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Abstract. In a recent paper the ultra-relativistic limit of a recent theory proposed by
Pennisi and Ruggeri for polyatomic relativistic gas has been considered. This was important
to check the general article. In particular, the explicitly expression of the characteristic veloc-
ities of the hyperbolic system were found for every value of the parameter a measuring ”how
much” the gas is polyatomic. This result was achieved in terms of the components of the
main field as independent variables and without writing it in terms of the physical variables.
Here the closure of the field equations is considered in terms of these physical variables and
their ultrarelatistic limit is obtained.
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1 Introduction

In the article [1], Pennisi and Ruggeri presented a casual relativistic theory for polyatomic
rarefied gas. They proposed the following field equations

RVE=0 |, 9,7 =0 , 0,AP"> = [<Fr> (1)
for the determination of the independent variables

Ve (") — particle, particle flux vector, @

T°%(z") —  energy momentum tensor .

It is assumed that 7%, A%#7 and I®7 are completely symmetric tensors and < --- > denotes
the traceless part of a tensor.

In the subsequent article [2] they have shown how the closure can be found in terms of a
4-potential A'® and reads

ahla Taﬂ B ah/a Aalg,y _ a h/Ol

o\’ IV 0%, (3)

Ve =

After that, they have found the closure in terms of 3 scalar functions hg, hs, hs; by comparing
egs. (9) and (11) of [2], we see that their expressions are

- 1 +oo
h > 10dT 4
0= )T (a + 1) /0 J2,1 ) (4)

(m
~ 1 1 Foo 27T
hy = — I\ 1+—)7%dT,
273 (mc2)et 1T (a + 1) /0 4.1 ( - mc? )

. 1 oo 27 \?
hs = 1|1+ — ) Z°dZ
* T (m) T (a + 1) /0 J6 ( M ch) ’

+o0
where Jp, . (7) = / sinh™ scosh™ sds, 1i.e., the Bessel function
0

7z
Jrow 18 Jma(y) with v replaced by ~* =~ (1+ —2> :

’ me
Moreover, m is the particle mass, ¢ the light speed, a = —1 + f%/2 with f’ the internal
degrees of freedom f? > 0 due to the internal motion (rotation and vibration; for monatomic

; . . 2 .
gases f* = 0 and @ = —1.), Z is the internal energy and v = o with kp the Boltzmann

constant and 7" the absolute temperature.
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The fields (V*, T*?) are expressed in terms of the usual physical variables through the de-
composition:

2
Ve =nmUe, T =159 4 (p+ ) + S UCE) + S USUP, (5)
C C

where U® is the four-velocity (U*U, = c* because the metric tensor is chosen as g =
diag(1, —1, —1, —1)), n is the number density, p is the pressure, h®? is the projector tensor:
hP = —gof + C%U‘)‘Uﬁ7 e is the energy, 7 is the dynamical pressure, the symbol < --- >3
denotes the 3-dimensional traceless part of a tensor, i.e., t<>3 = Tw (ho‘hﬂ 1ha3h,“,) is
the viscous deviatoric stress, and ¢* = —hj;U,T""is the heat flux. In this case we can take
n, T, U, t<°P>3 7 q¢% as 1ndependent Varlables

The Consequent expression of p, e and A*?7 are:

mn c? v Ohg mn
p= ) €= —= 5 ) (6)
Y hy v
2hy + 7 G2 ha
AP = T2 L0 o eUAUT 4 3 22 mn 2 BB — (7)
hg hO
3 Nl Nn
= aueyPyr — 322 ppleBp)
C2 D1 i D1 +
3 N; ( 3 N31
=28 glepgBym (ahﬂv) 30 t(<aﬁ>3U7)
+ 2 D, + = 5 D2 +
with ~ B
—ho 68% hz + "Yahz
D, = %_i:) _%2?20 <h2+78h2> ,
h oh dh h
R (ho v af) i
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—ho %_i’lyo h2+73h2
o e (e |
—3 (2h2+’y%h2> 8—}$+§7%:’? (6h5+678h5 + 7% >
_BO %—Z? h2+’)/ah2
Nn: 88_};0 _%2?20 <h +78h2> )
712 %}ff <h5 + 3 ’78h5>
L 2 hy
D2 - )
8(’;0) 2%
oy oy
~_0 ~ - ~
5 2 2hs By r2 2ho _ 1 hs
Ny =] , N1 = ) BE C5=E}~l—7
Ba 2 (2hs+ ) 5l 2, ’

We want now to obtain the ultrarelatistic limit of the above coefficients and, consequently, the
ultrarelativistic expressions of the balance equations. This particular is missing in [2], even if
there is something in the artcicle [3] but limited to the case of only Euler Equations. To this
end, some properties are necessary and we have reported and proved them in [4] in order not
to excessively lengthen the present article. However, we observe that the ultrarelativistic limit
is not a simple limit for v going to zero, otherwise the independent variable v disappears when
it tends to zero and we have only 13 independent variables instead of 14. Instead of this, we do
the following considerations: If a given function F'(v) can be written as F(y) = Fi(y )—i—FQ( )
with lim,_g %83 = 0, we say that F;(7) is the leading term and substitute F'(y) with F;(7).
In other words, we neglect terms which, in the limit for v going to zero, are of less order
with respect to the leading term. This will have the consequence that the balance equations
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(depending on the parameter a) will have some points of discontinuity with respect to this
parameter. The starting equations have the continuity property with respect to a, but passing
through some values of a the leading term changes. This is not a problem because, when
you make an application to a particular polyatomic gas, you know at what value of a it
corresponds and then you use the equations pertinent to this value.

By using the results in [4], w can now find the leading terms of our closure and we do this in
the next section, distinguihing some subcases according to different values of a. The results
are given by egs. (16) for a < 0, a # — 3, (18) for a = — 3, (20) for a = 0, (24) for 0 < a < 2,
(37) for a =2, (49) for 2 < a < 3, (61) for a = 3, (71) for 3 < a < 4, (82) for a = 4, (92) for
a >4,

2 The closure of the field equations in the ultrarela-

tivistic limit

Firstly, let us introduce the following notation

dis dy2 dy3 dis di2 di3
Dy = |dy dao dys| . Ny=|dn dao das (8)
ds31 d3» ds3 N3 N3y n33
d11 d12 d13
B €11 €12
Ny = | do dao doz| , D= :
€21 €22
msay ma3z m3s3
N €11 €12 N €11 €12
N3 = ) N31 = ) (9)
f21 f22 g21 922

15

with obvious meaning of the symbols. After that, let us distinguish some subcases.
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2.1 The case a <0, a # —%
From egs. (23), (31) and (12); of [4] we obtain

~ 1
ho = ’y_3F(2 — CL) — é’y_l F(—a),

ﬁ2:é75f(3—a)(a+5) —%73F(1—a)(a+3), (10)
hs =7 "T(4 —a) (a+4)(a+11).

We recall that equilibrium is defined as the state where 7 = 0, ¢® = 0. t<*/>3 = (. So, at
equilibrium, egs. (6) and (7) become

man man

p= , €=3 ,
Y Y (11)

AF =772 (2= a)(a+ B)mn [UUPU7 + EROIUT]

To find the leading terms of the non-equilibrium closure, we use these expressions and the
follow scheme

o3 A 5
di d12 di3 1
(12)
Dy = day da2 da3 Yo
d31 — 3do d3y — 5o dss — 3dys| 7~

where the notation indicates that we have multiplied the first column by ~3, the second one
by v*, the third ones by °; after that, we have multiplied the first line by 1, the second line
by 7 and the third line by v~!; so we find

E%Dnﬂ::—gua+n@a+@[HQ—@PF@ay (13)
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With a similar procedure we find

7 7 7

dn di2 dig| 1
N1'715: da1 da2 das| v

n31 32 nsz|

o 7t 7

di1 di2 diz| 1
]\711715: do1 da2 dos | v

ms1 m32 mas| 7>

from which we obtain
- - 4
lim Ny = lim Nyt = 5 T(2—a)’T(3—a) 2(2a° +10a® + 19a +23),  (14)
7= 7=

and, consequently,

N . Np 2a3 + 10a® + 19a + 23
lim —~3 = lim ——A~3 = ¢ (2 — 1-— . 15
5, =l e -a) (-0 —5 55 (15)
Going on with the same procedure, we find
v ou v 7 v ou
€11 ez| 1 N €11 ez 1 N €11 ez| 1
DQ"}’lO — , N3,Yll — , Ngl,yll — ,
€21 €227 Ja1 faz| 7 921 ga2| ¥

From these results we obtain

2
limD2710:—§F(2—a)F(3—a) (a+5),

7—0

N - 4
lim Nayt! = lim Nyt = — 5 I'(2—a)T(3—a)(a® + 2a* + 14a + 73),
Y— Y
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and, consequently,

| N. ’ Na; 2 a® + 2a® + 14a + 73
im —v = lim —~ = = :
=0 Dy 7—0 Dy g 3 a+5
Finally,

.~ (a+4)(a+11)

limCs5vy = (3 —

lg Cor = B =) =5 %)
We note that, in the monoatomic limit @ = —1, the present results are the same which have

been found in [?]. We note also that, if we consider only the first leading terms of (10), we
obtain

lim Dy =0
7—0
which is not significative; so also the subsequent orders in the expansion around v = 0 were
necessary. Instead of this, for the other functions only the first leading terms of the expansion
around v = 0 played an active role.
So for this case we have obtained the closure
mn
2

Aaﬂw —_ (2 _ a) (a 4 5) T (UaUﬁU’Y + 02 h(aﬁUV)) _ (16)

2a3 4+ 10a® + 1 2 1
30(2—a)(1—a) a® + 10a* + 19a + 37w_3(

—yUeyByY + hleBrm)
(2a+1)(2a +5) c? + *

a®+2a® 4+ 14a+73 [ 1 1
+ 92 <§q(aUﬂUv) + gq(ahﬁv)) "

a+5

(a+4)(a+11)
5(a+5)

+3(3—a) t(<aB>spm) A1

2.2 The case a = —%

All the considerations of the previous case still hold, but there is now the negative aspect
that lim,_o D7 = 0. So in the present case we have only to analyze the behaviour of Dj.
We note that, in the previous subsection, only 2 subsequent terms in the expansion around
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v = 0 played a role. Now we need also the third term in each of these expressions. So eqs.
(10); 2 have to be generalized in

- 5 1 1 ,
=~ Z2) - A7 2 3

ho = (2) 57 <2) + Ry,

=3 5 (7 5 _3.(3 2 _3

ha=37 F(2> 1! F(2)+7R37 ’

(as it can be found from eqgs. (26) and (34) of [4]) while eq. (10)—3 remains unchanged. In
these expressions the numbers Rj appears and they are defined by

+o0o
szlirr(l)f{k with Rk:/ e YNyt — 1yFdy.
’}/*)

1

(17)

Their expression is reported in Appendix A of [4].
After that, We see that in our case (12) becomes

D, 712 =
5 5 7
TP Rpd @G- Rl 60 (]I (2)7 - dRpd
= |30 (3) +30 (3)7* —3Rgye 120 (3) + T (3)7* — §Rzys =300 (3) + BT (3) 7 - 4R2
1 1 3
iU (3) — R4 3 (3) — §R ST () -8R
Now we add to the third line the first one multiplied by g and the second one multiplied by
- %; in this way the terms independent on ~ in the new third line disappear and we can take
out of this new third line a factor 7%. So we obtain
Dy ’V% =
5 5 7
—T(3)+30(3)7" —Ryy: =30(3) +50(3) 7" — 3R —60(5) +30(3)7° — 7Re

3 3 3
al (5)72 = 5B =GRy U () — 3Ry =R YT (5)7 — il =GR

Now we add to the third column the first one multiplied by 15 and the second one multiplied
by — 10; in this way the terms independent on 7 in the new third column disappear and we

19
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wl(3)7% - R - 3R 5T (3)00 — Ry — iR w0 (3) 78— G Ry
: 21 3 5\1°
After that, we see that lim Dyy2 = ——= |T'( = R-s,
y—0 2 2 p)
legan%%?l
an im — im—2=——T1/{=
30Dy | Am0 Dy | 5 \2) R
So for this case we have obtained the closure
45
A = 2 28 (UUPUY 4 ¢ BT + (18)
ok
84 7 1 9o (1
il i 3 arrBrry (aB777)
—1—5 (2>R257T72< vrurU” + LU
59 /1 1 343
= ZalepyBym & Z glapfn) ) 4t H(<aB>3777)
+2(CQqUU+5q )7 +20 Uyt
2.3 The case a =0
From eqs. (24) of [4] we obtain
7 3, L
ho=7""+ 577 In7, (19)
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while the expressions of iLQ and iL5 remain the same of (10)y3. After that, we see that the
expressions (11) at equilibrium still hold, while for the non equilibrium closure, with the
previous scheme we now calculate

~3 A 5
dyy dy2 di3 1
12
1 T da das das v
In v
_1 _1 _1 1=t
d31 — 3do1 dzy — 3da2 d33 — 3da3 In oy
712 40

after that, we find lim D;— = —.
=0 In~y 9

Regarding ]\71, NH, D, ]\73, Ngl, C~’5, we recall that in the case a < o, a # 0 only the first
leding term in each of eqs. (10) played an active role; since they are the same in this case
a = 0, we find the same previous results, but calculated in a = 0. So we find

46
5
For Dy, N3, N3p, Cs, the results are the same (but calculated in a = 0).
So for this case we have obtained the closure

. Nl 3 RT Nll 3 _
Ly 5 (— Iny) = lim 59 (—Invy)=-

A =10 L (UeUPUY 4 2 RPU) + (20)
gl
138 1 1
+—r—— (— UeUtu + h("BU”)) -
5  —3Iny \ 2

146 /1 1 396
(arrB7r717) = (apB7) -1 (<af>3777) A1
+ 5 (Czq U”U —i—5qh >7 +25t UvV~=".

24 ThecaseO0<a<1
From eq. (25) of [4] we obtain

~ _ a+1 o
ho =7 3F<2—CL) + mRiaiQV 17 (21)
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while the expressions of iLQ and iL5 remain the same of (10)y3. After that, we see that the
expressions (11) at equilibrium still hold, while for the non equilibrium closure, with the
previous scheme we now calculate

~3 4 ~
diy di2 dy3 1
Dy = do1 da2 das Yoo
dy — id dsy — 1d dgz — Ldys| vt
31 — 3021 32 — 3022 33 — 3023| 7
and find
4
lim Dy yEte = 5 I'3—a)T(2—a)R 4 2(a+1)(2a+1)(a+5). (22)
y—

Regarding Ny, N1, Do, N3, N3;, Cs, we recall that in the case a < o, a # 0 only the first
leading term in each of eqs. (10) played an active role; since they are the same in this case,
we find the same previous results. The only new result is that

N, o . Nn 2a® 4+ 10a? + 19a + 23  T'(2 — a)
1 1o 3-a 1 3—a _ __ 2 . 23
%D, T D, @t D@t5Rat1) Roao (23)

So for this case we have obtained the closure

mn

Aaﬂ’y _ (2 _ CL) (CL + 5) — (UaUﬁU'Y + 02 h(a,@U'Y)) + (24)
Y

2a® +10a* +19a+ 23 T'(2—a)
(a+1)(a+5)(2a+1) R,

1
7T,ya—?, (_2 UeysyY + h(aﬁU’y)) +
C

+ 2

3 2
a” + 2a + 14a -+ 73 lq(aUﬂU,y) + lq(ahﬁ’y) 771_’_
a+5 c? 5

(a+4)(a+11)

t(<aﬂ>3 Uv) -1
5(a+5) 7

+3(3—a)

22
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2.5 Thecasea=1
From eqs. (25), (32) and (12); of [4] we obtain for &g the same expression of (21) and for hs

the same expression of (10) but calculated in a = 1, while the expression of hy is
ho =27+ 277 In~y. (25)

After that, we see that the expressions (11) at equilibrium still hold, while for the non
equilibrium closure, we proceed with the same steps as before in the case 0 < a < 1; we find
the same previous results, but calculated in @ = 1. Consequently, the closure for the case
a = 1 is the same of the case 0 < a < 1, but calculated in a = 1.

2.6 Thecasel <a<?2
From egs. (25), (33) and (36) of [4] we obtain for hg the same expression of (21) and for ks

the same expression of (10) but calculated in a = 1, while the expression of hy is

1 1
h2 = 5 7_5 (a + 5) F(S - Cl) + 2 % R—a—l 7_2_(1 : <26)

After that, we see that the expressions (11) at equilibrium still hold, while for the non
equilibrium closure, we proceed with the same steps as before in the case 0 < a < 1; we find
the same previous results, but computed for 1 < a < 2. Consequently, the closure for the
case is the same of the case 0 < a < 1, but holding for 1 < a < 2.

2.7 The case a =2

From eqgs. (10)2, (12)1, and (33) of [4] we obtain for hy the same expression of (26) and for
hs the same expression of (10) but calculated for a = 2, while the expression of hg is

ho=—~""In~. (27)

After that, we see that the expressions (11); 2 at equilibrium still hold, while (11)3 has to be
substituted by

7 mn
—In~vy ~?

AT = [U°U U7 + & WP

23
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To find the non equilibrium closure, we note that

2 2t
In ~ In v
di1 dy2
14
7
17— = day dao
In~y
d3i — %dm dzp — %dm
ol okl
In~y In~y
di1 di2
15
Y
N = |d d
1 (ln 7)2 21 22
n3 32
'YS ’Y4
Iny Iny
dyy di2
15
Y Y
N =1|d d
11 (ln 7)2 21 22
msi1 ms2

After that, we use the above properties and find

14 140 Y °
lim Dyl— = ==, lim Ny =
P 9 =0 " (In~)?
N
and, consequently, Al,ll% 31 1:7 —

24
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Y
(28)
das 9l
d33 — %d23 v Iny
75
d13 1
(29)
das Y
n33 ’YQ
,ys
d13 1
(30)
da3 8
ms33 72
_ 15
’lyli% N11 (h’l )2 =104.
N 234
e IS S (31)
v—0 D1 In Y 35
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Let us consider now the following group of functions and observe that

4
Ty 7
710 B €1 €12 1 (32)
QE - 9
€21 €22 |7
4
T 7
a1 (en ez |1 (33)
Nglfy— — )
n
7 Ja1 faz |7
4
Ty 7
y1 €11 ez |1 (34)
N31 In )
7 g21 922 |7
From these results we obtain
0 4 11 11
lim Dyl — = == lim Ny-'— = lim Ny, — = 52,
=0 “ln~y 3 7—0 “lnvy =0 In~y
Ns N. 78
and, consequently,  lim —v = lim —ry = — . (35)

v—0 D3 v—0 D3 7

The calculations for C5 are the same of the previous cases, but calculated in a = 2, so that
we have

78

35 (36)

hm Csy =

25
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So for this case we have obtained the closure

P — (UaUﬂm + A hPYM) — (37)
— In 7y ’y

7021 1

LMy L egsy + plefym ) &

35 c?

+ E l q(aUﬁUv) + lq(ahﬂv) ~y -1 234 t(<aﬁ>3U7)
c? 5 35

2.8 Thecase2<a<3

From egs. (10)s, (12)1, and (33) of [4] we obtain for hy the same expression of (26) and for
hs the same expression of (10) (but now only th first leading term plays an active role) and
for hs the same expression of (10), while the expression of hg is

ho=7"""R_,. (38)

After that, we see that the expressions (11); at equilibrium still hold, while (11);3 have to
be substituted by
mn c? I3

=(a+1) , AW = R—_a) (a+5)mn [UUPUY + 2 hPUY] .
y —a

To find the non equilibrium closure, we note that

,ya—i-l ,Ya+2 75
diy di2 di3 1
(39)
Dy y** 0 = |dy dao da3 v
ds1 d32 d33 Y

26
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et ~at? A
diy di2 dis 1
(40)
Ny = |dy da2 das g
n31 N32 N33 7
,Ya—Q—l ,Ya+2 ,75
dis dy2 dis 1
(41)
N 72a+11 = | da da2 da3 Y
msy masa mas3 /72
After that, we find
20
lim D; 4?1 = — = (a —2) (a +5)T(3 — a) (R_,)?,
7—0 9
~ ~ . T
lirr(l) NyyHt2e = liII(l) NyyHt2e = 5 (a+4)(a+11)(a+1)T(4—a) (R-a) .
= =
and, consequently,
. N . Nu 1 (a+1)(a+4)(a+11)(3 - a)
lm =L~ =1im 2~y =_Z 43
D, T T D, T T s (a—2)(a+5) (43)
Regarding the following group of functions we observe that
,.ya+2 ,.y5
€11 ez |1 (44)
D2 ,ya+8 _ ’
€21 €2 |7Y

27
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€11
\7 a+9 __
N3y =

g21

From these results we obtain

2
lir% Dyy* ™ = —Z(a+5)T(4—-a)R_,,
’y—)

3
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~
€12 1 (45)
fa |7 |

5
€12 1 (46)
g2 |7 |

- - 2
liII(lJ N3yt = liII(l) N3yt = — 3 (a+4)(a+11)T'(4—a)R_,,
y— y—

and, consequently, lim —37 = lim =
’ ’ 7—0 D3 v—0 D3 a+5

Nglfy _ (a+4)(a+11) '

(47)

The calculations for Cy are the same of the previous cases, so that we have

(a+4)(a+11)

lim C5v = (3 —a)
y—0

28

5(a+5)

(48)
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So for this case we have obtained the closure

AoBY — M( +5)7"  nm (U“UQUV +c h(o‘ﬁUV) (49)
3(a+1)(a+4)(a+11)(3 —a) Lo oriBrm @Brm) ) -1
+5 @—2)a15) T CQUUU + RPUY ) v+

+3 (a +4)(a + 11) iq(aUﬂU'y) + lq(ahﬁv) 771+
a+5 c? 5

(a+4)(a+11) A
5(a+5)

<af>3777) 771 )

3(3—a)

2.9 The case a =3
From eqs. (11)s, (12)1, and (29); of [4] we obtain

N 8 -
ho=v"R.s+yIny— 7, hzz—gfﬁln% hs =98~7". (50)

After that, we see that the expressions (11); at equilibrium still hold, while (11),3 have to
be substituted by

2
8
mnc ’ A%m 8
v v

In 7 o [UaUﬂU'y +c h(aﬁUv)}

To find the non equilibrium closure, we note that

4 5 7°

g g In~y
diy dy2 dis 1
ot (51)
D1 1— = d21 d22 d23 Y
n -y
d31 d32 d33 8

29



(OTECHNIUM

Ny y'7 =

Nyl =

da

n3;

d22

maz
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'75

8 Invy
dis + 3 7 d2
8 In v
dos + 5 7 da2
33+ 3 g, 32
5
~
8 In
diz + 5 7= di

8 Invy
dos + 5 7 do2

In v

8
ms3 + 3 g M2

After that, we use the above properties and find

. N . 11
and, consequently, 'lyllr(l) D, v lny= }/% D, v lny =

lim N1’717

7—0

16
1
lim D, 1 = 1Y
n

v—0

(R—3)2 )

= lim N11717 =32 — (R,3)2 .
¥—0 9

Regarding the following group of functions we observe that

D, ’YH

5

v

€11

€21

,.)/5

16 In
ezt 3 pren |1

16 In ~
€2+ 3 g, |7
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(52)

(53)

(54)

(55)

(56)



(OTECHNIUM

€11
Ny~y'? =
for

€11
Y 12
N3y 7=

921

From these results we obtain

lim Dy 4™ =
v—0
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,YE)

€2 + % ;1—_73 eir |1 (57)

1
f22+%£—lf21 v

,Y5

€12 + ? ;%Z eir |1 (58)

16 In
922 + 5 R_lQQI v

16
——R_
3 3

- - 4
lim N3y*? = lim N3;7y'2 = —49. — R_5.
=0 =0 3

From the above results we deduce that.

N3 Ny 49
i 35,7 =l 5= (59)
. . 49
Regarding C5 we have that hn% yInyCs5 = — 20" (60)
’Y—)
So for this case we have obtained the closure
8
A% = — 2 n ? (UUPU™ + P — (61)
v -3

c2

5

147 (1

4

14 1
—77r ( Uo‘UﬁUV—I— h(aﬁUv))

1 147
4+ (? U + = q(ahﬁv)> ATt = 2 pl<aBzs )

v In vy

1
20 vIny
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2.10 Thecase3<a<4

From eqgs. (30), (35) and (12); of [4] we obtain
ho=7""R_g — 7 "R,

Royay™? = 3T~ a)

a—3 3 a—
hs =~""T(4—a)(a+4)(a+11).

a+5 _;
3’}/ ?

(62)

After that, we see that the expressions (11); at equilibrium still holds, while (11), 5 have to

be substituted by

2
e=(a+1) mne ,
v
e =g Ot D) Borca M ooy y g 04 L oo M0 o gy
a—3 R, a—3 R_, v
To find the non equilibrium closure, we note that
,ya—i-l ,ya+2 ,.Ya+2
di1 d12 dis 1
(63)
D, 73a+7 = |dn da2 da3 Y
d31 d32 d33 Y
,ya—i-l ,.)/a+2 ,Ya—i—Z
di1 dy2 dy3 1
(64)
Ny 72a+11 = |do dao da3 Y
n31 n32 n33 yoe
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,Ya+1 ,ya+2 ,ya+2
dis dyo di3 1
(65)
Ny y*H = | dy da2 da3 g
msi m3z ms3 yoe
After that, we find
10 (a+ 1)
lim Dy %" = — — (R_,)* R_o_
T 3 (F-a) Va3
hn%N Ly = lim Ny 2t (a+1)(a+4)(a+11)T4 —a) (R_,)*
’y—)
and, consequently,
N N 2 (a—3 4 11) T(4 —
i ey N a2 (@=8)a+ Dt 1) Fd—a)
7—0 Dy y—0 Dy 15 a+1 R__,
Regarding the subsequent group of functions we observe that
,.ya+2 ,ya+2
€11 €12 1 (66)
‘D2 ,ya+8 _ ,
ea + (a+2)v en ex+ (a+2)y ey [y
,ya+2 a+2
R €11 €12 1 (67)
N3 7a+9 = 9
J21 foo |7°7°
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a+2 a+2
Y 9
€11 €12 1
N a+9 __
N3y v = s
57
921 g22 |7V

From these results we obtain
2
lim Doy = - (a+5)T(4—a)R_,,
¥—0 3

N - 2
lim Nyt = lim Ngpy®t® = — 3 (a+4)(a+11)T(4—a)R_,,
= Y

720 Dy | 40 Dy | ats

and, consequently,

1 T4-a)(a—3)(a+4)(a+11)
T30 R, a+1 )

Finally, lim C5~*™®
7—0
So for this case we have obtained the closure

ala+1) Ry mn 87y a+1 R, mn
a—3 R, ~ UUU+6a—3 R,

WPy 4

AT =9

(CL - 3)((1 + 4)((1 + 11) P<4 - (1) T (é Uty + h(aﬂU’Y)> ,ya74+

2
+ 5 a-+1 R—l—a

+3 (a + 4)(a + 11) i q(aUﬂUv) + lq(ahﬁv) 7—1 +
a-+5 c? 5

1T —a) (a=3)(at+d)(a+11) capsypp o=t
10 R_1_, a+1 |
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2.11 The case a =4

From eqgs. (30), (35)2 and (12); of [4] we obtain
ho=~v"R.4 — v *R.s,
ho=10R_57 % + 37 Iny —3~75, (72)
hs =—120~7"7 In 7.

After that, we see that the expressions (11); at equilibrium still holds, while (11), 3 have to
be substituted by

o _5mne ’
8
R_s mn R_s mn
AP =40 == — U°UPU" + 30 5= — 2 h*PU”.
E R, Y R4 Y
To find the non equilibrium closure, we note that
ou v 7
di; dya di3 1
(73)
Dy~ = |dy dao da3 Y
ds1 d32 d33 Y
ou v 7
di dia di3 1
19 (74)
Ny v da dao das3 Y
n-y
na1 32 N33 ﬁ—y
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ok " 7
d11 d12 d13 1
T (75)
N1y v da dao das v
nsy
131 32 133 ﬁ
After that, we find
250
lim D,y = — == (R_,)*R_5,
7—0 3
19 19 {00
lim Ny — = lim Ny &— = — —— (R_,)?.
~F—0 In~vy 4-0 In fy 3
1 iy, N 1 Ny 1 16 1
and, consequen im——=1lm——=— —
’ q AR Dilny 1=0D;Iny 5 R
Regarding the subsequent group of functions we observe that
A6 A6
: 712 B €11 €12 1 (76)
1 - B B I
BT e +677ten ez + 677" er ﬁ
A6 A6
- 418 €11 €12 1 (77)
N3 1_ = 5
BT fa Jo2 ﬁ
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0% o
,},13 €1 €12 1 (78)
N31 ln )
T 921 92 |5
From these results we obtain
12 13 13
lim Dy — =6R_4, hm N3 +— =1lim N3; — =80 R_ 4, (79)
7—0 “ln vy = Iny -0 In ~
N. N 40
and, consequently, ’lylir(l) F‘Z v = ’lyli% 7321 T=3- (80)
. 1 4 1
Flnally, 1% C5 E = — g R__5 (8].)
So for this case we have obtained the closure
A28 — 40 B8 M0 oo | g B T ey (82)
4 Ry ~
48 1 1
= _— —UeyPyY + plesym ) L
5 R i (02 + n y+
121

1 1
440 (g ¢CUPUY + s q(ahﬁv)) A1 —— (B> Ly

5 R_s

2.12 The case a >4

From egs. (30), (35)s and (12)s of [4] we obtain the same expression (62) for hg, while hy, ks
have to be substituted by

a-+1 cas 2041 _1 a+2 a3

h2 =2 lea 8 —4 Rfa 7_a ) h5 - 60 —4 Rfa /7_

(83)
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where we substituted R_;_, and Ry_, with <= 3 R, and 1T R_, respectively; this can be
done because from (37) of [2] it follows the property Ry =144 - Rk_Q which hods for k < —2.

After that, we see that the expressions (11); at equilibrium still holds, while (11), 5 have to
be substituted by

2
mnc
=(a+1) ,
Y
Ri_ a+1Ri_,mn
AP =2 1 o MR prayby 46 ¢ 2plesy
E (a+1) R—a 5 + 0 R o C
To find the non equilibrium closure, we note that
,ya+1 ,ya+2 ,ya+2
dis dy2 dy3 1
(84)
Dy y*HT = |dy dao das vy
ds31 d3» ds3 0l
,.ya—i-l ,)/a+2 ,Ya—i—Z
dis d1a dis 1
(85)
N, 73a+7 = |dn da2 das Y
n31 n32 N33 Y
,7a+1 ,ya+2 ,ya+2
di; dy2 di3 1
(86)
Ni 73a+7 = |dn dao das 9
ms1 ms2 ms33 i
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After that, we find

3a+7 _ 1_0 (a’+ 1>2

2
3 a0 — 3 (R,a) Rflfa )

lim Dy vy
7—0

2
lim Nyy***7 = 2 (a+1)*(a+2) (R_.)? Lo (a+1) fial
v—0 3 a—4 R_a a 5

3a+8 , (Riaat] 2
a—4

~ 4
lir% Ny y3et7 = 3 (a+1)(a+2)(R.,)*
"Y—)

and, consequently,

N 2 Ri_q 1\° 1 | R,

lim — = = a? 2 1 -] -

5, =59 (@2 et >(R_a a) a—4| R,
i N 2a(a+2) '3 Rioa+1\> 3a+8| R.
m == - .
7—0 Dy 5 a-+1 R_, a a—4 | Ri_,

We note that only in the present case Dy, ]\71, Ny are of the same order and, moreover,
lim,yg,o % 7£ hmfyg,o %111
Regarding the subsequent group of functions we observe that

f}/a+2 ,70,-‘,-2
€11 €12 1 (87)
‘D2 72a+4 — 7
e+ (a+2)y ten e+ (a+2)7 ey |1
rya+2 ,ya+2
€11 €12 1 (88)
Ng ,72a+5 — ’
f21 f22 v
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,ya+2 ,ya+2
~ €11 ez |1 (89)
N31 72a+5 — ,
921 G22 |7
From these results we obtain
1 2 1
lim Dyt =4 252 (R 2 — 220 (g2,
¥—0 a—4
- +1 1
lim Nam20+5 — 1 9 a )P = )2
oy ¥ = 8 a0 +2) |5 (R = 2 (1)
- +1\? a+2
lim Nayy2t? = 40 (2 Ri_o)® — 40 R_,)’
711% 317 a (R1-a) a—4 ( )7,
and, consequently,
lim & B (a+1)(a+2) (a+1)(a—4)(Ri_o)? — a® (R_,)?
20Dy | T a 2(a+ 1)(a—4) (Ria)? — a(2a+1)(Rq)?’ (90)
po Mo 20 (a—4)(a+ VP (Ria)® — a(a+2) (R)?
0Dy T @ 2(a+D(a—4)(Ria)? — aat+ 1) (Ro)?
We note that only in the present case we have obtained lim,_, %"‘;1 v # lim,_ % .
Finally,
~ a+2 a R_,
li =2 . 1
yli%c‘r’ a+1la—-—4 R, (1)
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So for this case we have obtained the closure
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Ri_,nm (a+1) Ri_o nm
AP — 9 1 arrBrry 2 pleBrr) 2
(a+)R_a —UUPU" 4+ 6 - R_a'yc U (92)
Ri_q 1\’ 1 | R,
—a(a+2 )(=2==) - Uy —
a(a—l—)(a—i—)(Raa p— Rla UUU
6 ala+2) Riqa+1\° 3a+8| Roa  (asrm)
5 a+1 3<Ra a) a—4 RlahU+
L2 @+ @ De- DR - @R
c? a 2(a+1)(a—4)(Ri1—4)?> — a(2a+1) (R_,)?
+ B (a_4)(a+ 1)2 (lea>2 — a? (a+2) (R*G)Q q(ah57)+
a 2(a+1)(a—4)(Ri-2)?> —a2a+1)(R_,)?
a+2 a R_
a {(<aB>s37r7)
a+1la—-—4R,_,
3 Conclusions

We have found here a set of balance equations which approximate in the ultrarlativistic limit
the original one and they are suitable for describing a polyatomic gas. They are divided into
some subcases depending on how polyatomic the gas is or, to be more precise, on the basis
of the parameter a = —1 + f%/2 with f? the internal degrees of freedom f* > 0 due to the
internal motions. As these degrees of freedom should be expressed by an integer, 2a is also
an integer. However, as a mathematical abstraction, one can always think of a continuous

trend of a. This model allows this. Obviously, it

temperature is high enough to make v tend to zero,

is physically valid as long as the absolute
but not so much as to break the molecules

and thus deprive the gas of its polyatomic nature. Therefore the model is more physically

significant, when a is not too big.
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