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Abstract. In this paper we study a initial-boundary value problem for 4th

order hyperbolic equations with weak and strong damping terms and superlin-
ear source term. For blow-up solutions a lower bound of the blow-up time is

derived. Then we extend the results to a class of equations where a positive

power of gradient term is introduced.

1. Introduction. Hyperbolic problems of 4th order provide models for various phenomena in

Mathematical Physics as the motion of elasto-plastic bars. For more details, see for instance [2],
[6].

A relevant feature of these models lies in finite time blow-up of solutions in higher dimensional

settings.
An important field of investigation is to derive upper and lower bounds of blow-up time T ∗, in

particular lower bounds T , since they ensure a time interval [0, T ], T < T ∗, where the solutions

remain bounded.
In this paper we are concerned with blow-up solutions of the following class of 4th order hyperbolic

problems

utt + k1∆∆u− k2∆u− k3∆ut + aut|ut|m−2 = b|u|p−2u, in Ω× (t > 0), (1)

u = 0, ∆u = 0 on ∂Ω× (t > 0), (2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), on Ω, (3)

where Ω is a bounded domain in RN , N > 2, p > m ≥ 2, ki (i = 1, 2, 3), a, b, are positive
constants, u0, u1 suitable functions in Ω. T ∗ is the blow-up time (or lifespan) of the solution u

defined as

T ∗ = sup{T > 0 : u exists in Ω× [0, T ]}.
To 4th order hyperbolic problems different boundary conditions may be associated: not only

(2) (Navier boundary conditions) but also the Dirichlet boundary conditions:

u = 0,
∂u

∂n
= 0, on ∂Ω× (t > 0), (4)
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with n the outward normal direction to the boundary. Some results hold for both Navier and
Dirichlet boundary conditions (see [15], and for parabolic problems [16]). For the Petrovsky

equation (obtained from (1) with k1 = 1, k2 = k3 = 0):

utt + ∆∆u+ aut|ut|m−2 = b|u|p−2u, in Ω× (t > 0), (5)

under Dirichlet boundary conditions (4) and initial conditions (3), in [11] Messaoudi proves that
the solution is global if m > p ≥ 2 , while it blows up in finite time if p > m ≥ 2 and the energy

E(t) :=
1

2

∫
Ω

{
u2
t + (∆u)2

}
dx −

b

p

∫
Ω
|u|pdx

is initially negative.
The result of Messaoudi is improved by Wu and Tsai in [19], where they show that the solution of

(5) is global under some conditions without the relation between m and p, and the solution blows

up if p > m and the initial energy is nonnegative.
For the case m = 2, Wu ([18]) considers the equation

utt + ∆∆u−∆u− ω∆ut + α(t)ut = |u|p−2u, in Ω× (t ≥ 0), (6)

with ω > 0 and α(t) a non increasing, positive and differentiable function, under (2) and (3),

deriving both upper and lower bounds for blow-up time.

For the equation with the strong damping term

utt + ∆∆u−∆ut + aut|ut|m−2 = b|u|p−2u, in Ω× (t > 0), (7)

under (4) and (3) in [7] the authors prove that the solution of (7) is global without a connection
between p and m, while the local solution blows up in finite time if p > m and E(0) is less the

potential well depth (see also [5]). In [7], [9] , [11] and [18] the existence of the solution is also
investigated.

In [15] Philippin and Vernier-Piro derive a lower bound of the solution of the Petrovsky equation

(5) under (2) or (4) boundary conditions and (3), when Ω is a bounded domain in RN , N = 2, 3.
The bound is explicit due to the application of a Sobolev type inequality (valid only for N = 2, 3),

where the constant is explicitly computable (see [14] for the proof of the inequality).

Different classes of higher order hyperbolic equations with blow-up solutions have been examined:
in particular we cite the study of systems of Petrovsky equations in [13] where the authors obtain

lower bounds to blow-up time under some considerations on initial data.

Li, Sun and Liu in [8] for a particular choice of the source terms prove the global existence of
solutions, establish the uniform decay rates, and derive the conditions on the weak damping terms

to obtain the blow-up of the solutions and lifespan estimates. In [10] Marras and Vernier-Piro

investigate blow-up solutions of a nonlinear hyperbolic system of 4th order with time dependent
coefficients under Dirichlet or Navier boundary conditions. Moreover, we cite the paper [3] of

Autori, Colasuonno, Pucci, where the blow-up at infinity of global solutions of strongly damped

polyharmonic Kirchhoff systems is investigated (see also [4] for the aymptotic stability).

The aim of this paper is to obtain a lower bound for the blow-up time for solution to problem
(1)-(2)-(3), extending the results in [15] to the more general equation (1) and to an equation

containing also a positive power of the gradient term (cf. (14)). Compared with the results in

[7] and [18], we remark that the equations under investigation are more general and the bounds
obtained are more explicit (in the sense that in the cited papers the bounds have an integral form)

and computable except for the constant Bq in the Sobolev -Poincaré inequality (see Lemma 18

below).
We state now our main results, concerning the behaviour in time of blow-up solutions of problem

(1)-(2)-(3). In the sequel we assume that p > m ≥ 2 and the conditions on initial data present in

Theorem 2.5 in §2 are satisfied.
We introduce the function

Φ(t) :=

∫
Ω
|ut|2dx+ k1

∫
Ω
|∆u|2dx+ k2

∫
Ω
|∇u|2dx, in Ω× (t > 0), (8)

with

Φ0 := Φ(0) =

∫
Ω
|u1|2dx+ k1

∫
Ω
|∆u0|2dx+ k2

∫
Ω
|∇u0|2dx, in Ω. (9)



EXPLICIT ESTIMATES 3

Definition.

The solution of problem (1)-(2)-(3) blows up at time T ∗ if

lim
T→T∗

Φ(t) = +∞. (10)

We stress that the results of the paper hold for N > 2.
For the superlinear source term u|u|p−2 in (1), we assume

2(N+1)
N

< p < +∞, N = 3, 4,

2(N+1)
N

< p <
2(N−1)
N−4

, N ≥ 5,
(11)

in order to apply a Sobolev -Poincaré inequality in Lemma 2.2 when proving the Theorems 1.1

and 1.2 (see in particular (25)).

Our first result is contained in the following Theorem.

Theorem 1.1. Let u(x, t) be a blow-up solution of (1)-(2)-(3) and let Φ(t) and Φ0 be defined
in (8)-(9). Suppose that p satisfies (11) and ki, i = 1, 2, 3 and a, b are positive constants, then a

lower bound T of the blow-up time T ∗ is given by

T =
Φ2−p

0

(p− 2)K
(12)

with

K =
C2b2

k3
B

2(p−1)
p , (13)

C and Bp the positive constants in the Gagliardo-Nirenberg and Sobolev-Poincaré inequalities,

respectively.

Remark 1.

Note that in the bound (12)-(13), for p = 2, C = 1√
πN(N−2)

(
Γ(N)

Γ(N/2)

) 1
N

(see [17]).

Moreover we introduce in (1) a gradient term of power type to obtain the new problem

utt + k1∆∆u− k2∆u− k3∆ut + aut|ut|m−2 (14)

= b|u|p−2u+ c|∇u|s, in Ω× (t > 0),

where Ω ⊂ RN , N > 2, s ≤ N
N−2

, under initial and boundary conditions (2)-(3).

Theorem 1.2. Let u(x, t) be a blow-up solution of (14)-(2)-(3) and let Φ(t) be defined in (8).

Suppose that p satisfies (11), ki, i = 1, 2, 3 and a, b, c are positive constants and 1 ≤ s ≤ N
N−2

,

then Φ(t) remains bounded in the interval [0, Ti) with

T1 :=
1

c(p− 2)
log
(

1 +
cη

ζ1
Φ2−p

0

)
, if s = p− 1,

T2 :=
1

c(s− 1)
log
(

1 +
cη

ζ2
Φ1−s

0

)
, if s > p− 1,

T3 :=
1

c(p− 2)
log
(

1 +
cη

ζ3
Φ2−p

0

)
, if s < p− 1,

(15)

with 
ζ1 := cγ

k1
+K,

ζ2 := cγ
k1

+KΦp−1−s
0 ,

ζ3 := cγ
k1

Φs−p+1
0 +K,

(16)

η = η(p, c) a positive constant, K defined in (13) and γ the constant in the embedding W 2,2 ⊆
W 1,2s. Ti are lower bounds of T ∗i .
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The scheme of this paper is the following: in §2 we explain the notations used throughout the
paper and collect some known results to be used in the proofs of our results. Subsequently, in §3
we prove Theorem 1.1. Finally, in §4 we exhibit an extension of our first result to an equation

containing a positive power of the gradient term.

2. Preliminaries. In this section we introduce some notations and collect some known results
that we will use in the sequel. Let us introduce the space

H = {u ∈ H2(Ω) ∩H1
0 (Ω) : u = ∆u = 0 on ∂Ω}

and

||u||2H = ||∆u||22 + ||∇u||22.

Lemma 2.1. (Gagliardo-Nirenberg-Sobolev inequality).

Let 1 ≤ p < N , then ∀u ∈W 1,p(Ω) there exists a positive constant C such that

||u||p∗ ≤ C||∇u||p, p∗ =
pN

N − p
> p.

Lemma 2.2. [1] (Sobolev -Poincaré inequality)

Let u ∈ H. If q satisfies 
2 < q < +∞, 1 ≤ N ≤ 4,

2 < q < 2N
N−4

, N ≥ 5,
(17)

then

||u||q ≤ Bq ||u||H , (18)

with Bq = supu∈H\{0}
||u||q
||u||H

.

Now we define an energy function associated to (1)-(2)-(3):

E(t) :=
1

2

∫
Ω
u2
tdx+

k1

2

∫
Ω
(∆u)2dx+

k2

2

∫
Ω
|∇u|2dx (19)

−
b

p

∫
Ω
|u|pdx.

Lemma 2.3. E(t) is a non increasing function for all t ≥ 0.

Proof. We derive E(t) to obtain

E′(t) =

∫
Ω
ututtdx+ k1

∫
Ω
ut∆∆udx− k2

∫
Ω
ut∆udx− b

∫
Ω
u|u|p−2utdx

Now we use (1), multiplied by ut, and integrate to obtain∫
Ω
ut(utt + k1∆∆u− k2∆u)dx

= k3

∫
Ω
ut∆utdx− a

∫
Ω
|ut|mdx+ b

∫
Ω
u|u|p−2utdx.

Then we get

E′(t) = k3

∫
Ω
ut∆utdx− a

∫
Ω
|ut|mdx.

Moreover, by divergence theorem

k3

∫
Ω
ut∆utdx = −k3

∫
Ω
|∇ut|2dx,

so that

E′(t) = −
(
a||ut||mm + k3||∇ut||22

)
≤ 0.

As a consequence E(t) ≤ E(0).

Now for completeness, we state without the proof, the local existence and the blow-up theorems
to the solutions of our problem. First we present the result in [18] for the equation (6) (m = 2)

under (2)-(3).
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Theorem 2.4. [18] (Local existence)
Suppose that 

2 < p < +∞, N ≤ 4,

2 < p <
2(N−2)
N−4

, N ≥ 5.
(20)

Let u0 ∈ H and u1 ∈ L2. Then there exists a unique weak solution u of the problem (6)-(2)-

(3) such that u ∈ L∞([0, T ];H(Ω)) and ut ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), for T > 0 small

enough.

For the problem (1)-(2)-(3) (m > 2), the existence theorem can be established by combining the

arguments of [5], [7], [11], [20], under the condition 2 < m < +∞, N ≤ 4, 2 < m < 2N
N−4

, N ≥ 5.

Next we introduce I(u) = k1

∫
Ω(∆u)2dx+ k2

∫
Ω|∇u|

2dx− b
∫
Ω |u|

pdx and d the potential well

depth ([12]) to state the following

Theorem 2.5. (Blow-up)
Assume p > m ≥ 2 and (20). If u0 ∈ {u ∈ H(Ω), I(u) < 0} and E(0) < d, then the local solution

u of the problem (1)-(2)-(3) blows up in finite time.

For the function Φ(t), we prove the following

Lemma 2.6. Let u(x, t) be the solution of (1)-(2)-(3). Let Φ(t) and Φ0 be defined in (8)-(9) and
satisfying (10). Then there exists a time t̄ ∈ [0, T ∗) such that

Φq(t) ≤ Φp(t)Φq−p
0 , ∀t ∈ [t̄, T ∗), (21)

for any 1 < q < p.

Proof.

By definition of blow-up solution, if Φ(t) is non decreasing for all t ∈ [0, T ∗), then Φ(t) ≥ Φ0, ∀t ∈
[0, T ∗). On the contrary, there exists a time t̄ ∈ (0, T ∗) such that Φ(t̄) = Φ0 and Φ(t) ≥ Φ0 , for

t ∈ [t̄, T ∗). Then (21) holds.

3. Proof of Theorem 1.1. In this section we derive a differential inequality for Φ(t), defined in
(8), to obtain a lower bound T of the blow-up time T ∗, so that we may fix a safe time interval

[0, t], t < T , where the solution u(x, t) is bounded.

Differentiating Φ, we have for every blow-up solution u

Φ′(t) := 2

∫
Ω

{
ututt + k1∆u∆ut + k2∇u∇ut

}
dx (22)

= 2

∫
Ω

{
ut utt + k1ut∆∆u− k2ut∆u)

}
dx,

where the second Green identity was used. Next, by using (1) we get

Φ′(t) = 2
(
k3

∫
Ω
ut∆utdx− a

∫
Ω
|ut|mdx+ b

∫
Ω
ut u |u|p−2dx

)
= I1 + I2 + I3

In order to estimate I1, we note that∫
Ω
ut∆utdx = −

∫
Ω
|∇ut|2dx.

The negative term I2 can be neglected. For I3 , from the Hölder inequality we have∣∣∣ ∫
Ω
ut u |u|p−2dx

∣∣∣ ≤ ∫
Ω
|ut| |u|p−1dx ≤

(∫
Ω
|u|

2(p−1)N
N+2 dx

)N+2
2N

(∫
Ω
|ut|

2N
N−2 dx

)N−2
2N

.

By Lemma (2.1) with p = 2 and p∗ = 2N
N−2

> 2, applied to the last integral, it follows

I3 ≤ 2bC
(∫

Ω
|u|

2(p−1)N
N+2 dx

)N+2
2N

(∫
Ω
|∇ut|2dx

)1/2
.

By using

Aθ B1−θ ≤ θA+ (1− θ)B, (23)
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with A,B > 0, 0 < θ < 1,

I3 ≤
(C2b2

k3

)(∫
Ω
|u|

2(p−1)N
N+2 dx

)N+2
N

+ 2k3

∫
Ω
|∇ut|2dx.

At the end

Φ′(t) ≤
(C2b2

k3

)(∫
Ω
|u|

2(p−1)N
N+2 dx

)N+2
N

. (24)

Now, with q in Lemma (2.2) replaced by
2(p−1)N
N+2

, we have(∫
Ω
|u|

2(p−1)N
N+2 dx

)N+2
N ≤ B2(p−1)

p Φp−1, (25)

where, without loss of generality, we suppose k1, k2 greater than 1. Finally, by inserting (25) in

(24) with K =
(
C2b2

k3

)
B

2(p−1)
p , the following inequality holds

Φ′(t) ≤ K Φp−1(t), t ∈ [0, T ∗), (26)

that may be rewritten as (
Φ2−p(t)

)′
≥ −(p− 2)K.

If we integrate in the time interval [0, t), t < T ∗, we get

Φ2−p(t) ≥ Φ2−p
0 − (p− 2)Kt. (27)

From the definition (10), and letting t→ T ∗, we obtain

T ∗ ≥
Φ2−p

0

K(p− 2)
:= T.

From (27) it follows that Φ(t) remains bounded in any time interval [0, t], t < T , with T defined

in (12). T is a lower bound for T ∗.
It is important to observe that the boundedness of Φ(t) in [0, T ) implies the boundedness of the
solution u(x, t) in L2-norm.

From the hinged plate eigenvalue problem{
∆∆v − Λv = 0, in Ω,

v = 0, ∆v = 0, on ∂Ω,
(28)

it is known that

||v||22 ≤
1

Λ1
||∆v||22

with Λ1 the first eigenvalue of the problem (28). The boundedness follows from the definition of

Φ(t) (8) and

||u||22 ≤
1

Λ1k1
Φ(t).

.

4. Extensions. In this section we consider a fourth-order hyperbolic equation with a gradient

term |∇u|s. We prove that Theorem 1.1 may be extended to blow-up solutions of the equation

(14) under Navier boundary condition (2) and (3). By using the same auxiliary function Φ(t),
defined in (8), we obtain a lower bound of the blow-up time.

Proof of Theorem 1.2.

Following the proof of Theorem 1.1 in §3

Φ′(t) := 2

∫
Ω
ut {utt + k1∆∆u− k2∆u}dx (29)

= 2(k3

∫
Ω
ut∆utdx− a

∫
Ω
|ut|mdx+ b

∫
Ω
ut u |u|p−2dx) + c

∫
Ω
ut|∇u|sdx

The new term that we have to estimate is∫
Ω
ut|∇u|sdx
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By Hölder inequality and (23)∫
Ω
ut|∇u|sdx ≤

(∫
Ω
u2
tdx
) 1

2
(∫

Ω
|∇u|2sdx

) 1
2

≤
1

2

∫
Ω
u2
tdx+

1

2

∫
Ω
|∇u|2sdx.

By the Sobolev embedding theorem

W 2,2(Ω) ⊆W 1,2s(Ω)

with s ≤ N
N−2

, applied to a function w ∈W 2,2
0 (Ω) to obtain the inequality

||∇u||2s2s ≤ γ||∆u||2s2 (30)

Then for all t ∈ [0, T ∗)

Φ′(t) ≤ c
∫

Ω
u2
tdx+ cγ

(∫
Ω

(∆u)2dx
)s

(31)

+
C2b2

k3
B

2(p−1)
p

(∫
Ω

(
k1(∆u)2 + a|∇u|2

)
dx
)p−1

.

By the definition of Φ and K, we can derive the following differential inequality

Φ′(t) ≤ cΦ +
cγ

k1
Φs(t) +K Φp−1(t), t ∈ [0, T ∗), (32)

Our aim is to semplify the inequality (32) in a way that it is possible to integrate and then to

derive a lower bound to T ∗. By using (2.6) and comparing s with p− 1 we rewrite inequality (32)
in the following three cases:


Φ′(t) ≤ cΦ(t) + ( cγ

k1
+K) Φp−1(t), if s = p− 1,

Φ′(t) ≤ cΦ(t) + ( cγ
k1

+KΦp−1−s
0 ) Φs(t), if s > p− 1,

Φ′(t) ≤ cΦ(t) + ( cγ
k1

Φs−p+1
0 +K) Φp−1(t), if s < p− 1.

(33)

Next step is to integrate each inequality in (33) in [t̄, t]. For instance, the first inequality may be

rewritten as ( ec(p−2)tΦ2−p

2− p

)′
≤ ζ1ec(p−2)t,

with ζ1 := ( cγ
k1

+K). It follows , with η = ec(p−2)t̄

ec(p−2)tΦ2−p

2− p
−
ηΦ2−p

0

2− p
≤ ζ1

∫ t

t̄
ec(p−2)τdτ (34)

≤ ζ1
∫ t

0
ec(p−2)τdτ =

ζ1

c(p− 2)
(ec(p−2)t − 1).

We can easily repeat the computations in (34) for the second and third inequality in (33). Then
if t → T ∗, we deduce that Φ(t) remains bounded in the intervals [0, ti], i = 1, 2, 3 with ti < Ti
defined in (15). As mentioned above, Ti are lower bounds of the blow-up time in each case. The
proof of Theorem 1.2 is finished.
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