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Role of zero point energy in promoting ice formation in a spherical drop of water
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We demonstrate that the Lifshitz interaction energy (excluding the self-energies of the inner and outer spherical
regions) for three concentric spherical dielectric media can be evaluated easily using the immense computation
power in recent processors relative to those of a few decades ago. As a prototype, we compute the Lifshitz
interaction energy for a spherical shell of water immersed in water vapor of infinite extent while enclosing a
spherical ball of ice inside the shell such that two concentric spherical interfaces are formed: one between solid
ice and liquid water and the other between liquid water and gaseous vapor. We evaluate the Lifshitz interaction
energy for the above configuration at the triple point of water when the solid, liquid, and gaseous states of water
coexist and thus extend the analysis of Elbaum and Schick [M. Elbaum and M. Schick, Phys. Rev. Lett. 66,
1713 (1991)] to spherical configurations. We find that when the Lifshitz energy contributes dominantly to the
total energy of this system, which is often the case when electrostatic interactions are absent, a drop of water
surrounded by vapor of infinite extent is not stable at the triple point. This instability, which is a manifestation
of the quantum fluctuations in the medium, will promote the formation of ice in water, which will then grow
in size indefinitely. This is a consequence of the finding here that the Lifshitz energy is minimized for a large
(micrometer-size) radius of the ice ball and small (nanometer size) thickness of the water shell surrounding the
ice. These results might be relevant to the formation of hail in thunderclouds. These results are tentative in that
the self-energies are omitted; surface tension and nucleation energy are not considered.

DOI: 10.1103/PhysRevResearch.1.033210

I. INTRODUCTION

The term Casimir effect is often used to refer to all the phe-
nomena associated with quantum fluctuations. Other closely
related terminologies are quantum vacuum energy, zero point
energy, Lifshitz energy, London dispersion forces, and van der
Waals interactions. The ideas governing the van der Waals
interactions [1] and London dispersion forces [2–4] originated
in attempts to understand the interactions of neutral, but
polarizable, molecules of gases that deviated in their charac-
teristics from the ideal gas law. Casimir and Polder [5] later
generalized these calculations to include retardation effects.
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The concept of zero point energy, on the other hand, originated
in the works of Refs. [6–8], where the focus was to understand
the blackbody radiation [9] in the limit of zero temperature. A
priori it was not expected that the theory of radiation would
have anything to do with interatomic forces. However, the
astonishing feat of Casimir [10] was in showing that London
dispersion forces, or the van der Waals interactions, were
manifestations of the zero point energy.

Casimir evaluated the energy of a planar cavity with per-
fectly conducting walls, an overly idealized system, that is
obtained from the configuration of Fig. 1 when the regions
labeled as ε1 and ε2 are perfect electrical conductors that
are separated by vacuum in the background region labeled
ε3. Lifshitz [11] generalized Casimir’s result by evaluating
the energy for a configuration of Fig. 1 consisting of two
dielectric media of infinite extent separated by vacuum. The
Lifshitz energy leads to the Casimir energy in the perfect
conducting limit of the dielectric functions for the outer
media. Dzyaloshinskii et al. [12] extended these considera-
tions for the case when the background region in the planar
configuration of Fig. 1 is another uniform dielectric medium.
The main idea underlying these groundbreaking works is that
quantum fluctuations of fields in the media can be manifested
in physical phenomena involving dielectrics. Among these,
we point out that the configurations considered by Casimir
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FIG. 1. Three planar regions described by dielectric functions ε1,
ε3, and ε2 such that the thickness of the confined medium is d .

and Lifshitz always lead to an attractive pressure (tending to
decrease the thickness of the intervening medium). In con-
trast, the configurations considered by Dzyaloshinskii et al.
allow for the pressure to be attractive or repulsive.

Elbaum and Schick [13], using the result of Dzyaloshinskii
et al. in conjunction with the existing data for the dielectric
functions for ice and water, showed that an interface of solid
ice and gaseous vapor is unstable at the triple point of water.
They showed that quantum fluctuations in the electromagnetic
fields in the media induce the formation of a 3.56-nm-thick
layer of liquid water at the interface, intervening between
solid ice and gaseous vapor. The temperature of the triple
point of water sets the scale for the energy of the system and
the associated characteristic frequency obtained by dividing
the energy by the Planck constant h̄ corresponds to the fre-
quency of the lowest Matsubara mode, equal to 2πkBT/h̄ ≈
2.5 × 1014 rad/s. The source of the instability of the interface
predicted by Elbaum and Schick was associated with the
fact that solid ice is more polarizable than liquid water for
frequencies larger than the 71st Matsubara mode ωc2 ≈ 71 ×
(2.5 × 1014 rad/s), while solid ice is less polarizable than
liquid water for frequencies smaller than ωc2 and the static
polarizability of solid ice is larger than that of liquid water.
A remarkable feature of the Elbaum-Schick effect in water
is that it necessarily requires taking retardation effects into
consideration, that is, the effect disappears in a nonretarded
analysis. This is striking because in planar configurations with
vacuum as the background medium, the retardation effects
become relevant only when the thickness of the vacuum is
hundreds of nanometers thick. However, if we introduce an
intervening medium as done in the general configuration of
Dzyaloshinskii et al., it is possible to have retardation effects
play a role at very small distances, the Elbaum-Schick effect
being a classic example. This was already anticipated by
Dzyaloshinskii et al. in the context of wetting of a wall.
Recently, in Ref. [14], this same idea was exploited to reverse
the direction of torque as the separation distance between two
anisotropic dielectric media is changed. We also verified that
the Elbaum-Schick effect does not get washed away in the
weak approximation, applicable for dilute dielectric media,
which keeps the retardation effect and drops the higher-order
terms after expanding the logarithm in the expression for the
Lifshitz energy.

It is important to emphasize that this effect cannot be
thought of in terms of van der Waals energies, which refer to
a dilute nonretarded limit. The effects we discuss in terms of

the Lifshitz theory depend crucially on non-pairwise-additive
forces and retardation. A Hamaker construction fails to cap-
ture the physics.

In this article we will evaluate the Lifshitz interaction
energy, excluding the self-energies of the inner and outer
dielectric regions. This calls for the definition of Lifshitz
energy and some clarification on what we are not achieving in
our calculations. To this end, we point out, though it has been
surely known all along, that the energy for the configuration
of Fig. 1 allows the decomposition [15,16]

E = E3 + �E1 + �E2 + E12. (1)

Here E is the total energy, E3 is the total energy when both
interfaces are moved infinitely far away from each other to
infinity such that all space is filled with medium ε3, �E1 =
E1 − E3 and �E2 = E2 − E3 are self-energies required to
create systems with single interfaces when the other interface
is moved to ±∞, respectively, and E12 is the interaction
energy between media ε1 and ε2. The interaction energy E12

is the only contribution to the total energy that depends on
the position and orientation of both media and determines the
forces between them. This decomposition is generic, irrespec-
tive of ε3 being vacuum or another medium. The importance
of the decomposition of energy in Eq. (1) is the fact that the in-
teraction energy E12 is unambiguously finite by construction if
media ε1 and ε2 are disjoint, even while the self-energies �E1,
�E2, and E3 remain divergent. Of considerable importance
is the fact that self-energies may include the surface energies
leading to surface tensions in the interfaces; however, due to
the lack of predictive power in the face of divergences, we will
not discuss these terms in this article. The interaction energy
E12 is called the Lifshitz energy and this type of energy will
be the subject matter of this article. The lack of a complete
understanding to date of the divergent expressions in energy
and omission of the associated contributions to energy will
remain a limitation of our analysis here.

Elbaum and Schick’s conclusion that quantum fluctuations
induce the formation of a thin layer of liquid water at the
interface of solid ice and gaseous vapor is valid for planar
configurations. It is then of interest to inquire if these con-
siderations change for curved geometries. In this article we
extend the analysis of Elbaum and Schick to spherical con-
centric interfaces of solid ice, liquid water, and water vapor.
We conclude that a spherical drop of water immersed inside
gaseous vapor of infinite extent is unstable at the triple point
of water. Quantum fluctuations promote the formation of solid
ice inside the drop of liquid water, which will then grow in size
indefinitely. Once the solid ice has grown sufficiently large its
surface can be approximated to that of a plane and in this limit
the results of the planar configuration apply and the liquid
water attains a thickness of 3.56 nm at equilibrium. Studies
of the phenomenon of quantum fluctuations promoting the
formation of ice in water are lacking in the literature. This
is expected to prompt a plethora of applications and studies
associated with this phenomenon, a few of which we mention
in Sec. VII.

A caveat must be stressed: We ignore the self-energies of
each phase, as well as the associated surface tensions. We
also realize that the energies involved here are very small
compared to the nucleation energies. Surface tensions for the
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two interfaces involving water here are of order 10−1 J/m2,
while the energies resulting from the Lifshitz effects we
consider are of order 10−7 J/m2. Thus we are considering
quite small but significant effects.

Even though the expressions for Lifshitz energy
(Helmholtz free energy) reported in this article are sufficiently
general, we will consistently use solid ice for region 1
described by ε1, liquid water for the background region ε3,
and gaseous water vapor for region 2 described by ε2. The
discussion in this article will be confined to the temperature
and pressure associated with the triple point of water,
273.16 K and 611.657 Pa, when solid ice, liquid water, and
water vapor can coexist.

It should be emphasized that we are considering the
quantum electrodynamic Casimir effect, due to the electrical
properties of the materials, and not the thermodynamic critical
Casimir effect [17], which is of quite a different character
and should not be relevant at the triple point, which is far
from the critical point of water (Tc = 647 K, pc = 22 MPa).
At a critical point, as opposed to a triple point, the associated
correlation length becomes infinite. Similarly, we have not ac-
counted for the plausible fluctuations in surface imperfections.
Thus, our discussion here is applicable for zero correlation
lengths in the associated fluctuations.

II. ELBAUM-SCHICK EFFECT

The Lifshitz interaction energy per unit area for the planar
configuration of Fig. 1, consisting of three dielectric media
with negligible magnetic permeabilities μi = 1 such that the
sandwiched medium has thickness d , is given by

E (d ) = h̄c

4π2a0

∞∑
n=0

′
∫ ∞

0
k dk

× ln
[
1 − rE

31rE
32e−2κ3d

][
1 − rH

31rH
32e−2κ3d

]
, (2)

where the reflection coefficients for the transverse electric (E )
and transverse magnetic (H) modes are given by

rE
i j = −

(
κi − κ j

κi + κ j

)
, rH

i j = −
(

ε jκi − εiκ j

ε jκi + εiκ j

)
, (3)

respectively, in terms of the effective refractive index

κi =
√

k2 + n2

a2
0

εi, i = 1, 3, 2. (4)

The prime on the summation in Eq. (2) indicates that the n = 0
term is to be multiplied by a factor of 1/2. We have defined
the constant

a0 = h̄c

2πkBT
, (5)

with dimensions of length, which introduces a natural scale
for distance in the discussion. The corresponding scale for en-
ergy is set by the coefficient h̄c/4π2a0 = kBT/2π in Eq. (2).
For typical dielectric materials at room temperature this dis-
tance a0 is in the micrometer range corresponding to an energy
in meV. At the triple point of water the distance a0 in Eq. (5)
is evaluated to be

a0 = 1.3342 μm (6)

and the energy h̄c/4π2a0 = kBT/2π in Eq. (2) equals
3.7463 meV.

A. Dielectric function

The permittivities εi in Eqs. (3) and (4) are functions of
the discrete imaginary frequency, the Matsubara frequency,
inc/a0,

ε j = ε j

(
in

c

a0

)
, j = 1, 3, 2. (7)

The dielectric functions for j = 1, 3, 2 for solid ice, liquid
water, and gaseous water vapor, respectively, are generated
using the damped oscillator model for the dielectric response,
following Elbaum and Schick [13],

ε(ω) = 1 +
∑

j

f j

e2
j − ih̄ωg j − (h̄ω)2

, (8)

where e j , f j , and g j are given by the values listed in Table I of
Ref. [13]. The dielectric response at zero frequency for solid
ice and liquid water are

εice(0) = 91.5, (9a)

εwater(0) = 88.2, (9b)

respectively. Data for dielectric functions were generated for
n spanning 0–3700, which were sufficient for convergence
of the Lifshitz interaction energy in the regime of interest.
The plots of these dielectric functions as a function of the
Matsubara mode number n are presented in Fig. 2. The
dielectric function at zero frequency (n = 0) for both ice and
water is huge and could not be captured on the same scale,
but we sketched the intersection as a cartoon to illustrate the
point. These plots, for solid ice and liquid water, intersect
at two points, first at nc1 between n = 0 and n = 1 and then
again at nc2 between n = 71 and n = 72. The difference in the
dielectric functions of solid ice and liquid water, which plays
a central role in our discussion, is plotted in the inset. Note in
particular how the n = 0 contribution for ice and water dwarfs
the contribution from nonzero values.

B. Model dependence of dielectric functions

The results in this article are dependent on the intersections
in Fig. 2. It is then of significance to investigate and quantify
the sensitivity of the effect, discussed by Elbaum and Schick
in Ref. [13] and by us in this article, on the fitting parameters
for the dielectric functions of solid ice and liquid water. We
content the reader by stating that the results seem to depend
on the models. The results are sensitive to small changes in
the dielectric functions for water and ice, originating from
impurities, salts, or improved models that incorporate a larger
range of optical data [18]. This is not a limitation for this
article, because the purpose of this article is to demonstrate
that the Lifshitz interaction energy for concentric dielectric
media can be evaluated easily and the actual example we work
out is only a prototype. However, our final results specific to
the configuration of ice, water, and vapor are indeed sensitive
to the model parameters of the dielectric functions and thus
are at best provisional.
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FIG. 2. Dielectric functions of solid ice and liquid water, ob-
tained using the fitting parameters used by Elbaum and Schick in
Ref. [13], plotted with respect to the Matsubara mode number n rang-
ing from 1 to 3700. The discrete frequency is nc/a0, where c/a0 =
2.2470 × 1014 rad/s. The dielectric function at zero frequency (n =
0) is huge and only sketched out for illustration, because it is hard
to capture it on the same scale. The dielectric functions of solid ice
and liquid water when extrapolated as a smooth line, even though
they are actually discrete points, intersect at two points, first at nc1

between n = 0 and n = 1 and then again at nc2 between n = 71 and
n = 72. The difference in the dielectric functions of solid ice and
liquid water is plotted in the inset, where again the n = 0 contribution
is illustrated as a cartoon.

C. Lifshitz energy for planar geometry

Using the model for the dielectric response in Eq. (8) for
the fitting parameters used by Elbaum and Schick [13], plotted
in Fig. 2, the Lifshitz energy per unit area as a function of
thickness d of a liquid water layer is plotted in Fig. 3. The
Lifshitz energy diverges to positive infinity for zero thickness
d of liquid water, implying the instability of such an interface.
That is, quantum fluctuations will induce the formation of
a thin layer of liquid water at the interface of solid ice and
gaseous vapor. The Lifshitz energy associated with two bod-
ies, say, two dielectric media separated by vacuum, diverges
to negative infinity when the two media come in contact.
Additionally, the Lifshitz energy goes to (positive) zero for
large thickness. For intermediate distances the Lifshitz energy
has a negative minimum for d ∼ 0.00 267a0 ≈ 3.56 nm. The
existence of this minimum implies that at the triple point of
water it is energetically favorable to form a layer of water at
the interface of ice and vapor. In other words, an interface of
solid ice and gaseous vapor is highly unstable because of the
positive infinite energy associated with the zero thickness of
water in Fig. 3. At equilibrium the thickness of water formed
at the interface is 3.56 nm.

The Lifshitz energy has a local maximum (positive) value
of 0.0131E0 when the thickness of water layer is d ∼
0.275a0 ≈ 0.37 μm, which is shown in the inset of Fig. 3.
Thus, it is implied that the Lifshitz energy approaches zero
from positive values of energy for a large thickness of the

FIG. 3. Lifshitz energy per unit area E (d ) for liquid water of
thickness d sandwiched between solid ice and gaseous water vapor
plotted as a function of d . The thickness d is marked in units
of a0 = h̄c/2πkBT ≈ 1.3342 μm and the Lifshitz energy per unit
area is marked in units of E0 = h̄c/4π 2a3

0 = kBT/2πa2
0 ≈ 3.3720 ×

10−10 J/m2 ≈ 2.1046 × 10−11 eV/Å2. The Lifshitz energy has a
minima at d = 3.56 nm. The Lifshitz energy also has a maxima at
d = 0.37 μm, which is shown in the inset. The Lifshitz energy tends
to zero from the positive side for large thickness and goes to positive
infinity for zero thickness.

water layer. This is consistent with the fact that at large
distances the Lifshitz energy is completely characterized by
the n = 0 contribution. This observation in principle implies
that complete melting of ice is possible if the water layer is
thicker than 0.37 μm initially. However, the Lifshitz energy
peaks here with a very tiny positive value of 0.0130E0, which
is very small relative to E0 = kBT/2πa2

0. Thus, complete
melting is unlikely due to disturbances in energy from the
surroundings.

Thus the Lifshitz energy has two extrema, a minimum
at d = 3.56 nm and a maximum at d = 0.37 μm. These
extremum points are roughly numerically estimated in terms
of the two intersection points nc1 ∼ 0.99 and nc2 = 71 in the
plots of the dielectric functions of solid ice and liquid water in
Fig. 2. We crudely estimated nc1 ∼ 0.99 by assuming a linear
interpolation between the data points at n = 0 and n = 1 in
Fig. 2. The two intersection points in Fig. 2 correspond to
frequencies

ωci = nci
c

a0
, i = 1, 2, (10)

which leads to

ωc1 = 1.80 × 1014 rad/s, (11a)

ωc2 = 1.60 × 1016 rad/s. (11b)

In terms of these critical frequencies, a rough numerical
estimate of the extremum values for the thickness of water
layer is obtained using [19]

di ∼ c

ωci

1

2
√

ε3(iωci)
, i = 1, 2. (12)

This expression leads to d1 ≈ 0.41 μm and d2 ≈ 7.83 nm,
which are comparable to 0.37 μm and 3.56 nm, respectively.
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We have been unable to find a more accurate analytical
estimate, because we are dealing with a discrete function of
the Matsubara mode numbers n in addition to the fact that the
zero mode behaves significantly differently from other modes
[19].

D. Incomplete surface melting

Melting of a solid into liquid at melting point Tm is
typically explained as a phase transition in thermodynamics.
Another explanation proposed by Weyl [20] and theorized by
Fletcher [21] rests on a microscopic theory in which the onset
of melting happens at temperatures lower than Tm. The pro-
posal is that the energy of the ice or water surface is lowered
when the dipole moments of the water molecules orient in as-
sembly. This leads to the formation of an electric double layer
at surfaces of water and ice. The electrostatic interactions of
such surfaces, neglecting dispersion forces completely, lead
to a power-law behavior of d ∼ t−1/3, where t = 1 − (T/Tm),
T < Tm, for the thickness d of liquid water formed on the
surface of ice at temperatures slightly below the melting point.
Thus, as the temperature approaches the melting point a thin
layer of liquid water is formed at the surface which then grows
to infinite thickness as the temperature approaches the melting
point. These conclusions remain mostly the same even when
nonretarded dispersion interactions are taken in account. This
is called (complete) surface melting and seems to be a well
studied microscopic explanation of melting. However, data
from different experiments are not in concord with the specific
power-law behavior mentioned above [22–24].

The implication of Elbaum and Schick’s results in Ref. [13]
is that the surface melting for ice is incomplete. That is, the
thickness of the water layer remains finite as the temperature
approaches the melting point. It was hard to confirm this
accurately in the experiment by Elbaum et al. [25]. The chal-
lenge seems to be with determining the triple point of water
precisely and with the formation of patches of water drops
[23] which probably could be associated with an unevenly flat
surface of ice. We will explore the curvature dependence of
Elbaum and Schick’s results in Sec. VI. Experimental confir-
mation of incomplete surface melting remains open [24].

III. LIFSHITZ ENERGY FOR CONCENTRIC
SPHERICAL GEOMETRY

The Casimir energy for a perfectly conducting spherical
shell was first calculated by Boyer, which surprisingly had the
opposite sign relative to the Casimir energy of two parallel
plates [26,27]. The calculation was attempted for a dielectric
ball in Ref. [28]. However, irrespective of the particular regu-
larization procedures used in the calculation, the a2 heat ker-
nel coefficient is nonzero, which seems to suggest that there is
no way to make the Casimir energy of a dielectric ball finite,
except for isorefractive cases (εμ = 1) [29]. The understand-
ing of this divergent phenomenon associated with a single
spherical interface is generally accepted to be unsatisfactory
[28,30]. These calculations evaluated the term �E1 in Eq. (1)
for a spherical interface, with the background region chosen
to be a homogeneous medium, which we pointed out gives
a divergent contribution. Here we calculate the interaction

FIG. 4. Three concentric spherical regions described by dielec-
tric functions ε1, ε3, and ε2, separated by the interfaces at radii a and
b = a + d .

energy E12 in Eq. (1) for the concentric spherical configuration
in Fig. 4. The interaction energy E12, by construction, is
devoid of divergences and thus can be evaluated unambigu-
ously. The concentric spherical configuration of Fig. 4, for
the case when the inner and outer regions consist of identical
material and the intervening region is vacuum, ε1 = ε2 and
ε3 = 1, was studied first by Brevik and co-workers [31–33].
However, the numerical estimates reported there were not
satisfactory, probably because the necessary convergence was
not achievable with the computational power in the computers
of those days. Our expression for the interaction energy here
is a straightforward generalization of that in Refs. [31–33],
obtained by keeping all three regions in Fig. 4 distinct. In
addition, we report comprehensive numerical estimates for the
interaction energy for the particular example of ice, water,
and vapor, which can be easily reproduced for other cases
using the methods prescribed here. The interaction energy
for concentric spherical configurations constructed from δ-
function spheres was reported in Ref. [34], which is different
from the study here. We emphasize that we are not including
the self-energies of the interior and exterior regions, which
lead to an unknown systematic error.

For the spherical geometry of Fig. 4 with interfaces at radii
a and b, the Lifshitz energy E (a, b) is given by [34,35]

E (a, b) = kBT
∞∑

n=0

′
∞∑

l=0

(2l + 1)

× ln
[
1 − rE

31(a)rE
32(b)

][
1 − rH

31(a)rH
32(b)

]
, (13)

where the various scattering coefficients are given by

rE
31(a) = ζ3il (ζ1a)̄il (ζ3a) − ζ1 īl (ζ1a)il (ζ3a)

ζ3il (ζ1a)k̄l (ζ3a) − ζ1 īl (ζ1a)kl (ζ3a)
, (14a)

rH
31(a) = ζ1il (ζ1a)̄il (ζ3a) − ζ3 īl (ζ1a)il (ζ3a)

ζ1il (ζ1a)k̄l (ζ3a) − ζ3 īl (ζ1a)kl (ζ3a)
, (14b)

rE
32(b) = ζ2kl (ζ3b)k̄l (ζ2b) − ζ3k̄l (ζ3b)kl (ζ2b)

ζ2il (ζ3b)k̄l (ζ2b) − ζ3 īl (ζ3b)kl (ζ2b)
, (14c)

rH
32(b) = ζ3kl (ζ3b)k̄l (ζ2b) − ζ2k̄l (ζ3b)kl (ζ2b)

ζ3il (ζ3b)k̄l (ζ2b) − ζ2 īl (ζ3b)kl (ζ2b)
, (14d)

in terms of the shorthand notation

ζi = n

a0

√
εi

(
in

c

a0

)
, i = 1, 3, 2. (15)
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The temperature-dependent constant a0 that appears in
Eq. (15) was introduced in Eq. (5). The reflection coefficients
are expressed in terms of the modified spherical Bessel func-
tions il (t ) and kl (t ) that are related to the modified Bessel
functions by the relations

il (t ) =
√

π

2t
Il+1/2(t ), (16a)

kl (t ) =
√

π

2t
Kl+1/2(t ). (16b)

In particular, il (t ) = i(1)
l (t ), the modified spherical Bessel

function of the first kind, and kl (t ) are a suitable pair of
solutions in the right half of the complex plane [36,37].
The respective functions with an overbar are the generalized
derivatives of the modified spherical Bessel functions given
by

īl (t ) =
(

1

t
+ ∂

∂t

)
il (t ), (17a)

k̄l (t ) =
(

1

t
+ ∂

∂t

)
kl (t ). (17b)

Using the Wronskian for the modified spherical Bessel func-
tions

kl i
′
l − ilk

′
l = π

2t2
, (18)

where primes denote differentiation, we have the relation

kl īl − il k̄l = π

2t2
. (19)

The reflection coefficients are frequently expressed in terms
of the modified Riccati-Bessel functions

sl (t ) = t il (t ), (20a)

el (t ) = 2t

π
kl (t ), (20b)

whose derivatives can be expressed in the form

s′
l (t ) = t īl (t ), (21a)

e′
l (t ) = 2t

π
k̄l (t ). (21b)

For completeness, we have provided the derivation of the
Lifshitz energy for concentric spherical configurations, given
in Eq. (13), in the Appendix.

IV. ASYMPTOTIC EXPANSIONS

Consider the scenario in which we know the dielectric
functions in Eq. (7), for the three media in Fig. 4, as a function
of Matsubara mode number n to a reasonable accuracy. The
computation of the interaction energy in Eq. (13) then, in prin-
ciple, involves the evaluation of the sums over the Matsubara
mode number n and the angular momentum mode number l .
Both these sums contribute negligibly for large values of n
and l . However, the reflection coefficients in Eqs. (14) involve
ratios of differences and these differences get exceedingly
small for larger values of l . Thus, one has to keep an excessive
number of significant digits in the evaluation of the Bessel
functions, which is computationally expensive. This difficulty

is avoided by expressing the modified Bessel functions using
(uniform) asymptotic expansions for large order [36,37].

The uniform asymptotic expansions for the modified spher-
ical Bessel functions are written using the definitions

ν = l + 1

2
, z = t

ν
, p(z) = 1√

1 + z2
, (22)

and

η(z) =
√

1 + z2 + ln

(
z

1 + √
1 + z2

)
(23)

such that

il (t ) ∼
√

p

z

eνη(z)

2ν
Aν (p), (24a)

kl (t ) ∼ π

√
p

z

e−νη(z)

2ν
Bν (p), (24b)

īl (t ) ∼
√

1

pz3

eνη(z)

2ν
Cν (p), (24c)

k̄l (t ) ∼ −π

√
1

pz3

e−νη(z)

2ν
Dν (p), (24d)

where

Aν (p) ∼
∞∑

k=0

uk (p)

νk
, (25a)

Bν (p) ∼
∞∑

k=0

(−1)k uk (p)

νk
, (25b)

Cν (p) ∼
∞∑

k=0

vk (p)

νk
+ p

2ν

∞∑
k=0

uk (p)

νk
, (25c)

Dν (p) ∼
∞∑

k=0

(−1)k vk (p)

νk
− p

2ν

∞∑
k=0

(−1)k uk (p)

νk
(25d)

are expressed in terms of polynomials generated by

uk+1(p) = p2(1 − p2)

2
u′

k (p) +
∫ p

0
dq

1 − 5q2

8
uk (q), (26a)

vk+1(p) = uk+1(p) + p(p2 − 1)

[
uk (p)

2
+ pu′

k (p)

]
, (26b)

with u0(p) = 1 and v0(p) = 1. The use of ∼ in place of an
equals sign in the equations suggest that these involve asymp-
totic series and the sums do not converge. The fractional error
associated with using the uniform asymptotic expansions for
the modified spherical Bessel functions in Eqs. (24) is plotted
in Fig. 5 for order l and argument t . The fractional errors are
small and the largest error is only 1% for l < 2 and t < 3.
Nevertheless, these errors could add up to significant levels
in the computation of energy. This accumulation of error can
be avoided in some cases by keeping more terms in inverse
powers of ν in the sum on k, which is again computationally
expensive.
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Using the uniform asymptotic expansions for the modified
spherical Bessel functions in Eqs. (24), we derive the corre-

sponding expansions for the reflection coefficients in Eqs. (14)
to be

rE
31(a) ∼ − 1

π
e2νη(ζ3a/ν) p1Aν (p1)Cν (p3) − p3Cν (p1)Aν (p3)

p1Aν (p1)Dν (p3) + p3Cν (p1)Bν (p3)

∣∣∣∣
pi=p(ζia/ν)

, (27a)

rH
31(a) ∼ − 1

π
e2νη(ζ3a/ν) ζ 2

1 p1Aν (p1)Cν (p3) − ζ 2
3 p3Cν (p1)Aν (p3)

ζ 2
1 p1Aν (p1)Dν (p3) + ζ 2

3 p3Cν (p1)Bν (p3)

∣∣∣∣
pi=p(ζia/ν)

, (27b)

rE
32(b) ∼ πe−2νη(ζ3b/ν) p3Bν (p3)Dν (p2) − p2Dν (p3)Bν (p2)

p3Aν (p3)Dν (p2) + p2Cν (p3)Bν (p2)

∣∣∣∣
pi=p(ζib/ν)

, (27c)

rH
32(b) ∼ πe−2νη(ζ3b/ν) ζ

2
3 p3Bν (p3)Dν (p2) − ζ 2

2 p2Dν (p3)Bν (p2)

ζ 2
3 p3Aν (p3)Dν (p2) + ζ 2

2 p2Cν (p3)Bν (p2)

∣∣∣∣
pi=p(ζib/ν)

. (27d)

The zero Matsubara mode n = 0 requires special consideration and is evaluated to be

rE
31(a)rE

32(b)|n=0 = 0, (28a)

rH
31(a)rH

32(b)|n=0 = −l (l + 1)
(a

b

)2l+1 ε1(0) − ε3(0)

lε1(0) + (l + 1)ε3(0)

ε3(0) − ε2(0)

lε2(0) + (l + 1)ε2(0)
. (28b)

Using these uniform asymptotic expansions for large order
for the reflection coefficients for nonzero Matsubara modes
in Eqs. (27) and the explicit evaluation of the zero Matsub-
ara mode in Eq. (28), in the expression for Lifshitz energy
in Eq. (13) we successfully circumvent the difficulty posed
with numerically evaluating quantities that involve very small
numbers.

FIG. 5. Contour plot of fractional error f in estimating modified
spherical Bessel function il (t ) using uniform asymptotic expansions.
The errors are less than 1% for l < 2 and t < 3; however, these errors
add up when we sum many terms.

V. NUMERICAL PROCEDURE

The series in l and m are slowly converging even after
employing uniform asymptotic expansions. We do not use any
existing algorithms to speed up this slow convergence. We
simply sum the terms. Nevertheless, we report the procedure
in detail here for the sake of reproducibility. The numerical
work presented here is not state of the art, and can be im-
proved.

Our primary purpose in this article is to demonstrate that
the Lifshitz energy for concentric spherical configurations can
be computed easily. To this end, as an example, we consider a
configuration consisting of solid ice inside liquid water inside
water vapor in the configuration of Fig. 4.

To compute the numerical value for the Lifshitz energy in
Eq. (13) we use the uniform asymptotic expansions for the
reflection coefficients given in Eqs. (27), instead of the exact
expressions for the reflection coefficients in Eqs. (14). This
involves a sum on the Matsubara mode n, a sum on the angular
momentum mode l , and multiple sums on k to generate the
energy. All these sums run from zero to infinity, but only
an optimal number of terms are to be included to avoid
the unavoidable divergence associated with these asymptotic
series. Further, numerical computation cannot sum infinite
terms, and dropping terms after an upper limit in the sums
introduces only an acceptable error. In this article we will
obtain convergence and confidence in the numerical estimate
up to three significant digits.

We will globally at the outset set an upper limit in sums
on k of inverse powers of ν = l + 1/2 for the asymptotic
expansions to be kmax = 3. It will be convenient to similarly
set a global upper limit for the sum on the Matsubara mode
number nmax and for the sum on the angular momentum
mode lmax. However, we learned that the required upper limit
varies widely for the different combinations of the radii a
and b. For example, for the case when the inner radius of
the sphere is large and the difference in the outer and inner
radii is small, the sums on n and l in the interaction energy
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TABLE I. Numerical data for the Lifshitz interaction energy E (a, b), in Eq. (13), in units of E0 = kBT/2π = h̄c/4π 2a0, for three concentric
dielectric regions, demarcated by radii a and b = a + d , are cataloged with the respective lmax and nmax to obtain convergence and confidence
in the necessary significant digits. Here a0 = h̄c/2πkBT , which at T = 273.16 K yields a0 ≈ 1.3342 μm and E0 = kBT/2π ≈ 6.0023 ×
10−22 J ≈ 3.7463 meV. The numbers displayed in the tiny font in each box denote (lmax, nmax, time, significant digits), for the ice-water-vapor
configuration. The maximum values for l and n are the values needed for the energy values to converge to the required significant digits. The
time displayed is that for a typical personal computer.

1 a0
(1.33 µm)

+1.99 × 10−10

(2,40,<1s,3)

+1.95 × 10−7

(2,40,<1s,3)

+1.55 × 10−4

(9,40,<1s,3)

+0.0416
(60,40,2s,3)d

0.1 a0
(133 nm)

−4.89 × 10−7

(2,40,<1s,3)

−3.40 × 10−4

(2,40,<1s,3)

−0.0532
(9,40,<1s,3)

−3.68
(60,40,2s,3)

0.01 a0
(13.3 nm)

−1.32 × 10−3

(2,350,1s,3)

−0.401
(6,350,2s,3)

−34.8
(45,350,12s,3)

−3.19 × 103

(350,350,2m,3)

0.005 a0
(6.65 nm)

−4.19 × 10−3

(2,700,1s,3)

−1.18
(10,700,6s,3)

−107
(100,700,1m,3)

−1.02 × 104

(700,700,7m,3)

0.001 a0
(1.33 nm)

+0.143
(6,1400,7s,3)

0.001 a0
(1.33 nm)

+9.1
(50,1500,1m,2)

0.01 a0
(13.3 nm)

+8.2 × 102

(400,1500,10m,2)

0.1 a0
(133 nm)

+8.2 × 104

(4000,2000,150m,2)

1 a0
(1.33 µm)

a

of Eq. (13) need to be evaluated at least until nmax = 2000
and lmax = 6000 to obtain convergence and confidence in
the data up to three significant digits. Computationally this
amounts to adding nmax × lmax = 12 × 106 terms in Eq. (13).
A typical personal computer takes about 1 ms to evaluate
one term in Eq. (13). To be specific, we used a computer
with processor Intel Core i7-4700MQ CPU @ 2.40 GHz × 8,
7.6-GB memory, which amounts to about 100 GFLOPS, and
used Wolfram Mathematica [38] for evaluation. Mathematica
was preferred over other programs because of the convenience
to invoke libraries of special functions. Thus, it takes a total
of 3 h to evaluate the energy for one particular configuration.
The estimate for this time reduces by half if the demand in
accuracy is brought down to two significant digits. To study
the dependence of the energy on the two radii one needs to at
least compute the energy on a 10 × 10 array in the two radii.
This amounts to 300 h of computation. Though it is not im-
practical to proceed, such long computation hours makes the
analysis tedious and inconvenient. Nevertheless, the difficulty
in calculating the energy for a particular configuration is not as
arduous as portrayed above. One makes the observation that
the computational burden is considerably lower because the
values of nmax and lmax needed for the necessary accuracy are
significantly smaller for spherical configurations of smaller
radii.

Our strategy was to catalog the nmax and lmax for all possi-
ble combinations of the radii. This involves multiple runs to
verify the convergence. However, once cataloged it helps the
analysis tremendously, because only a small sector in the array
is expensive in terms of computational power. The catalog
for the ice-water-vapor configuration has been prepared in
Table I. We observe that the time taken to evaluate the energy
for a particular configuration is most often negligible. It is
only when the inner radius is large and the difference in the
radii is small that the time is painstakingly long. The energies
in Table I are reported in units of E0 = kBT/2π = h̄c/4π2a0,

which is about 3.7463 meV at the triple point of water, T =
273.16 K. We illustrate the convergence of the energy for
particular values of a and d as a function of the choice in
lmax in Fig. 6. The convergence in energy is computationally
expensive in the bottom right corner of the chart in Table I.

We made checks on the energies evaluated using uniform
asymptotic expansions for the modified spherical Bessel func-
tions by comparing them with values for energy obtained us-
ing the Bessel functions defined in Mathematica. Remarkably,
to within three significant digits, the two results are identical
for the parameter space used in this study. We verified this
extensively for most of the parameter space, except for the
few cases with large radii of ice and small thickness of water

FIG. 6. Convergence of energy E (a, b) to a fixed value, during
its computation. This is illustrated by plotting the fraction f (a, d ) as
a function of the number of terms lmax in the sum on l . Recall that
b = a + d . The numbers in the labels for the plot are in units of a0.
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for which case the uniform asymptotic expansion fares very
well.

It should be emphasized that the lmax and nmax presented
in Table I are specific to the ice-water-vapor geometry. We
expect the specific numbers to be different for another set
of dielectric materials. However, we expect the pattern to be
similar. That is, for all materials larger inner radii and a small
difference in radii will require the most computational effort.

VI. ELBAUM-SCHICK EFFECT IN SPHERICAL
GEOMETRY

In Sec. II we summarized how Elbaum and Schick in
Ref. [13] showed that at the triple point of water, at equi-
librium, it is energetically favorable to form a 3.6-nm-thick
layer of liquid water at a planar interface of solid ice and
water vapor. We will use dmin(∞) to denote this thickness.
This is a delicate effect due to the fine differences in the
frequency-dependent polarizabilities of ice and water and
their interplay in the presence of quantum fluctuations. It is
also a relativistic effect in the sense that the effect is washed
out if the analysis does not accommodate retardation. We
inquire if the formation of a thin layer of water at the interface
of ice and vapor will be disturbed if the ice-vapor interface
is curved. In Sec. II D we pointed out that difficulties in
the experimental verification of incomplete surface melting
in the experiment by Elbaum et al. [25] could be due to an
unevenly flat interface. Thus, the curvature dependence of the
incomplete surface melting is desired.

We investigate if it is energetically favorable to form a layer
of water on the surface of solid ice in the shape of a sphere of
radius a when it is immersed in water vapor of infinite extent
at the triple point of water. We find that a ball of solid ice at the
triple point of water, at equilibrium, permits a thicker layer of
water to be formed on its surface, relative to the perfectly flat
surface analyzed by Elbaum and Schick. In Fig. 7 we plot the
thickness of liquid water at equilibrium dmin(a) as a function
of the radius of the ice ball a. We observe that a ball of ice
of 20 nm radius is large enough that in this context we can
assume its surface to be sufficiently flat for it to permit a water
layer of thickness dmin(∞) to within 1% accuracy, with the
strength of instability decided by a binding energy of about
−5E0. Here E0 = kBT/2π is a measure of the quantum of
energy available in the heat bath surrounding the system.

In Fig. 7 the smallest radius of the ball of ice we consider
is 1.33 nm (0.001a0). In the range of radii we have studied,
the thickness of the water layer formed at equilibrium mono-
tonically increases for smaller radii of ice. Extrapolating this
behavior to zero radii of ice, we conclude that a water layer
of infinite thickness is favored for small radii. The divergence
associated with a → 0 is very weak and consistent with our
heuristic estimate dmin = − ln(ω̄c2a)/ω̄c2 for a 	 d , where
ω̄c2 = 2ωc2

√
ε3(iωc2), which is similar to the estimate for the

planar case in Eq. (12). In Fig. 7 we also mark the energies
associated with each configuration. We observe that for radii
of ice less than 10 nm the energy associated with the strength
of instability is less than the quantum of energy available in
the surrounding heat bath, which means that for these cases
the disturbances in the surroundings will disturb the system
and the conclusions of Fig. 7 are not relevant. To gain better

FIG. 7. For a spherical shell of water, immersed in vapor and
enclosing a ball of ice of radius a, at the triple point of water,
we plot the thickness dmin(a) of the shell of water that minimizes
the Lifshitz energy for fixed a. The equilibrium thickness of the
water layer dmin(a) is the least for large ice balls and increases for
small radii of ice balls. The equilibrium thickness of water for the
planar configuration dmin(∞) is achieved to within 1% for ice ball
of radius 20 nm. The corresponding Lifshitz energy at equilibrium is
marked on the plot. The Lifshitz energy is minimum for large radii
of ice. For reference, a0 ≈ 1.33 μm at the triple point of water and
E0 = kBT/2π = h̄c/4π 2a0 ≈ 6.0023 × 10−22 J ≈ 3.7463 meV.

insight into the preference in energy, we plot the Lifshitz
interaction energy E (a, b) as a function of both the radii of ice
a and the thickness of the water layer d as a three-dimensional
plot in Fig. 8. We also overlap the curve representing dmin(a)
in Fig. 7 as a red curve on the energy surface in Fig. 8 for
visual assistance. This curve mostly remains constant in d

FIG. 8. Lifshitz interaction energy E (a, b), in Eq. (13), in units of
E0 = kBT/2π = h̄c/4π 2a0, for three concentric dielectric regions,
demarcated by radii a and b = a + d , such that inner medium repre-
sents solid ice, the intermediate medium is liquid water, and the outer
medium is water vapor, plotted as a function of a and d = b − a.
Here a0 = h̄c/2πkBT is about 1.3342 μm at the triple point of water.
The red curve on the energy surface represents the thickness of water
layer at equilibrium dmin(a), plotted in Fig. 7 separately.
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in the scale of Fig. 8 and starts diverging for small radii of
ice. Slices in the three-dimensional plot of Fig. 8 representing
fixed a are energy plots whose minima are dmin(a).

A. Promotion of ice formation in water

In Fig. 8 it is clear that the configuration of minimum
energy is for a large radius of ice with a water layer having
a thickness dmin(∞). We also conclude that a spherical drop
of water inside an infinite extent of vapor with no ice inside
the water has zero interaction energy, which can be concluded
by extrapolating the energies on the curve in Fig. 7. This
verifies that the Lifshitz interaction energy of Eq. (13) is zero
for a = 0, or for d → ∞. Thus, a drop of water surrounded
by vapor at the triple point of water is not stable. If ice
is nucleated, the effects we consider will help promote the
growth in size of the ice region indefinitely with the water
layer thickness approaching dmin(∞).

An extrapolation leads to the hypothesis that zero point
energy could induce nucleation of ice in water. This is a re-
markable proposition, because the common wisdom is that ice
nucleation requires an impurity like dust or soot or bacteria.
The suggestion is that quantum fluctuations could contribute
to inducing nucleation of ice even in the absence of impurities.
However, the inward directed tension force on a small sphere
is strong, and considerable energy is required in order to make
nucleation possible. (For a recent article on nucleation, one
may consult Ref. [39] and references therein.)

B. Superheating and supercooling

Superheating of solids is the suspension of melting above
the melting point. Stranski [40] argued that since superheating
of solids is rarely observed, the surface of solids must be
wetted by its liquid phase. This argument is consistent with
the idea of surface melting.

Supercooling of liquids is the absence of freezing below
the melting point. In striking contrast, supercooling of liquids
is very common. It is well known that supercooled water can
exist as small droplets in clouds. This seems to be consistent
with the conclusion that zero point energy alone is insuffi-
cient to induce nucleation of ice in a water drop. However,
the promotion of ice growth by the Lifshitz effect is more
pronounced for a big drop of water because of the relatively
large binding energy in Fig. 8, while for small drops of water
of 10 nm and below the binding energy is too low and less than
the quantum of energy available in the surrounding heat bath.
Thus, it seems it should be easier to supercool small droplets
of water and harder to supercool big drops of water, which is
consistent with the observations.

C. Proximity force approximation

It is often convenient to approximate the Lifshitz energy
for the configuration of concentric spheres with the cor-
responding Lifshitz energy for planar configuration scaled
with a suitable area. This is often called the proximity force
approximation and is usually a good approximation when the
thickness of the intermediate medium is small compared to
the radii of the inner and outer spheres. In Fig. 9 we plot the
fractional error in using this approximation. This error is small

FIG. 9. Fractional difference in the Lifshitz energy E (a, b) per
surface area 4πa2 of the inner sphere of radius a of a shell of water
of thickness d engulfing an ice ball of radius a, with respect to the
Lifshitz energy per unit area E for a planar geometry, plotted as a
function of a and d . The fractional error f = 1 − E (a,b)

4πa2
1
E is plotted.

The plots verify the general understanding that the Lifshitz energy
per unit area for a spherical configuration approaches that of a planar
configuration for small thickness d .

for large radii of ice and small thickness of water and the error
becomes significant for small radii of ice and large thickness
of the water layer.

VII. CONCLUSION AND OUTLOOK

In this article, we successfully demonstrated that the Lif-
shitz energy for the concentric spherical configurations in
Fig. 4 can be computed with relative ease. As an application
we considered the case of solid ice enclosed by liquid water
inside water vapor at the triple point of water and thereby
extended the analysis of Elbaum and Schick in Ref. [13] to
spherical interfaces. Our study shows that a drop of water
surrounded by vapor, with no ice inside the water, is unstable
and quantum fluctuations promote the formation of ice in the
drop of water at the triple point of water. It is energetically
favorable for the ice to grow indefinitely inside the drop
of water while a 3.6-nm-thick layer of water encircles the
ball of ice. These conclusions ignore self-energies of the
interior and exterior spherical regions, which are not uniquely
defined. Some of these effects may be subsumed into surface
tension, but this omission, unavoidable at this stage of our
understanding, renders our conclusions tentative. As noted,
the effects we are considering are relatively small compared
to nucleation and surface tension effects.

We leave for future investigation the configuration of water
inside ice inside vapor. That is, is it energetically favorable
for ice to form at the interface of water and vapor, and once
formed, will it grow inward? This is of interest because in
Ref. [41] it was found that no ice is formed on a planar water
surface based on Lifshitz theory. This is expected to hold for
water drops of large radii. In addition, in the present work
we have found, surprisingly, that purely quantum fluctuations
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promote freezing from within water droplets instead of freez-
ing from outside.

An application of the result found here, that ice grows
inside water at the triple point of water, would be an in-
vestigation of the relevance of this effect to the predictions
for liquid water on distant planets and their moons. We have
predicted that, in the presence of a silica surface, ice can form
in water based on Lifshitz theory [19]. Boström et al. further
proposed that Lifshitz forces could lead to ice formation on
some specific gas hydrate surfaces in water [42]. On some
hypothesized ice-coated oceans on the moons Enceladus and
Europa such ice films growing on CO2 gas hydrate clusters
could, if present, induce a size-dependent buoyancy for nano-
sized hydrate clusters [42].

Understanding the charging process of atmospheric ice
particles [43] is expected to be a relevant application of the
results here. Another application will involve studying ice
formation in pores, especially inside rocks and plants, in
light of our results here. In some situations the double-layer
interaction energy can be significant in comparison to the
Lifshitz energy as was discussed in Ref. [44], which could
be extended to the spherical geometry.
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APPENDIX: LIFSHITZ INTERACTION ENERGY FOR
CONCENTRIC SPHERES

In this Appendix we use h̄ = 1 and c = 1 for typographic
brevity. This can be undone by replacing ζ → ζ/c and intro-
ducing h̄ in equations for energy.

In the multiple scattering formalism the Lifshitz interaction
energy for the configuration of concentric spheres in Fig. 4 is
given by

E12(a, b) = 1

2

∫ ∞

−∞

dζ

2π
Tr ln[1 − �aVa · �bVb], (A1)

where

Va = (ε3 − 1) + (ε1 − ε3)θ (a − r), (A2a)

Vb = (ε3 − 1) + (ε2 − ε3)θ (r − b) (A2b)

each describe concentric spherical regions with a single inter-
face, obtained by letting b → ∞ and a → 0, respectively, in
Fig. 4. The interaction energy of Eq. (A1) corresponds to the
fourth term in the decomposition of energy in Eq. (1) for the
system in Fig. 4, which is finite by construction. In Eq. (A1)
we used symbolic notation

�aVa · �bVb =
∫

d3r̄ �a(r, r̄)Va(r̄) · �b(r̄, r′)Vb(r′). (A3)

Thus, the argument of the logarithm in Eq. (A1) is a dyadic,
or a matrix, with elements constituting integral kernels. The

trace in Eq. (A1) is over the matrix indices and on the kernel
coordinates r and r′. The Green dyadics �a(r, r′) and �b(r, r′)
can be suitably expressed in the basis of spherical vector
eigenfunctions [35]

X(u)
lm (θ, φ) = 1

ik⊥
∇⊥Ylm(θ, φ), (A4a)

X(v)
lm (θ, φ) = 1

ik⊥
r̂ × ∇⊥Ylm(θ, φ), (A4b)

X(w)
lm (θ, φ) = r̂Ylm(θ, φ), (A4c)

expressed in terms of spherical harmonics Ylm(θ, φ) as

�α (r, r′)

=
∞∑

l=0/1

l∑
m=−l

X(i)
lm(θ, φ)γ i j

lm,α
(r, r′)X( j)∗

lm (θ ′, φ′), (A5)

α = a, b, where 0/1 for the initial value of index l means that
the sum over l runs from 0 to ∞ for terms involving X(w)

lm ,
but l runs from 1 to ∞ for terms involving X(u)

lm and X(v)
lm . The

matrices γ
i j
lm,α

(r, r′) are the components of the Green dyadics
in the basis of spherical vector eigenfunctions given by

γ
i j
lm,α

(r, r′)

=

⎡
⎢⎢⎣

D
εα (r)

D′
εα (r′ ) g

H
l,α (r, r′) 0 D

εα (r)
ik′

⊥
εα (r′ ) g

H
l,α (r, r′)

0 − ζ 2gE
l,α (r, r′) 0

−ik⊥
εα (r)

D′
εα (r′ ) g

H
l,α (r, r′) 0 −ik⊥

εα (r)
ik′

⊥
εα (r′ ) g

H
l,α (r, r′)

⎤
⎥⎥⎦, (A6)

where

εa(r) =
{
ε1, r < a
ε3, a < r

(A7)

and

εb(r) =
{
ε3, r < b
ε2, b < r,

(A8)

with the shorthand notation

k2
⊥ = l (l + 1)

r2
, k′ 2

⊥ = l (l + 1)

r′2 , (A9)

and

D =
(

1

r
+ ∂

∂r

)
= 1

r

∂

∂r
r (A10)

and similarly for D′ with primed coordinates. We have omitted
a term containing a δ function in Eq. (A6), which does
not contribute to interaction energies between disjoint bod-
ies. The transverse magnetic and transverse electric spher-
ical Green’s functions in Eq. (A6) satisfy the differential
equations[

−D
1

εα (r)
D + l (l + 1)

r2εα (r)
+ ζ 2

]
gH

l,α (r, r′) = δ(r − r′)
r2

,

(A11a)[
−D2 + l (l + 1)

r2
+ ζ 2εα (r)

]
gE

l,α (r, r′) = δ(r − r′)
r2

,

(A11b)
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α = a, b, and have solutions

gH
l,a(r′, r) = −ε1

a

1

ζ1a

ζ3il (ζ1r)kl (ζ3r′)
ζ1il (ζ1a)k̄l (ζ3a) − ζ3 īl (ζ1a)kl (ζ3a)

,

(A12a)

gH
l,b(r, r′) = −ε2

b

1

ζ2b

ζ3il (ζ3r)kl (ζ2r′)
ζ3il (ζ3b)k̄l (ζ2b) − ζ2 īl (ζ3b)kl (ζ2b)

,

(A12b)

gE
l,a(r′, r) = −1

a

1

ζ1a

ζ1il (ζ1r)kl (ζ3r′)
ζ3il (ζ1a)k̄l (ζ3a) − ζ1 īl (ζ1a)kl (ζ3a)

,

(A12c)

gE
l,b(r, r′) = −1

b

1

ζ2b

ζ2il (ζ3r)kl (ζ2r′)
ζ2il (ζ3b)k̄l (ζ2b) − ζ3 īl (ζ3b)kl (ζ2b)

(A12d)

in terms of modified spherical Bessel functions of Eqs. (16)
and generalized derivatives of modified spherical Bessel func-
tions in Eqs. (17) with

ζi = ζ
√

εi. (A13)

To evaluate the Lifshitz interaction energy, we begin by
processing the dyadic in Eq. (A3). We use the expressions
for the Green dyadics in Eq. (A5) and using the orthogonality
relations for the spherical vector eigenfunctions∫ π

0
sin θ dθ

∫ 2π

0
dφ X∗(i)

lm (θ, φ)X( j)
l ′m′ (θ, φ)

= δll ′δmm′δi j (A14)

for the angular part of coordinate r̄, we obtain

�aVa · �bVb =
∞∑

l=0

l∑
m=−l

X(i)
lm(θ, φ)X∗(k)

lm (θ ′, φ′)
∫

r̄2dr̄

× γ
i j
lm,a(r, r̄)Va(r̄)γ jk

lm,b(r̄, r′)Vb(r′). (A15)

We observe the separation of the angular coordinates in this
form, which is attributable to the spherical symmetry of
the configuration of concentric sphere geometry. Using this
feature as a cornerstone, we expand the logarithm as a series.
In each term of the series the angular terms separate after
repeated use of orthogonality relations for the spherical vector
eigenfunctions. This allows for the separation of the angular
coordinates completely and in conjunction with the trace in
the equation the angular coordinates drop out of the equation,
leaving a sum over l and a factor of (2l + 1) from the sum over
m. The leftover series involves integrals in radial coordinates,
which, remarkably, allows for the series to be resummed.

These manipulations, which are mostly formal rearrangement
of integrals, are a crucial part of the calculation and lead to the
expression

E12(a, b) = 1

2

∫ ∞

−∞

dζ

2π

∞∑
l=0

(2l + 1)

× ln
[
1 − KE

l (a, b)
][

1 − KH
l (a, b)

]
, (A16)

where

KE
l (a, b) = ζ 2(ε1 − ε3)(ε2 − ε3)

∫ a

0
r2dr

∫ ∞

b
r′2dr′

× gE
l,a(r′, r)gE

l,b(r, r′) (A17)

and

KH
l (a, b) =

(
1

ε3
− 1

ε1

)(
1

ε3
− 1

ε2

) ∫ a

0
r2dr

∫ ∞

b
r′2dr′

× tr

[
D′DgH

l,a(r′, r) D′ik⊥gH
l,a(r′, r)

−ik′
⊥DgH

l,a(r′, r) k⊥k′
⊥gH

l,a(r′, r)

]

×
[

D′DgH
l,b(r, r′) D′ik⊥gH

l,b(r, r′)

−ik′
⊥DgH

l,b(r, r′) k⊥k′
⊥gH

l,b(r, r′)

]
. (A18)

The integration limits on the coordinate r span the inner
spherical region from 0 to a and the integration limits on the
radial coordinate r′ span the outer spherical region beyond b;
together, they span disjoint regions in space. This segregation
of variables avoids ultraviolet divergences in the energy asso-
ciated with r → r′.

Evaluating the expression (A17) after substituting the so-
lutions for Green’s functions from Eqs. (A12), we observe the
factorization

KE
l (a, b) = rE

31(a)rE
32(b), (A19)

where rE
i j are the scattering coefficients for the transverse elec-

tric mode of an electromagnetic wave incident on interfaces a
or b. The transverse electric scattering coefficients at the two
interfaces can be expressed in the form

rE
31(a) = 1

a2

(
ζ 2

1 − ζ 2
3

) ∫ a
0 r2dr il (ζ1r)il (ζ3r)

ζ3il (ζ1a)k̄l (ζ3a) − ζ1 īl (ζ1a)kl (ζ3a)
, (A20a)

rE
32(b) = 1

b2

(
ζ 2

2 − ζ 2
3

) ∫ ∞
b r2dr kl (ζ2r)kl (ζ3r)

ζ2il (ζ2b)k̄l (ζ2b) − ζ3 īl (ζ3b)kl (ζ3b)
. (A20b)

The integrals appearing in the numerators of the transverse
electric scattering coefficients can be evaluated using the
identities [38,45]

∫ x

0
y2dy il (py)il (qy) = − x2

(p2 − q2)
[qil (px )̄il (qx) − p̄il (px)il (qx)], (A21a)

∫ ∞

x
y2dy kl (py)kl (qy) = x2

(p2 − q2)
[qkl (px)k̄l (qx) − pk̄l (px)kl (qx)], (A21b)

which immediately leads to the expression for the transverse electric scattering coefficients in Eqs. (14). The contribution from
the transverse magnetic mode can be similarly factorized into

KH
l (a, b) = rH

31(a)rH
32(b), (A22)
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where rH
i j are the scattering coefficients for the transverse magnetic mode of an electromagnetic wave incident on interface a or

b. The transverse magnetic scattering coefficients can be expressed as

rH
31(a) = 1

a2

(
ζ 2

1 − ζ 2
3

)∫ a
0 r2dr

[̄
il (ζ1r )̄il (ζ3r) + l (l+1)

r2ζ1ζ3
il (ζ1r)il (ζ3r)

]
[ζ1il (ζ1a)k̄l (ζ3a) − ζ3 īl (ζ1a)kl (ζ3a)]

, (A23a)

rH
32(b) = 1

b2

(
ζ 2

2 − ζ 2
3

)∫ ∞
b r2dr

[
k̄l (ζ2r)k̄l (ζ3r) + l (l+1)

r2ζ2ζ3
kl (ζ2r)kl (ζ3r)

]
[ζ3il (ζ3a)k̄l (ζ2a) − ζ2 īl (ζ3a)kl (ζ2a)]

, (A23b)

where the integrals appearing in the numerators can be evaluated using the identities [38,45]∫ x

0
y2dy

[
īl (py )̄il (qy) + l (l + 1)

y2 pq
il (py)il (qy)

]
= x2

(p2 − q2)
[pil (px )̄il (qx) − qīl (px)il (qx)], (A24a)

∫ ∞

x
y2dy

[
k̄l (py)k̄l (qy) + l (l + 1)

y2 pq
kl (py)kl (qy)

]
= − x2

(p2 − q2)
[pkl (px)k̄l (qx) − qk̄l (px)kl (qx)], (A24b)

which leads leads to the expression for the transverse magnetic scattering coefficients in Eqs. (14). Thus, we obtain the expression
for the Lifshitz interaction energy in terms of scattering coefficients as

E12(a, b) = 1

2

∫ ∞

−∞

dζ

2π

∞∑
l=0

(2l + 1) ln
[
1 − rE

31(a)rE
32(b)

][
1 − rH

31(a)rH
32(b)

]
. (A25)

This expression for the Lifshitz interaction energy is for zero temperature. The interaction energy for nonzero temperature in
Eq. (13) is obtained from the above expression by the replacement

1

2

∫ ∞

−∞

dζ

2π
→ h̄c

2πa0

∞∑
n=0

′. (A26)
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