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In family studies, phenotypic similarities between relatives yield information on the overall contribution of genes to
trait variation. Large samples are important for these family studies, especially when comparing heritability between
subgroups such as young and old, or males and females. We recruited a cohort of 6,148 participants, aged 14–102 y,
from four clustered towns in Sardinia. The cohort includes 34,469 relative pairs. To extract genetic information, we
implemented software for variance components heritability analysis, designed to handle large pedigrees, analyze
multiple traits simultaneously, and model heterogeneity. Here, we report heritability analyses for 98 quantitative
traits, focusing on facets of personality and cardiovascular function. We also summarize results of bivariate analyses
for all pairs of traits and of heterogeneity analyses for each trait. We found a significant genetic component for every
trait. On average, genetic effects explained 40% of the variance for 38 blood tests, 51% for five anthropometric
measures, 25% for 20 measures of cardiovascular function, and 19% for 35 personality traits. Four traits showed
significant evidence for an X-linked component. Bivariate analyses suggested overlapping genetic determinants for
many traits, including multiple personality facets and several traits related to the metabolic syndrome; but we found
no evidence for shared genetic determinants that might underlie the reported association of some personality traits
and cardiovascular risk factors. Models allowing for heterogeneity suggested that, in this cohort, the genetic variance
was typically larger in females and in younger individuals, but interesting exceptions were observed. For example,
narrow heritability of blood pressure was approximately 26% in individuals more than 42 y old, but only
approximately 8% in younger individuals. Despite the heterogeneity in effect sizes, the same loci appear to contribute
to variance in young and old, and in males and females. In summary, we find significant evidence for heritability of
many medically important traits, including cardiovascular function and personality. Evidence for heterogeneity by age
and sex suggests that models allowing for these differences will be important in mapping quantitative traits.
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Introduction

Complex traits, including aging-associated conditions, can
be influenced by a multiplicity of genetic and environmental
factors. Because each factor is expected to make only a small
contribution to trait variability, and this contribution may
itself be influenced by interactions with other susceptibility
factors, identifying the genetic basis of complex traits is
challenging and requires large sample sizes [1]. Isolated
founder populations, which have already proven useful in
the study of many Mendelian disorders [2], provide an
attractive setting for the study of complex traits [3,4] because
they typically exhibit greater genetic and environmental
homogeneity than more cosmopolitan populations.

Sardinia is the second largest island in theMediterranean. Its
modern population numbers approximately 1.65 million and
constitutes a genetically isolated founder population [5–7],
which has already aided in the identification of genes involved
in several Mendelian disorders [8–12]. In addition to its status
as an isolated founder population and its relatively large size,
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the Sardinianpopulation is attractive for genetic studies due to
its organization into long-established settlements [13].

Here, we use a large cohort of 6,148 Sardinians to study the
heritability of a spectrum of 98 quantitative traits. Studying
broad groups of traits, we could assess the generality of any
trends, such as changes in heritability with aging. To increase
the potential clinical utility of the results, we focused on traits
that affect major domains of clinical interest. For example, in
addition to anthropometric features, we quantified levels of
plasma and serum markers, including total cholesterol, high-
density lipoprotein (HDL), and low-density lipoprotein (LDL)
levels, and measured subclinical vascular alterations [14–18]
that are of intrinsic interest and are also useful predictors of
cardiovascular disease [19]. Similarly, we assessed individual
differences in personality using the five-factor model [20,21],
which quantifies recurring dimensions of personality. Again,
in addition to their intrinsic interest, these personality traits
are important in understanding a variety of important life
outcomes, including mental disorders.

Our study uses the full range of phenotypic variation in the
population to dissect the genetic contribution and provide a
quantitative assessment of the impact of inherited variation
on each trait. In addition, we report evidence for hetero-
geneity in the genetic and environmental contributions to
variation, by comparing variances and covariances between
males and females and between the younger and older
individuals in our cohort. Finally, we examine evidence for an
overlap in the genetic determinants of multiple traits,
identifying clusters of traits that appear to be influenced by
the same genes. The joint study of cardiovascular and
personality traits afforded us an opportunity to look for a
genetic factor that might contribute to the association of
certain personality traits and cardiovascular problems [22].
Overall, our results should be useful to investigators
interested in identifying the genetic determinants of quanti-

tative trait variation, especially for clinically relevant quanti-
tative traits affecting cardiovascular function and personality.

Results

Cohort Recruitment
We recruited and phenotyped 6,148 individuals, male and

female, age 14 y and above (Figure 1A) from a cluster of four
towns in the Lanusei Valley in the Ogliastra region of the
Sardinian province of Nuoro. This corresponds to approx-
imately 62% of the population eligible for recruitment in the
area, which totaled 9,841 individuals in the 2001 census.
Compared to the census population, our sample is enriched
for females at all ages (3,523 individuals, or 57%, of our
sample, compared to 5,089, or 52%, of the census popula-
tion). Ascertainment was less complete for individuals more
than 74 y of age, among whom only approximately 29% of the
population was recruited (238 individuals more than 74 y
recruited, but 813 were reported in the 2001 census).
Nearly all subjects were born in Sardinia (5,857 [95%]) and,

specifically, in the Ogliastra region (5,442 [89%]; Figure 1B
shows the birth places of participants in the restricted
geographical region). Emphasizing the stability of the
population, all grandparents were born in Sardinia for 95%
of participants (Figure 1C). The cohort is organized into
multiple complex pedigrees. Information collected at recruit-
ment allowed us to organize 5,610 individuals into 711
connected pedigrees, each up to five generations deep. The
largest pedigree connects 625 phenotyped individuals. In
total the sample includes 34,469 relative pairs, with an
average kinship coefficient of 0.1628. These relative pairs
include 4,933 sibling pairs, 180 half-sibling pairs, 4,014 first
cousins, 4,256 parent–child pairs, 675 grandparent–grand-
child pairs, and 6,400 avuncular pairs in addition to other
more distant relatives. Our sample also includes 11 mono-
zygotic twins (identified by genotyping approximately 10,000
single nucleotide polymorphisms in all individuals). Because
monozygotic twins are often more similar to each other than
predicted by a simple genetic model (even with genetic
dominance included), we included only one individual from
each of these twin pairs in the analysis reported below.

Summary of Quantitative Trait Variation
To examine the effect of age and sex on each trait, we first

generated and reviewed summary plots for each trait. The
complete set of plots is available online (http://www.sph.
umich.edu/csg/chen/public/sardinia) together with detailed
results for all our analysis. Figure 2 displays the distribution
of six illustrative traits for males and females. It is clear that
for many traits there are marked differences between the
sexes, affecting not only trait means, but also the overall
pattern of variability around these means. Figure 3 illustrates
the effect of age on the same six traits. For each trait,
observed measurements are plotted against age at enrollment,
and two quadratic regression lines (blue for females and red
for males) are presented to summarize the impact of age on
the traits. These plots allowed us to identify outliers in each
trait and to compare trait distributions with other studies.
We next calculated the mean and standard deviation for all

traits, both in the entire cohort and after stratifying the
sample by sex and age. When stratifying the sample by age, we
considered four age bands (14–29, 30–44, 45–59, and 60–102 y
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Synopsis

Genetic analysis of complex traits, which are influenced by many
different variables, is difficult because different genes and environ-
mental factors can affect each individual. To simplify analysis, the
authors turned to Sardinia, one of the rare, relatively isolated
populations. They recruited 6,148 participants, aged 14–102 y, from
four neighboring towns. Their sample includes many related
individuals, including, for example, approximately 5,000 pairs of
brothers and sisters. The authors measured 98 traits in each
individual, including different aspects of blood composition and
several cardiovascular and personality measures.

Here, the authors evaluate the overall impact of genes and
environment on each trait and show that genes can explain many
of the differences and similarities between individuals. Genetic
influences were typically larger in females and in younger
individuals, but interesting exceptions were observed. For example,
genetic factors accounted for approximately 26% of the variation in
blood pressure for those more than 42 y old, but only for
approximately 8% in younger individuals. Their analysis also showed
that the same genetic factor could influence multiple traits, for
example by affecting multiple features of personality or of
cardiovascular function. DNA analyses of this cohort will eventually
allow researchers to identify genes that affect each of the traits
studied, including important risk factors for cardiovascular disease.



of age), each including approximately 25% of sampled
individuals. The results are summarized in Table S1, with
traits organized as blood test results (38 traits), anthropo-
metric measures (five traits), cardiovascular measures (20
traits), and personality traits (five factors and 30 facets of
personality). Nearly all traits showed highly significant
evidence (analysis of variance p , 0.0005) for differences in
trait means between the sexes (75 of 98 traits) and across age
bands (91 of 98 traits).

Estimates of Quantitative Trait Heritability
We next used quantile normalization to convert each trait

to approximate normality, and fitted a simple model with two
variance components (a heritable additive polygenic compo-
nent and an individual specific environmental component)
and five covariates (sex, age, age2, and the terms for the
interaction of sex with age and age2) [23,24]. The results of
this variance component analysis (summarized under the
headings Effect of Covariates and Basic Model in Tables 1 and
2) were consistent with preliminary analyses using mid-parent

regression [25] and untransformed data (unpublished data).
Further details, including estimates of individual variance
components and likelihoods for each model are available
online (http://www.sph.umich.edu/csg/chen/public/sardinia).
When sex was modeled as covariate, sex differences explained
6.7% of the variance on average for blood test results, 16.2%
for anthropometric measures, 4.3% for cardiovascular traits,
and 2.4% for personality traits. When age and age2 were
modeled as covariates, age differences typically explained a
smaller proportion of the variance for blood tests results
(5.1%) and personality traits (5.6%) than for anthropometric
measures (20.4%) and for cardiovascular traits (25.3%). On
average, the interaction between age and sex explained only a
further 0.4% of the variance for all traits, and explained less
than 3.0% of the variance for any individual trait.
A wide range of heritabilities was observed for each group

of traits (Tables 1 and 2). After accounting for age and sex,
heritability estimates ranged between 0.138 (for the fraction
of basophils among white blood cells) to 0.777 (for the mean
hemoglobin level in red blood cells, which is influenced by a

Figure 1. Age, Sex, and Birthplace Distribution for Participants

(A) Shows the number of recruited females (black bars) and males (white bars) from the four clustered towns.
(B) Shows the birthplace distribution of participants, in progressively larger geographic units: Lanusei, L.I.E.A. (Lanusei and the three surrounding towns
of Ilbono, Elini, and Arzana), the Lanusei valley, the region of Ogliastra, the province of Nuoro, and all of Sardinia.
(C) Shows the birthplace distribution for grandparents of participants in the same progressively larger geographic units.
DOI: 10.1371/journal.pgen.0020132.g001
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common beta-thalassemia allele in Sardinia [8]) for the 34
blood tests; between 0.371 (for waist circumference) and 0.798
(for height) for five anthropometric traits; between 0.089 and
0.449 for 24 measures of cardiovascular structure/function,
including values of 0.253, 0.186, 0.226, and 0.186 for the key
variables of systolic blood pressure (SBP), diastolic blood
pressure (DBP), pulse wave velocity (PWV), and intimal–
medial thickness (IMT); and between 0.094 (for tender-
mindedness, NEO A6) and 0.328 (for openness to experience,
NEO O) for the 35 personality factors and facets. Notable
results include substantial heritabilities for several risk
factors for cardiovascular disease such as total cholesterol
(0.423), HDL (0.486), LDL (0.425), and triglycerides (0.322),
and the observation that the five personality factors typically
show higher heritability (0.254 on average) than the 30
personality facets (0.177 on average).

All heritability estimates are statistically significant (p ,

0.0005) and have a standard error of less than 0.023 (except for
prostate-specific antigen [PSA], which was measured only in
2,604 males, and for which the standard error was 0.039, and

thyroid stimulating hormone [TSH], which was measured in
3,461 individuals, and for which the standard error was 0.032).

Models with Genetic Dominance or Shared Sibling

Environment
We next proceeded to examine variance component models

that allowed for either genetic dominance or shared sibling
environment (Tables 1 and 2, last two columns). Although the
two components of variance have different interpretations,
they lead to equivalent predictions of trait variances and
covariances for most relative pairs, and thus are hard to
distinguish statistically in most datasets [26], including ours.
We interpreted the estimate of heritability from a model
allowing genetic dominance as a liberal estimate for the
impact of genes on each trait, and the estimate from a model
allowing instead for a contribution of shared sibling environ-
ment to the variance as a more conservative estimate. In most
cases, the true heritability will be intermediate between these
liberal and conservative estimates.
We detected a significant (p , 0.05) genetic dominance

and/or shared sibling environment variance component for

Figure 2. Distribution of Six Illustrative Traits in Male and Female Participants

Relative densities are plotted for males (solid lines) and females (dashed lines) for two serum values (cholesterol levels [A] and HDL [B]), two measures of
cardiovascular function (IMT of the carotid artery [C] and PWV [D]), and two personality facets (NEO_N3 [E] and NEO_O5 [F]). A complete set of plots,
including all traits, is available online (http://www.sph.umich.edu/csg/chen/public/sardinia).
DOI: 10.1371/journal.pgen.0020132.g002
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53 of 98 traits. These included all anthropometric traits (five
of five), most cardiovascular measures (16 of 20), and a
substantial number of personality factors and facets (16 of
35), as well as blood test results (16 of 38). Including genetic
dominance increases the average heritability from 0.403 to
0.496 for blood test results, from 0.508 to 0.799 for
anthropometric measures, from 0.249 to 0.444 for measures
of cardiovascular function, and from 0.188 to 0.299 for
personality factors and facets.

Heterogeneity in Variance Components, by Sex
Having evaluated the standard variance component models

and estimated a heritable component for each trait, we
proceeded to evaluate the evidence for heterogeneity in
genetic and environmental sources of variance in males and
females. We considered a series of models with heterogeneity
in variance components (heterogeneity in environmental
variance only, heterogeneity in genetic variance only,
heterogeneity in both variance components, and a model in
which the genetic and environmental variances differed
between males and females by a constant factor). We also

considered models that included an X-linked or mitochon-
drial variance component (because those types of non-
autosomal inheritance also induce sex-dependent differences
in covariances between relatives). We selected the best-fitting
model for each trait using the Bayesian information criteria
(BIC) criterion (Materials and Methods). Four traits (choles-
terol, LDL, G6PD, and erythrocyte sedimentation rate [ESR])
appeared to be influenced by a substantial X-linked compo-
nent. In females, we estimate that X-linked genes account for
7.5% of the variance in normalized cholesterol values, 9.5%
of the variance in normalized LDL levels, 22.8% of the
variance in normalized G6PD levels, and 6.2% of the variance
for normalized ESR. In males, these proportions are
approximately doubled. For the remaining 94 traits, the
BIC criterion selected a model with heterogeneity between
the sexes for 40 traits (summarized in Table 3) and a model
with no heterogeneity for 54 traits. We found no significant
evidence for mitochondrial inheritance of any trait.
The 40 traits showing significant evidence for heteroge-

neity of variance components by sex included all five
anthropometric traits and many of the blood test results (12

Figure 3. Illustrative Quantitative Traits Plotted as a Function of Age

These are the same traits as in Figure 2. All values are plotted, and polynomial regression curves fitted to the data show inferred trends for males (solid
red lines) and females (dashed blue lines) with increasing age. A complete set of plots, allowing for all traits, is available online (http://www.sph.umich.
edu/csg/chen/public/sardinia).
DOI: 10.1371/journal.pgen.0020132.g003
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of 34), cardiovascular traits (eight of 20), and personality
traits (15 of 35). When heterogeneity was detected, the BIC
criterion selected a model with heterogeneity in environ-
mental variances for eight traits (the environmental variance
was larger among males in five cases); with heterogeneity in
genetic variances for 13 traits (the genetic variance was larger
among females in 11 cases); and a model with heterogeneity
in the total variance for the remaining 19 traits (in these
cases, the environmental and genetic variances differed by a
constant factor between males and females, and the total

variance was estimated to be larger among females in 15
cases). Interestingly, the biggest differences were observed for
body weight (estimated heritability of approximately 50% in
females, but approximately 35% in males), hip circumference
(heritability of approximately 48% in females, but approx-
imately 27% in males) and c-glu-transferase levels (herit-
ability of 42% in females, but 24% in males). The A
(agreeableness), N (neuroticism), and E (extraversion) person-
ality factors and four facets showed approximately 10%
higher heritability in females.

Table 1. Heritability of Blood Phenotypes and Anthropometric Measures

Trait Grouping Trait Effect of Covariatesa Basic Model Dominance/Household Model

Sex Age Sex and Age Sex Age Sex and Age H2 Narrow H2 Broad H2 Significanceb

rg
2/r2 (rg

2 þ rd
2)/r2

Blood analyses RBC 0.206 0.003 0.015 **** **** **** 0.673 0.658 0.773 *

Hb 0.360 0.002 0.010 **** **** **** 0.472 0.444 0.606 **

MCV 0.007 0.036 0.004 **** **** **** 0.761 0.758 0.787

MCH 0.018 0.020 0.003 **** **** **** 0.777 0.773 0.804

WBC 0.034 0.010 0.004 **** **** **** 0.383 0.331 0.621 ****

NE 0.002 0.010 0.002 **** **** ** 0.344 0.324 0.420

LY 0.000 0.016 0.003 **** ** 0.343 0.318 0.445 *

MO 0.034 0.010 0.000 **** **** 0.404 0.378 0.520 *

EO 0.014 0.007 0.000 **** **** 0.371 0.356 0.442

BA 0.000 0.001 0.000 0.138 0.138 0.138

PLT 0.050 0.020 0.002 **** **** ** 0.527 0.506 0.640 *

HbF 0.006 0.013 0.000 **** **** 0.623 0.609 0.708 *

HbA2 0.001 0.011 0.001 ** **** 0.725 0.709 0.837 *

HbA1C 0.013 0.169 0.003 **** **** ** 0.589 0.552 0.832 **

G6PD 0.003 0.013 0.005 **** **** **** 0.724 0.720 0.762

Serum glucose 0.048 0.193 0.003 **** **** **** 0.362 0.318 0.548 **

Serum insulin 0.000 0.004 0.006 **** **** 0.260 0.247 0.304

BUN 0.054 0.111 0.015 **** **** **** 0.318 0.309 0.346

Serum creatine 0.222 0.017 0.002 **** **** **** 0.346 0.329 0.425

ALT 0.169 0.060 0.030 **** **** **** 0.238 0.224 0.299

AST 0.097 0.040 0.020 **** **** **** 0.236 0.213 0.344 *

GammaGT 0.237 0.138 0.016 **** **** **** 0.341 0.320 0.428

Fibrinogen 0.065 0.081 0.002 **** **** ** 0.269 0.243 0.367 *

Cholesterol 0.001 0.226 0.007 * **** **** 0.423 0.373 0.641 ****

HDL 0.112 0.016 0.006 **** **** **** 0.486 0.471 0.576

LDL 0.002 0.179 0.006 **** **** **** 0.425 0.376 0.659 ****

Trigycerides 0.038 0.113 0.015 **** **** **** 0.322 0.296 0.423 *

Iron 0.048 0.002 0.003 **** **** **** 0.193 0.186 0.223

Transferrin 0.024 0.017 0.004 **** **** **** 0.197 0.188 0.240

Bilirubin, fractionated 0.054 0.016 0.000 **** **** 0.346 0.339 0.385

Bilirubin, total 0.050 0.009 0.000 **** **** 0.422 0.411 0.472

Uric acid 0.289 0.082 0.008 **** **** **** 0.342 0.340 0.353

Sodium 0.003 0.018 0.003 **** **** **** 0.252 0.252 0.252

Potasium 0.004 0.043 0.001 **** **** 0.185 0.179 0.209

ESR 0.212 0.056 0.002 **** **** **** 0.409 0.379 0.564 **

CRP 0.002 0.031 0.001 **** **** 0.296 0.274 0.385

TSH 0.001 0.026 0.000 **** 0.382 0.374 0.410

PSA 0.000 0.101 0.000 **** 0.428 0.396 0.553

Anthropometric

measures Height 0.407 0.143 0.002 **** **** **** 0.798 0.768 1.00 ****

Weight 0.246 0.114 0.010 **** **** **** 0.499 0.440 0.811 ****

Waist 0.126 0.293 0.008 **** **** **** 0.371 0.312 0.654 ****

Hip 0.000 0.155 0.009 **** **** 0.446 0.379 0.760 ****

BMI 0.030 0.315 0.012 **** **** **** 0.426 0.355 0.779 ****

aEffect of a covariate is the proportion of total phenotypic variance explained by the covariate under the Basic model.
bSignificance was calculated using a likelihood ratio test to compare the Basic model with a dominance/household model.
*p-Value , 0.05, **p-value , 0.01, *** p-value , 0.001, ****p-value , 0.0005.
ALT, ala aminotransferase; AST, asp aminotransferase; BA, basophils; BMI, body mass index; BUN, blood urea nitrogen; CRP, C-reactive protein; EO, eosinophils; ESR, erythrocyte
sedimentation rate; GammaGT, c-glu-transferase; Hb, hemoglobin; HbA1C, hemoglobin A1C; HbA2, hemoglobin A2; HbF, fetal hemoglobin; LY, lymphocytes; MCH, mean red blood cell
hemoglobin; MCV, mean red blood cell volume; MO, monocytes; NE, neutrophils; PLT, platelets; RBC, red blood cells; TSH, thyroid stimulating hormone; WBC, white blood cells.
DOI: 10.1371/journal.pgen.0020132.t001
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Table 2. Heritability for Measures of Cardiovascular Function and Personality

Trait Grouping Trait Effect of Covariatesa Basic Model Dominance/Household Model

Sex Age Sex and Age Sex Age Sex and Age H2 Narrow H2 Broad H2 Significanceb

rg
2/r2 (rg

2 þ rd
2)/r2

Cardiovascular

function SBP 0.056 0.293 0.007 **** **** **** 0.253 0.156 0.651 ****

DBP 0.034 0.270 0.005 **** **** **** 0.186 0.121 0.449 ****

HR 0.045 0.002 0.001 **** **** 0.272 0.233 0.414 **

diam_S 0.154 0.108 0.005 **** **** **** 0.434 0.384 0.657 ****

diam_D 0.131 0.207 0.005 **** **** **** 0.449 0.396 0.688 ****

IMT 0.006 0.457 0.001 **** **** **** 0.186 0.131 0.385 ***

PWV 0.003 0.592 0.002 **** **** **** 0.226 0.225 0.227

Pulse pressure 0.024 0.171 0.007 **** **** **** 0.210 0.130 0.540 ****

Mean BP 0.050 0.312 0.005 **** **** **** 0.227 0.144 0.557 ****

Wall/lumen 0.027 0.166 0.006 **** **** **** 0.226 0.195 0.358 *

Vascular mass 0.049 0.483 0.001 **** **** * 0.297 0.243 0.484 **

Normalized PWV 0.005 0.382 0.000 **** **** 0.191 0.191 0.191

QTC 0.035 0.066 0.001 **** **** 0.163 0.128 0.282 *

PR 0.019 0.072 0.001 **** **** 0.286 0.275 0.338

PSV 0.029 0.551 0.003 **** **** **** 0.325 0.268 0.568 ****

EDV 0.001 0.319 0.003 ** **** **** 0.184 0.118 0.430 ****

IP 0.106 0.191 0.002 **** **** **** 0.248 0.171 0.569 ****

SD_ratio 0.059 0.143 0.001 **** **** ** 0.264 0.195 0.549 ****

AT 0.014 0.028 0.007 **** **** **** 0.089 0.077 0.139

Vti 0.008 0.249 0.008 **** **** **** 0.258 0.230 0.366 *

Psychological

traits NEO N (neuroticism) 0.075 0.006 0.000 **** **** 0.254 0.208 0.441 **

NEO E (extraversion) 0.010 0.091 0.004 **** **** **** 0.253 0.217 0.389 *

NEO O (openness to experience) 0.017 0.169 0.011 **** **** **** 0.328 0.285 0.531 ***

NEO A (agreeableness) 0.058 0.117 0.001 **** **** * 0.232 0.216 0.296

NEO C (conscientiousness) 0.002 0.053 0.000 **** **** 0.204 0.157 0.374 **

NEO N1 (anxiety) 0.123 0.000 0.003 **** **** 0.177 0.140 0.313 *

NEO N2 (angry hostility) 0.005 0.005 0.000 **** **** 0.211 0.186 0.304

NEO N3 (depression) 0.047 0.014 0.000 **** **** 0.240 0.202 0.395 *

NEO N4 (self-consciousness) 0.027 0.000 0.000 **** 0.192 0.180 0.240

NEO N5 (impulsiveness) 0.000 0.118 0.006 **** **** 0.149 0.105 0.332 **

NEO N6 (vulnerability) 0.082 0.013 0.000 **** **** 0.140 0.117 0.219

NEO E1 (warmth) 0.003 0.001 0.002 **** * *** 0.186 0.186 0.186

NEO E2 (gregariousness) 0.003 0.049 0.008 **** **** **** 0.222 0.199 0.303

NEO E3 (assertiveness) 0.026 0.014 0.004 **** **** **** 0.209 0.149 0.419 ***

NEO E4 (activity) 0.000 0.007 0.003 **** **** 0.186 0.161 0.277

NEO E5 (excitement-seeking) 0.080 0.194 0.004 **** **** **** 0.156 0.115 0.313 **

NEO E6 (positive emotions) 0.000 0.094 0.005 **** **** 0.167 0.149 0.234

NEO O1 (fantasy) 0.009 0.153 0.009 **** **** **** 0.219 0.206 0.275

NEO O2 (aesthetics) 0.033 0.009 0.019 **** **** **** 0.254 0.225 0.374 *

NEO O3 (feelings) 0.025 0.054 0.006 **** **** **** 0.148 0.127 0.237

NEO O4 (actions) 0.012 0.068 0.000 **** **** 0.189 0.165 0.279

NEO O5 (ideas) 0.000 0.088 0.004 **** **** 0.269 0.243 0.378 *

NEO O6 (values) 0.001 0.140 0.005 **** **** 0.187 0.149 0.328 *

NEO A1 (trust) 0.001 0.034 0.001 **** * 0.202 0.188 0.253

NEO A2 (straightforwardness) 0.060 0.066 0.004 **** **** **** 0.189 0.134 0.413 ***

NEO A3 (altruism) 0.041 0.008 0.001 **** **** * 0.151 0.146 0.171

NEO A4 (compliance) 0.009 0.117 0.003 **** **** **** 0.132 0.132 0.132

NEO A5 (modesty) 0.028 0.052 0.000 **** **** 0.148 0.122 0.250

NEO A6 (tender-mindedness) 0.032 0.030 0.003 **** **** **** 0.094 0.077 0.158

NEO C1 (competence) 0.013 0.026 0.002 **** **** ** 0.165 0.129 0.289 *

NEO C2 (order) 0.002 0.007 0.000 ** **** 0.175 0.165 0.209

NEO C3 (dutifulness) 0.001 0.074 0.000 ** **** 0.120 0.089 0.234 *

NEO C4 (achievement striving) 0.007 0.005 0.000 **** **** 0.114 0.093 0.185

NEO C5 (self-discipline) 0.002 0.027 0.001 **** **** 0.174 0.123 0.363 **

NEO C6 (deliberation) 0.002 0.070 0.000 **** **** 0.154 0.093 0.364 ***

aEffect of a covariate is the proportion of total phenotypic variance explained by the covariate under the Basic model.
bSignificance was calculated using a likelihood ratio test to compare the Basic model with a dominance/household model.
*p-Value , 0.05, **p-value , 0.01, *** p-value , 0.001, ****p-value , 0.0005.
AT, acceleration time; BP, blood pressure; EDV, end-diastolic velocity; HR, heart rate; IP, pulsatility index; LY, lymphocytes; PR, PR interval on ECG; QTC, QT interval on ECG; SD_ratio, systolic
diastolic ratio; Vti, integral time velocity.
DOI: 10.1371/journal.pgen.0020132.t002
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Table 3 also provides a note of caution for our results. The
three columns under the Basic Model header summarize
comparisons of the base model with each of the heterogeneity
models using a likelihood ratio test. For the tabulated traits, all
heterogeneity models reject the base model (number of
asterisks represents the p-value at which base model is
rejected). In contrast, the next four columns, which compare
a model with heterogeneity in both genetic and environ-
mental variances to more parsimonious models, show that,
quite often, multiple models with intermediate levels of
heterogeneity give a similar fit to the most general hetero-
geneity model considered. For example, for the cardiovascular
trait peak systolic velocity (PSV), both models with hetero-
geneity only in environmental variance and models with
heterogeneity in the total variance fit as well as the model with
full heterogeneity (p . 0.05, indicating no significant
degradation in fit when using the parsimonious models).
Thus, there was clear evidence for heterogeneity in variance
components by sex, but it was difficult to decide whether the
heterogeneity was due to genes, environment, or both.

Heterogeneity in Variance Components, by Age
To look for heterogeneity in variance components by age,

we divided individuals into two groups. The ‘‘younger’’ group
included individuals less than 42 y of age (the median age in
our sample), whereas the ‘‘older’’ group included individuals
42 y of age and older. We found significant evidence for
heterogeneity in variance components by age in 62 of the 98
traits examined (the results are summarized in Table 4). This
included a majority of traits in all categories, including
anthropometric traits (three of five), blood test results (24 of
38), cardiovascular traits (13 of 20), and personality factors and
facets (22 of 35). Again, we considered a series of intermediate
models, including only heterogeneity in environmental or
genetic variance components, or in which variance compo-
nents differed by a constant factor between the young and old,
and used the BIC to select the best-fitting model. For 26 traits,
a model in which only the environmental variance differed
between young and old was selected, and for 20 of these traits,
environmental variance was greater among older individuals
(so that heritability was lower). Heritability was higher in older
individuals for IMT and five personality traits.

For 21 traits, a model in which only genetic variance
differed between the young and old was selected, and
heritability was higher in the young for 15 traits (12
personality traits and three blood test results). It is note-
worthy that the six traits more heritable in the old included
several blood pressure–related traits (SBP, DBP, mean blood
pressure, and pulse pressure). For these cardiovascular traits,
heritability increased an average of 18% among older
individuals, from approximately 8% for younger individuals
to approximately 26% in older individuals. For 15 other
traits, a model in which heritabilities between the young and
old differed by a constant factor provided the best fit to the
data, whereas for one trait (fractionated bilirubin), both
environmental and genetic variance components appeared to
differ between the young and old.

Bivariate Analysis
We calculated genetic correlation coefficients for all

pairings of 93 traits (including the 38 blood phenotypes, five
anthropometric measures, 20 cardiovascular traits, and 30

facets of personality, but excluding the five factors of person-
ality, which are derived from the 30 facets). This corresponds
to a total of 8,556 genetic correlation coefficients, of which 118
coefficients were greater than 0.50. In contrast, only 36 of the
overall correlation coefficients were greater than 0.50. A full
matrix of pairwise correlation coefficients is available http://
www.sph.umich.edu/csg/chen/public/sardinia).
We identified 18 clusters of traits with a genetic correlation

greater than 0.50 (Table S2). To summarize the full pairwise
correlation matrix, we used a hierarchical clustering ap-
proach that successively groups traits with large genetic
correlations (see Figure 4). In the figure, traits connected by
short branches share more of their genetic correlation,
whereas traits that join up only near the root of the tree
have only a small genetic correlation. Some of the clusters
occur because traits are related by definition (for example,
pulse pressure and SBP), or by physiology (for example,
diastolic diameter [diam_D] and systolic diameter [diam_S],
and IMT and wall lumen). Other clusters are quite interesting.
For example, hip circumference, waist circumference, body
mass index (BMI), and weight all cluster close together and
near insulin levels. These traits are all related to the
metabolic syndrome [27], and the result supports a genetic
underpinning for the syndrome. As another example, the
clustering of facets for the NEO O, NEO N, NEO C, and NEO
A factors reinforces the structure of the five-factor person-
ality model. Other results are more unexpected. For example,
the personality facet NEO E4 (activity) clusters closer to
components of NEO C (conscientiousness) than it does to
other facets of NEO E. To further investigate the genetic
relationship between different personality facets, we also
carried out a factor analysis of genetic correlations (Table S3).
This factor analysis confirms that the genetic structure of
personality replicates its phenotypic structure quite well, but
again places NEO E4 closer to components of NEO C.
We looked specifically for a genetic link between person-

ality traits and cardiovascular disease [22]. Hostility, depres-
sion, anger, and anxiety have been associated with
cardiovascular risk factors, including arterial stiffness and
thickness (see [28] and references therein), and are inde-
pendent predictors of incident cardiovascular disease and
mortality [29]. Several mechanistic links have been proposed
to explain the relationship between personality traits and
cardiovascular diseases and outcomes [30]. However, the basis
for the association has been conjectural. We find no
substantive sharing of a genetic basis for cardiovascular traits
and any psychological traits. For example, genetic correlation
between N2 (hostility and anger) or A4 (low compliance/
aggression) and IMT, PWV, SBP, DBP, or heart rate was not
significantly different from zero.

Discussion

The cohort of Sardinians described here provided us with a
valuable opportunity to investigate the heritability of multi-
ple traits simultaneously. For some traits, the size of our
cohort exceeds the total number of individuals examined in
all previously published studies of their heritability. The large
size of the cohort and the diversity of the relationships
sampled enabled us not only to consider the overall
heritability of each trait, but also to investigate the possibility
of heterogeneity in genetic effects by age or sex, as well as the
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evidence for shared genetic determinants between different
traits. To facilitate downstream studies, complete results of all
our analyses (including likelihoods and parameter estimates
for each model fitted) are available online (http://www.sph.
umich.edu/csg/chen/public/sardinia).

Overall, we estimated heritabilities of approximately 0.40
on average for individual blood test results, approximately
0.51 for anthropometric measures, approximately 0.25 for
measures of cardiovascular function, and approximately 0.19
for personality factors and facets. In general, our results
appear to be consistent with previous studies (see, for
example, [31–34]), and particularly with previous studies
based on extended pedigrees, (e.g., in the Hutterites [35] and
another Sardinian village [36]). Our estimates of heritability
are smaller than in previous studies of twins and siblings,
both for cardiovascular traits [37,38] and for personality traits
[39–43]. Extended pedigree samples such as ours allow
specific assessment of narrow heritability potentially, and it
is possible that non-additive effects inflated estimates of
heritability in studies of twins and small families [44,45]. In
our cohort, four of five components of the five-factor model
(NEO N, E, O, and C) and most cardiovascular traits showed
evidence for genetic dominance. Our broad estimates of

heritability, which allow for genetic dominance, are more
similar to results in studies of twins and siblings.
Nearly all traits showed highly significant evidence (p ,

0.0005) for differences in trait means between the sexes (75 of
98 traits) and across age bands (91 of 98 traits). The evidence
that sex and age play a key role in determining quantitative
trait variation motivated us to investigate whether estimates
of variance components (and therefore heritabilities) differed
between the sexes, or between young and old. We found
significant differences in variance components by sex for 40
traits (consistent with a recently published study of 17
quantitative traits in the Hutterites [46]). Not surprisingly,
evidence for heterogeneity was found for the five anthro-
pometric traits (height, weight, BMI, waist, and hip circum-
ference) for which sexual dimorphism is obvious. More
interestingly, we observed that, when there were differences
in heritability by sex (21 traits), heritability was generally
larger among females (in 16 traits). The remaining 19 traits
showed heterogeneity in the total variance, but similar ratios
of genetic and environmental variances within each sex. The
differences were sometimes dramatic: weight had heritability
of approximately 50% among females, but only approx-
imately 35% among males; and neuroticism (NEO N),

Figure 4. Clustering of Genetic Correlations

The 98 quantative traits are classified into clusters inferred from genetic correlations between any two traits, with an ‘‘average’’ distance measure used
in the clustering algorithm. Classes of traits are color-coded as personality (red), serum composition (blue), cardiovascular (black), and anthropometric
(green). Overlap of the apparent genetic contribution to variance is indicated on the ordinate, with larger overlaps towards the bottom. Eighteen values
exceed 50% overlap (see text).
DOI: 10.1371/journal.pgen.0020132.g004
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agreeableness (NEO A), and extroversion (NEO E) all had
heritabilities of approximately 30% among females, but only
approximately 20% among males.

Similarly, we found age differences in variance components
for 62 traits. In some cases, these differences affected the
genetic variance; in other cases, they affected environmental
variances; and in still other cases, they affected the total
variance. In the majority of cases in which we saw a difference
in heritabilities between the young and old, we observed
higher heritabilities among younger individuals. The trend
likely reflects an expected increase of environmental insults
with age [47]. Nevertheless, important exceptions were
present, including traits such as SBP, DBP, mean blood
pressure, and pulse pressure, whose heritability increased an
average of 18% among older individuals. Interestingly, some
measures of vascular structure and function (such as PWV,
which reflects autonomous stiffening of the arterial substrate)
that change markedly with age, showed no significant differ-
ences in variance components between young and old
individuals. Taken together, these results suggest that it will
often be fruitful to examine genetic effects separately by sex
and age groups. In some instances, our results may allow
investigators to focus molecular studies on groups that show
higher heritability.

Although our previous discussion focused on total herit-
ability, our analysis also allowed us to examine the effects of
X-linked loci. We found a substantial X-linked component
influencing G6PD levels—a result that was expected, because
mutations in the G6PD gene (Xq28) are relatively common in
Sardinia where they reduce G6PD levels and protect against
malaria [48]. G6PD levels also exhibited a substantial
autosomal component, supporting the presence of other
regulatory loci that may influence malaria susceptibility and
resistance through regulation of G6PD levels. In addition, we
found a substantial X-linked variance component for three
other quantitative traits (cholesterol, LDL, and ESR). In some
of these cases, an X-linked component has been mapped (for
an example of an X-linked gene influencing cholesterol levels,
see [49]), and in other cases, our results may facilitate gene
mapping and identification.

Although the relationship between variance components
and the effects of age and sex remains conjectural, and the
particular source of the heterogeneity was sometimes hard to
distinguish, Tables 3 and 4 clearly show that heterogeneity in
variances is too great to be ignored in analyses of many traits:
for the traits listed, models without heterogeneity were always
rejected when compared to models with heterogeneity. Thus,
modeling the variance heterogeneity between different
groups or stratifying analysis by age or sex could be valuable
in molecular studies. In addition, it may be desirable to focus
sample collection and analysis in genetic studies on the most
informative individuals (for example, our results show traits
such as blood pressure have very low heritability in
individuals less than 40 y of age and may be more fruitfully
studied in older individuals).

We found that the correlation of genetic variance
components across age groups and across sexes did not
significantly deviate from 1.0 and thus, despite evidence for
heterogeneity, our results do not suggest that different genes
determine heritability in males and females, or in the young
and old. Instead, we infer that, at any age, the alleles involved
consistently increase (or decrease) values of a particular trait

in relation to the age-specific population mean. If the
cumulative effects of these alleles become functionally severe
only at older ages, when reproductive life is generally over,
deleterious alleles may still reach substantial frequencies in
the population.
Further analyses can also benefit from the apparent

overlap in the genetic determinants of multiple traits. For
example, our observations can guide downstream multi-
variate analysis as well as the construction of composite traits.
Combining traits with a shared genetic component can result
in composite traits with higher heritability than their
component phenotypes [50], increasing power. Combining
other trait groupings will likely be less helpful. In some cases,
observed overlaps are persuasive, such as, for example,
overlap in the genetic components related to the metabolic
syndrome. For personality traits, our analyses imply that the
facets defining each factor share major genetic determinants,
and that the phenotypic organization of the facets into higher
order factors is genetically rooted, an inference supported by
direct analysis of genetic factor structure (see Table S3).
Interestingly, we found no evidence for the simple notion
that a shared genetic determinant can be responsible for both
personality and cardiovascular traits. To account for the
association, more complex hypotheses must thus be enter-
tained, possibly involving shared environmental factors or
gene–environment interactions.
In ongoing studies, we plan to refine heritability estimates

for traits sensitive to major environmental factors, extending
the analyses by taking into account recorded information
about blood pressure medicines, smoking, and alcohol
consumption. We are also attempting to assess possible
ascertainment bias at older ages, resulting from the differ-
ential death rates among individuals with constitutions
associated with premature death (for example, individuals
with high blood pressure). In one preliminary approach, we
limited ascertainment bias by excluding those over 60 y of age
from the analysis (also eliminating most individuals taking
blood pressure medication or affected by cardiovascular
disease). Nevertheless, even with this truncated sample,
estimated heritabilities in young and old individuals follow
similar trends to those reported here, and our qualitative
conclusions are not affected (work in progress). Ultimately,
decisive analyses should be possible based on further
longitudinal study of the current cohort.
Overall, the cohort provides a high-yield setting for

identifying traits controlling variation in medically impor-
tant quantitative traits in humans. We originally planned to
focus genetic analyses on individuals with extreme values for
a few cardiovascular and personality traits. However,
technological advances have greatly facilitated large-scale
genotyping, and we now expect that a single genome scan
can be completed including all the individuals in our cohort.
This will allow analysis for multiple traits, and these
heritability analyses results suggest that the cohort will
provide a valuable resource for gene mapping. Standard
power calculations suggest that a linkage scan of these
samples should yield expected LOD (logarithm of the odds
ratio) scores of 3 or greater for loci explaining more than
8% of the variation in 96 of 98 traits (all but PSA and TSH;
W.-M. Chen, unpublished data), whereas a genome-wide
association scan could identify common alleles explaining as
little as 1% of the variation. Simultaneous genetic analysis
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of multiple traits in a single cohort will necessarily involve a
substantial amount of multiple testing, but careful evalua-
tion of false discovery rates [51] (for example, by comparing
the number of LOD scores exceeding a particular threshold
with that expected under the null), should help interpret the
results of our gene-mapping analyses. Because the range of
human variation largely extends across human populations
[52], our results should be relevant to genetic studies not
just in Sardinia, but also in other populations.

Materials and Methods

Population sampling. Recruitment focused on Lanusei—the largest
town in Ogliastra, the location of its only hospital, and site of the
local bishopric—and the neighboring towns of Ilbono, Arzana, and
Elini. To achieve our goal of recruiting more than 6,000 individuals
from the region, the project was advertised through provincial,
religious, and municipal authorities, in local television, newspaper,
and radio messages, through local physicians, and by mailings and
phone calls. Only individuals more than 13 y of age were eligible to
participate in the study.

A clinic was established in a quiet but easily accessible sector of
Lanusei. Each subject came to the clinic before breakfast, signed
consent forms, and gave a sample of fasting blood. Later in the day,
each subject returned for a full 2-h evaluation, including blood
pressure and anthropometric measurements, cardiovascular assess-
ments and personality testing, and a medical history interview. Two
teams of six staff, all Sardinian, worked in parallel so that up to 60
subjects could be examined each week. Each team included: a
physician, responsible for the medical history and physical examina-
tion; another physician and a technician, responsible for measure-
ments of arterial stiffness and thickness; a tester for the psychological
inventory; and, finally, a phlebotomist and a technician responsible
for collecting and fractionating blood. Additional backup staff helped
in data handling and transfer.

Institutional review board approval. The study, including the
protocols for subject recruitment and assessment; the Informed
Consent for participants (and Assent Forms for those 14–18 y); and
the overall analysis plan was reviewed and approved by institutional
review boards for the Istituto di Neurogenetica e Neurofarmacologia
(INN; Cagliari, Italy), for the MedStar Research Institute (responsible
for intramural research at the National Institutes of Aging, Baltimore,
Maryland, United States) and for the University of Michigan (Ann
Arbor, Michigan, United States).

Psychological phenotypes. Personality phenotypes were assessed
with the Revised NEO Personality Inventory (NEO-PI-R [53]), a
questionnaire consisting of 240 items answered on a five-point Likert
scale ranging from strongly disagree to strongly agree. The NEO-PI-R
characterizes consistent patterns of thought, feeling, and action for
each individual. Five major factors [neuroticism (N), extraversion (E),
openness to experience (O), agreeableness (A), and conscientiousness
(C)], each of which is a composite of six facets of personality, are
measured. The NEO-PI-R provides a comprehensive and detailed
assessment of normal adult personality in terms of emotional,
interpersonal, experiential, attitudinal, and motivational styles. The
inventory has a robust factor structure that has been replicated in
Italy [54] and in more than 50 cultures [55]. Scales have shown
longitudinal stability, cross-observer agreement, and convergent and
discriminant validity in a large body of studies [21]. Two trained
Sardinian psychologists administered the tests orally to participants
unable to fill out the questionnaire.

Blood composition. From each participant screened, 25 ml of
blood was drawn and fractionated to provide serum, EDTA-plasma,
heparin-plasma, white blood cells, and red blood cells. Clinical
laboratories in Sardinia provided blood cell counts and applied a
standard battery of blood tests for the measurement of electrolytes,
renal function, liver function, thyroid function, and iron metabolism.
Given our interest in cardiovascular risk factors, fasting lipid profiles,
markers of insulin resistance (glucose, insulin, and hemoglobin A1C),
and ESR were also measured. C-reactive protein (CRP) was assessed
using the standard low-sensitivity assay [56].

Cardiovascular profile. Blood pressure was measured with a
mercury sphygmomanometer. Measurements were taken in the
morning, after a light breakfast, and after a 5-min quiet resting
period, with subjects in the seated position. The SBP and DBP used
here are the average of the second and third measurements from the

right arm. Pulse pressure (PP) was calculated as (PP¼SBP�DBP) and
mean blood pressure (MBP) as (MBP¼DBPþPP/3). Standard 12-lead
electrocardiography was performed on all participants, from which
the PR interval and the QT interval corrected for heart rate (QTC)
were measured.

Participants also underwent non-invasive assessments of arterial
structure and function that are increasingly recognized as potent
predictors of adverse cardiovascular outcomes [15,57,58]. Carotid–
femoral PWV, an index of central arterial stiffness, was measured
with the help of transcutaneous Doppler ultrasonography [59].
Carotid ultrasonography was performed for the measurement of
arterial diam_S and diam_D, and IMT; from these variables,
vascular mass and the ratio of wall thickness to lumen diameter
were calculated. PWV, IMT, and carotid diameter measurements were
performed off-line by a single observer (A. Scuteri) who was blinded
to the identity of participants.

During the sonographic evaluation of the common carotid artery,
Doppler studies allowed the measurement of PSV, end-diastolic
velocity (EDV), pulsatility index (IP), systolic–diastolic ratio (SD_ra-
tio), and acceleration time (AT).

Additional traits and details. In addition to personality traits,
cardiovascular measures, and blood composition, we also considered
four anthropometric traits recorded during physical examination of
each subject (height, weight, and waist and hip circumference) and
one derived quantity (the BMI, kg/m2). For conciseness, additional
details of how individual phenotypes, including cardiovascular
measures, were collected are supplied as Protocol S1.

Quality assessment. Quality assessment of the data was carried out
using PEDSTATS [60], and in-house SAS (SAS Institute, Cary, North
Carolina, United States) and R (The R Project for Statistical
Computing [http://www.r-project.org]) scripts. These tools allowed
us to check that pedigrees were self-consistent, and to identify
univariate and multivariate outliers. Outliers and other unusual trait
values were inspected against the original records whenever possible.

Variance components analysis. To utilize fully the information in
our cohort, and to accommodate covariate effects, we estimated
heritabilities using a variance components model [23,24]. This model
can accommodate pedigrees of any configuration and is well suited to
the analysis of extended pedigrees. We included age, age2, sex, and
the two corresponding interaction terms as covariates in all analyses.
We considered a series of models for each trait, and these are detailed
below, together with details of transformations we applied to each
trait to guard against the possibility of statistical artifacts induced by
outliers or non-normal marginal distributions.

Quantile normalization. Variance components analyses are sensi-
tive to outliers, kurtosis, and skewness in the trait distribution.
Quantile normalization provides a practical way to deal with these
problems in the context of gene mapping and, specifically, variance
component analyses [61–63]. For traits that are approximately
normally distributed, normalization has minimal impact on results.
For other traits, normalization will not induce correlations between
relatives not present in the original data and thus should not lead to
erroneous inference of a heritable component for variation. To
carry out quantile normalization, we first ranked the observations
and then matched the percentile of each observation to the
corresponding percentile in a standard normal distribution. Using
the resulting percentiles, we replaced each observation with the
corresponding z-score from the standard normal distribution. When
ties were present, percentiles were averaged across all ties.

Base polygenic model. We considered a base model in which
variance is partitioned into a polygenic component rg

2 and an
environmental component re

2. As usual, the environmental compo-
nent is unique to each individual, whereas the polygenic component
is shared between individuals in proportion to their kinship
coefficient. Thus, if Yi is the observed trait measurement for
individual i, we define its variance as Var(Yi) ¼ rg

2 þ re
2 and the

covariance between measurements for a pair of individuals i and j
with kinship uij as Cov(Yi, Yj) ¼ 2 uij rg

2.
After fitting this base model, we considered refined models

including additional variance components to model genetic domi-
nance, rd

2, or the effects of shared sibling environment, rs
2. To

model genetic dominance, we let Dij denote the probability that
individuals i and j share two alleles identical by descent (IBD), based
on their reported relationship (as usual, this quantity was calculated
using generalized kinship coefficients [64]). Then we modeled the
variance of each trait measurement as Var(Yi) ¼ rg

2 þ re
2 þ rd

2 and
the covariance between measurements for a pair of individuals as
Cov(Yi, Yj)¼ 2 uij rg

2þ Dij rd
2. To model the effects of shared sibling

environment, we let Isib(i,j) be an indicator variable with value 1 when
individuals i and j are full sibs, and value 0 otherwise. Then we
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letVar(Yi) ¼ rg
2 þ re

2 þ rs
2 and Cov(Yi, Yj) ¼ 2 uij rg

2 þ Isib(i,j) rs
2. In

most datasets, including our own, the two models cannot be dis-
tinguished statistically [26]. In fact, because Dij ¼ 0.25 and Isib(i,j) ¼ 1
when i and j are full siblings, and Dij¼ Isib(i,j)¼0 for nearly all other pairs
of individuals, it is simple to show that the twomodels lead to identical
predictions of variances and covariances when we set rd

2¼ 4 rs
2 and

adjust re
2 appropriately. Although our dataset does not allow us to

distinguish between models with only genetic dominance (rd
2 . 0, rs

2

¼0), models with only shared environment (rd
2¼0, rs

2 . 0), and other
intermediate models (rd

2 . 0, rs
2 . 0), comparisons of parameter

estimates from thesemodels are informative. In themodel with genetic
dominance, the quantity H2¼ (rd

2þrg
2)/(rd

2þrg
2þre

2) provides a
liberal estimate of the overall impact of genes on the phenotype at
hand, whereas in the model attributing any excess similarity between
siblings to shared environment, the quantity h2¼rg

2/(rs
2þrg

2þre
2)

provides a very conservative estimate of the overall impact of genes.
Whenever there was significant evidence (p , 0.001) for shared sibling
environment or genetic dominance, genetic dominance was included
in the heterogeneity analyses described below.

Modelswithheterogeneity between the sexes. Tomodelheterogene-
ity, we evaluated models in which separate variance components were
fitted for males, rg,male

2 and re,male
2, and females, rg,female

2 and
re,female

2. The variances for each trait measurement and the
covariances for trait-measurements between individuals of the same
sex follow naturally from the formulae given in the section describing
the Base Polygenic Model (above). When individuals i and j were of
opposite sexes, we set the covariance to Cov(Yi, Yj) ¼ 2 uijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
g;maler

2
g;f emale

q
. When there was evidence for heterogeneity, we

proceeded to consider a series of intermediate models in which het-
erogeneity was allowed only for environmental effects (i.e., where
rg,male

2 ¼ rg,female
2), only for genetic effects (i.e., where re,male

2 ¼
re,female

2) or where variability increased uniformly for both genetic
and environmental factors (rg,male

2 ¼ k rg,female
2 and re,male

2 ¼
k re,female

2, with k 6¼ 1).
Setting Cov(Yi, Yj) ¼ 2 uij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
g;maler

2
g;f emale

q
for opposite sex

individuals assumes that the same genes influence phenotypes for
males and females. We also evaluated a model in which the covariance
for individuals of opposite sexes was Cov(Yi, Yj) ¼ 2 uij

qsex
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
g;maler

2
g;f emale

q
, but we found no cases where this model (with�1

, qsex , 1) resulted in a significant improvement in the likelihood.
Thus, our data provide no evidence that different genes contribute to
genetic variation in males and females, but rather that the same genes
make different contributions in each sex.

Mitochondrial and X-linked inheritance. We also considered the
possibility of X-linked or mitochondrial inheritance. X-linked
inheritance can produce differences in the total variance between
males and females, and either of these phenomena can generate sex-
dependent covariances between relatives (for example, they can lead
to differences between mother–daughter correlations and father–son
correlations). We compared models with heterogeneity to models
with an X-linked variance component, rx

2, and to models with a
mitochondrial genetic variance component, rm

2. In models with an
X-linked variance component, Var(Yi) ¼ rg

2 þ re
2 þ 2 uii

(X) rx
2 and

Cov(Yi, Yj)¼ 2 uij rg
2þ 2 uij

(X) rx
2, in which calculation of the kinship

coefficient for X-linked genes is detailed at the end of the Materials
and Methods section. In models with a mitochondrial variance
component, Var(Yi)¼rg

2þre
2þrm

2 and Cov(Yi, Yj)¼ 2 uij rg
2þM(i,j)

rm
2. The indicator function M(i,j) takes a value¼1 if individuals i and

j are related through their maternal lineages, and 0 otherwise.
Models with heterogeneity between young and old. Similarly to our

analysis with heterogeneity by sex, we defined separate variance
components for individuals whose age was greater or equal than the
sample median (42 y of age), rg,old

2 and re,old
2, and for individuals

whose age was below the sample median, rg,young
2 and re,young

2. When
there was evidence for heterogeneity, we considered intermediate
models in which heterogeneity was allowed only for environmental
effects (i.e., where rg,young

2 ¼ rg,old
2), or only for genetic effects

(i.e., where re,young
2 ¼ re,old

2), or in which the total variance for
both genetic and environmental factors changed by a shared factor
(rg,young

2 ¼ k rg,old
2 and re,young

2 ¼ k re,old
2, with k 6¼ 1).

Bivariate trait analyses. To investigate the origin of correlations
between each pair of traits Y and Z, we portioned the bivariate
correlation into an environmental correlation, qe(Y,Z), and a genetic
correlation, qg(Y,Z), for each pair of traits. To do this, we fitted the base
polygenic model to each pair of traits simultaneously, and set the

cross-trait correlation to Cov(Yi,Zi)¼qe(Y,Z)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
e;Zr

2
e;Y

q
þqg(Y,Z)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
g;Zr

2
g;Y

q

and the cross-trait, cross-individual correlation to Cov(Yi,Zj) ¼ 2 uij

qg(Y,Z)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
g;Zr

2
g;Y

q
. To summarize the results, we defined j1 � qg(Y,Z)j as

the distance between each pair of traits, and implemented a simple
hierarchical clustering analysis [65], which successively connects the
most similar traits using a greedy algorithm. This analysis was carried
out in R, using the hclust() function and the ‘‘average’’ agglomeration
method.

Maximum likelihood. All models were fitted by maximizing the
standard multivariate normal likelihood [66], which depends on a
linear model for expected values (incorporating a trait-specific mean
as well as age, age2, and sex) and a model for variances and
covariances. Likelihoods were maximized using a computationally
efficient scoring method [64] implemented in the program POLY
(freely available with source code from http://www.sph.umich.edu/csg/
chen/poly). The program uses Generalized Estimating Equations
estimates (GEE) [67] to select starting values for iterative likelihood
maximization, implements various diagnostic techniques, and pro-
vides standard errors for all parameter estimates. The current version
of the program can handle any non-inbred pedigree. For a subset of
the results reported here, estimates were compared with those
obtained from SOLAR [68] and QTDT [69], with identical results. We
used a likelihood ratio test to compare nested models. To compare
non-nested models, we used BIC [70].

Kinship coefficient for X-linked loci. Recall that the kinship
coefficient is the probability that two identical alleles will be sampled
from a pair of individuals when we select one allele at random from
each. The self-kinship coefficient is the probability that two alleles
sampled from one individual, with replacement, are identical. We
used a recursive formulation to estimate kinship coefficients for X-
linked genes, analogous to the conventional approach described in
Lange [64] for autosomal genes. First, we ordered all individuals in a
pedigree such that for any two individuals i and j, i . j implies that i is
not an ancestor of j (any ordering where ancestors precede their
descendants is suitable).

Then, we defined the kinship coefficient for X-linked genes, uij
(X)

,
as follows:

uðXÞij ¼

1 if i is male and i ¼ j
0:5 if i is a female founder and i ¼ j

uðXÞmotherðiÞj if i is male; i.j
1
2

uðXÞmotherðiÞj þ
1
2

uðXÞf atherðiÞj if i is female; i.j

0:5þ uðXÞmotherðiÞf atherðiÞ if i is female; i ¼ j

8>>>>>>><
>>>>>>>:

ð1Þ

Although this definition only covers the situation in which i � j, it
can be used to estimate any kinship coefficient because uij

(X)¼ uji
(X).

The definition reflects the fact that males carry only one allele for X-
linked genes, inherited from their mother. Females carry two alleles,
one inherited from each parent. The functions mother(i) and father(i)
return indexes for the parents of i.

Supporting Information

Protocol S1. Supplementary Methodology: Protocol Details for
Measuring Cardiovascular Traits

This section provides a detailed protocol for the assessment of
cardiovascular traits.

Found at DOI: 10.1371/journal.pgen.0020132.sd001 (18 KB PDF).

Table S1. Detailed Descriptive Statistics for 98 Traits

This table includes trait means and variances. Trait means are
stratified by sex and into four age bands.

Found at DOI: 10.1371/journal.pgen.0020132.st001 (37 KB PDF).

Table S2. Clusters of Traits for Which Genetic Correlation Is More
Than 0.5

Highlights subsets of traits identified in the clustering analysis, for
which the genetic correlation exceeds 0.5.

Found at DOI: 10.1371/journal.pgen.0020132.st002 (7 KB PDF).

Table S3. Genetic Factor Structure of Personality Traits

The table presents Procrustes-rotated principal components from
the genetic correlations among the 30 facets of the NEO-PI-R,
targeted to the American normative factor structure.
Found at DOI: 10.1371/journal.pgen.0020132.st003 (11 KB PDF).
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