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Abstract
In this paper we introduce a general algorithm to produce u.d. se-

quences of partitions and of points on fractals generated by an IFS con-
sisting of similarities which have the same ratio and which satisfy the open
set condition (OSC). Moreover we provide an estimate for the elementary
discrepancy of van der Corput type sequences constructed on this class of
fractals.

Introduction
In this paper we will extend to certain fractals the concept of uniformly

distributed (u.d.) sequences of partitions introduced by Kakutani in 1976 for
the interval [0, 1] (cfr. [9]). Moreover, we will study in this setting the relation
which has been recently established in [15] for [0, 1] between u.d. sequences of
partitions and the classical theory of u.d. sequences of points, a theory which
goes back to Weyl, [16].

The classical concept of u.d. sequences of points is more natural when we
deal with the interval [0, 1] and with manifolds. On the other hand, when
we work on fractals, in particular with fractals generated by Iterated Function
Systems (IFS), partitions become a convenient tool for introducing a uniform
distribution theory.

The advantage of considering partitions was implicitely used by Grabner and
Tichy in [6] and by Cristea and Tichy in [3] even if they treated u.d. sequences
of points. In these papers various concepts of discrepancies were introduced on
the planar Sierpi«ski gasket and on the multidimensional Sierpi«ski carpet re-
spectively, by using di�erent kinds of partitions on these two fractals. In [6] an
analogon of the classical van der Corput sequence has been constructed on the
planar Sierpi«ski gasket. Similarly, in a succesive paper of Cristea, Pillichsham-
mer, Pirsic and Scheicher [2] a sequence of van der Corput type has been de�ned
on the s-dimensional Sierpi«ski carpet by exploiting the IFS-addresses of the car-
pet points. In all these papers the authors gave estimates for the elementary
discrepancy of van der Corput type sequences, �nding that is of the order O(

1
N

)
.
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The idea to study this special kind of sequences in relation to uniform distri-
bution on IFS fractals is the starting point for this paper, too. In fact, we will
introduce a procedure to de�ne u.d. sequences of partitions and of points on
the class of fractals generated by a system of similarities on Rd having the same
ratio c and verifying the open set condition. Moreover, our estimate for the
elementary discrepancy in this wider class of fractals is of the order O(

1
N

)
, too.

Our results include those due to Cristea, Pillichshammer, Pirsic and Scheicher
in [2], giving a more trasparent proof and taking in consideration the whole class
of fractals described above.

The choice of the elementary discrepancy is convenient because the family
of elementary sets is obtained in the most natural way by the construction of
the fractal and because the elementary sets can be constructed for every IFS
fractal regardless of the complexity of its geometric structure.

Let us give a brief outline of the paper.
In Section 1 we introduce some basic de�nitions and some preliminaries on

uniform distribution in compact Hausdor� spaces. The books [10] and [4] are
excellent general references.

In Section 2 we recall some notions about IFS fractals and we present the
main results of this paper. In fact, we prove in Theorem 2.5 and in Theorem 2.6,
that it is possible to construct explicitly u.d. sequences of partitions and of
points on selfsimilar fractals generated by similarities with the same ratio and
which satisfy the open set condition. This approach also allows to produce a
di�erent construction of the known van der Corput sequences on [0, 1], using an
observation which goes back to Mandelbrot.

Finally, in Section 3 we provide an estimate for the elementary discrepancy
of the sequences of van der Corput type generated by our explicit algorithm and
this result is presented in Theorem 3.1 .

1 Preliminaries
Let X be a compact Hausdor� space and let us denote by B the σ-algebra

of Borel subsets of X. Suppose µ is a regular probability on B. By C(X) we
will denote the continuous real valued functions de�ned on X.

De�nition 1.1.
A sequence {xi} of elements in X is said to be uniformly distributed (u.d.) with
respect to µ, if

lim
N→∞

1
N

N∑

i=1

f(xi) =
∫

X

f(t) dµ(t)

for all f ∈ C(X).
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De�nition 1.2.
A Borel set M ⊂ X is called a µ-continuity set if µ(∂M) = 0, where ∂M

denotes the boundary of M with respect to the topology on X.

De�nition 1.3.
Let {πn} be a sequence of partitions of X, where πn =

{
An

1 , An
2 , . . . , An

k(n)

}
and

the An
i 's are µ-continuity sets. The sequence {πn} is said to be µ-uniformly

distributed if for any f ∈ C(X), and any choice tni ∈ An
i we have

lim
n→∞

1
k(n)

k(n)∑

i=1

f(tni ) =
∫

X

f(t) dµ(t).

The existence of u.d. sequences of partitions in separable metric spaces has
been addressed, but not completely solved, in [1]. However, this will not be an
issue in this paper, since known results on fractals will assure us the existence
of all the partitions we need.

Given a class of real valued integrable functions F , we say that it is deter-
mining for the uniform distribution of sequences of points if for any sequence
{xi} in X the validity of the relation

lim
N→∞

1
N

N∑

i=1

f(xi) =
∫

X

f(t) dµ(t) , (1)

for all f ∈ F already implies that {xi} is u.d..
Similarly, we say that F is determining for the uniform distribution of se-

quences of partitions if for any sequence {πn}, where πn =
{

An
1 , An

2 , . . . , An
k(n)

}
,

the validity of the relation

lim
n→∞

1
k(n)

k(n)∑

i=1

f(tni ) =
∫

X

f(t) dt

for all f ∈ F and for any choice tni ∈ An
i already implies that {πn} is u.d..

Observe the determining classes for the sequences of points play the same
role for the sequences of partitions and viceversa.

For a family of real valued functions F , we will denote by span(F) the linear
space generated by F and by span(F) its closure. The construction of many
important determining classes is based on the following theorem.

Theorem 1.4. If F is a class of real valued functions de�ned on X such that
(1) holds for all f ∈ F and span(F) ⊃ C(X), then F is a determining class.

It is also convenient to de�ne determining classes of sets: if G is a class of
sets, we say that it is determining if the corresponding class of characteristic
functions {χG : G ∈ G} is determining.

One more important de�nition is needed.
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De�nition 1.5.
Let G be a determining class of µ-continuity sets and ω = (x1, . . . , xN ) a �nite
set of points in X. Then the discrepancy with respect to G (or G−discrepancy)
is de�ned by

DG
N (ω) = sup

A∈G

∣∣∣∣∣
1
N

N∑

i=1

χA(xi)− µ(A)

∣∣∣∣∣.

In particular situations traditional terms are used instead of G-discrepancy.
For instance, if X = [0, 1] and G is the class of all subintervals of [0, 1], it is simply
called discrepancy, while the term star-discrepancy is used if G is reduced to the
class of all intervals of the type [0, a[.

If {yn} is a sequence of points, we associate to it the sequence of positive real
numbers DG

N (YN ), where YN = {y1, y2, . . . yN}. It follows from the de�nition
that {yn} is u.d. if and only if DG

N (YN ) tends to zero when N tends to in�nity.
In the next section we will introduce the van der Corput sequences on [0, 1].

They play an important role because they are the �best distributed� sequences
in the sense that their discrepancy is the smallest possible. In fact, Schmidt
proved that in general the order O

(
log N

N

)
cannot be improved, [13].

2 Fractals and Van der Corput sequences
From now on we will be concerned with uniform distribution on a special

class of fractals, namely those which are generated by an Iterated Function
System (IFS) of similarities having the same ratio c ∈ ]0, 1[ and satisfying the
Open Set Condition (OSC).

Let us denote by K(Rd) the space of all the non-empty compact subsets
of Rd endowed with the Hausdor� distance, which makes it complete.

Let ψ1, . . . , ψm be similarities on Rd with ‖ψi(x) − ψi(y)‖ = c‖x − y‖ , for
all x, y ∈ Rd, with 0 < c < 1.

The unique �xed point F of the contraction ψ(E) 7→
m⋃

i=1

ψi(E) is called the
attractor of the IFS, [8]. The set F is called a self-similar set and we have

F =
m⋃

i=1

ψi(F ).

Moreover, if F0 ∈ K(Rd) is such that ψi(F0) ⊂ F0 for 1 ≤ i ≤ m, then the
sequence of iterates {ψn(F0)} is decreasing and convergent to F in the Hausdor�
metric as n →∞, with

F =
∞⋂

n=0

ψn(F0)

(where ψ0(F0) = F0 and ψn+1(F0) = ψ(ψn(F0)) for n ≥ 0).
The set F0 = ψ0(F0) is called initial set and the iterates ψn(F0) are called
pre-fractals for F .
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De�nition 2.1 (OSC).
A class of similarities ψ1, . . . , ψm : Rd → Rd satis�es the open set condition if
there exists a non-empty bounded open set V such that

V ⊃
m⋃

i=1

ψi(V )

where ψi(V ) are pairwise disjoint.

If OSC holds the Hausdor� dimension of the attractor F is s = − log m
log c and

its s-dimensional Hausdor� measure Hs is positive and �nite (cfr. [12], [5]).
The OSC ensures that the components ψi(F ) of the invariant set F cannot

overlap too much. In fact, the following result holds (cfr. [8]).

Theorem 2.2. Let ψ1, . . . , ψm be similarities on Rd with ratio 0 < c < 1 and
let F be the attractor. If the OSC holds, then Hs(ψi(F )∩ψj(F )) = 0 for i 6= j.

Our class of fractals includes the most popular kind of fractals as for instance
the Cantor set, the Sierpi«ski triangle, the Sierpi«ski carpet, the von Koch curve
and so on. But also [0, 1] can be seen as the attractor of an IFS, in fact of
in�nitely many IFS's.

Fix a positive integer m and consider the mappings ϕ1, . . . , ϕm, from R to R,
where

ϕk(x) =
k − 1

m
+

x

m
, for 1 ≤ k ≤ m. (2)

Then [0, 1] is the attractor of this IFS. This observation goes back to Mandel-
brot (cfr. [11]).

Now, we will see how this observation can be used to de�ne on the kind of
fractals we are considering (and also on [0, 1]) the van der Corput sequences of
base m > 1.

Let ψ = {ψ1, . . . , ψm} be our IFS and F its attractor. Assume that F0 is
the initial set such that

ψi(F0) ⊂ F0 for i = 1, . . . ,m.

Fix a point x0 ∈ F and apply ψ1, . . . , ψm in that order to x0 getting so the
points x1, . . . , xm. At the second step, we apply the m mappings �rst to x1,
then to x2 and so on, getting �nally m2 points ordered in a precise manner.
Now we keep going, applying the functions of the IFS �rst to x1 and continue
so until we reach the point xm2 , getting so m3 points in the order determined
by the construction. Iterating this procedure we get a sequence of points {xn}
on F which will be called the van der Corput sequence.

Observe that if [0, 1] is seen as the attractor of the IFS described in (2), and
if x0 = 0, this is the classical van der Corput sequence (cfr. [14], [7], [10]).

Let us come back to the general situation, showing now how a similar con-
struction produces sequences of uniformly distributed partitions.
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Observe that if we apply the ψi's to F , in the same order of before, we
construct a sequence {πk} of partitions of F

πk =
{
ψjk

ψjk−1 · · · ψj1(F ) : j1, . . . , jk ∈ {1, . . . , m}}.

Each of the mk sets Ek
j of the partition πk contains exactly one point of the van

der Corput sequence {xn} constructed above for n = mk. We order the sets Ek
j

accordingly.
Let us denote by Ek the collection of the mk sets in πk and by E the union

of the families Ek, for k ∈ N. The sets of the class E are called elementary sets.
Consider on F the normalized s-dimensional Hausdor� measure P , i.e.

P (A) =
Hs(A)
Hs(F )

for any Borel set A ⊂ F

which is a regular probability.

Lemma 2.3. The elementary sets are P -continuity sets.

Proof.
Consider an elementary set Ei = ψi(F ) ∈ E1. Let x ∈ ∂Ei. By de�nition, every
neighbourhood U of x in the relative topology is such that U ∩Ej 6= ∅ for some
j ∈ {1, 2, . . . , m} and j 6= i. But each Ej is closed, therefore x ∈ Ej . Hence ∂Ei

is contained in
m⋃

j=1
j 6=i

(Ei ∩ Ej). By Theorem 2.2, we have

0 ≤ Hs(∂Ei) ≤ Hs




m⋃
j=1
j 6=i

(
Ei ∩ Ej

)

 = Hs




m⋃
j=1
j 6=i

(
ψi(F ) ∩ ψj(F )

)



≤
m∑

j=1
j 6=i

Hs
(
ψi(F ) ∩ ψj(F )

)
= 0.

Now, a generic elementary set A ∈ Ek with k ≥ 2 is a homothetic image of an
elementary set in E1 and therefore Hs(∂A) = 0, too.

Lemma 2.4. The class consisting of all elementary sets is determining.

Proof.
Let M be the class consisting of all characteristic functions of sets E ∈ E and
f ∈ C(F ). By uniform continuity, for every ε > 0 there exists δ > 0 such that
|f(x′) − f(x′′)| < ε whenever ‖x′ − x′′‖ < δ. Chose n ∈ N such that every
En

k ∈ En has diameter smaller than δ. Take for any En
k ∈ En a point tk and

consider the function

g(y) =
mn∑

k=1

f(tk)χEn
k
(y), y ∈ F.
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If y ∈ En
k , then |g(y)− f(y)| = |f(tk)− f(y)| < ε.

Hence, span(M) is uniformly dense in C(F ) and the conclusion follows by The-
orem 1.4.

Theorem 2.5. The sequence {πn} of partitions of F generated by the algorithm
is u.d. with respect to the probability P .

Proof.
Let us �x Ek

h ∈ πk. By the previous lemma, we have to show that

lim
n→∞

1
mn

mn∑

j=1

χEk
h
(tnj ) =

∫

F

χEk
h
(t) dP (t)

for every En
j ∈ πn and for every choice of tnj ∈ En

j . This is equivalent to

lim
n→∞

1
mn

mn∑

j=1

χEk
h
(tnj ) =

1
mk

because ∫

F

χEk
h
(t) dP (t) = P (Ek

h) = cskP (F ) = csk =
1

mk
.

Now, observe that for n > k, among the mk sets generated by the algorithm,
exactly one set of πn is contained in the �xed set Ek

h. Since there are mn−k sets
of πn which are contained in Ek

h, then

lim
n→∞

1
mn

mn∑

j=1

χEk
h
(tnj ) =

mn−k

mn
=

1
mk

.

Theorem 2.6. The sequence {xi} of points of F generated by the algorithm is
u.d. with respect to P .

Proof. By Lemma 2.4, the class E is determining. Hence, for a �xed set E ∈ Ek,
we have to prove that

lim
N→∞

1
N

N∑

i=1

χE(xi) =
∫

E

χE dP =
1

mk
. (3)
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Let mt ≤ N < mt+1, then

1
N

N∑

i=1

χE(xi) =
1
N

m+m2+...+mt−1∑

i=1

χE(xi) +
1
N

N∑

i= mt−m
m−1

χE(xi)

=

(
mt−m
m−1

)

N
· 1(

mt−m
m−1

)
m+m2+...+mt−1∑

i=1

χE(xi)

+
N − (

mt−m
m−1

)

N
· 1
N − (

mt−m
m−1

)
N∑

i= mt−m
m−1

χE(xi) (4)

since 1 + m + m2 + . . . + mt−1 = mt−1
m−1 .

Observe that for i > mt−1
m−1 , because of the order of the points xi, among the

�rst mk points exactly one point of the sequence {xi} is contained in the �xed
set E. Hence, for t →∞ we have

1(
mt−m
m−1

)
m+m2+...+mt−1∑

i=1

χE(xi) → 1
mk

. (5)

Writing N as N =
(

mt−m
m−1

)
+ Mmk + r with 0 ≤ r < mk, we have

1
N − (

mt−m
m−1

)
N∑

i= mt−m
m−1

χE(xi) =
Mmk

N − (
mt−m
m−1

) · 1
Mmk

N−r∑

i= mt−m
m−1

χE(xi)

+
r

N − (
mt−m
m−1

) · 1
r

N∑

i=N−r+1

χE(xi). (6)

By the previous remarks we obtain that

1
Mmk

N−r∑

i= mt−m
m−1

χE(xi) =
1

mk
,

while for N →∞ and hence for t →∞ we have

r

N − (
mt−m
m−1

)
N∑

i=N−r+1

χE(xi) → 0

because 0 ≤ r
N < mk

mt .
Using the last two relations in (6) and taking the limit for N →∞ (and hence
for t →∞) we have

1
N − (

mt−m
m−1

)
N∑

i=1

χE(xi) → 1
mk

. (7)

Finally, (4) is a convex combination of two terms which both tend to 1
mk for

N →∞ by (5) and (7) and therefore the conclusion (3) holds.
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3 Order of convergence of the elementary dis-
crepancy

In this section, F and P are as de�ned previously. The next theorem evalu-
ates the elementary discrepancy.

Theorem 3.1. Let {xi} be the sequence of points generated on F by the al-
gorithm described in the previous section and let N ≥ 1. Then the elementary
discrepancy of the sequence ω = (x1, . . . , xN ) is

DE
N (ω) =

1
N

.

Proof.
The lower bound is trivial. In fact, if we �x k ∈ N, then

DEk

N (ω) ≥ 1
N
− 1

mk
.

In order to �nd an upper bound for DE
N (ω) let us consider DEk

N (ω) for any k ∈ N.
Fix k ∈ N and let E ∈ Ek.

DEk

N (ω) = sup
E∈Ek

∣∣∣∣∣
1
N

N∑

i=1

χE(xi)− 1
mk

∣∣∣∣∣.

Among the �rst mk points of the sequence {xi} exactly one point is contained
in the �xed set E because of the special order induced by the algoritm.

Let us distinguish two di�erent cases:

1. For N ≤ mk, the set E contains at most one point of ω. Hence
∣∣∣∣∣
1
N

N∑

i=1

χE(xi)− 1
mk

∣∣∣∣∣ = max

{∣∣∣∣
1
N
− 1

mk

∣∣∣∣,
∣∣∣∣0−

1
mk

∣∣∣∣
}
≤ 1

N
.

2. If N > mk, we can write N as follows

N = Q ·mk + r with 0 ≤ r < mk and Q ≥ 1.

Therefore, every E ∈ Ek contains either Q points or (r of them) Q + 1
points and hence

∣∣∣∣∣
1
N

N∑

i=1

χE(xi)− 1
mk

∣∣∣∣∣ ≤ max

{∣∣∣∣
Q

N
− 1

mk

∣∣∣∣,
∣∣∣∣
Q + 1

N
− 1

mk

∣∣∣∣
}

.

Note that
∣∣∣∣
Q

N
− 1

mk

∣∣∣∣ =
∣∣∣∣
Qmk −N

Nmk

∣∣∣∣ =
∣∣∣∣
−r

Nmk

∣∣∣∣ <
mk

Nmk
=

1
N

,
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while
∣∣∣∣
Q + 1

N
− 1

mk

∣∣∣∣ =
∣∣∣∣
Qmk + mk −N

Nmk

∣∣∣∣ =
∣∣∣∣
mk − r

Nmk

∣∣∣∣ =
∣∣∣∣
1
N
− r

Nmk

∣∣∣∣ <
1
N

.

So we have that ∣∣∣∣∣
1
N

N∑

i=1

χE(xi)− 1
mk

∣∣∣∣∣ <
1
N

.

Hence, it follows that for any k ∈ N we have DEk

N (ω) < 1
N . This implies that

DE
N (ω) ≤ 1

N , as we wanted to prove.

4 Conclusions
This paper leaves open several questions.
The most relevant concerns a uni�ed approach to the discrepancy on a wider

class of fractals. This appears to be di�cult due to di�erent geometrical features
of the various fractals.

Another problem concerns the extension of our results to IFS with OSC
consisting of similarities which do not have the same ratio, and of course to
more general fractals.
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