the cation exchange membrane. R&D work is performed 

to develop cheap and cost-effective new membranes on the one hand and to study new Red-Ox 

couples. Additionally, thinner and more active reaction felts will help to increase the power density of 

the cell. This will reduce stack size and costs. 

2.3.1.4 Lead-acid  

 

The most mature and cheapest energy storage devices of all battery technologies are the lead-

acid battery. These kinds of batteries are based on chemical reactions relating lead dioxide (that 

forms the cathode electrode), lead (which creates the anode electrode), and sulfuric acid, which acts 

as the electrolyte. Two major types of lead-acid batteries are flooded batteries, which are the most 

common topology and valve-regulated batteries, which are subject to extensive research and 

development [49]. The lead-acid battery has a low cost ($300–$600/kWh), and high reliability and 

efficiency (70–90%). Apart from the relatively poor performance of the battery at low and high 

ambient temperatures, and its relatively short lifetime, the main disadvantages of the lead-acid 

battery are the necessity for periodic water maintenance and its low specific energy and power. Lead-

acid batteries also pose difficulties in providing frequent power cycling, often in a partial state of 

charge that leads to early failure due to sulphation [50]. 
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2.3.2 Compressed air energy storage  

 

The compressed air energy storage is a commercially viable technology, which provides ample 

storage capacity, such as above 100 MW.  The idea of compressed air energy storage (CAES) is to 

compress air using high pressure (approximately 4-8 MPa) through electrical energy. Moreover, when 

electricity needed, the compressed air is mixed with natural gas; this air-fuel mix will be burned and 

expanded in a gas turbine and produce electricity through a generator. The first CAES project has 

been implemented in Germany at Huntorf with a capacity of 290 MW in the year 1978. 

   

 

Figure 11 CAES System (source: BRUSH group) 

2.3.3 Flywheel  

 

The use of flywheel is very primitive [56-58]. The flywheel is defined as a rotating wheel that is 

used to store mechanical energy. Flywheels are useful for low and medium scale mechanical energy 

storage systems. The energy stored by a flywheel depends on the mass and radius of the flywheel and 

the angular velocity. The stored energy of flywheel relies on the speed of the rotating body. With 

speed, the amount of stored energy increases. In order to move the flywheel, electricity needs to 

supply from an external circuit. While the flywheel is connected to the grid, it is desirable to have the 

constant speed that implies keeping the frequency consistent to ensure the grid reliability. The speed 

of the flywheel can control the frequency of electricity. 

Since the low-speed flywheel storage system has long life cycles, low maintenance, and speedy 

response, it is preferable for the industry. However, it has also disadvantages such as high installation 
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cost, low capacity, and self-discharge problem. The energy storage capacity range of this type of 

flywheels is 0.2-25 kWh. The efficiency of the flywheel is in the range of 90-95%. 

 

Figure 12 Flywheel storage (source: Beacon Power, LLC) 

2.3.4 Pumped Hydro Storage 

 

The pumped hydro storage (PHS) technology considered the most mature technology and 

economically viable. The concept of PHS is to have two water reservoirs at different elevations. There 

will be a turbine with a generator between the reservoirs to produce electricity. When the electricity 

is excessive the water will be pumped to an upper reservoir, which implies the charging state and 

during the electricity demand is higher than supply the water will be discharged from the top to the 

lower reservoir through the turbine which will produce electricity. Due to PHS’s low capital cost, high 

efficiency, long storage period, the technology is matured in the energy storage market. The typical 

storage capacity is around 1000 MW, with an efficiency of 71-85% considering the evaporation losses. 

The drawback of this type of storage system is extensive land use and which implies environmental 

issues.  
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2.3.5 Thermal Storage 

 

The principle of the thermal storage system is to store thermal energy by heating or to cool 

the insulated thermal storage medium and use the stored energy during the thermal energy supply-

demand mismatch. This technology is mainly used in industrial and residential applications. A 

comprehensive review has been discussed in [51]. The thermal storage method can store the heat 

energy in water and inject back the energy when the system needs [52]. The thermal energy storage 

system can be classified into two types: (i) Low Temperature and (ii) High Temperature. Under the 

low-temperature thermal energy storage, which considered as underdeveloped [53] two storage 

technologies such as Aquiferous and Cryogenic energy storages lie.   

The aquiferous or chilled water thermal storage uses water, which is iced through a refrigeration 

processes when the energy price is low or excess of renewable energy and later use for cooling 

purposes during the peak period. Such storage technology has been installed with a capacity of 

around 135 MW all over the USA. The most significant storage system is in Texas, the USA, which has 

a capacity of 90MW at 95°F.   

Cryogenic liquids, for instance, liquid air or liquid nitrogen, can be stored for a long time in a vacuum 

flask at atmospheric pressure. During the electricity demand, the cryogenic liquid is then heated to 

the surrounding temperature and used to produce electricity by driving a turbine. A pilot plant with a 

capacity of 300 kW has been developed at the University of Leeds, UK [54].  

The high-temperature thermal storage systems are entirely developed and in operation all over the 

world. Among them, molten salt and phase change material storage system are standard.  

Molten salt is usually solid at standard temperature and pressure, but it converts to liquid at high 

temperatures. The molten salt storage technology stores the liquid salt at high temperatures, and 

during the peak demand for electricity, the dissolved salt can be used to produce steam for the 

turbine to generate electricity. In the USA, there are four molten salt storage plants in operation with 

a capacity of more than 500MW. Spain has the most significant number of molten salt storage plant, 

which is around 23 plants with more than 1000 MW of storage capacity.    
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Another high-temperature thermal storage system is a phase change material (PCM) storage system. 

PCM storage system based on the phase-shifting capability of the material to release or store energy. 

The usual phase shifting is from the solid phase to liquid, and heat is absorbed and released during 

this process. The different materials have been studied extensively, and applications of the PCM 

storage system are illustrated in [55].  

 

2.4 Summary 
 

In this chapter, different energy storage technologies and applications are briefly described. 

The commonly used energy storage technologies in terms of reducing renewable energy curtailments 

and grid services have been presented. It has been understood that some storage systems are 

suitable for power-intensive applications such as flywheel and electrochemical batteries. On the other 

hand, pumped hydro and compressed air energy storage systems are appropriate for energy-intensive 

applications. The various uses of storage also investigated. The potential of storage goes beyond the 

services related to energy storage integration; instead, it can provide network services to have a 

stable and reliable grid.   
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Chapter 3 

Convex Optimization for power system 
 

The application of optimization in the power system is inevitable. From the optimal power flow to 

dispatch generation to the energy market operation, optimization has its role to play. The non-convex 

optimization problems are difficult to solve to find the global solution, and methods related to the 

solution approach involve many compromises, e.g., very long computational time, or not always 

finding the solution. However, the exceptions are the least-square problems, linear programming 

problems, and convex optimization problems.  That being said, it is often hard to express power 

system formulation in such a way that it is efficient in solving and generate a global solution. The non-

convex characteristics of power system formulation motivate to explore the techniques to convexify 

the non-convex power system problem. The two main benefits of the convex problem over non-

convex are [56]-[57]: (i) There are fast and efficient algorithms that can solve large scale convex 

problems, and (ii) The solution is necessarily a global one, that means optima is always a global one.  

Since the energy storage planning is a non-convex problem, this chapter briefly introduces the 

background of convex optimization, and the information is mostly inspired by the convex optimization 

book [58].  

 

3.1 Introduction  
 

3.1.1 Mathematical optimization 

 

A constrained optimization problem has the following form  

           ( ) 3.1 

Subject to,  

  ( )                3.2 

  ( )                      3.3 
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Here the function      
     is called the objective function,      

               is the 

inequality constraint function, and      
               is the equality constraint. The 

constants           and           are the bounds for the inequality and equality constraints, 

respectively. The   is a vector that contains the optimization variables as,   (      ). A vector 

   is considered optimal if it has the smallest objective value among all the vectors that satisfy the 

constraints.   

When the satisfaction of constraint has been mentioned, it is essential to understand the concept of a 

feasible set. The set of points that defined the objective and all the constraints is termed as the 

domain of the optimization problem. For instance, if   is the domain of the feasible points of    and 

  , a point       is viable if it satisfies the constraints (3.2) and (3.3).  The feasible set consists of all 

the feasible points.  

A feasible set P can be defined as equation (3.4), 

 

   {  ( )     ( )                 ( )               } 3.4 

If the problem is infeasible, then     .  

 

 

Figure 13 Feasible set obtained by linear constraints. 
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An example of feasible region has been shown in Figure 13.  

 

 

3.1.2 Local and Global minima 

 

An optimization problem can have several minimal points. A feasible point   can be 

considered as locally optimal if there is a       such that 

 

  ( )  {   ( )    ( )                 ( )               ‖   ‖    } 3.5 

 

 

The above equation (3.5), can be rewritten as,  

           ( )  3.6 

Subject to,   

  ( )                 3.7 

  ( )                       3.8 

‖   ‖      3.9 

Here   solves the above optimization problem with variable  ; this means   minimizes    over the 

points in the feasible set.  

On the other hand, the global minimum    is a point in the feasible set,   that relates to the smallest 

value of   ( ) on its feasible set.  

 

3.1.3 Affine set 

 

An affine set can be defined as a set that comprises every pairwise linear combination of 

points subject to the constraint that the coefficients are real numbers. So to keep it simple, an affine 

set is a convex set that happens to be infinite. 

 

Let's consider two different points,    and    and they are in   . The line passing through    and   : 

      (   )   3.10 
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A set         is affine if the line goes through any two separate points in   lies in  . and        .  

In other words,   contains the linear combination of any two points in  , provided the coefficients 

in the linear combination sum to one. 

This concept can be applied to more than two points. If we refer to the point of the form      

             where             , represents an affine combination of the points 

              . Using instruction from the definition of the affine set  it can be shown that an affine set 

holds every affine combination of its points: if   is an affine set,                    and         

      then the point                  also belongs to  .  

If   is an affine set and       , then the set  

        {        } 3.11 

Here   is a subspace. Suppose         and      . Then it can be written           and 

         , and therefore 

            (      )   (      )  (     )       3.12 

 

The affine hull of   can be defined as the set of all affine combinations of points in some set    

  and can be represented as:  

      {                                               } 3.13 

 

3.1.4 Convex sets 

 

A convex set contains every pairwise linear combination of points subject to the condition that 

the coefficients are real numbers that sum to 1. A set   is convex if the line segment in any two points 

in   lies in  . For instance, for any two points          and   with      , it can be written,  

 

    (   )     3.14 

 

A set is convex if each point in the set can be seen by every other point, along a free straight path 

between them. All affine set is also convex since it contains the complete line between any two 

different points in it, and consequently, also the line segment between the points. Figure 14 depicts 

simple convex and non-convex sets in   . 
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Figure 14 Convex set (left) and non-convex set (right) 

 

As similar to the affine set, if we refer a point of the form                 , where       

      , and                a convex combination of the points               . A set is 

considered to be convex if and only if it comprises all the convex combinations of its points [57].  

The convex hull of a set   is the set of all convex combinations of points in  : 

         {                                                } 3.15 

The convex hull of   is always convex.  

3.2 Convex Optimization 
 

The standard form of the convex optimization problem can be written as : 

           ( ) 3.16 

Subject to,  

                                                               ( )               3.17 

  
                   3.18 

 

According to [57], the convex problem should have the following characteristics:  

 The objective function has to be convex  

 The inequality constraint must be convex and  

 The equality constraint has to be affine.  
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In a convex optimization problem, the aim is to minimize a convex objective function over a convex 

set.  

In this work, two classes of convex problems have been considered: (i) Linear optimization problems 

and (ii) Second-order cone optimization problems.  

The problem is linear if the objective and constraint functions are affine. The general form of a linear 

optimization problem can be expressed as: 

               3.19 

Subject to,  

     3.20 

     3.21 

 

Where        and       . It is common to remove the constant from the objective function 

because it does not affect the optimal or feasible set.  

A second-order cone problem can be written in the following way:  

             3.22 

Subject to,  

‖      ‖     
                3.23 

     3.24 

 

Where       is the optimization variable,      
      and          The constraint of the 

following form is called a second-order cone constraint.  

‖    ‖        3.25 
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Figure 15 Three dimensional second-order cone shape 

 

3.4 Source of non-convexity  
 

Since we are dealing with the power system optimization problem, the sources of non-

convexity would be limited to a power system problem. More specifically, from an AC OPF 

perspective. The primary source of non-convexity is the product of the voltage variables. Also, 

another source of non-convexity in this work is the investment decision (place of order) that 

introduces binary variables and integer terms (number of storage).  

3.5 Techniques for convexification 
 

In the sections below, the convexification techniques to make the non-convex problem 

tractable have been described.  
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3.5.1 Lift and Project 
 

The lift and project relaxation technique usually used to transform the products of continuous 

variables. The product of continuous variables in a constraint makes the constraint non-linear. And in 

order to relax the constraint and make it tractable, lift and project techniques are well exploited.   

The key idea in the Lift and Project methods is to try to simulate non-linear programming using linear 

programming. Since nonlinear constraints are quite powerful: to restrict a variable x to be in {0, 1} it 

simply adds the quadratic constraint  (     )     . This suggests that nonlinear programming is 

NP-hard in general. In lift-and-project methods, it introduces the auxiliary variables for the nonlinear 

terms. 

Extra variables        , is introduced with the purpose that     signifies the product      . This is 

termed as the lift step, in which it lifts the problem to a higher-dimensional space. The idea is to 

simply project it to the variables    to obtain a solution to the original problem. Provided that,  it does 

not have a way of ensuring          in all solutions of the lifted problem, it still may end up with a 

relaxed polytope. However, this relaxation can be no worse than the original LP relaxation because of 

             ,      , ⇒        , and any point that is present in new relaxation is in the 

original one. The lift-and-project relaxation may also be used for any nonlinear terms, such as 

quadratic terms.  

 

3.5.2 Branch and Bound 
 

Branch and bound is an algorithm that commonly used for solving combinatorial optimization 

problems. These problems are naturally exponential in terms of time complexity and may need 

exploring all possible arrangements in the worst case. The Branch and Bound algorithm solve these 

optimization problems reasonably quickly. 

In the BB case, the algorithm attempts to avoid searches that are “unusable.” Assume that the 

algorithm can prove that setting     will lead to a value for the optimization quantity of at most   

while setting      will lead to a value for this quantity of at least  . If    , then there is no reason 
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even to consider setting   to  . The upper bound on   and a lower bound on   permits the algorithm 

to securely avoid searching a whole amount of the available space: all those cases where   would be 

set to  . This is the power of the method.  

3.6 Summary 
 

This chapter synthetically recalls the general theory of mathematical optimization. The notion of 

local and global optima is also described from the capacity of the numerical optimization problems. If 

the problem is non-convex and non-linear, the resulting outcome often a local optimum. The possible 

sources of non-convexity have been described. The non-convex problem needs to be convexified to 

obtain a globally optimum solution. This chapter describes the techniques briefly for convexification, 

precisely lift and project, and branch and bound.  
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Chapter 4 

Optimization under uncertainty 

4.1 Introduction  

 

Uncertainties are mostly involved in decision-making problems. In general, the energy storage 

planning in the network is associated with uncertainty from electric loads, solar, and wind power 

generation. Several factors determine the evolution of each uncertainty. For example, electrical loads 

are influenced by the level of consumers’ activities; the randomness of the solar panel or wind turbine 

output can be impacted by the radiation of the sun or the speed of the wind and the ambient weather 

[58].  

The traditional paradigm in mathematical programming is to develop a model that accepts that the 

input data is entirely known and identical to some nominal values. This method, however, does not 

reflect the influence of data uncertainties on the quality and feasibility of the model output. It is 

therefore predictable that as the data takes values different from the nominal ones, some constraints 

may not be maintained, and the optimal solution found using the nominal data may be no longer 

optimal or even viable. This chapter discusses the approaches that will be adopted during the 

development of the planning problem of storage, including the robust optimization approach for 

uncertainty consideration in the model.  

 

4.1.1 Duality theory  

The duality theory is very sophisticated and significant in the field of operations research (OR). 

In the beginning, while this theory has been developed, it was more focused on the linear 

programming problem. However, it has many applications, especially in areas such as game theory 

and non-linear optimization problems.  The concept of duality theory within linear programming has 

associated with it a related linear program called its dual. The original problem concerning its dual is 

termed the primal. In this study, the duality theory has been exploited to reformulate the 

maximization problem to a minimization one. This situation arises while considering the robust 

optimization into the deterministic optimal power flow problem.  

A general maximization problem can be considered to illustrate the notion of duality theory [59], [60]:  
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     ∑    

 

   

 

Subject to,  

∑     

 

   

                   

 

                    

 

 

 

 

 

4.1 

 

The problem formulated by equation 4.1, considers as a primal problem. The equivalent dual 

problem of the primal problem can be formulated as:  

     ∑    

 

   

 

Subject to,  

∑     

 

   

                   

 

                    

 

 

 

 

 

4.2 

 

As can be seen from the dual problem, equation 4.2, the maximization problem in primal becomes 

a minimization problem. Furthermore, the constraint with less-than-or-equal-to constraint 

transformed into a greater-than-or-equal-to constraint. The Table 4-1 illustrates the general 

transformation rules.  
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Table 4-1 General Transformation rules [59], [60], [61]. 

Primal (min) Dual (max) Primal (max) Dual (min) 

  constraints   variables   constraints   variables 

  variables   constraints   variables   constraints 

Coefficients of objective 

function 

Right-hand side Coefficients of objective 

function 

Right-hand side 

Right-hand side Coefficients of 

objective function 

Right-hand side Coefficients of 

objective function 

          

Equality constraints Unrestricted 

variables 

Equality constraints Unrestricted 

variables 

Unrestricted variables Equality constraints Unrestricted variables Equality constraints 

Inequality constraints 

 ( ) 

Variables     

(  ) 

Inequality constraints 

 ( ) 

Variables     

(  ) 

Variables     

(  ) 

Inequality 

constraints  ( ) 

Variables     

(  ) 

Inequality 

constraints  ( ) 

 

4.2 Load, PV and Wind variability  

 

A large number of problems in power system planning require that decisions be made in the 

presence of uncertainties. Uncertainties, for example, govern equipment failures, electricity demand, 

and renewable generation, etc. These uncertainty sources can be categorized into two types. The first 

is configuration uncertainty, which relates to the transmission line, generator, or other equipment 

failures, in other words, contingencies. The second category is input uncertainty that relates to the 

limited knowledge of future values of such parameters as electricity demand or generation. 

Probability distributions and scenario techniques are typical representations of uncertainty. The 

selection of uncertainty representation depends on the goal of the analysis, the level of underlying 

uncertainty, and knowledge of the underlying uncertainty [62], [63]. In this work, to have a 

comprehensive study, uncertainty source, i.e., uncertainty in load, solar, and wind generation, will be 
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studied. Considering uncertainties in power system planning is becoming more critical as renewable 

energy technologies, especially wind and solar energy, play an increasing role in the portfolio mix of 

electricity generation. A crucial difficulty in optimization under uncertainty is to deal with an 

uncertainty space, which is usually huge and might lead to extensive and computationally intractable 

optimization models. Consequently, proper techniques for modeling random variables have to be 

applied. 

 

There has been a multiplicity of methodologies developed to deal with the complexity of optimization 

problems under uncertainty [64]–[72]. Among the references, [70] and [71] are using a robust 

optimization approach. This chapter discusses the method that will be adopted in the planning 

problems with ESSs in the next chapter. The theory and methodology of these approaches will be 

presented. 

 

4.2.1 Load Variability 

 

Power systems are planned in such a way that it can manage variable electricity consumption, the 

load. In Figure 16, the hourly load profile for the year 2010 of four Nordic countries has been 

presented [91]. In Sweden, Norway, and Finland, the load is noticeably temperature-dependent. 

Loads during winter are higher than in summer, and due to electrical heating depends on the intensity 

of cold weather. Unlike wind and solar, load variations are comparative less arbitrary. However, an 

electric load can change suddenly; for instance, failure of a production line in an industry could impact 

on the overall grid. Therefore, it is essential to incorporate the load variability in the power system 

operation and planning models. Short-Term variations of load (order of seconds to hours) are 

generally small. In the longer-term (order of days to years), changes in load tend to be more 

predictable. The load follows predictable daily, weekly (weekdays and weekends), and seasonal 

patterns. For example, there is a clear diurnal pattern of morning hour up variations, late afternoon 

variations, and evening down differences. 

 

The seasonal change of daylight and changes in the residential use of electricity as the sunlight varies 

with the season can be observed in the load profiles in different seasons, which results in seasonal 
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variations of the load. The load in each period can be modeled by superimposing a random noise to 

the mean load, which has been the primary load modeling method in power system analysis. For the 

whole period considered, the usual practice in modeling the variability of the load is to use a normal 

distribution. 

  

 

Figure 16 Hourly time series of electricity consumption in the Nordic countries in 2010 [73]. 
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4.2.2 Wind variability 

 

Figure 17 Daily wind profiles of four seasons [74]. 

In Figure 17, the daily wind profiles in four seasons of a year are presented [74]. The key variance is 

that load variations are better understood than wind or solar variations. As can be observed, wind 

power output is utterly unpredictable from hour to an hour and from day to day, which may vary 

between zero and to the rated value for any period. The output of wind power could be very high 

during the night and low during daytime or vice versa. There is no clear pattern of the daily, monthly, 

weekly, or seasonal wind power. With this high variability of wind power, information from the daily 

mean value or normal distribution is insufficient to represent its stochasticity [75],[76].  

 

4.2.3 Solar Variability  

 

Another renewable resource, solar energy, is weather dependent. The intermittency of PV power 

can introduce serious challenges in grid operation/management when large PV plants are integrated 

with the grid. In Figure 18, the PV output of different patterns such as clear sky, overcast, moderate 

variability, mild and high variabilities have been depicted. As can be seen, the PV output varies with a 

different pattern. Usually, Gaussian distribution. The power output of PV models by a generic 
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distribution function such as beta, gamma, or Weibull [77], however, the modeling of PV through 

probability density function often leads to an inaccurate decision [74]. However, if enough 

information is available, it is possible to model the uncertain parameters with a known probability 

density function.       

 

 

Figure 18 PV output for different variability patterns [75] 

Based on the above discussion, it is well understood that the prediction of load profiles and the ou 

very challenging. Moreover, without considering the intermittent nature of weather-dependent 

sources could influence power system operation and planning decision. In the following sections, a 

different approach has been described to deal with uncertain parameters in the optimization 

problem.    

4.3 Stochastic Programming  
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Dealing with uncertainty in an optimization problem necessitates some knowledge about the 

uncertainty. However, there is often insufficient information about the uncertain parameters; hence, 

many methods have been developed to model the uncertainty. In stochastic programming, uncertain 

parameters are represented as random variables with an assumption that their probability 

distributions can be known or estimated. This programming approach usually leads to specific 

procedures that take into account the probabilistic aspects.  

The field of stochastic programming is concerned with optimization under uncertainty. As the name 

suggests, its modeling approaches and algorithmic techniques are inherited from mathematical 

programming, which separates it from the related fields of decision analysis, stochastic control 

theory, and Markov decision processes. Although mathematical programming is highly recognized and 

widely used, uncertainty can only be handled by sensitivity or parametric analysis. Stochastic 

programming overcomes this drawback by including uncertainty explicitly into mathematical 

programming. Essentially, a stochastic program is a mathematical program in which random variables 

represent uncertain data, and an appropriate optimization criterion is selected [78].  

George Dantzig first introduced Stochastic Programming (SP) in the 1950s. From then, significant 

development has been observed in developing algorithms for solving them. As a result, SP has 

become an optimization method in decision making, incorporating uncertainty in large-scale 

problems. In probabilistic approaches such as cumulant or point estimate method, a deterministic 

formulation is reserved, and the probability distributions represent uncertain system inputs (e.g., load 

and generation). Moreover, its optimal solution, i.e., the values of control variables is not influenced 

by the randomness of uncertain inputs, but they determine only the probability distribution functions 

of control variables. 

In contrast, stochastic programming methods deal with not only uncertain system inputs as random 

distributions but also form the stochastic formulation for the problem. That is, either the objective 

function or constraints in the optimization model are described as probability equations or 

inequalities. The randomness of uncertain system inputs directly influences the optimization result 

during the solution of stochastic problems [79]. The recourse model for stochastic programing has 

been first introduced in [80].  The concept of recourse models is taking some decisions after the 

uncertainty is known. In this case, uncertain parameters are expressed as probability density 
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functions. The decision taken by recourse models without having the complete information of the 

unknown parameters is called first-stage decisions. After full information is known on the realization 

of the arbitrary events, recourse actions are taken in later stages.  

A simple formulation of the recourse model is the two-stage stochastic optimization model. In the 

two-stage stochastic optimization model, the set of decisions is separated into two categories. The 

decision variables of the first stage or for taking here-and-now decision are the variables that have to 

be decided before the realization of uncertain variables, and when the uncertain parameters are 

known, further actions can be performed by choosing, at a specific cost, that defines the values of 

second-stage or wait-and-see variables. These decisions related to the second-stage can be 

considered as corrective measures against any infeasibility risen because of a particular realization of 

uncertain parameters. Due to uncertainty, the second-stage cost is a random variable. The goal of a 

two-stage model is to identify a first-stage decision that is well- put against all probable observations 

of arbitrary parameters. An optimal solution inclines of having the characteristic that the first-stage 

decision leaves the second-stage decision in a way to exploit useful outcomes of random events 

without unnecessary susceptibility to unfavorable outcomes.  

4.3.1 Two-stage linear stochastic programming 

 

The general form of two-stage linear stochastic programming problem has the following form:  

   
 

 ( )     (   )  

Subject to,  

          

 

4.3 

 

Here,  ( ) is the objective function for the first-stage decision, and  (   ) is the optimal value of the 

second stage problem. The second-stage problem can be written as: 
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 (   ) =       
   

Subject to,  

             

 

4.4 

 

 Here,   is a vector of first-stage decision variables,   is a vector of second-stage decision variables, 

  (       ) are the data of the second-stage problem. The expectation operator   has been 

considered at the first-stage problem concerning the probability distributions of the uncertain or 

random parameters  .   The decision of the first-stage decisions   should be made before the random 

parameter   is known. Therefore, it should be free from the random parameter. On the other hand, 

the second-stage decision variable   is made after the realization of the random parameter [81]-[82].  

4.3.2 Gaussian Distribution 

 

One of the most common probability distributions often used in representing the random 

variables is Gaussian distribution, also known as the Normal distribution. The probability density 

function of a gaussian distribution for a random variable  ̃ is [83]:   

 ( ) = 
 

  (  )
 
(   ) 

    
4.5 

  

       4.6 

  

     4.7 

where,   is the mean value of the random variable  ̃,   is the standard deviation and    is the 

variance of the random variable.  

The typical shape of a Gaussian probability density function is shown in Figure 19. This curve, also 

known as the bell curve.  
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Figure 19 Probability density function of a Gaussian distribution 

4.3.3 Weibull Distribution 

 

Another commonly used probability distribution often used to represent the approximation of 

wind speed distribution is the Weibull distribution. Figure 20 shows the graphical representation of 

the probability density function of the Weibull distribution. The formula for the probability density 

function of Weibull distribution is [84]:  

 ( ) = 
 

 
(
   

 
)(   ) 

(   ) 

  
4.8 

  

where,   represents the shape parameter,   is the location parameter, and   is the scale parameter. 
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Figure 20 Probability density function of a Weibull distribution 

 

 

 

 

4.4 Robust Optimization  

 

Robust optimization can be considered a complementary tool to stochastic optimization in order 

to incorporate uncertain parameters in the optimization problem. Unlike stochastic optimization, 

robust optimization does not require the have the probability density function of the uncertain 

parameters; instead, it needs to define the uncertainty set.  

This concept of robust optimization is not new. It was first introduced in 1973 by Soyster [85]. 

However, this approach to deal with uncertainty caught attention in the late 90s [86]. Since then, 

several studies have been performed considering robust optimization. One of the relevant studies 

that applied in this thesis work has been presented in [87]. The authors studied the robust convex 
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optimization problems with polyhedral and ellipsoidal uncertainty sets. However, the application of 

robust optimization has been extended to semidefinite and least-square problems [88],[89]. The 

budgeted uncertainty set that has been adopted in this study has been first introduced in [90]. The 

study demonstrated that using budgeted uncertainty sets can reduce the “price” of robustness. This 

concept is very relevant, while the problem deals with the planning of the power system where the 

budget is limited. A comprehensive survey has been performed considering discrete, and interval 

uncertainty set is [91]. The impact of uncertainty set in the solution and the methodology of 

reformulation to find the robust counterpart has been studied in [92]. It has been observed that the 

box uncertainty set often produces very conservative results, and the ellipsoidal uncertainty set can 

lead to a quadratically constraint program (QCP) of linear programming (LP) problem while 

reformulating the robust counterpart, that can be often intractable [93]. Keeping this information into 

consideration, in this study, budgeted or polyhedral uncertainty set has been adopted to solve the 

robust counterpart efficiently. 

4.4.1 Application of robust optimization in power system  
 

It has been discussed in the previous chapters that the importance of considering uncertainty 

in the power system operation and planning is immense. Stochastic optimization has been used to 

incorporate the uncertainty in the power system model. In order to consider the load variability, 

multistage stochastic optimization has been used in several studies [94]-[96]. The application also 

extends to deregulated electricity markets [97]. Due to the fact that having an accurate probability 

distribution of uncertain parameters is very difficult, and it could lead to a sub-optimal solution, the 

popularity of using robust optimization has increased.  

A two-stage robust optimization technique is used for the unit commitment problem [98]. It considers 

data uncertainty and attempts to obtain an optimal solution considering the worst-case uncertainty 

realization. Therefore it uses a box uncertainty set that only considers the extreme points of the 

feasible space. The solution of the robust optimization problem is guaranteed optimal for a defined 

uncertainty set [99]. A new mechanism based on robust optimization has been demonstrated in 

[100],[101]. The study showed the use of robust optimization helped in day-ahead dispatching and 

determining the reserve with high penetration of renewable energies. A dynamic DC-OPF has been 
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formulated based on robust optimization [102]. The author proposed an affinely adjustable robust 

OPF that the base-point generation is determined to serve the forecast load that is not met by 

renewables. 

Moreover, it demonstrated that the generation control through participation factors ensures a 

feasible solution for all realizations of renewables output within a predefined uncertainty set. This 

OPF formulation has been extended to include the storage on the transmission network, and the 

problem became mixed-integer linear programming (MILP) problem [103]. The result justified that 

employing robust optimization helped to minimize the storage investment cost. However, the studies 

considered a DC-OPF that often produces partial results. Moreover, the adopted box uncertainty sets, 

which is very conservative and might not be unacceptable for an efficient decision-making process. 

The conservativeness of the solution can be modified by altering the uncertainty sets [90], based on 

the level of uncertainty is desired to consider. In [104], a robust unit commitment is formulated 

considering the security criterion. The problem is then reformulated into a single-level problem using 

duality theory. In [105], the two-stage robust unit commitment problem under uncertainty from wind 

power is modeled. To solve the two-stage unit commitment problem, Bender’s decomposition 

technique has been used. A similar model is used in [106], where demand response and wind power 

considered uncertain parameters. A robust minimax regret model is proposed in [107] to solve the 

unit commitment problem under uncertainty. The proposed model minimizes the maximum regret of 

the day-ahead decision from the actual realization of the uncertain real-time wind power generation. 

A robust DC OPF is introduced in [108] using the conditional value-at-risk concept to alleviate the risk 

of wind power in the system. As an appropriate investigation of distribution systems necessitates the 

modeling of an AC OPF, [109] suggests a robust AC OPF where the second-order cone programming 

(SOCP) used to relax the AC power flow constraints. The DSO trends have been followed in [110], 

which proposed a methodology for active grid management applying robust optimization is applied to 

incorporate the spatial-temporal uncertainty. The proposed technique involves the use of a dynamic 

AC-OPF, guaranteeing a consistent solution for the DSO. Wind and PV uncertainty is developed based 

on spatial-temporal trajectories, and a convex hull method to create the uncertainty sets for the 

model is used.  
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An autonomous microgrid planning technique has been proposed in [111], since this kind of planning 

is non-convex, this study suggests SOCP relaxation. The uncertain parameters are load and 

generation. A corrective-preventive approach that is more like a heuristic technique has been used to 

solve the robust problem. The application of robust optimization also attracts in ensuring the 

reliability in operation of energy-efficient buildings [112], which considers the electric and thermal 

loads as the sources of uncertainty.  

 

4.4.2 General Formulation  
 

The data entered in the optimization problem usually are not known. This could be due to 

prediction error, implementation errors, or any measurement errors. The minimax criterion that helps 

to find the comprehensive robust solution refers: “The robust decision is that for which the lowest 

(highest) level of benefit (cost) taken across all possible future input data scenarios is as high (low) as 

possible [113]”. However, this approach often suggests a conservative solution, but with proper 

modeling of uncertainty set can overcome this conservativeness.  In the next section, two popular 

methods have discussed this description, however, it should not be considered as an exhaustive 

analysis of the robust optimization topic.  

4.4.2.1 Soyster Approach  

 

The first introduction of the robust optimization concept presented by Soyster. The general 

optimization problem formulation is as follows [114]: 

     
    

where,  

     

      

 

4.9 

In the above formulation,    is the transpose of vector  ,   is the solution vector    and   are the 

upper and lower bounds of the solution vector  . The dimension of the vectors is m, and A is a     

matrix.  

The robust formulation of the Soyster approach can be described as follows:  
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Subject to,  

∑      ∑   ̂  
    

   
 

            

                      

      

    

 

4.10 

Here, this approach considers column-wise uncertainty since    is one for each column  . The second 

term of the new inequality constraint indicates uncertainty.    has to be chosen such a way that for all 

 , the condition           holds. This approach often considers as a conservative approach 

because the obtained solution is valid, regardless the value in the given range the coefficients in the 

matrix A take, but in many applications, it can be considered as a sub-optimum which, however, 

would not be valid for any possible combination of parameters [114]. 

4.4.2.2 Ben-Tal’s approach     

 

In order to avoid the conservatism, Ben-Tal’s proposed following formulation of the robust 

form [115]: 

{   
 
              (       )   } 4.11 

where,        and      are the coefficient of the constraints,      and     are the 

coefficient of the objective function. Here   and   are the numbers of decision variables and the 

number of constraints, respectively. The data for input (       ) are varied in the uncertainty set  .  

The input data can be represented as the sum of the nominal values and the associated perturbation. 

That means, the product of the matrix of basic moves (indicated by  ) from the nominal values 

(mentioned by  )  and the perturbation vector  . The basic shift and nominal or rated values are 

defined in [115]: 

  {[ 
  
  

]  [
  
   

    
]  [

  
   
    

]        } 
4.12 
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As it can be understood from the above formulation that, Ben-Tal’s approach is no longer column-

wise, but a matrix specifies the uncertainty, that is more comprehensive and flexible.   

As it was mentioned earlier, the solution largely depends on how the uncertainty set is being defined. 

The next section briefly describes the different uncertainty sets.   

4.4.3 Definition of Uncertainty Set 

 

The application of robust optimization often prefers to have a trade-off between robustness 

against each physical realization of the uncertain parameter and the size of the uncertainty set.  

The worst-case approach mainly deals with the box uncertainty set that contains the full range of 

realizations for each element of   is the most robust choice but the most conservative as well. It 

guarantees that the constraints are never violated [93].  

The box uncertainty set can be defined as:  

  {  ‖ ‖   } 4.13 

Where the component in the perturbation vector        is considered to be varying in the 

interval between -1 to +1.  

Therefore the box uncertainty set provides a pessimistic solution. A better choice would be using a 

polyhedral uncertainty set. This set can be expressed as follows: 

  {     ‖  ‖   } 4.14 

  

where the real vector of dimension L   is the only knowledge available, namely perturbation vector, 

that varies inside a given interval. ‖  ‖ defines the continuous uniform norm of   and   is the 

measure of the uncertainty.  

This type of uncertainty set also called a budgeted uncertainty set since the level of robustness can be 

adjusted with  . It is important to properly select the budget of uncertainty   in order to have a 

reasonable solution maintaining sufficient robustness of the model. In this work, the polyhedral 

uncertainty set has been adopted since it produces a sufficiently robust solution if the budget of 

uncertainty is chosen based on the uncertainty level one wants to accept. As   increases, more 
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uncertain the considered scenario, and less risky becomes the solution. In this study, the polyhedral 

uncertainty set has been adopted since it produces a comprehensive view with different levels of 

uncertainty.  

Another commonly used uncertainty set is the ellipsoidal uncertainty set. And the general formulation 

is: 

  {     ‖  ‖   } 4.15 

  

Though the ellipsoidal uncertainty set leads to better objective value, however, it gives rise to a CQP 

for an uncertain LP, therefore, more intractable from a computational point of view. The three 

commonly used uncertainty sets have been graphically represented in Figure 21.  

 

Figure 21 Graphical representation of uncertainty sets [59] 

4.5 Solution methodology  

 

Robust optimization problem usually contains an infinite number of constraints due to imposing 

worst-case formulation and hard constraints. Therefore, it is often computationally intractable in its 

current form. Generally, there are two approaches to deal with this kind of situation [112]: (i) Robust 

reformulation technique or Analytical approach and (ii) Adversarial approach. In this thesis work, a 

systematic robust reformulation approach has been adopted.  
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4.6 Analytical approach 
 

After selecting the uncertainty set, the next step is to reformulate the robust optimization model 

to make it tractable.  The robust reformulation approach consists of three systematic steps. Below 

each step has been discussed for a polyhedral uncertainty set.  

 

4.6.1 Worst Case Reformulation  

 

First of all, it is necessary to rewrite all the constraints containing elements affected by 

uncertainty in such a way that the sum of deviations is maximized in order to account for the worst 

possible case. This is done by isolating the shift of the variable from its nominal value and determining 

the budget of uncertainty   that limits the total deviation. 

For a worst-case analysis, when taking into account the uncertainty, we consider the following 

problem: 

           

Subject to  

∑         ∑   ̃
    

        

 

   

 
4.15 

       

 

For the i-th constraint, the auxiliary problem can be formulated as follows: 

   ∑   ̃
    

   |  | 
     

Subject to  

∑|   |

    

    

 

4.16 
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|   |                   

 

4.6.2 Forming the Dual 

 

To make the problem tractable, the dual of the previous inner maximization problem is 

formed. This technique can be exploited because the optimal values of the two objective functions 

correspond due to the strong duality theorem: 

        ∑   
    

      

Subject to  

                                            ̃                              

 

4.17 

|  |      

  ,            

 

Where   ,     are shifts from the nominal values.  

4.6.3 Robust reformulation  

 

Finally, the new variables and the new constraints have to be added to the original model. 

Incorporating model into the original problem, the robust linear counterpart is formulated as: 

 

       

Subject to                 

∑     

 

   

      ∑   
    

    
 

         4.18 
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          ̃             

           

  ,            

 

The above model is immune of uncertainty and tractable.  

 

 

4.7 Adversarial approach  
 

If a tractable robust reformulation technique cannot model the robust counterpart, an adversarial 

approach can use to solve the problem. This approach first considers a finite set of scenarios for the 

uncertain parameter. In the beginning, the finite set of scenarios only considers the nominal scenario. 

And then, the robust optimization problem, which has a limited number of constraints, is solved. If 

the solution is robust feasible, then the robust optimal solution is obtained. Otherwise, it needs to 

find the scenario that is making the last found solution infeasible. In other words, searching for the 

scenario of increasing the infeasibility. When that scenario found, it has to be added in the finite set 

of scenarios and solve the robust optimization problem. This approach can also be termed as a 

heuristic approach [116].  

 

 

4.8 Summary 
 

This chapter provides a concise theoretical background of different approaches to deal with 

uncertainty in the optimization problem. The methods are stochastic optimization and robust 

optimization. Generally, stochastic optimization requires to have a probability density function of 

uncertain parameters. On the other hand, the robust optimization technique only needs information 

on the uncertainty set, which basically the bounds or the limits that represent the deviation from the 

nominal values. The different types of uncertainty sets have been defined in this chapter. The solution 
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techniques for robust optimization are mainly two: Robust reformulation and adversarial approach. 

The robust reformulation approach that has been adopted in this thesis has been described. The 

efficient reformulation of robust optimization problem becomes tractable that can be solved using 

off-the-shelf solvers.   
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Chapter 5 

Deterministic Optimal Power Flow (OPF) formulation of energy storage 

planning 
 

5.1 Introduction  

 

In 1962, Carpentier was first formulated the OPF problem. And that has turned into a major 

method for security and economic analysis in support of power system operation and control. An OPF 

problem finds the optimal solution to an objective function subject to the power flow constraints and 

other operational constraints such as generator minimum and maximum output constraints, 

transmission stability and voltage constraints, and limits on switching mechanical equipment. There 

are a number of OPF formulations with different constraints, objective functions, and solution 

methods. Formulations that use the exact AC power flow equations are known as AC OPF. Simpler 

versions that assume all voltage magnitudes are fixed and all voltage angles are close to zero are 

known as DC OPF. DC stands for direct current, but it might confuse: DC OPF is a linearized form of a 

full AC OPF, not a power flow solution for a direct current network.  

OPF algorithms are effective and efficient at investigating the active distribution networks for 

operation and planning purposes. The two main problem resolution approaches to solve the high-

dimensional, and non-convex problems include linear convex relaxation of power flow constraints and 

heuristic techniques. A heuristic two-step process with a master and a sub-problem is proposed in 

[117] for storage siting and sizing problems. This approach first adopts a heuristic algorithm to solve 

the placement and sizing problem of storage. And then, a multi-period AC OPF with multi-objective 

function takes into account network parameters such as voltage, losses in the network, and energy 

costs. Another study uses particle swarm optimization for a comprehensive sizing and placement 

algorithm [118]. An alternative heuristic method, an artificial bee colony, was used to find the optimal 

place and size of the storage system [119]. A heuristic approach has been adopted for a multi-

objective problem considering both distribution and transmission networks [120]. It should be 

mentioned that the heuristic algorithms are computationally intense and are not guaranteed to 

return a globally optimal solution [121]. A complete DG portfolio sizing and siting problem have been 
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solved using a mixed-integer linear programming approach [122]. However, the mixed-integer 

method uses a DC OPF, and the calculation time is high, and scalability to large network sizes has not 

been addressed. 

Convex relaxations of the power flow equations reduce the high computational burden and ensure a 

global optimum. The relaxation of the power flow constraints into a second-order cone has already 

been theoretically explained and detailed mathematically [123]. An impedance model was adopted to 

develop the optimal placement and sizing algorithm [124]. Optimal siting and sizing of storages 

utilizing a linearized DC power flow for transmission planning with a consideration of maximum 

investment cost are presented in [125]. However, this DC linearization is not accurate for the high R/X 

ratio in the LV distribution networks that suggest electrical losses that are non-linear. Though few, the 

use of an AC OPF for optimal placement [126] or optimal sizing [127] is also found in the literature. In 

[128] it explores a two-step procedure to size and finding an optimal location for storage using a 

relaxed power flow constraint. 

Nevertheless, this sizing procedure estimates the power and energy imbalances at PV nodes and sizes 

the battery systems to lessen these mismatches. Therefore, this methodology sizes the battery 

systems to reduce PV injection when power quality becomes an issue. The method for sizing the 

storage does not compare the cost with curtailment cost. The algorithm also does not study the 

possible benefits of storages participating in an electricity market. A SOCP OPF algorithm is then 

exploited in the second step to place the size battery systems. 

 

5.2 Deterministic AC OPF model  

 

For the sake of better understanding, this section will briefly describe the process of 

convexification that has been adopted in this study. As mentioned earlier, a second-order-cone 

relaxation has been used in this study to relax the AC OPF. In this study, the convex dist-flow 

relaxation has been extended to incorporate the binary variables for the storage placement problem. 

The SOC and CDF relaxations are considered to be equivalent [129]. 
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In this section, the fundamental power flow equations are derived. A power network is comprised of a 

variety of components such as generators, lines, buses, and loads. The network can be represented as 

a graph (B, L), where B represents the set of buses, and L represents the set of lines [130].  

The AC power flow equations are developed on complex quantities for current I, voltage V, 

admittance Y, and apparent power S, which are linked by the physical properties of Kirchhoff’s 

Current Law (KCL),  

  
 
   

  ∑    
(   )  

 5.1 

 

According to Ohm's law 

       (     ) 5.2 

 

and the definition of AC power, 

         
  

 

5.3 

Uniting these three properties yields the AC power flow equations, 

  
 
   

  ∑    
(   )  

           

 

5.4 

       
     

     
     

      (   )     5.5 

The above equations are nonlinear and non-convex that define the power flow in the network. And 

the primary source of nonconvexity is the product of voltage variables,     
 , and it is also an NP-hard 

problem.  

The general properties of AC power flow can be represented utilizing the equations 5.1 – 5.4.  

The absolute square of Ohm’s law is,  

      
  (           )(   

   
     

   
 ) 5.6 
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|   |
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The absolute square of AC power,  

      
  (     
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5.8 
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5.9 

Absolute square of voltage products 

(    
 )(    
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 (    

 )(    
 ) 5.10 

|    
 |
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 5.11 

 To calculate the line loss, it can be written the power flow equation as follows, 

           
 (    

      
      

  |  |
 
) 5.12 

 

Since the above formulation is nonconvex, to solve the formulation efficiently, it needs to convexify 

the non-convex term. Specifically, in this study, second-order cone relaxation has been derived.  

SOC relaxation utilizes two fundamental intuitions. First, it uses the lift and project technique. That 

describes as lifting the product of voltage variables     
  into a higher dimensional space or namely 

W-space. Therefore the term becomes,  

       
        5.13 

        
      (   )    5.14 

 

The above formulation is convex. However, this relaxation in W-space can strengthen by taking the 

absolute square of voltage products property,  

|   |
 
          (   )    5.15 

|   |
 
          (   )    5.16 

 

The above equation is a convex second-order cone constraint, that can be solved using off-the-shelf 

solvers.  
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5.2.1 Power flow formulation 

 

Based on the above devised second-order cone programming relaxation, in this section, the 

power flow formulation has been presented. Due to the better convergence characteristics, in this 

study, the branch flow model (BFM) has been used [131].  

The active and reactive power flows in the proposed OPF problem is formulated as in equation 

(5.17) and (5.18). 

  
 ( )    

   ( )    
    ( )   

   ( )    
    ( )     ( )    

   ( )  
  
 ( )   

 ( )  ∑        
 

     ∑        
( )  

5.17      

  
 ( )    

   ( )    
    ( )    

   ( )    
    ( )     ( )  ∑         

   
  ∑          

    
5.18 

 

Where (  
   ( )    

   ( ))  and (  
   ( )    

   ( )) define the expected RES and CHP production in 

terms of active and reactive powers,    ( ) and    ( ) are the active and reactive power delivered 

to the load connected to the n-th node,    ( )    ( )  and    ( ) are respectively the current, the 

active and the reactive power flowing in the branch from the m-th bus to the n-th one,     and     

are the resistance and reactance of the mn-th branch.   
 ( ) and   

 ( ) are the charging and 

discharging power of the storage at time t.   
 ( ) and   

 ( ) are the active and reactive power 

provided by the upstream connections (slack bus of the network). The values of   
 ( ) and   

 ( ) are 

zero except for the first node.  

The voltage drop and corresponding current flow in the branch    can be calculated by (5.2) and 

(5.3) respectively 

         (        ) 5.19 

    (
        

  
)
 

 
5.20 

The current flow on the branch    can be placed in (5.2) to obtain the following equation: 
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(     )  
  (        )(        ) 5.21 

Considering the associated voltage angle of each bus (5.21) can be written as  

    (              )    
  (        )(        ) 5.22 

From (5.22), identifying the real and imaginary parts and squaring them, the following equation can 

be derived, that can be used to obtain the voltage across the branch    

  
    

   (             )  (   
     

 )   
  5.23 

The magnitude of the current flow    
  can be obtained as 

   
  

   
     

 

   
 

5.24 

    
 ( )     

 ( )    
 ( )  5.25 

In order to effectively formulate a SOCP problem, two new variables are introduced [155], 

   ( )   ( )    
 ( ) 5.26 

Here          
  and        

  

  

5.2.2 Energy Storage system model  

 

The storage was modeled as either an apparent power injection or an apparent power load for a 

given node at a given time period.  

    ( )      (   )  (  
 ( )     

  
 ( )

  
)     5.27 

    
 ( )    

    
     ( ) 5.28 

    
 ( )    

    
     ( ) 5.29 

             ( )           5.30 



79 | P a g e  

  
 ( )    

 ( )    5.31 

where   
 ( ) ϵ [0 or 1] and   

 ( ) ϵ [0 or 1]. 

The state of charge (SoC) of energy storage devices is calculated by considering the initial state of 

charge and charging and discharging efficiencies    and    (eq. (5.27)). To restrict the maximum 

charging and the depth of discharging and for avoiding the simultaneous charging and discharging, 

the binary variables   
  and   

 , of which only one can be different from zero, have been considered in 

equation (5.28)-(5.31). Finally, eq. (5.32) is added to force the SoC to be equal at the beginning and 

the end of the considered time horizon T.  .   

                 5.32 

It is worth mentioning that during the estimation of the charging and discharging power of the 

storage unit, a quadratic term has arisen due to the multiplication of binary and integer variables. A 

decomposition technique has been used to linearize the relevant constraints by rewriting constraints 

in the form of (5.33) as in (5.34) and (5.35) to avoid the bilinear terms. 

               5.33 

                     5.34 

           5.35 

The continuous and integer variables are respectively variable in                       [         
 

5.2.3 Distributed Generator modeling 

 

The equation (5.36) -(5.37) imposed the active and reactive power curtailment associated with 

RES and CHP generators. In equation (5.36),   
             

 represents the lower bound of the active 

power curtailment of RES and CHP generators. In this study, the lower bound value of curtailment has 

been chosen as 0, which means the generators curtail all of their capacity. The upper bound, 

  
            

,  has been considered the capacity of the generators based on the expected values of 

each time step.  
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         ( )    

            
 5.36 

                             
             

   
         ( )    

            
 5.37 

 

5.3 Multi-temporal OPF with ESS 

 

The objective function (OF) of the deterministic model consists of minimizing the operational 

extra-cost that should be maintained for complying with the technical constraints. Such cost includes 

the penalty terms for RES (  
    ) and for biomass combined heat and power (CHP) curtailment 

(  
    ), and the cost of shaving the peak loads (  

   ). Furthermore, since the goal of the thesis is to 

evaluate the contribution of energy storages to the management of the network, even in uncertain 

conditions, the investment cost   
          to be sustained for the storage allocated in the network is 

added to the operational cost, as in (5.38). 

           {∑ [  
       

       
      

         ] 
   }     5.38 

Subject to voltage and current limits, power flow equations, and storage technical constraints. In 

the following, each cost term and constraints are detailed. 

 

Penalty for RES curtailment   
     

To strongly penalize the generation curtailment of RES, the cost of curtailed energy from RES due 

to network constraint violations has been monetized as twice the price of energy paid in the 

wholesale market cEN (here, 58 €/MWh, according to the average Italian energy selling price), as in 

(5.39). 

  
     ∑         

    ( )              
     5.39 

 

where   
    ( ) is the energy curtailed at the time interval t by the RES generator connected to the n-

th bus of the network. 
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Since the increment of the network, hosting capacity may be quantified via the possibly avoided 

curtailment of RES production, the smaller this term, the better the storage allocation solution. 

Penalty for biomass CHP curtailment   
     

This cost for biomass CHP curtailment is assumed as the fuel cost F [€/MWh] (here, 80 €/MWh) 

increased by 20%. This assumption allows penalizing also the CHP curtailments, with high cost as in 

(5.40).  

  
     ∑         

    ( )               
              5.40 

where   
    ( ) is the energy curtailed at the time interval t by the biomass CHP connected to the n-

th bus of the network.  

 

Peak load shaving cost   
    

Regarding the term referred to the Customers, in this thesis, only the cost of shaving the peak 

loads has been considered, by assuming that it is not possible to fully control the customer demand 

but only cut a quote of their consumption in some critical conditions. It is assumed, as the RES 

curtailment, that this curtailed energy is paid at twice the energy price cEN to penalize load curtailment 

with the higher cost, as renewable generation curtailment, as in (5.41). 

  
    ∑         

   ( )                           
          5.41 

where   
   ( ) is the energy curtailed at the time interval t to the customer connected to the n-th bus 

of the network. 

Storage investment cost   
          

The storage investment cost (   ) is a function of the size of the storage in terms of rated power and 

energy as in (5.42).  

          
           

                5.42 

where cP and cE are the specific costs of the ESS adopted technology, reliant respectively on the power 

rating   
      and the nominal capacity   

     
 of the n-th ESS located in the network (here cP =200 

€/kW and cE =400 €/kWh according to the market cost of Lithium-ion technology ).  

In order to consider this cost in the objective function (5.38) only a daily quote of SCn is added to 

the operational terms of (1), calculated as in (5.43). 



82 | P a g e  

  
          

  

   
                                      5.43 

where Ks is a capital recovery factor (here Ks=0.1, for considering 10 years as ESS lifetime).  

In this thesis, it is supposed that the storages are DSO owned and managed for relieving 

contingencies. Thus, the ESS OPEX (operational expenditures) is not considered in the optimization. 

According to this point of view, it is supposed that the minimization of the network operational cost, 

in terms of reduction of the curtailed power from RES and to loads, that would be necessary to relieve 

contingencies, represents the only incomes that allow DSO to pay back EES CAPEX (capital 

expenditures) and ESS OPEX. A term that takes into account the depreciation of the ESSs due to their 

use could be included, but in this study, this cost is assumed negligible. 

 

5.4 Summary 

 

In this chapter, the mathematical formulation of a multi-period AC OPF for energy storage 

planning in the distribution network has been derived. The complete derivation of the second-order 

cone program of an AC OPF problem is presented in this chapter. The OPF model is formulated to 

reduce the PV, Wind, and CHP curtailments and also minimize the load shedding. The storages are 

used to support the distribution network. It is assumed that DSO owns the storages, and it is managed 

to relieve contingencies. Therefore, in this model, the operational cost of storage has not been 

considered.    
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Chapter 6 

6. Robust optimal placement for energy storage system  

 

Uncertainties of distributed generation and load are comparatively high in the distribution grid in 

comparison to transmission grids. Uncertainties in daily operations can have substantial effects on the 

operational costs of distribution grids. Therefore, the flexibility of load and generation should be 

considered to optimize operational costs better and postpone network reinforcement. The robust day 

ahead robust scheduling of the flexibilities of load and DG can strengthen the daily operations. The 

robust scheduling means considering the uncertain variables such as weather conditions and other 

associated uncertainties. In this chapter, in order to validate the proposed model and approach, two 

case studies have been performed.  

  

6.1 Robust reformulation  
 

As described in chapter 4, the robust reformulation approach will only convert the constraints 

that are affected by uncertainty. In other words, the constraints that consist of uncertain parameters 

need to be formulated in such a way that the constraints become immune of uncertainty.  

Though the fundamental of this solution approach has been described in chapter 4, the reformulation 

technique for this specific application will be discussed here.  

The robust reformulation technique for distribution network planning is detailed in the next section.  
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6.2 Robust reformulation (Distribution network) 
 

Assume that all the decision variables should be considered before the revealing of the 

uncertainty from solar power, wind generation, and electric loads. In the active power balance in 

chapter 5, equation 5.17,  uncertainties   
   ( ) and    ( ) are modeled as symmetric and bounded 

variables   
  ( )̃ ,   

 ( )̃         ( )̃ . It should be mentioned here that   
   ( ) consist of solar and 

wind generations. The uncertainty takes values as in the following equation 6.1 - 6.3, 

  
  ( )̃    

  ( )     
  ( )       

  ̂      ( )  
̃

   
  ̂ 6.1 

  
    ( )̃    

    ( )     
    ( )         

  ̂        ( )  
̃

     
  ̂  6.2 

   ( )̃     ( )      ( )  ̃   
  ̂     ( )    

  ̂ 6.3 

In the robust model, the objective function, in chapter 5 (equation 5.38), is identical to the 

deterministic model. The only constraint that is affected by uncertainty is the electric power balance 

equation. The electric power in the network should be met when the worst case of uncertainties 

occurs. For the power balance equation, the worst case would occur at the maximum increase of the 

electric loads and the maximum decrease in solar and wind power generation. Therefore, the robust 

formulation becomes as in equation 6.4 – 6.7. 
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Subject to, 
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6.5 

  
  ( )    

  ( )     
  ( )     

  ( )       
  ( )       

  ( )    ( ) 6.6 
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  ( )   

  ( )    
  ( )    

  ( )      
  ( )      

  ( )    6.7 

 

Where   
  ( )   

  ( )    
  ( )    

  ( )      
  ( )      

  ( ) are the scaled deviations from the random 

electric loads, solar, and wind power generation.   ( ) is the budget of the uncertainty of uncertain 

parameters at time t that lies between 0 to 1, where 0 being the deterministic case and 1 defined the 

most robust case.  

To make tractable the above problem, the following subproblem in equation 6.8 - 6.10 need to be 

formulated into the corresponding dual problem by introducing dual variables   ( )   
 ( ), 

  
 ( )    

 ( )    
 ( )      

 ( )      
 ( ) for constraints 6.9 – 6.10.  

Subproblem:  

   {  
  ( )    

  ( )    
  ( )    

  ( )     
  ( )     

  ( )     
  ( )     

  ( )

      
  ( )       

  ( )       
  ( )       

  ( )} 
6.8 

Subject to   

  
  ( )    

  ( )     
  ( )     

  ( )       
  ( )       

  ( )    ( ) 
6.9 

  
  ( )   

  ( )    
  ( )    

  ( )      
  ( )      

  ( )    6.10 

The robust counterpart after applying the duality theory is formulated as in 6.11 – 6.15.  

      ( )  ( )    
 ( )+  

 ( )     
 ( )     

 ( )       
 ( )       

 ( ) 6.11 

Subject to, 

  ( )    
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Finally, the tractable robust model can be formulated as follows,  

           {∑[  
       

       
     

        ]

 

   

} 6.16 

Subject to   
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   ( )    
    ( )     ( )    
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 ( )   

 ( )    ( )  ( )    
 ( )+  

 ( )     
 ( )     

 ( )       
 ( )  

     
 ( )  ∑        

 
      ∑        

( ) 

 

6.17 

Moreover, the constraints 5.18 - 5.32 and 6.12 – 6.15 form the tractable problem.   

The new model does not contain any uncertainty and is formulated as a mixed-integer second-order 

conic programming (MISOCP) problem that can be solved efficiently using CPLEX that uses a branch 

and cut algorithm to find the integer feasible solution.  
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Figure 22 Flow chart of the robust reformulation solution approach 

The solution methodology can be explained by the flow chart in Figure 22.  

 

6.3 Case Study (Distribution network) 
 

The procedure has been applied to a test distribution network derived from the ATLANTIDE project 

[133]. The MV network, shown in Figure 23, representative of the industrial ambit, is constituted by 
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100 nodes, subdivided in 7 feeders supplied by a Primary Substation equipped with a 25 MVA HV/MV 

transformer. The total demand is about 30 MVA (372 GWh/year), and the total installed DG capacity 

is 34 MW (27.2 GWh/year), as a mix of wind, PV, and biomass CHP generators. 

 

Figure 23 Test distribution network 

The mathematical formulation of the RO for an AC OPF based energy storage planning tool has been 

programmed in GAMS (General Algebraic Modeling System) and solved using CPLEX 25.1.1 on a 2.30 

GHz personal computer with 4GB RAM. In this experimental study, the worst case has been 

considered when the load is high (    =1) and wind and PV generation is low (          = -1).  

For the sake of a comprehensive view, in the following, the results obtained by the application of the 

described optimization to the network of Figure 23 in twelve typical days, differentiated between 

working days, Saturdays and holidays (Sundays included), and between seasons, have been reported. 

The time horizon of 24 h of each typical day has been considered with a time step of 1 h. Three 

scenarios have been considered: the certain one (solved by the deterministic OPF) and two uncertain 

scenarios with different values of risk (      and    ), both solved with RO. Furthermore, for 
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highlighting the advantages provided by the storage systems the case of deterministic optimization 

(certain) without storage has been added to the previously described cases. 

All the buses of the test network were assumed candidates for storage placement. The available ESS 

were considered of 1.0 MW/2 h storage capacity. The efficiencies for charging and discharging were 

considered 90% each, which gives an overall roundtrip efficiency of 0.81. The initial state of charge 

(SOC) has been considered 25% of its capacity. The cost Lithium-ion technology in this study has been 

considered as €200 for each kW of rated power, €400 for each kWh of rated energy. 

In these typical days, some under-voltage conditions occur in the most distant nodes from the HV/MV 

transformer and, thus, for solving these issues, it is necessary to resort to the load peak shaving. 

Furthermore, some lines suffer for overloading depending on the non-coincidence of load demand 

and DG production. ESSs prove to be useful for reducing the curtailment of the demand and 

production as detailed in the next subsections. 

Generation and load profiles 

The generation and load profiles were simulated according to the ATLANTIDE load and 

generation daily curves, that provide for different kinds of customers (i.e., industrial, residential, 

commercial and agricultural) and for several technologies of DG (i.e., wind turbine, PV and CHP 

biomass based) the hourly consumption/production for each typical day. An amount of 22 PV systems 

was assigned to 20 nodes. The size of these systems is between 49 – 1048 kW. Node 8 has the biggest 

PV system, whereas the lowest one is connected to node 78. Node 83 comprised of two wind 

generators and CHP plants. Figure 23 depicts the nominal power of the PV, Wind, and CHP of each 

node.  

The load profiles indicated a peak load of 18.69 MW during the spring working day and 18.14 MW 

during the summer working day with an average load of 13.79 MW and 13.38 MW respectively. As an 

example, the demand and production profiles and their balance at the HV/MV interface, during the 

spring working day, are shown in Figure 24.  
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Figure 24 Load-production profiles of the whole network for the Spring working typical day 

 

6.3.1 Storage Placement 

 

The optimization results of storage position for each typical day for the three considered cases have 

been enumerated in Table 6-1.  It is worthy of mentioning that the results are substantially 

incremental: the intermediate case includes the location of the deterministic case, and the robust 

case (no risk) includes, in turn, the intermediate one. 

Table 6-1The ESS optimal positions may change from one typical day to another even for the same 

case, but the results can be summarized by considering a given solution valid for all the twelve typical 

days. In the following, it has been assumed that the placement in one bus or in a close one in two 

different typical days can be considered the same placement. In particular, for instance, the bus 83 

and the bus 84 in the deterministic case, that are the solutions for the TD6, and the TD8 respectively, 

can be considered as a unique optimal position around the bus 83. 
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On the contrary, if two busses, even close, appear in the solution of the same day they are both 

considered necessary and two ESS have to be placed on that nodes (e.g., the busses 83 and 85 in the 

results of all the cases for the TD12 or the busses 83 and 84 in the results of the intermediate and 

robust cases for the TD5). By applying these rules, the total number of ESS that has to be placed in the 

three cases are reported in the last row of Table 6-1. It is worthy of mentioning that the results are 

substantially incremental: the intermediate case includes the location of the deterministic case, and 

the robust case (no risk) includes, in turn, the intermediate one. 

Table 6-1It is worthy of mentioning that the results are substantially incremental: the intermediate 

case includes the location of the deterministic case, and the robust case (no risk) includes, in turn, the 

intermediate one. 

Table 6-1 Storage placement for each typical day for the three considered cases 

Typical Days Deterministic Case Intermediate Case Robust Case 

TD1 - Winter Working day 10, 32 10, 32, 77 10, 32, 48, 77 

TD2 - Winter Saturday  - - - 

TD3 - Winter Holiday - - - 

TD4 - Spring Working day 10 10, 34 10, 34 

TD5 - Spring Saturday 84 83, 84 83, 84 

TD6 - Spring Holiday 84 84 84 

TD7 - Summer Working day - - - 

TD8 - Summer Saturday 83 12, 83 12,32, 83 

TD9 - Summer Holiday - - - 

TD10 - Autumn Working day 12 12, 27 12, 27, 69 

TD11 - Autumn Saturday 84 84 69, 84 
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TD12 - Autumn Holiday 83, 85 83, 85 83, 85 

Total number of ESS 4 5 6 

 

In order to analyze the impact of renewables and load uncertainty on the investment of the energy 

storage in the distribution network, one of the worst-cases of renewables (PV, wind, or biomass-

based) and loads combinations are considered. The worst-case scenario considered in this work is 

when the loads have upper bound values, and the renewables have lower bound values. Three cases 

are considered by varying the loads and renewables uncertainty bounds. In the first case, the budget 

of uncertainty is zero (   ), i.e., the profiles of load and renewable generations are assumed 

following the forecasted values. In the second case, the value of budget of uncertainty for both load 

and renewables considered 0.5 (     ) that is between the zero (deterministic) and 1 (robust or 

worst case). In the third case (   ), the considered worst-case scenario has been evaluated. In this 

case, the uncertainty sets of loads and renewables are considered broader to take into account the 

possible extreme coordinates of the uncertainty set.  

The following figures compare the results of the studied cases (i.e., no control, deterministic OPF no 

storage, deterministic OPF with storage, intermediate and robust). In particular, these results are 

related to the most critical typical day, the winter working day (TD1). For the sake of clarity, the 

figures refer only to the feeder F1 that is the longest feeder of the test network depicted in Figure 23 

(i.e., the last bus is about 14.2 km far from the primary substation).  

The simulation of no control case also suggests generation curtailment (no control case refers to a 

simple load flow studies that help to understand the network conditions), especially in feeder 6. 

Furthermore, it was observed over current issues in the line of nodes 80-81, 81-82, and 82-83. It was 

observed when the biomass plant starts to operate, it creates line congestion, and thus, generation 

curtailment occurs. 

Figure 25 shows the voltage profiles occurring at 9:00 am of the winter working typical day, because, 

among other time intervals, this one was proved that experiments the greatest load curtailment; The 

allowable voltage range had been considered 0.95 p.u. as the lower bound and 1.05 p.u. as the upper 

bound of the voltage.  Figure 26 and Figure 27 show the load curtailed during the winter and autumn 
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working days respectively.  The balances of DG production and curtailed demand for winter working 

day are depicted in Figure 28, and the same information for the autumn working day is illustrated in 

Figure 29. Moreover, the ESS charging/discharging optimal profiles of one of the ESS optimal 

positioned in the feeder F1 are shown in Figure 30 (bus 10 of Figure 23). As it is evident by the results, 

all the optimizations allow to solve the under-voltage conditions occurring in the long feeder F1 

(Figure 25); the more conservative the optimization (i.e. by passing from certain to uncertain, 

intermediate and robust, optimization) the smaller the demand curtailed (Figure 26 and Figure 27); in 

the feeder F1 no generation curtailment results from the optimizations, thus the balance of 

production and demand (curtailed) is closer to the original one (no control) in the robust case (Figure 

28 and Figure 29). It is worth noting that the difference between the voltage value at the sending end 

(the MV busbar of the primary substation) is lower in the no control case than the other cases 

because the implemented model of the HV/MV transformer is very simple and strongly suffers for the 

high demand, not curtailed in the control case. These results together with the ESS operation, are 

discussed more in detail in the next subsections for each optimization case. 

 

Figure 25 Voltage profiles of feeder F1 for no control, no storage (certain deterministic OPF without 
storage) and deterministic (certain deterministic OPF with storage), intermediate and robust cases at 

9:00 am of the winter working day. 
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6.3.2 Influence of budget of uncertainty  

 

6.3.2.1 Deterministic case (with and without storage) 

 

Due to the absence of uncertainty, in this case, the load and renewables profiles will remain the 

same as the predicted values. It was witnessed that during the deterministic case with storage, at 

least four storages need to cover their requirements. The ESS optimal positions can change from one 

typical day to another, but, by summarizing the results in the twelve typical days, (Table 6-1) they 

were located two in the two lateral branches that start from the node 10 (feeder F1, positions are 10 

or 12 and 32). The third and fourth ESSs have to be located around the node 83 (feeder F5, positions 

are two among 83, 84 and 85). It is essential to observe that node 83 is the node that has the highest 

number of renewables and CHP connected; thus, it is noticeable to consider that as a privileged 

position for storages.  

The highest load curtailment was experienced during the typical day of winter working day (TD1) 

with the amount of 51.77 MWh/day for the case without storage and 30.46 MWh/day for the case 

with storage. Apart from the winter working day, the autumn working day (TD10) has experienced the 

most load curtailments that account for 32.47 MWh/day for without storage case and with the 

integration of storage, it became 14.05 MWh/day. The autumn Saturday or semi-holiday  (TD11) had 

experienced the highest generation curtailment due to the line congestion in feeder 6 (F6 in Figure 

23) with the amount 62.7 MWh/day. However, this amount has minimized to 48.2 MWh/day by 

integrating storage.      

By focusing on the feeder F1, as it is evident from Figure 25, the nodes of this feeder have under-

voltage issues in the no control case, and any optimization forces to resort load shedding (Figure 26). 

By comparing these two certain cases, is it worth noticing that if the ESSs are not available for the 

optimization (deterministic OPF no storage) much more demand has to be curtailed (i.e., 41.62 

MWh/day of the no storage case vs. 20.97 MWh/day in the case with storage for winter working day). 

In the case of autumn working day (TD10), these values become 27.33 MWh/day (for no storage case) 

and 12.18 MWh/day (for deterministic with storage case), as shown in Figure 27.    
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The daily operation of the ESS has been optimized as well as the optimal position. For instance, 

during the winter working day, the daily operation profile of the ESS located around the bus 10 is 

shown in Figure 30, and the balances of demand and production, with and without ESS. At the 

beginning of the day, the ESS started to charge, keeping the final balance of demand, DG production 

(minimal in the first hours of the day), and charging power for ESS so low to do not negatively impact 

the network operation. At around 7:00 am, when the morning peak starts, the storage discharges for 

reducing the power demand and keeping the voltage profile within the limit (Figure 25). In Figure 31, 

the optimized daily operational profiles for the autumn working day have been described. In this 

typical day, the ESS is placed around the bus 12. Similar to the operations of winter working day, the 

ESS started to charge at the beginning of the day and discharges during the demand is higher. 

Specifically, the ESS discharges from 08:00 -10:00, 12:00-21:00, as shown in Figure 31. Around 11 am 

the storage charges to avoid any violation of technical constraints due to DG production. 

 

 

Figure 26 Load curtailments experimented by the feeder F1 for the no storage (certain deterministic 
OPF without storage), deterministic (certain deterministic OPF with storage), intermediate and robust 

cases on the winter working day. 
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Figure 27 Load curtailments experimented by the feeder F1 for the no storage (certain deterministic 
OPF without storage), deterministic (certain deterministic OPF with storage), intermediate and robust 

cases on the autumn working day 

 

Figure 28 Balance of DG production and curtailed demand of the feeder F1 for the no control, no 
storage (certain deterministic OPF without storage), deterministic (certain deterministic OPF with 

storage), intermediate and robust cases on the winter working day. 
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Figure 29 Balance of DG production and curtailed demand of the feeder F1 for the no control, no 
storage (certain deterministic OPF without storage), deterministic (certain deterministic OPF with 
storage), intermediate and robust cases on the autumn working day. 

 

Figure 30 Charging/discharging profiles of ESS optimal positioned in the bus 10 of the feeder F1 for the 
deterministic (certain deterministic OPF with storage), intermediate and robust cases on the winter 
working day and balances of powers (DG, Loads and ESS) in the same cases. The no control case has 

been added for comparison. 
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Figure 31 Charging/discharging profiles of ESS optimal positioned in the bus 12 of the feeder F1 for the 
deterministic (certain deterministic OPF with storage), intermediate and robust cases on the autumn 
working day and balances of powers (DG, Loads and ESS) in the same cases. The no control case has 

been added for comparison. 

 

6.3.2.2 Intermediate case 

 

In this case, a narrow uncertainty bound is considered. The budget of uncertainty for the 

uncertain parameters has been considered as      . The optimization algorithm will look for a 

solution inside the specified uncertainty bound. From Table 6-1, by considering the simulation results 

of the twelve typical days, and assuming the most conservative hypotheses (i.e., the final result is the 

union of the results obtained for each typical day), the intermediate case suggests at least five storage 

systems to be installed: two in the feeder F1 and two in the feeder F5, as in the deterministic case, 

plus one ESS in the feeder F4. The positions of the two storages in the feeder F1 and the two in the 

feeder F5 are more or less the same of the deterministic case (F1 possible locations are the busses 10 

or 12 for one lateral and the busses 27, 32, or 34 for the other lateral, and two positions among the 

bus 83, 84 or 85 for the feeder F5). In the feeder F4, the added storage system has to be installed 

around the node 77.  
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The load shedding, in this case, is more reduced and for the critical TD1 is equal to 15.89 

MWh/day (about 25% less than the deterministic case), as shown in Figure 26. In the case of autumn 

working day (TD10), the load shedding amount accounts for 4.24 MWh/day (approximately 65% less 

than the deterministic case).  

Furthermore, it can be observed in Figure 30 that the ESS located around the bus 10 in the 

feeder F1 has a similar trend of the same ESS in the deterministic case: it charges and discharges 

mostly in the same hours for solving local contingencies. In particular, it charges when the load 

demand is low (at the first hours of the day), and finally, at the end of the day for recovering their 

initial SoC; on the contrary, it discharges in correspondence of the peaks of demand (7:00-21:00).   

The same curves shown in Figure 30 for the winter working day are reported in Figure 31 for the 

autumn working day, with the difference in the location of the storage. In the case of Autumn working 

day among two storages, one located in the bus 12 and the other one in the bus 27, have the similar 

trend: they charge and discharge mostly in the same hours for solving local contingencies. In 

particular, they charge when the load demand is low (at the first hours of the day), and finally, at the 

end of the day for recovering their initial SoC; on the contrary, they discharge in correspondence of 

the peaks of demand (7:00-10:00, 12:00-21:00).   

6.3.2.3 Robust Case 
 

The third case can be considered as the worst-case analysis. In this case, the budget of 

uncertainty for uncertain parameters is equal to 1 (   ). This budget of uncertainty allows the 

algorithm to consider the extreme points of the uncertainty set. Compared to the previous cases, the 

robust case provides six storage systems to be installed in the network. The locations of storage for 

feeder F1, F4 and F5 are similar to the deterministic and intermediate cases. However, for winter 

working day, the robust case suggests one more ESS in the feeder F2 (bus 48). On the other hand, for 

the autumn working day, the additional storage needs to be installed in the feeder F4 (bus 69). In 

Figure 30, the operation profile of the ESS located around the bus 10, resulting from the optimization 

for the feeder F1 is shown with the demand and production daily curves. The behavior of the ESS is 

similar to the one that they have in the other cases: the contribution to reducing the peaks at the cost 

of a slight increase of demand when they charge. This increase does not alter the network operation 

and does not produce any technical constraint violation, but it allows a further reduction of load 
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shedding (Figure 26). In particular, for feeder 1 in the critical TD1 the demand is curtailed of 11.10 

MWh/day (-30 % than the intermediate case). For TD10, feeder F1 experienced an amount of 3.90 

MWh/day as load curtailment (around -8% than the intermediate case).   

6.3.3 Economic Analysis  

 

In order to analyze the economic feasibility of the investments in storage systems, the 

comparison between all the cases mentioned above, included the no storage one, has been 

considered. Table 6-2 summarizes the yearly operational costs (operational expenditures – OPEX) for 

the four considered cases, the amount of load shedding and generation curtailment used for solving 

the contingencies, the CAPEX for the ESS installation referred to one year only (among the ten years 

of the ESS life duration), and, in the last column the total yearly cost: CAPEX plus the OPEX. In the no 

storage case, the yearly operational cost, of about 1480 k€, consists of penalty cost for load shedding 

that accounts for 762.90 k€/year, and penalty cost of CHP curtailment worth 717.46 k€/year. The 

peak shaving drastically decreases by using the ESS in the deterministic case (the quantity is about 

halved), and then it is significantly further reduced in the uncertain scenarios. The same behavior can 

be observed for the generation curtailment of CHP. In the uncertain cases, compared with the base 

case without storages, the resort to load shedding is much reduced (-44.8% in the deterministic case 

becomes -60.5% in the intermediate case and -73.9% in the robust one) as well as the generation 

curtailment (-22.8%, -43.9% and -66.3% in the deterministic, intermediate and robust case 

respectively). The quantities related to the generation curtailment in Table 6-2 for these four cases 

are referred only to the curtailment of CHPs. 

Consequently, a substantial reduction of the annual operational costs can be observed with 

the ESS inclusion in the deterministic case and much more in the uncertain cases (-34.2%, -52.4%, and 

-70.4%, in the deterministic, intermediate and robust case respectively). It is worth noticing that, in 

the deterministic and uncertain cases, apart from the operational costs, an additional cost factor has 

to be considered: the CAPEX for the ESS installation, split in ten years (the CAPEX of one 1.0 MW/2 h 

ESS is assumed equal). This, as expected, negatively impacts on the final cost, much strongly with the 

increment of budget or uncertainty, due to the growth of the investment costs for the increasing 

number of storages. However, the reduction of OPEX not only covers such increase, but, the final 

costs of all the cases that use the storage systems for relieving the contingencies are smaller than the 
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case without them (no storage case). In particular, the percentage of total cost reduction is smaller 

than the one calculated by considering the OPEX only (i.e., -7.2%, -18.6% and -29.9% for deterministic, 

intermediate and robust cases, respectively), but the results prove the effectiveness of the 

optimization. In fact, these results demonstrate that not only the ESS helps to reduce the operational 

cost, for relieving even the worst-case and reducing even more the resort to load shedding and to the 

generation curtailment, but also that, with the assumed hypotheses, the ESS CAPEX can be amortized 

in the ten years of their life duration.   

   Table 6-2 The daily operational cost of the test network and ESS CAPEX 

Cases OPEX 

[k€/year] 

Load shedding 

[MWh/year] 

Generation 
Curtailment 
[MWh/year] 

CAPEX 

[k€/year] 

Total cost 
CAPEX+OP

EX 

[k€/year] 

No storage 1480.36 6602.12 7502.38 0 1480.36 

Deterministic (   ) 974.47 3644.95 5791.67 400 1374.47 

Intermediate (     ) 704.64 2605.34 4208.2 500 1204.64 

Robust (   ) 437.80 1721.07 2525.22 600 1037.80 

 

 

6.4 Case Study (Transmission network)  
 

In order to understand the versatility of the proposed approach, it has been applied to a 

transmission network. The standard IEEE 14 bus system has been considered as a test transmission 

network. The objective function of storage planning consists of the daily cost of operating 

conventional generations (   
 

), the storage investment cost (   ) per interest period and penalty 

terms of wind curtailment (  
  ). Therefore, the aim is to reduce the conventional generation cost, 

storage investment, and wind curtailment.   
 

 and     are the specific costs of conventional 

generator production and the wind curtailment penalty, respectively. The storage investment cost 

(   ) is proportional to the number of storage installed (      ) at each node   and their size in 
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terms of rated power and rated energy. The total storage investment cost appears in the objective 

function multiplied by a factor    that defines the capital recovery factor of storage investment as 

explained in chapter 5. 

Furthermore, in this study, the operational cost of batteries has been disregarded, as well as the 

impact of the charging/discharging cycles on the battery's life. Actually, a term that takes into 

account the depreciation of the storages due to their use could be included, but in this study, this 

cost is assumed negligible.  

Apart from the network, generation, and storage constraints explained in chapter 5, the ramping 

capability of each conventional generator has been considered as in equation 6.19.  

        
 ( )     

 
(   )      (6.19) 

 

The IEEE 14-bus network has five wind farms connected at nodes 1, 2, 3, 6 and 8, with each having 

an installed capacity of 30MW. The wind generation profiles were simulated by assuming that the 

wind speed is Weibull distributed with a scale factor of 11.01 m/s and a shape factor of 2 m/s. The 

load profile, expressed as a percentage of the annual peak load in the original data set, was 

computed using specific multiplying coefficients for the week of the year, for the day of the week, 

and the hour of the day.   
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Figure 32 IEEE 14 bus test network 

6.4.1 Daily Operational Cost 

 

Table 6-3 summarizes the daily operational cost of the dispatch from conventional generators 

for three different scenarios. A significant reduction of daily operational cost has been observed 

with the inclusion of storage. The storage devices in this system help to avoid wind curtailment 

and reduce conventional energy usage. As described in the next section, Storage requirements for 

a robust problem would always be higher than a deterministic case. Hence, the operational cost 

would always be higher. In the deterministic model, consideration of uncertainty is avoided by 

assuming perfect information for all parameters. However, even considering the robust scenario 

that includes the worst case, the operational cost is much lower compared to the no storage case.  

Table 6-3 The daily operational cost of 14-bus network 
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6.4.2 Storage Allocation 

 

All the buses of this 14-bus network were assumed candidates for storage placement. The 

available storage devices were considered of 20MW/20MWh storage capacity. The efficiencies for 

charging and discharging were considered 90% each, which gives an overall roundtrip efficiency of 

81%. The cost Lithium-ion technology in this study has been considered as €200 for each kW of 

rated power, €400 for each kWh of rated energy and capital recovery factor,         assuming 

a planning horizon of 10 years.    

Table 6-4 The daily operational cost and energy storage allocation (with varying robustness) 

Budget of 

Uncertainty 

Number of 

Storage 

Location Average Daily 

Dispatch cost(€) 

    4 3,4,10,14 16153 

        5 3,4,9,10,14 18428 

         7 3,4,6,7,9,10,14 21057 

         8 3,4,6,7,9,10,13,14 23959 

      10 3,4,6,7,9,10,12,13,14 26741 

 

In Table 6-4, it shows how the investment of storage and daily operational cost change with 

changing the robustness. The deterministic case (   ) suggests 4 storage devices be installed in 

the network. As the budget of uncertainty increases, the number of storages increase and more 

charging/discharging cycles that leads to increased energy losses, therefore the daily operational 

cost also increases.  

Cases Daily Operational Cost (€) 

No storage 120104.39 

With Storage (Deterministic) 16153.74 

With Storage (Robust) 26741.42 



105 | P a g e  

Since different scenarios can be generated with a different budget of uncertainty, and the 

algorithm provides the storage and operational cost information, it would be useful for the 

decision-maker to take a compromised decision. The most robust case (   ) may be avoided 

since it considers the worst case, and it may be very unlikely to happen.   

6.4.3 Contribution of Storage during the peak load 

 

In order to comprehensively understand the contribution of storage in the power flow, node 4 

of Figure 32 has been selected since it is the most representative node in terms of line loading 

during the peak period. As it has shown in Figure 33, the apparent power flows reach their 

maximum capacity during the peak period. The storage helps to reduce the peak line flows. 

Besides, it helps to distribute the power flow in such a way that no branch reaches its maximum 

capability. Though the deterministic case mostly flattens the load curve, the robust case is more 

fluctuating to maintain the power flow in the limit.    

        

Figure 33 Power flow at branch 4-2(with capacity 65MVA) 
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6.4.4 Storage Activity 

 

In both deterministic and robust cases, the storage at bus 9 behaves similarly except during 

the peak period, where storage activity changes abruptly for the robust case. It is worthwhile to 

mention that in the case of planning, the robust solution is quite different from the deterministic 

one, as depicted in Figure 34. Since, the number of storage system increases in the robust 

scenario, the operation of individual storage in the network remain analogous for both robust and 

deterministic cases. Therefore, the pattern of charging and discharging is quite similar. Although 

the real change of operation due to the robust approach can be understood from the daily 

operational cost that changes with robustness.  

 

Figure 34 Storage operations at bus 9 

 

6.5 Summary 
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This chapter discusses the methodology for robust optimization application in the energy 

storage planning problem.  Two case studies have been performed to validate the method and 

justify the scalability and versatility of the proposed approach. The impact of the budget of 

uncertainty has been demonstrated. It has been observed that with the level of risk the results 

substantially change. Apart from finding the optimal location of storage, the proposed algorithm 

also optimized the operation of storage to support the network. The economic analysis indicated 

that installing storage could reduce significantly network operation costs.  
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Conclusion 

7.1 Conclusion  
 

The transition from conventional fossil fuel to sustainable energy sources as the primary 

source of energy generation requires a more innovative power system planning approach. The 

development indicates to have more integration of renewable energy generations. However, this 

integration brings new challenges that are economically expensive and jeopardize system 

reliability. Since most of the renewable generators are connected to the distribution network, it is 

imperative to include more innovative solutions such as storage and optimize the system to avoid 

expensive network reinforcement. Being said that, this thesis encounters the planning problems 

of the energy storage system in the network, considering uncertainties.  

A detailed literature review has been performed that explains the innovative solution for smart 

grid planning. The literature review also explored the existing planning methodologies and also 

the new approaches that improve the current methods. Apart from this, the survey includes 

different energy storage systems and their possible applications. The need to have an accurate 

planning tool has well-justified. It argues that DC OPF could provide an inaccurate planning 

decision whereas the convex relaxation of an AC OPF is able to find the global optima maintaining 

the computational efficiency.  

The necessity to consider the uncertainty in the planning decision has been stressed. An 

innovative approach, robust optimization, has been described. However, the challenge to include 

robust optimization in the AC OPF model addressed. To solve that, a robust reformulation 

approach has been suggested, that keeps the original model intact and solve efficiently.   

A multi-period AC OPF model is formulated for the planning of energy storage systems considering 

wind, solar, and CHP generators. The planning of ESSs in the distribution network considers 

evaluating the contribution of energy storage to the management of the network. The analysis 

found the integration of energy storage profitable since it was able to reduce the operating costs 

significantly. The application of robust optimization allows observing different cases for planning 
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decisions. Four different cases: no storage, deterministic, intermediate, and robust, provided a 

comprehensive view of the whole planning solution. It was found that with the increment of 

uncertainty, the number of storage increases. However, this also helps to reduce the load and 

generation curtailments that incur additional expense to the network operators.  

The daily operation of energy storage systems has been optimized. The charging and discharging 

operations are analogous to network issues. For instance, the storage needs to provide energy in 

the case of under-voltage incidents to keep the network stable.  

A systematic approach of applying robust optimization on an AC OPF based siting of energy 

storage devices in the electric network has been demonstrated. Since DC OPF neglects the 

transmission losses and may lead to an infeasible planning solution, the use of AC OPF in this 

study aimed at increasing accuracy in the planning.  

Since the polyhedral uncertainty set has been exploited to represent the uncertainty sets, it allows 

having the flexibility to do a trade-off between economic efficiency and conservatism. The use of 

this kind of flexibility also assisted in considering additional scenarios other than the worst-case 

scenarios that most robust optimization problems account for.   

The robust optimization approach aims at efficiently incorporating the uncertainty in the model. 

By considering the worst-case scenario only, such problems do not provide an optimal solution. 

Rather, they offer only conservative solutions that could be impractical However, the analytical 

reformulation technique helped to find the robust counterpart of the original problem that was 

solved with less computational burden using commercial solvers such as CPLEX.  

As planning includes a limited financial budget and resources, this study affords a comprehensive 

approach, which is a consideration of different situations (budget of uncertainty).  

Two case studies have been performed to validate the proposed energy storage planning tool. A 

real distribution network and an IEEE 14 bus transmission network have been considered as test 

networks. It was observed that the computational time increase significantly with the size of the 

network. The results prove that the inclusion of load and wind uncertainties in the problem 

significantly increases the operational and future planning costs of the system, which indicates the 

need to include uncertainties in planning.  
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It should be mentioned that this proposed methodology can be used with different energy storage 

technologies by considering related costs and performance parameters such as 

charging/discharging efficiencies.  

 

7.2 Future Work  
 

This thesis work brings interesting research paths for future investigation: 

 Considering SDP relaxation  

In this thesis, the SOCP relaxation technique adopted to formulate convex AC OPF. At this 

point, the efficient solver for semidefinite programming (SDP) relaxation is scarce. However, it 

would be interesting to use SDP relaxation for the same planning problem with the help of 

linearization techniques to solve it efficiently.  

 Integrating different energy storage portfolio  

There are different energy storage technologies that are mature and becoming economically 

viable. It is always essential to select the appropriate ESS technology and then the candidate 

bus. Future research could add a selection of energy storage systems in the planning problem.  

 Implementing the aging of storage devices  

A term that takes into account the depreciation of the storages due to their use could be 

included in the objective function.  

 Applying dynamic uncertainty sets 

To deal with the dynamic relationship between uncertainties across decision stages, a dynamic 

approach could be interesting to consider. This kind of uncertainty set would be able to find 

the spatial and temporal correlations in uncertain sources.  

 Adopting the adversarial approach  

This thesis examines the robust reformulation approach to solve the robust optimization 

problem. The adversarial approach to solving the same planning problem could help to have 

an extensive comparison between the two solution methodologies in terms of computational 

time and accuracy of the solution. 
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