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Abstract

Our ageing society claims for innovative tools to early detect symptoms of cog-

nitive decline. Several research efforts are being made to exploit sensorized

smart-homes and artificial intelligence (AI) methods to detect a decline of the

cognitive functions of the elderly in order to promptly alert practitioners. Even

though those tools may provide accurate predictions, they currently provide

limited support to clinicians in making a diagnosis. Indeed, most AI systems

do not provide any explanation of the reason why a given prediction was com-

puted. Other systems are based on a set of rules that are easy to interpret by

a human. However, those rule-based systems can cope with a limited number

of abnormal situations, and are not flexible enough to adapt to different users

and contextual situations. In this paper, we tackle this challenging problem

by proposing a flexible AI system to recognize early symptoms of cognitive de-

cline in smart-homes, which is able to explain the reason of predictions at a

fine-grained level. Our method relies on well known clinical models that con-

sider subtle and overt behavioral anomalies, as well as spatial disorientation and

wandering behaviors. In order to adapt to different individuals and situations,

anomalies are recognized using a collaborative approach. We experimented our

approach with a large set of real world subjects, including people with MCI and
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people with dementia. We also implemented a dashboard to allow clinicians to

inspect anomalies together with the explanations of predictions. Results show

that our system’s predictions are significantly correlated to the person’s actual

diagnosis. To the best of our knowledge, this is the first work that explores

data-driven explainable AI for supporting the diagnosis of cognitive decline.

Keywords: Pervasive healthcare, Explainable artificial intelligence, Cognitive

decline, Sensor-based activity recognition.

1. Introduction

Declined fertility and increased longevity are determining a demographic

shift that is considered one of the dominant phenomena of the 21th century.

Several recent studies forecast that in the near future the senior population

is going to double as a percentage over the whole population, and this fact5

will have a strong impact on several fields of our societies [1]. In the health-

care domain, there is a growing interest in devising innovative strategies and

techniques to prolong healthy and independent living in the elderly population.

To this aim, the increasing adoption of Internet of Things (IoT) platforms in

smart-homes, together with the integration of artificial intelligence (AI) agents,10

provide unprecedented opportunities for remotely monitoring the health status

of seniors. In particular, it is necessary to implement effective tools to early

detect symptoms of cognitive decline, in order to report them to clinicians, and

to raise alarms when needed [2]. This need is particularly stringent for seniors

living alone. Indeed, for this category of people, periodic screening by clinicians15

should be complemented by continuous cognitive assessment carried out using

automatic tools for promptly detecting possible cognitive issues.

Different AI-based systems have been proposed in the last years to remotely

assess the health status of seniors [3]. They can be divided in three categories:

data-driven, knowledge-based, and hybrid approaches. Most data-driven meth-20

ods rely on datasets of activities carried out by seniors and try to recognize ab-

normal behaviors based on deviations against the expected activity patterns [4].
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However, given the high variability of activity execution due to contextual con-

ditions, those methods may provide many false positives. Moreover, while they

are effective in recognizing large deviations from the expected behavior, they are25

less suitable to recognize mild behavioral changes on the long term which may

be indicators of cognitive decline. A further limitation of data-driven methods

is that they do not provide explanations of their predictions to clinicians.

Knowledge-based approaches generally rely on manually defined sets of rules

that model a given behavior as ‘abnormal’ according to some clinical model [5].30

While those rules are easily interpretable by a human, manually defined rules

can cover only a restricted set of possible behaviors. Moreover, rules must be

carefully crafted considering the individual’s profile. Hence, the approach can

hardly scale with the number of monitored individuals. Hybrid approaches try

to take the best of data-driven and knowledge-based ones, by mining a model35

of anomalies based on a labeled set of abnormal behaviors [6, 7]. Unfortunately,

the acquisition of large labeled sets of abnormal behaviors is expensive and

introduces severe privacy issues due to the presence of an observer in charge of

annotating anomalies.

In this paper, we aim at devising an IoT system supporting the early di-40

agnosis of cognitive decline, which provides caregivers with numerical scores

reporting abnormal behaviors at a high level, together with natural language

explanations of the predictions. We pursue this challenging goal by propos-

ing HealthXAI, a novel collaborative sensor-based architecture empowered by

explainable AI functionalities. Our system relies on well-known clinical mod-45

els of cognitive decline, which define both abnormal behaviors and locomotion

patterns. Regarding activities, we consider both a model of overt abnormal

behaviors [8] and a model of subtle inefficiencies in the execution of Activi-

ties of Daily Living (ADLs) [9]. Regarding locomotion, we consider a model

of wandering [10], and different indicators of spatial disorientation proposed in50

the literature [11, 12, 13]. HealthXAI acquires an anonymous dataset of activity

data collaboratively gathered from smart-home inhabitants having a profile sim-

ilar to the one of the target user. The system mines the dataset to instantiate
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a personalized model of abnormal activities and locomotion episodes according

to the clinical models. The platform collects activity and locomotion data from55

the smart-home infrastructure of the senior. Activity recognition is performed

using existing activity recognition algorithms and is outside the scope of this

paper. Based on the personalized model, HealthXAI detects possible anomalies

and uses a decision tree machine learning algorithm to compute an anomaly

score for each activity, as well as an overall anomaly score of the senior. The60

decision tree is parsed to produce natural language explanations of the predic-

tions. A Web dashboard is available to clinicians, who can inspect anomalies

and explanations at a fine-grained level.

We have implemented all the modules of HealthXAI and executed extensive

experiments with a large set of real-world activity data acquired in instrumented65

smart-homes from 192 seniors, including people with Mild Cognitive Impairment

(MCI) and people with dementia (PwD). The results indicate that HealthXAI

predictions are significantly correlated to the actual diagnosis of the senior.

Summarizing, the main contributions of our work are the following:

• We propose a novel collaborative IoT framework for recognizing symptoms70

of cognitive decline, which requires neither manual modeling, nor labeled

datasets of abnormal behaviors.

• Compared to data-driven approaches, our framework provides natural lan-

guage explanation of the detected anomalies which refer to well-known

clinical models of cognitive decline.75

• Compared to knowledge-based and hybrid approaches, our system can

scale with the number of subjects and provides personalization thanks to

the collaborative approach.

• We performed extensive experiments with several seniors, including cogni-

tively impaired people, that show the potential of our system in supporting80

the diagnosis of cognitive decline.

The rest of the paper is structured as follows. Section 2 reports preliminary

information and related work. The overall HealthXAI framework is introduced

in Section 3. In Section 4 we present our methods for collaborative model-based
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analysis of activities and motion, while in Section 5 we describe the technique85

for explainable detection of cognitive decline symptoms. In Section 6 we report

and discuss the experimental results. Section 7 concludes the paper and outlines

future work.

2. Preliminaries and related work

In this section, at first we present the clinical models adopted in this work.90

Those models have been proposed in the neuropsychology domain to charac-

terize early symptoms of cognitive decline based on behavioral anomalies and

locomotion patterns. Then, we review existing IoT-based methods to recognize

abnormal behaviors and anomalous movements related to cognitive decline.

2.1. Clinical models of cognitive impairment based on behavioral anomalies95

Several research studies show that it is possible to recognize early symptoms

of cognitive decline based on subtle or overt anomalies performed by the elderly

during the execution of his/her daily activities [14, 15]. Hence, different clinical

models have been defined, which identify and classify these kinds of abnormal

behaviors. In particular, for the sake of this work, we consider two models of100

behavioral anomalies, which are well known in the literature and proved to be

effective in distinguishing cognitively impaired from cognitively healthy seniors

in several studies. Even though the terminology in the clinical field may vary,

we refer to those models as clinical model of overt errors, and clinical model of

subtle inefficiencies, respectively.105

2.1.1. Clinical model of overt errors

Overt errors, defined in [8], are classified in three main categories.

• Omissions are observed when a key step, or multiple steps of an activity

are not performed by the elderly. A key step is an action that is necessary

to correctly perform the activity. For instance, an omission occurs when110

an individual does not add salt to water for cooking pasta.
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Sub-category of
commission anomaly

Description Example

Anticipation-
omission

The individual performs actions in
different order than appropriate

Putting pasta before
boiling water

Perseveration The individual repeats the same ac-
tion more times than expected

Taking a medication
more times than pre-
scribed in a day

Table 1: The categories of Commission overt errors considered in HealthXAI.

• Action-additions are observed when an action not related to the current

activity is executed. An action is not related if its execution has no effect

on the outcome of the activity. For instance, an action-addition occurs

when an individual who is cooking rice takes not only the container of115

rice, but also the one of pasta.

• Finally, commissions are observed when key actions of an activity are per-

formed inaccurately. Commissions are further classified according to the

kind of error performed by the individual. Table 1 reports the subcate-

gories of commissions that we consider in this work.120

Experiments with a large set of patients showed that the rate of overt errors

performed by persons with MCI is significantly larger than the one of cognitively

healthy seniors, and significantly lower than the one of PwD [16].

In order to recognize overt errors, the IoT system needs a model of activities

and their key steps, and knowledge about current activity and executed actions.125

2.1.2. Clinical model of subtle inefficiencies

Subtle inefficiencies, introduced by Seligman et al. in [9], are the result

of subtle disruption of functional abilities in seniors who are still capable of

completing instrumental activities of daily living (IADLs). The latter are daily

living activities that involve the use of instruments, such as cooking, cleaning,130

laundry, and their execution is correlated to the cognitive functions of the in-

dividual [17]. Subtle inefficiencies are classified in five categories. For the sake

of this work, we concentrate on the reach-touch category. Indeed, inefficiencies

of that type can be monitored based on sensor data, while the other types of

inefficiencies are hard to recognize without the use of cameras, which is out of135
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the scope of this paper.

A reach-touch anomaly is observed when an individual reaches for and

touches an unwanted object during the execution of an activity. An unwanted

object is an incorrect item for the execution of a given activity. For instance,

that anomaly is observed when an individual reaches for and touches the sugar140

container when preparing pasta. The results of experiments with older adults

suggest that subtle inefficiencies can be useful for the assessment of early func-

tional decline in the elderly [9].

In order to recognize subtle inefficiencies, the IoT system needs a model

of activities and unwanted objects, and knowledge about current activity and145

executed actions at a fine-grained level, including monitoring the reach and

touch of objects.

2.2. Clinical models of cognitive impairment based on locomotion anomalies

Locomotion is a factor introduced by Algase [18] to describe the temporal

phases of movement. A locomotion episode is defined as a rhythmical movement150

composed of walking phases followed by non-walking phases. We adopt the term

‘locomotion’ to refer to sequences of movements in the home. In the following,

we describe the models adopted in this work.

2.2.1. Martino-Saltzman model

Among different models proposed for classifying and measuring wander-155

ing behaviors, one of the earliest and most widely accepted was proposed by

Martino-Saltzman [19]. This model defines four distinctive classes of movement

patterns, shown in Figure 1:

• Direct: a single straightforward path from a point to a destination, which

is not complicated and does not diverge significantly from the most effi-160

cient path.

• Pacing: at least three consecutive repeated back-and-forth movements

between two locations.
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Figure 1: Travel patterns of people according to the Martino-Saltzman model of wandering
behavior [19].

• Lapping: a circular repeated movement that passes across at least 3

distinct points and that is repeated at least twice.165

• Random: an aimless movement across numerous locations, which is not

direct.

Based on this model, random, pacing and lapping patterns are associated

to cognitive decline. In our indoor context, a direct path is the shortest path

between the start and the end of a trajectory in the home.170

In order to recognize anomalies based on this model, the IoT system needs

fine-grained information about the movement of the inhabitant in the home.

2.2.2. Low-level motion indicators

Few low-level motion indicators have been proposed in the literature, which

proved to be effective in distinguishing cognitively healthy seniors from person175

with MCI and PwD [20]. For the sake of this work, we consider the indica-

tors listed below, which can be easily monitored in a smart-home environment

provided with fine-grained positioning technologies.

• Jerk [12] is the rate at which a person’s acceleration changes with re-

spect to time. Hence, it can be computed as the first time derivative of180

acceleration.

• Sharp angles [13] are defined as vector angles in a trajectory being equal

to or more than 90 degrees.

• Straightness [11] is defined as the ratio of the distance between two

consecutive trajectory segments and the distance between the start and185

end point of these segments.
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2.3. IoT-based recognition of abnormal activities

In recent years, the application of AI methods to sensor data is gaining in-

creasing interest in several applications areas [21, 22, 23, 24]. Internet of Things

(IoT)-based solutions provide significant capabilities, such as continuous moni-190

toring, cost effectiveness, and scalability, which make them a powerful solution

for healthcare monitoring. For instance, Mining Mind is a project funded by

the Korean Government to build a comprehensive platform for mining human’s

daily life data gathered from heterogeneous sources1. The platform provides

several services for data integration and reasoning, including a module for hu-195

man behavior quantification. That module adopts a mathematical model based

on wellness guidelines [25].

Thanks to the emerging IoT adoption, smart-home technologies are signif-

icantly automating the tasks related to elderly care, by improving monitoring

the wellness of the resident, especially in the case of medical emergencies. The200

use of smart-home systems enables continuous monitoring in seniors’ residence

without causing disturbance, while allowing long-term assessment of the in-

habitants’ behavioral patterns. A popular method for spatio-temporal activity

tracking is based on motion sensing devices. Lam el al. propose a healthcare

tool based on the Kinect platform and machine learning technologies, which205

supports activity tracking and monitoring for helping people with Alzheimer

living independently [26]. Ota et al. used ultra-wideband impulse-radio (UWB-

IR) monitoring sensors for recognizing different activities, including sleeping,

sitting up in bed, wandering in the room, falling down, going in and out the

room [27].210

The importance of considering activity data acquired from smart-homes has

been widely investigated. For example, the study reported in [28] shows that a

person’s walking velocity and activity patterns may change relevantly based on

the current stage of cognitive impairment. Ishii et al. proposed an IoT platform

to detect early symptoms of Alzheimer’s disease by recognizing anomalous ac-215

1http://www.miningminds.re.kr
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tivities of persons living alone [29]. Suzuki et al. used position sensors mounted

on the ceiling of rooms in a nursing home to monitor the inhabitants high-level

ADLs [30]. Abnormal behaviors were recognized based on statistical deviation

from the usual activity pattern. An IoT-based system for recognition of abnor-

mal behaviors was proposed by Riboni et al. in [5]. That system relies on a set220

of manually defined rules that determine the recognition of behavioral anoma-

lies at a fine-grained level. The considered anomalies are related to symptoms

of MCI or dementia. While those rules are easily interpretable by a human, the

system can hardly scale with the number of considered anomalies and differ-

ent contextual conditions. Indeed, those rules strongly depend on the specific225

smart-home environment and on the person’s characteristics. In order to ad-

dress this problem, Haider Janjua et al. proposed a system to automatically

mine behavioral anomaly rules from a dataset of labeled activities and abnormal

behaviors [7]. However, the acquisition of a large labeled dataset of real-world

anomalies is problematic. In this work, we aim at automatically training an230

explainable model of abnormal behaviors exploiting a collaborative approach,

without the need of labeled datasets of anomalies.

2.4. IoT-based recognition of wandering and locomotion patterns

Real-time analysis of trajectories and early detection of wandering episodes

is compulsory for reducing potential risks or damages to wanderers. In addition,235

real time wandering detection can increase the security and also decrease costs

thanks to independent care [31]. In this sense, IoT technologies, smartphone

sensors, and wearable devices, provide novel possibilities for increasing the effec-

tiveness of remote healthcare services. Recently, different attempts have been

made for wandering recognition in outdoor and indoor environments, by using240

positioning systems and location pattern mining methods [32]. Lin et al. pro-

posed a method for wandering detection based on Martino-Saltzman model, by

analysing outdoors GPS trajectories [33]. Another system for supporting se-

cure and independent outdoor walking was proposed in [34]. The system relies

on the analysis of human activity and it is adapted to individual locomotion245
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patterns. The system relies on a wandering detection framework, and includes

a smart GPS tracker for real time outdoor positioning estimation. Schaat et

al. investigated the feasibility of real-time detection of disorientation based on

sensor data acquired from GPS and accelerometers for people with MCI and

dementia [35], achieving promising results. Qiang Lin et al. propose a real time250

wandering detection method using GPS traces for detecting pacing and lapping

of elders in outdoor environments [13]. The method relies on the analysis of

changes in the shape of travel traces.

Recognizing wandering behaviors indoors is not straightforward, because

of several contextual factors, including the current activity execution, and the255

presence of obstacles in the home. Kumar et al. showed the capability of eval-

uating the cognitive status using features extracted from trajectories, such as

turning angle, path-efficiency, speed, and ambulation fraction, relying on Ultra-

wideband real-time location data [36]. Vuong et al. developed an automatic

method to classify travel patterns based on Martino-Saltzman model, using tra-260

jectories collected through RFID tags. They classified episodes through machine

learning algorithms and showed that tree-based algorithms achieved good per-

formance [37]. Kearns et al. acquired indoor trajectory data from both PwD

and cognitively healthy subject in a common area of a residence for seniors.

Position data was acquired using ultra-wide band radio technologies. The au-265

thors calculated path tortuosity by the Fractal Dimension (Fractal D) algorithm

for discriminating between cognitively healthy subjects and PwD [38]. Other

indoor localization technologies were proposed to support healthcare. Sun et al.

used a pressure sensing system based on fiber-optic to track the movements of

people [39], and a space encoding scheme to retrieve the inhabitants’ position.270

They adopted mixture models on location information for recognizing high-level

behaviors. All those systems recognize generic movements and activities, while

in our work we tackle the recognition and explanation of fine-grained behavioral

anomalies.

In another work, the authors adopted the Martino-Saltzman model for in-275

door monitoring of elderly patients with dementia [40]. Based on customized ac-
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tive infrared sensors to gather human indoor motions, their system can identify

wandering from repetitive locomotion episodes. Khan and Hassan introduced a

framework for integrating two kinds of sensors: physiological sensors (such as

blood pressure and heart rate monitors) as indicators of emotional and physio-280

logical arousal, and geo-location sensors for wandering detection based on the

Martino-Saltzman model and the Algase wandering scale [41]. Another system,

based on the smartphone sensors, provides two kinds of alarms in activity recog-

nition and safe-zone geo-fencing [31]. Khodabandehloo and Riboni proposed a

collaborative system to recognize early symptoms of cognitive decline based on285

indoor location traces analysed according to the Martino-Saltzman model [42].

Recognized anomalies are used to build feature vectors, and a machine learning

method is used to predict the cognitive status of the individual. However, the

system does not consider abnormal activities, and does not provide explanations

of its predictions.290

Another category of IoT technologies for tracking inhabitants in smart-

homes consists in the use of camera and computer visions tools. For instance,

the system proposed by Wang et al. [43] relies on cameras and computer vision

for gait assessment of elderly people. However, camera-based systems determine

relevant privacy issues, especially in the home. Moreover, the above mentioned295

works do not provide human-understandable explanations of their predictions.

3. HealthXAI system

In this section, we present the HealthXAI system and its modules.

3.1. HealthXAI architecture

The HealthXAI architecture is shown in Figure 2; the modules describing300

the core contribution of this paper are depicted as blue boxes. The architec-

ture relies on a smart-home sensor infrastructure which uses a stream

processing software platform and a semantic integration layer to

integrate heterogeneous sensor data. The architecture includes modules for
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Figure 2: The overall HealthXAI architecture. Modules depicted in blue boxes represent the
core technical contribution of this paper.

monitoring the inhabitant’s activities (module activity segmentation and305

recognition) and movements (module trajectory data cleaning and

segmentation). Detected activities include both high-level activities such as

‘cooking’ and fine-grained actions such as ‘open fridge door’. Activities and mo-

tion data are analysed by the modules doba and dola, respectively, to detect
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Module / data structure Section
Activity instances and actions 4.1
Activity segmentation and recognition 3.5
AI explanation 5.2
Anomalies feature extraction 5.1
Anomaly feature vector 5.1
Anomaly level and scores 5.1
Behavioral anomalies 4.1
Clinical model of locomotion anomalies 2.2
Clinical model of overt errors 2.1.1
Clinical model of subtle inefficiencies 2.1.2
Computation of anomaly level and activity scores 5.1
Detection of behavioral anomalies (DOBA) 4.1
Detection of locomotion anomalies (DOLA) 4.2
Knowledge-based anomaly refinement 4.3
Locomotion anomalies 4.2
Personalized dataset Dp of activities and actions 4.1.1
Regression model 5.1
Semantic integration layer 3.3
Sensor event record 3.3
Sensor vocabulary and Position table 3.3
Stream processing software platform 3.2
Trajectory data cleaning and segmentation 3.4
Trajectory segments 3.4.2
xAI 5.3

Table 2: Lookup table of HealthXAI modules and data structures

anomalies according to the considered clinical models. A cloud-based col-310

laborative data mining system is in charge of collecting anonymous data

about the activities and actions observed in different homes (named personalized

dataset Dp), in order to calibrate the parameters of the doba module according

to the context of the individual p. Detected activity instances and anomalies are

analysed by the knowledge-based anomaly refinement module to refine315

the locomotion anomaly predictions considering the context in which anomalies

are observed. The latter module communicates refined anomalies to the mod-

ule for anomalies feature extraction, which computes anomaly feature

vectors. Those vectors are provided to the machine learning module computa-

tion of anomaly level and activity scores, which is in charge of pro-320

viding anomaly scores for the different activities, as well as an overall anomaly

level for the individual. The xAI module analyzes the trained regression models

to compute detailed natural language explanations of the predictions, referring

to the clinical models. The information about predictions, explanations, and

fine-grained anomalies is communicated to a remote healthcare center,325

where clinicians can inspect the whole data through a user-friendly clinical
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dashboard.

For the sake of readability, Table 2 indicates which sections explain the

different modules and data structures of our system. In the rest of this section,

we explain the modules for sensor data integration, and monitoring of activities330

and movements. The other modules, which are the core technical contribution

of this work, are explained in Sections 4 and 5.

3.2. Smart-home sensor infrastructure

Since the focus of this paper in on processing activity and locomotion data,

the core methods of our contribution are largely independent from the available335

sensor infrastructure. The HealthXAI system can be applied to a typical smart-

home sensor infrastructure, empowered with different kind of sensors to

detect the position of the inhabitant and his/her interaction with furniture and

appliances. Those sensors may include: passive infrared (PIR) motion sensors,

or other sensors to detect the individual’s position in the home; contact sensors340

to track the interactions with the apartment’s doors or the use of furniture, such

as cabinets or the fridge door; motion sensors attached to certain objects to

detect their usage; power sensors to detect the use of certain electric appliances.

We assume that the smart-home system continuously acquires raw sen-

sor data and communicates them to a stream processing platform (e.g.,345

Apache Kafka) for raw integration and temporal synchronization. Each time a

sensor fires, the platform sends a raw sensor event rse = 〈t, s id, v〉 to the

HealthXAI system, where t is the timestamp of firing, s id is the sensor’s unique

identifier, and v is the generated value. For the sake of this work, we assume

that the home is inhabited by a single individual. This is a common situation350

for elderly people. Moreover, seniors living alone may have particular benefits

from remote monitoring and assessment of cognitive functions. Hence, we are

not interested in associating the sensor record to the person that triggered it.

3.3. Semantic integration layer

The semantic integration layer is in charge of deriving higher-level in-355

formation from raw sensor data. To this aim, it relies on a sensor vocabulary,
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that provides the semantic description of each sensor given its identifier. We

name the semantic description as sensor type. For instance, through the vocab-

ulary, it may be possible to infer that a particular sensor identified as ‘D01’ is

attached to the door of the fridge; i.e., its type is ‘fridge door sensor’. Similarly,360

the vocabulary maps the emitted values to the semantics of sensed data (e.g.,

when a fridge door sensor emits the value ‘0’, it means that the door is closed).

Moreover, the system relies on a position table storing the relative position

of each sensor in the home. A record of sensor position in that table is a triple:

〈s id, x, y〉, where (x, y) are the relative coordinates of the sensor identified by365

‘s id’ in the home. Each time the semantic integration layer receives a raw

sensor event, it joins the corresponding record with the sensor vocabulary and

position table to obtain the (x, y) coordinates and the sensor semantics, pro-

ducing a sensor event record e = 〈p, t, s, v〉, where p = (x, y) are the relative

coordinates of the sensor of type s that emitted a data value v at time t.370

3.4. Trajectory data cleaning and segmentation

The smart-home system continuously collects the user’s position history

H; i.e., the temporal sequence of the user’s positions within the home extracted

from the sequence of sensor event records: H = 〈p1, p2, . . . , pn〉. The module for

trajectory data cleaning and segmentation preprocesses the position375

history to reduce the noise level, and then partitions it in trajectory segments,

which we denote as trajectories for short.

3.4.1. Trajectory data cleaning

In a real-world dense-sensing setup as the one considered in this work, po-

sition data may be affected by a high level of noise. For this reason, we adopt380

two methods to reduce the noise in H:

1. We assume a maximum possible velocity v of a person moving in the

home. Hence, if the speed of movement computed between two consecutive

sensors event records r1 and r2 is higher than v, we remove r2 from H.

For the sake of this work, we fix v = 15m/s.385
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2. In an indoor positioning system, we can assume a maximum resolution of

position data. For instance, in our test-bed, the maximum distance be-

tween adjacent positioning sensors is 3 meters; hence, we can assume that,

in the absence of noise, the distance between two consecutive positions in

H should not exceed 3 meters. Based on that, we fix a threshold d (in390

our experiments, d = 5m), and when we observe two consecutive sensors

event records r1 and r2 for which the distance exceeds d, we remove r2

from H.

3.4.2. Segmentation

The module for trajectory segmentation is in charge of partitioning H to395

identify trajectory segments; i.e., temporally contiguous sequences of posi-

tions which correspond to a locomotion episode. To this aim, the segmentation

module considers temporal information about the person’s positions. The posi-

tion history H is partitioned into a set S of non overlapping trajectory segments:

S = {s1, s2, . . . , sm}, where each segment s ∈ S is a temporal sequence of con-400

secutive positions: si = 〈pj , pj+1, . . . , pk〉.

For applying segmentation, the algorithm identifies active locomotion phases,

defined as parts of H in which the time interval between any two consecutive

motion sensor activations is less than a threshold. For the sake of this work, we

use a temporal threshold of 60 seconds. The first segment is initialized with the405

first entry of H, and continues until the temporal distance between two consec-

utive activations of motion sensors is below 60 seconds. The next trajectory is

initialized with the last entry of the previous trajectory, and continues until the

threshold condition is met, and so on until the end of H.

3.5. Activity segmentation and recognition410

The module for activity segmentation and recognition is in charge

of processing the continuous stream of sensor event records in order to recognize

the activities that are occurring in the home as well as the actions that com-

pose those activities. The module includes algorithms to accurately identify
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the start and end time of activities; this task is called activity segmentation in415

the literature. Several research efforts have been spent in the last two decades

to devise algorithms for activity recognition and segmentation based on sensor

data. Different effective solutions to this problem have been proposed, which

adopt data-driven [44, 45], knowledge-driven [46], or hybrid methods [47, 48].

Notably, some existing methods also rely on personalization features addressed420

to people with disabilities [49]. Hence, in this paper, we assume the existence

of an effective module for action/activity segmentation and recognition, but we

do not make any assumption about the actual implementation of that module.

Indeed, the goal of this work is the analysis of activity data for anomaly detec-

tion, not the recognition of the activities. For this reason, in the experimental425

evaluation, this module relies on the ground truth about activity and action

recognition available in the labeled dataset.

4. Collaborative model-based analysis of activities and motion

In this section, we illustrate the algorithms for collaboratively recognizing

behavioral and locomotion anomalies based on clinical models.430

4.1. Detection of behavioral anomalies

The module for detection of behavioral anomalies (doba) processes

the stream of activity instances, actions, and sensor events, to compute a set of

behavioral anomalies according to the clinical model of subtle inefficien-

cies or to the clinical model of overt errors. Since contextual conditions435

may affect the mode of activity execution, even in the absence of cognitive

impairment, the parameters of those models are personalized, as explained in

Section 4.1.1. As illustrated in Section 5, behavioral anomalies are later used by

a regression algorithm to compute an overall anomaly level, as well as anomaly

scores for activity instances. The HealthXAI algorithms also produce a natural440

language explanation for the predictions.

As discussed in Section 2.1, in this paper we concentrate on the recognition of

overt errors (omissions, action-additions, and commissions), and ‘reach-touch’
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subtle inefficiencies. For the sake of clarity, in the rest of the paper we use

the term activity to indicate high-level behaviors such as ‘cooking’ or ‘taking445

medicines’. We name actions those simpler behaviors that are performed in

order to execute an activity; e.g., ‘turning on the stove’, or ‘opening the medicine

cabinet’. We name activity class an abstract activity, such as ‘cooking’, while

we name activity instance the actual occurrence of an activity of a given class

during a certain time period.450

4.1.1. Collaborative mining of personalized models of abnormal behaviors

In previous works, personalized behavioral anomalies were manually defined

by domain experts based on common-sense knowledge using a rule-based lan-

guage [5]. However, that approach could hardly scale with the number of con-

sidered individuals, number of activities, and variety of contextual conditions455

that may occur during the activity execution. In order to overcome this prob-

lem, in HealthXAI we adopt a collaborative approach to automatically derive

the actions and parameters that determine an anomaly according to the con-

sidered clinical models for a certain individual. In particular, we rely on a

cloud-based collaborative data mining system, which collects anony-460

mous trajectories, activity instances, actions, and sensor events from a set of

collaborating smart-homes. The data are associated to the sanitized general

characteristics of the inhabitant, such as age and physical condition. We do not

consider the cognitive diagnosis of the individual, both for the sake of privacy,

and because the diagnosis could be unavailable for several inhabitants. Those465

data are aggregated into a labeled dataset D. In order to derive the personal-

ized models of an individual p, a subset of the dataset, named personalized

dataset Dp of activities and actions, is communicated to the doba module

of the HealthXAI system of p. That dataset contains only the activity data

acquired from people having a profile similar to the one of p; i.e., similar age470

range and similar physical condition. Hence, the doba module of p mines Dp

to extract personalized parameters used to detect p’s behavioral anomalies.
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4.1.2. Personalized recognition of omissions

An omission occurs when an individual does not perform a key action of

an activity. As a consequence, omission recognition should rely on a model475

describing both the activities and the key actions that compose them. To this

aim, in order to derive the personalized model of omissions for an individual

p, we adopt a statistical approach, and we mine the co-occurrence frequency of

〈 activity, action 〉 pairs from the dataset Dp. In particular, for each activity

class a, and for each action type c, we compute the percentage of times that480

an instance of action c is executed at least once during the execution of an

activity of class a in Dp. If the percentage exceeds a certain threshold to (e.g.,

to = 95%), c is considered a key action for activity a for the individual p. Hence,

when the doba module recognizes that during the execution of an instance of

a the individual p did not perform c, it detects an omission.485

4.1.3. Personalized recognition of action-additions

An action-addition occurs when, during an activity instance, the individual

performs an action that is not related to that activity. In order to recognize

this kind of anomalies, we take the same approach used for detecting omissions.

Indeed, for each activity class a, and for each action type c, we compute the490

percentage of times that an instance of action c is executed at least once during

the execution of an activity of class a in Dp. If the percentage is below a certain

threshold taa (e.g., taa = 2%), c is considered an action unrelated to activity

a for p. Hence, when the doba module observes that during the execution of

an instance of a the individual p performed the action c, it detects an action-495

addition.

4.1.4. Personalized recognition of anticipation-omissions

An anticipation-omission occurs when an individual performs actions in in-

appropriate order during a given activity instance. In order to infer whether a

given temporal sequence of actions s = 〈ci, cj〉 is inappropriate for an activity500

of class a executed by p, we count the number of activity instances of class a
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in Dp in which s is observed, and the number of activity instances of class a in

which s is observed in reverse temporal order. We name ns the former number,

and ns′ the latter number. If both ns and ns′ are equal to zero, we disregard

the sequence s, because ci and cj were never observed in the same instance of505

activity a, despite their order of execution. Otherwise, we compute the ratio

rs =
ns

ns+ ns′
. Hence, when the doba module observes the execution of 〈ci, cj〉

by p during an activity a, and the corresponding value of rs is below a certain

threshold tao, it concludes that p performed an anticipation-omission.

4.1.5. Personalized recognition of perseverations510

A perseveration occurs when, during an activity instance, an individual re-

peats the same action more times than expected. We assume that the number

of action executions during an activity follows a normal distribution in Dp.

Hence, for each activity class a and for each action type c, we measure the

standard deviation and average of times in which instances of c are executed515

during instances of a in Dp. When, during the execution of an instance of a by

p, the doba module observes a number of repetitions of c that is statistically

larger than expected according to the normal distribution considering a given

threshold, it detects a perseveration episode.

4.1.6. Personalized recognition of ‘reach-touch’ subtle inefficiencies520

A reach-touch subtle inefficiency occurs when an individual reaches for and

touches an object that is not related to the execution of the current activity. In

order to infer whether an object o is unrelated to a given activity class a for p,

we measure the percentage of times that o is touched at least once during an

instance of a in Dp. If the percentage is lower than a given threshold trt, we525

conclude that o is unrelated to a for p. Hence, when the doba module observes

that during the execution of an instance of a the individual p reaches for and

touches the object o, it detects a reach-touch subtle inefficiency.
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Figure 3: Example of part of a trajectory.

4.2. Detection of locomotion anomalies

The objectives of the detection of locomotion anomalies (dola)530

module can be divided into locomotion anomaly detection and evaluation,

where the aim of the latter is to characterise the detected anomalous trajectory

according to the clinical model of locomotion anomalies. For each trajec-

tory, we compute a set of indicators: temporal duration, traveled distance, and

the anomaly indexes explained below.535

4.2.1. Jerk

Jerk is defined as the rate of change in the acceleration of a person’s tra-

jectory. Jerk proved to be statistically correlated to the cognitive status of the

subject [12]. In order to compute the jerk value of a trajectory s, we need to

compute the jerk values of any three consecutive positions 〈p1, p2, p3〉 in s. Fig-540

ure 3 illustrates a trajectory s composed of five consecutive points 〈 p1, . . . p5 〉.

Denoting the time difference between p1 and p2 as ∆t, we calculate the following

measures:

Sp1
=
distance(p1, p2)

∆t
, (1)

Accp1
=
Sp2
− Sp1

∆t
, (2)
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where Sp, Accp denote speed and acceleration, respectively. Then, we com-

pute jerk as:545

Jerkp1
=
Accp2

−Accp1

∆t
. (3)

For computing the overall jerk of a trajectory s = 〈p1, p2, . . . , pn〉, we com-

pute the values of jerk from Jerkp1 to Jerkpn−2 . Then, we compute the overall

jerk of s as:

Jerks =

n−2∑
i=1

∣∣∣Jerkpi

∣∣∣
T

, (4)

where T is the temporal duration of s. This value is the ratio between the

sum of absolute values of jerk and the time duration of the trajectory.550

4.2.2. Sharp angles

According to [13], a sharp angle is defined as a vector angle in a trajec-

tory being equal to or more than 90◦. For instance, in the trajectory de-

picted in Figure 3, the angle corresponding to the movement 〈 p1, p2, p3 〉 is

a sharp angle, while the other ones are not. For every three consecutive posi-555

tions 〈 pi−1, pi, pi+1 〉 in a trajectory, we denote by θ the angle between the line

connecting pi−1 with pi and the line connecting pi with pi+1. Then, we compute

the cosine of θ as:

cosθ =
−−−−→pi−1pi · −−−−→pipi+1

|−−−−→pi−1pi| · |−−−−→pipi+1
=

=
(xi − xi−1, yi − yi−1).(xi+1 − xi, yi+1 − yi)√

((xi − xi−1)2 + (yi − yi−1)2) ·
√

(xi+1 − xi)2 + (yi+1 − yi)2)
.

(5)

Based on their cosine value, we determine whether the three consecutive

points 〈 pi−1, pi, pi+1 〉 of s determine a sharp angle. If so, the value of SharpAnglepi
560

is 1; it is 0 otherwise.

In order to provide an overall measure of sharp angles for a trajectory s
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= 〈 p1, p2, . . . , pn 〉, we compute the ratio of the number of sharp angles in a

trajectory s and the temporal duration of s:

SharpAngles =

n−1∑
i=2

∣∣∣SharpAnglepi

∣∣∣
T

, (6)

where T is the trajectory temporal duration.565

4.2.3. Straightness

Straightness is defined as the ratio of the distance between two consecutive

trajectory segments and the distance between the start and end point of these

segments [11]. In the context of human trajectories, if a person does not change

the orientation of movement, this ratio is 1. Otherwise, based on the amplitude570

of the turning angle, this indicator varies and indicates a person’s tendency

to erratic movements. The value of straightness for three consecutive points

〈 pi−1, pi, pi+1 〉 is computed as:

Straightnesspi
=
distance(pi−1, pi) + distance(pi, pi+1)

distance(pi−1, pi+1)
. (7)

In order to compute the overall value of straightness of a trajectory s =

〈 p1, p2, . . . , pn 〉, we compute the overall straightness of its points normalized575

by trajectory duration:

Straightnesss =

n−1∑
i=2

∣∣∣Straightnesspi

∣∣∣
T

, (8)

where T is the trajectory duration.

4.2.4. Martino-Saltzman indicators

The objective of this algorithm is to identify wandering episodes in trajec-

tory segments. In a segment, a loop is defined as the largest continue sequence580

of positions 〈 p1, p2, . . . , pn 〉 such that the coordinates of p1 and pn are approx-

imately the same. The method for finding loops relies on the computation of
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Figure 4: Detection of lapping and pacing episodes. Left figure (lapping): The arrows indi-
cate the person’s movements. The movements determine two loops, represented as first and
second polygon. If the intersection of loops exceeds a given threshold, a lapping episode is
detected. Right figure (pacing): The arrows indicate the person’s movements from an origin
to a destination. A buffer is built on the linear location traces. If the intersection of buffers
exceeds a given threshold, a pacing episode is detected.

the linear misclosure of partial coordinates. In the first step, we calculate the

sum of the positive and negative partial coordinates for x coordinates (∆x) and

y coordinates (∆y) for each two consecutive positions. A sequence of locations585

is a loop if and only if the algebraic sum of both ∆x and ∆y is close to 0 up to

an approximation error ε. In this work, we set ε to 0.3 m. The following steps

summarize the algorithm for finding loops:

1. Calculate
∑

∆x and
∑

∆y (the algebraic sum of partial coordinates in

episodes).590

2. The sub-segment is a loop iff
∑

∆x < ε and
∑

∆y < ε.

Lapping. For taking into account uncertainty in lapping episode detection,

we consider the spatial overlap between consecutive loops. If the spatial overlap

between loops exceeds a given threshold, we classify the episode as lapping. In

this work, we fix the threshold to 70%. Figure 4 (left) illustrates our method.595

In particular, the consecutive loops extracted from a trajectory are compared

by spatial intersection. If the latter is greater than the threshold, we predict a

lapping episode according to the Martino-Saltzman model.
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Figure 5: Example of Pacing and Lapping in trajectories. Lines represent a person’s trajecto-
ries. The left image shows a lapping episode. The green dashed line shows the first polygon,
and the red one shows the second polygon. It can be observed that they have more than 70%
overlap. The right image is a sample of pacing from the fridge to a position in the dining
room.

Pacing. Based on the Martino-Saltzman definition for pacing, a trajectory

should have at least three back-and-forth movements between two locations.600

Hence, for recognizing pacing episodes in a trajectory, we need to consider the

origin and destination of locomotion. However, because of the presence of obsta-

cles in the home, the person’s movements have some obligation. Hence, we must

take into account uncertainty. For detecting pacing, a small deviation from the

straight path (e.g., moving around a chair to go from the kitchen to the dining605

room) is not important and should be disregarded. For this purpose, we simplify

the person’s trajectory in order to smooth irrelevant deviations due to obsta-

cles. To this aim, we use the well-know Douglas-Peucker polyline simplification

algorithm [50].

The aim of the Douglas-Peucker algorithm is finding a curve similar to the610

original one but with fewer points. The algorithm relies on a point-to-edge dis-

tance tolerance value. Dissimilarity is measured based on Hausdorff Distance
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between the original and simplified curve. This algorithm works by connecting

the beginning vertex and end vertex in the trajectory, and calculating the dis-

tance between the other vertexes in the trajectory. If the maximum distance is615

less than the distance tolerance value ε, all the vertexes in the list are deleted.

Otherwise, that vertex is retained, and the line is split into two curves, and the

procedure is repeated. The value ε is the only input parameter of the algorithm.

In this work, we set ε to 1.2.

After simplification, we can detect pacing episodes by considering the spatial620

overlap between the walked paths from origin to destination. In particular, we

follow these steps:

1. Simplify trajectory by applying Douglas-Peucker algorithm.

2. Create a spatial buffer with a certain radius r for any two consecutive

points in the episode (in this work, r = 1m).625

3. Find any 3 consecutive sub-trajectories in the trajectory such that the

spatial overlap between theirs buffer is higher than a threshold (in this

work, the threshold is set to 60%).

Figure 4 (right) graphically illustrates the method, while Figure 5 shows two

examples of pacing and lapping episodes found in a person’s trajectory of the630

dataset used in this work.

4.3. Knowledge-based anomaly refinement

As explained before, behavioral and locomotion anomalies are separately

detected by the DOBA and DOLA modules, respectively. However, in real

world conditions, locomotion is naturally related to the ongoing activity. For635

instance, the normal execution of ‘sweeping’ may determine a random-like walk

in the house, while the execution of ‘setting up table’ may determine pacing-like

motion between the kitchen and the dining table. Hence, the DOLA module

may classify as abnormal some locomotion episodes which are actually due to

the normal execution of everyday activities.640
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In order to alleviate this problem, HealthXAI includes a module for knowledge-

based anomaly refinement, whose goal is to refine the locomotion anomaly

predictions by considering the context in which they are observed. The module

relies on a matrix M of possible locomotion anomalies, whose rows correspond

to activity classes, and columns correspond to locomotion anomaly types. The645

value of Mi,j equals to 1 if the anomaly corresponding to column j is a possible

anomaly when observed during the activity corresponding to row i; Mi,j equals

to 0 otherwise.

In order to refine the set L of locomotion anomalies of a person p, the module

relies on the set A of p’s activity instances. For each l ∈ L and a ∈ A, the module650

computes the intersection between the temporal intervals of both. If a non-null

intersection exists, the module retrieves the value of M corresponding to l’s

activity class and a’s anomaly type. If that value is 0, the anomaly is identified

as not possible; hence, it is removed from L.

Currently, the matrix M is manually filled by domain experts based on ex-655

ternal knowledge about activity patterns and locomotion anomalies, adopting

a knowledge-based approach. Alternatively, the matrix M could be instanti-

ated applying some data mining technique to a large dataset of activities and

anomalies. However, due to the lack of such large dataset for evaluation, in

this paper we pursue the knowledge-based approach. Section 6.4 reports the660

implementation of M used in our experiments.

5. Explainable detection of cognitive decline symptoms

In this section, we explain how HealthXAI computes activity anomaly scores

and an overall anomaly level based on the history of detected candidate anoma-

lies, and how it produces a natural language explanation of its predictions.665

5.1. Computing the overall anomaly level

The detailed description of possible anomalies performed by an individual

may provide useful information to clinicians for evaluating his/her cognitive
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Feature name Description
Additions Number of action additions
Anticipation-Omissions Number of anticipation-omissions
Omissions Number of omissions
Perseverations Number of perseverations
Reach-touch Number of reach-touch subtle inefficiencies
Pacing Number of pacing episodes
Lapping Number of lapping episodes
Random Number of random walk episodes
Jerk Average jerk of trajectories
Straightness Average straightness of trajectories
Sharp-points Average number of sharp points in trajectories
Anomaly-level Anomaly level in [01]

Table 3: Anomaly features

status. However, a global assessment of the cognitive status of the subject,

automatically provided by the system through an overall anomaly level, may670

be important to raise alarms and to provide clinicians with a general overview

of the patient’s situation.

In order to compute the anomaly level for a person p, the module for compu-

tation of anomaly level and activity scores relies on a set of anony-

mous anomaly feature vectors gathered by the cloud-based collaborative675

data mining system from participants having a profile similar to the one of p.

Those vectors are computed by the anomalies feature extraction module

by querying the anomalies communicated by the module for knowledge-based

anomaly refinement. Anomaly feature vectors also include an anomaly score

for each activity performed by the individual. In particular, each anomaly fea-680

ture vector is composed of the features shown in Table 3.

The latter feature is computed based on the actual diagnosis of the cognitive

status of the participant (i.e., cognitively healthy, MCI, or PwD), as explained

in the following. The remaining features are computed based on the number

of abnormal behaviors of the participant detected by HealthXAI in the last n685

days, where the value of the n parameter may be chosen by clinicians according

to their requirements. In this work, due to the characteristics of the dataset

used in our experiments, we set n to 1. The computed anomaly feature vectors

are communicated to the HealthXAI system of p to infer his or her anomaly

level.690
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In order to compute the anomaly level for an individual p, HealthXAI relies

on supervised learning, and more specifically on regression [51]. We rely on

regression instead of classification, because in the neuropsychology literature

the classes of cognitively healthy persons and MCI persons, as well as those of

MCI persons and PwD, are not strictly separated [14]. Hence, HealthXAI avoids695

providing a strict classification of the individual’s cognitive status. Instead, it

provides an anomaly level l ∈ [0, 1], where the value 0 characterizes cognitively

healthy subjects, and 1 characterizes PwD. According to the medical literature,

people with MCI are still able to complete normal activities, while PwD are

not [14]. As a consequence, it is reasonable to assume that the number of700

anomalies performed by people with MCI is closer to the one of cognitively

healthy persons than to the one of PwD. Hence, in the feature vectors, we set

the value l = 0.3 to characterize the anomaly level of individuals with MCI,

while we set the anomaly level of cognitively healthy people to 0, and the one

of PwD to 1.705

In order to learn the regression models, HealthXAI uses the anomaly fea-

ture vectors and a Decision tree regression algorithm [52]. That algorithm is

non-parametric, and is able to learn a model predicting the value of a target

variable (in our case, the value l related to a given person) by constructing

decision rules taking into account the feature values. Decision trees have large710

application in the medical domain [53]. In several studies, decision trees over-

came other popular machine learning algorithms for different medical problems.

For instance, in the diagnosis of MCI based on semantic information extracted

from magnetic resonance imaging, decision trees achieved higher accuracy than

Support Vector Machines, Bayesian networks, and backpropagation neural net-715

works [54]. Overall, our experimental evaluation, reported in Section 6, shows

that decision trees provide high accuracy for our problem compared to other

machine learning algorithms.
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Figure 6: The learned model of a random tree used for the prediction of the anomaly score of
an activity. The regression algorithm evaluates the rules conditions based on the feature vector
of the patient’s activity, starting from the root. If the condition is verified, it evaluates the
condition of the left child; otherwise, it evaluates the one of the right child. The mechanism
is repeated until a leaf is reached. The leaf contains the predicted value.

5.2. Computing the anomaly score of activities

In order to assess the cognitive status of a patient, it is useful to evalu-720

ate his/her abilities in performing activities of daily living [55]. Hence, when

HealthXAI detects at least one candidate anomaly during a given activity in-

stance ai, our system computes an anomaly score s ∈ [1, 5] for ai, where 1

indicates no anomaly, and 5 indicates strong anomaly in the execution of ai.

This refinement is performed in order to reduce the number of false positives;725

i.e., activity instances for which the AI algorithm detects some anomaly, which

did not actually happen.

For each activity instance, HealthXAI computes a feature vector using the

same features presented in the Section 5.1, plus an additional feature, which

is the temporal duration of the activity instance. A Decision tree regression730

algorithm trained using the anomaly feature vectors is in charge of computing

the anomaly score of an activity based on the corresponding feature vector.

5.3. Generating natural language explanations

Being based on a set of rules arranged in a hierarchy, decision trees have the

advantage of being relatively easy to visualize and interpret. Figure 6 shows the735
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model of a decision tree regression algorithm that provides an anomaly score for

a given activity based on the number of different kinds of anomalies recognized

during its execution. Of course, the size of the tree strongly influences the

readability of the model. In general, the deeper the tree, the more difficult is

to understand the chain of reasons why a given prediction is computed. In our740

experimental evaluation, we found that the maximum depth of the most effective

models is rather small. This fact allows the generation of easily understandable

natural language explanations of HealthXAI predictions.

Considering the learned model and the feature vector values, the xAI mod-

ule is in charge of generating a natural language description of each prediction745

of the decision tree, named AI explanation. At the beginning, considering

the predicted value, the algorithm outputs a generic description of the corre-

sponding anomaly level; e.g., ‘The predicted anomaly level of the activity is

2.3. This is considered a mild anomaly level’. Then, the algorithm parses the

learned decision tree to explain the reason of the prediction. The core of the750

xAI algorithm is shown in Figure 7. Formally, the algorithm takes as input the

learned decision tree T and an anomaly feature vector v. T is a binary tree,

represented as an array [n0, . . . , nk], where each ni represents a node i. While

leaves contain only their predicted value and some statistics, each non-leaf node

contains these fields:755

• feat is the feature used for splitting the node;

• thr is the threshold value of the node;

• child l is the index of the left child of the node;

• child r is the index of the right child of the node.

For instance, in the tree shown in Figure 6, the root node has feat = ‘Omissions’760

and thr = 2.5. Hence, if the value of v[Omissions] is greater than 2.5, the

decision path for v follows the path of child r; it follows the path of child l

otherwise.

At first (line 1), starting from the root node n0, the algorithm traverses the

tree structure to identify the decision path related to v. The nodes belonging765

to the decision path are stored in the array indices. The set of thresholds is
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Algorithm xAI (T, v):
Input: Decision tree T , anomaly feature vector v
Output: A string s of explanation

1: indices = get decision path(T, v)
2: thresholds = Ø
3: for each feature feat do
4: thr min = get minimum threshold(indices, feat, v)
5: thr max = get maximum threshold(indices, feat, v)
6: thresholds = thresholds ∪ 〈 feat, thr min, thr max 〉
7: end for
8: s = ‘Explanation: the individual did ’
9: for each 〈 feat, thr min, thr max 〉 ∈ thresholds such that thr min is not null do

10: s.append(’at least ’ thr min feat)
11: end for
12: s.append(’but ’)
13: for each 〈 feat, thr min, thr max 〉 ∈ thresholds such that thr max is not null do
14: s.append(’less than ’ thr min feat)
15: end for
16: return s

Figure 7: Algorithm for generation of natural language explanations.

initialized (line 2). Then (lines 3 to 7), the algorithm parses the indices nodes

to determine the minimum and maximum thresholds (thr min and thr max,

respectively) for each feature related to v’s decision path. To this aim, it stores

a triple 〈feat, thr min, thr max〉, where the latter two values are updated ac-770

cording to the traversal order. For instance, suppose that v[Omissions] = 10,

and the T root condition is ‘Omissions ≤ 2.5’. In this case, the algorithm com-

putes the triple 〈Omissions, 2.5, null〉, meaning that the current decision path

was determined by v[Omissions] being greater than 2.5. Then, suppose that

the next node’s condition is ‘Omissions ≤ 7.5’. In this case, the algorithm up-775

dates the triple to 〈Omissions, 7.5, null〉, since the new thr min value is more

stringent than the one previously stored in the triple.

After computing thresholds, the algorithm initiates the explanation string

s (‘Explanation: the individual did . . . ’, line 8). Then, it parses the computed

threshold triples to explain the reason of prediction. It starts with all triples780

having non-null values of thr min (adding ‘at least $thr min $feat’ ; e.g., ‘at

least 8 omissions’, lines 9 to 11) and continues with all triples having non-

null values of thr max (adding ‘but less than . . . ’, lines 12 to 15). The actual

algorithm also applies some fine-grained refinements, not reported in the pseudo-
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code for lack of space, to improve the readability of the explanations (e.g.,785

handling punctuation, rounding thresholds).

As an example, consider the model shown in Figure 6, and suppose that the

current individual, during the activity ‘cooking’, performed one perseveration

but no other anomaly. Based on that, the chain of decisions would bring to

the third leaf, which would predict the anomaly level 2.304. In this case, the ai790

explanation would produce the following explanation: ‘The predicted anomaly

level of the activity is 2.3. This is considered a mild anomaly level. Explanation:

the individual did less than 3 omissions, but at least one perseveration, and no

reach-touch inefficiency’.

6. Prototype and experimental evaluation795

In this section, we illustrate the experimental evaluation that we carried out

with real-world data acquired in smart-homes inhabited by a large set of people,

including persons with MCI and PwD. The dataset was acquired and labeled by

researchers of the Center for Advanced Studies in Adaptive Systems2 (CASAS)

of Washington State University. For the sake of privacy, before releasing the800

data, the researchers removed explicit identifiers of the individuals involved

in the study. Moreover, quasi-identifier personal data such as age have been

generalized to avoid identity disclosure. The exact age has been replaced by age

ranges, such as ‘middle age (45-59)’, ‘young-old (60-74)’, and ‘old-old (75+)’.

The protocol of recruiting and data collection was approved by the Institutional805

Review Board of WSU [56].

6.1. Test-bed

The CASAS smart-home test-bed has been used in several studies on de-

mentia and other cognitive disabilities, in order to investigate the relationship

between ordinary activities and memory abilities [57]. The CASAS test-bed810

is a two-story apartment equipped with several passive infrared (PIR) motion

2http://casas.wsu.edu/
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sensors mounted on the ceiling to track the user’s position, item sensors for

detecting the usage of selected items in the kitchen, door sensors, burner sen-

sors, hot and cold water sensors, temperature sensors, and whole-apartment

electricity usage meter. The average distance of PIR sensors is about one me-815

ter throughout the apartment. In total, the smart-home includes 52 motion

sensors, 18 door sensors, and 10 item sensors. The first floor of the apartment

consist of a kitchen, living room and a dining area, while bathroom and two

bedrooms are located at the second floor. Figure 8 shows the layout of the

CASAS smart-home. We use this test-bed dataset to reproduce the case of a820

residence for senior people, whose apartments have identical shape and sensors,

but are inhabited by different persons.

6.2. Participants recruiting and cognitive evaluation

WSU researchers recruited the dataset participants through advertisements,

physician referrals, and from people who took part to past studies in WSU lab-825

oratories. Recruitment and data collection were carried out over two years. In

total, 400 individuals were recruited. After obtaining informed consent, partici-

pants underwent multidimensional clinical assessment, including both standard-

ized and experimental neuropsychological tests. The cognitive health status of

each participant was diagnosed by neuropsychologists. As a result of the eval-830

uation, participants were classified in three categories, as shown below.

• Participants in the Dementia (category D) group met the DSM-IV-TR

diagnostic criteria described in [58]. Those criteria include the observation

of several cognitive deficits that negatively affect the normal execution of

activities of daily living, and represent a decline from the previous health835

status of the senior. 36 Participants were classified in this group.

• Participants in the MCI category met the criteria defined by Petersen

in [59] and those defined by the National Institute on Aging - Alzheimer’s

Association [60]. MCI is considered an intermediate stage between normal

cognitive ageing and dementia. People with MCI have more memory prob-840

lems than cognitively healthy seniors, but are still able to carry out their
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Figure 8: The CASAS testbed evnivorment [57]. The location of PIR and door sensors is
represented by labeled dots. The heat map shows the distribution of activated sensors in the
testbed for one of the patients in a day.

normal activities independently. This group included 59 participants.

• 255 participants were diagnosed as cognitively Healthy (category H). Among

them, 37 were middle-aged persons (45-59 years old), 83 were young-old

persons (60-74 years old), 44 were persons older than 75, and 91 were845

younger adults.

Among the remaining ones, 40 persons were diagnosed with “other condi-

tions”, and 10 persons had no diagnosis or were diagnosed as “at risk”. Since

we are interested in computing personalized models for elderly persons, we con-

sidered only data from seniors; i.e., participants in the categories D, MCI, and850

H whose age is 60 or older.

Moreover, some recruited participants, in particular PwD, were not able

to execute activities in the test-bed for different reasons. Hence, we had to

disregard them, since their activity data were absent from the dataset. We also

disregarded patients who performed less than 6 activity instances, due to the855

lack of sufficient information for evaluating their cognitive status. Totally, we

considered 192 subjects: 19 PwD, 54 people with MCI, 80 seniors aged from 60

to 74, and 39 elderly aged 75 or older.
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6.3. Activity execution and data collection

After cognitive evaluation, participants were asked to execute so-called Day860

Out Tasks (DOTs) in the smart apartment. DOTs are defined as naturalistic

tasks that require the ability to perform interleaved activities in order to reach

a given objective. Those activities are at the core of competency in everyday

life [61]. Activities were executed in a single day by each user according to a

given script. Each DOT was described to the user as a complex activity com-865

posed by a number of simpler tasks. For instance, the complex activity ‘Prepare

a cup of soup using the microwave’ consist of the following tasks: retrieve mate-

rials, measure water with cup, pour water to noodles, wait for water to simmer

in the cup of noodles, retrieve and return pitcher of water from refrigerator,

pour glass of water, and finally bring all items to the dining room table. The870

setup included 24 different DOTs. On average, the senior participants that we

included in our experiments performed 15.2 DOTs (standard deviation = 1.8).

During the execution of DOTs, the smart-home infrastructure acquired the

sensor data triggered by the activities and movements of the participant. For

each sensor event, the dataset reports the following sensor record: 〈 t s id v 〉,875

where t is the timestamp of sensor firing, s id is the sensor unique identifier, and

v is the emitted value. The domain of the value v depends on the specific sensor;

e.g., if a sensor is attached to a fridge door, the domain of v may be {‘open’,

‘close’}. For instance, the record 〈 08:30:00.27063 M08 ON 〉 represents the fact

that the motion sensor M08 emitted the value ON at 08:30:00.27063. Note that,880

since each user executed his/her activities in a single day, the information about

the day is not necessary. The detailed description of activities and tasks and

the full dataset are available on the Web3. The setup of the smart-home is

described in detail in [62].

3http://casas.wsu.edu/datasets/assessmentdata.zip
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Figure 9: The software design of our experimental evaluation.

6.4. System prototype885

The software design of our system prototype is depicted in Figure 9. The

CASAS dataset, which is stored on different textual files, is imported into a

PostgreSQL database through a Python script. PostgreSQL is a well known and

widely adopted relational database management system (DBMS). The database

stores very articulated and structured information, such as sensor events, sensor890

descriptions, participants, activities, actions, diagnoses, annotations, explana-

tions. In total, the database schema includes 18 tables and 40 views. A small

excerpt of the schema is reported in Figure 10.

We implemented the HealthXAI algorithms in Python. The code exploits

the querying capabilities of PostgreSQL for efficiently computing the statistical895

information required by our algorithms. Through a Python script, we exported

the data into the Weka [63] file format in order to evaluate different machine

learning algorithms. Weka is a data mining toolkit that supports several algo-

rithms, and allows rapid prototyping and experimentation of machine learning

tasks. After the evaluation, we integrated the chosen machine learning algorithm900

in the Python code using the sklearn libraries4. Among the different variants

of decision trees, which had similar accuracy in our experiments, we chose the

4https://scikit-learn.org
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activities

patient SMALLINT

activity_type SMALLINT

start TIME(6) WITHOUT TIME ZONE

end TIME(6) WITHOUT TIME ZONE

persons

person_id SMALLINT

diagnosis SMALLINT

anomalies

person SMALLINT

action_additions SMALLINT

anticipation_omissions SMALLINT

omissions SMALLINT

perseverations SMALLINT

reach_touch SMALLINT

pacing SMALLINT

lapping SMALLINT

random SMALLINT

diagnosis_predictions

person SMALLINT

predicted_score NUMERIC(8,3)

explanation CHARACTER VARYING(1000)

events

patient SMALLINT

time TIME(6) WITHOUT TIME ZONE

sensor CHARACTER VARYING(10)

value CHARACTER VARYING(20)

sensors

sensor_id CHARACTER VARYING(10)

description CHARACTER VARYING(50)

participants_activity_anomalies

action_additions SMALLINT

anticipation_omissions SMALLINT

omissions SMALLINT

perseverations SMALLINT

reach_touch SMALLINT

pacing SMALLINT

lapping SMALLINT

random SMALLINT

person_id SMALLINT

activity_type SMALLINT

scores

person SMALLINT

activity SMALLINT

score SMALLINT

tasks

patient SMALLINT

time TIME(6) WITHOUT TIME ZONE

task SMALLINT

activity SMALLINT

trajectory_anomalies

person_id SMALLINT

trajectory_number SMALLINT

start_time TIME(6) WITHOUT TIME ZONE

end_time TIME(6) WITHOUT TIME ZONE

pacing SMALLINT

length NUMERIC(8,2)

sharp_angles SMALLINT

straightness SMALLINT

jerk SMALLINT

lapping SMALLINT

Figure 10: Part of the tables of HealthXAI database.

classical algorithm CART [52], which is known to be among the most effective

tree-based learners. The M matrix for knowledge-based anomaly refinement

was defined by a researcher by observing the typical locomotion patterns of905

cognitively healthy subjects. As a consequence, M was filled such that pac-

ing, random walk, and lapping anomalies are considered not possible during

the execution of the following activities: sweeping, water plants throughout the

apartment, clean kitchen, sort and fold clothing, and prepare hot meal.

The results of HealthXAI (predictions and explanations) are stored in the910

database. An online clinical dashboard is deployed on the cloud using the

Google Data Studio5 platform. Through the dashboard, clinicians can query

the database and inspect the relevant information and explanations.

In these experimental implementation, we used fixed values for the thresholds

used for anomaly recognition explained in Section 4.1. In particular, we fixed the915

threshold to of omissions to 90%, the threshold taa of action-additions to 1%, the

threshold tao of anticipation-omissions to 0.1. For recognizing perseverations,

5https://datastudio.google.com
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Regressor Correl. coeff. Mean abs. err. Root mean squared err.
5 Nearest Neigh. 0.253 1.122 1.646
Decision stump 0.431 1.025 1.229
Decision table 0.431 1.025 1.229
Linear regression 0.464 1.019 1.201
M5 model decision tree 0.474 1.014 1.193
Neural Net. 0.289 1.178 1.498
Random forest 0.454 0.972 1.224
Random tree 0.285 1.109 1.615
Red. Err. Prun. dec. tree 0.439 0.997 1.229
SVM 0.372 0.981 1.347

Table 4: Results of different regressors for the prediction of the anomaly score of activities.
We considered five scores that vary from 1 (very accurate) to 5 (very inaccurate).

we used a threshold computed as avg + 10 · stddev, where avg is the average

number of action repetitions, and stddev is its standard deviation. Finally, we

set the threshold trt of reach-touch inefficiencies to 10%.920

The whole code of our system prototype, including the database, as well as

the link to the dashboard that is freely accessible, is available on the Web6.

For the sake of reproducibility, the code documentation includes the pseudo-

identifiers of those individuals whose data have been used in our experiments.

6.5. Results of activity anomaly score prediction925

In the CASAS dataset, the instances of 8 types of DOTs are annotated with a

score that measures how accurately (considering correctness and completeness)

they have been performed by the participant. The scores range from 1 (very

accurate execution) to 5 (very inaccurate execution). The scores have been

given by researchers observing the participant performing the activity. In total,930

the dataset includes 1208 activity instances with a score that were performed

by the participants of our experiments. Among them, 716 include at least one

anomaly according to the predictions of HealthXAI. Considering only the latter

activity instances, the average score of seniors aged 60-74 is 1.87±1.14; the one

of elderly aged 75 or more is 2.18± 1.23; the one of MCI persons is 2.53± 1.36;935

the one of PwD is 3.84± 1.18. These statistics indicate that the score achieved

by a person is significantly correlated to his/her cognitive health status.

6https://sites.unica.it/domusafe/healthxai/

40

https://sites.unica.it/domusafe/healthxai/


We evaluated the accuracy of our method based on regression to compute

the anomaly score of activities, as explained in Section 5.2. We used a leave-

one-out cross validation approach, and we experimented with several among the940

most widely adopted regressors, including ones based on decision trees, Support

Vector Machines (SVM), Neural Networks, lazy learners (i.e., kNN with k = 5),

rules, and linear regression. Results are shown in Table 4. Among the evaluated

regressors, the one achieving the best correlation coefficient r (i.e., the Pearson

correlation coefficient [64]) was the M5’ model decision tree algorithm [65]. With945

this algorithm, we obtained a correlation r = 0.455. This value indicates a

moderate correlation between the predicted score and the ground truth. The

mean absolute error was close to or below 1 for most regressors.

In general, we can observe that the decision tree regressors proved to be

among the most effective regressors for this problem. Other popular algorithms,950

such as random tree, neural networks, and SVM, achieved considerably worse

results. The relatively low correlation may be due to the intrinsic difficulty

of the regression problem. Indeed, activity instances in the dataset are rather

short, having an average duration of 3.19 ± 2.77 minutes. In more naturalistic

conditions, many activities of daily living are carried out for longer. Hence, it is955

reasonable to expect achieving stronger correlation in more naturalistic setups.

Moreover, while the achieved correlation may be insufficient to reliably evaluate

the anomaly score of a single activity instance, it is reasonable to expect that

on the long term the technique could provide more reliable predictions.

Classifier Accuracy Precision Recall F1 score
5 Nearest Neigh. 0.499 0.497 0.499 0.49
Bayes net. 0.587 0.59 0.587 0.585
Decision table 0.601 0.6 0.601 0.594
Decision tree C4.5 0.564 0.567 0.564 0.547
Naive Bayes 0.57 0.577 0.57 0.549
Neural Net. 0.584 0.584 0.584 0.576
Random forest 0.575 0.575 0.575 0.569
Random tree 0.493 0.491 0.493 0.484
Red. Err. Prun. dec. tree 0.587 0.586 0.587 0.582
Ripper 0.557 0.568 0.557 0.543
SVM 0.589 0.59 0.589 0.586

Table 5: Results of different classifiers for the prediction of the anomaly score of activities. We
considered three classes: no anomaly (score 1), mild anomaly (score 2 or 3), strong anomaly
(score 4 or 5).
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In other experiments, we evaluated a different approach to this problem. In960

particular, we treated the prediction of activity anomaly scores as a classifi-

cation problem. We noticed that, in the dataset, the distribution of scores is

not homogeneous. Indeed, 3 kinds of scores are frequent (score 1 having 774

instances; score 2 having 302 instances; score 4 having 308 instances), while

the remaining ones are rather infrequent (score 3 having 57 instances; score 5965

having 45 instances). Hence, initially we treated the problem as a 3-class clas-

sification problem, with one class ‘no anomaly’ composed of activity instances

having score 1 (774 instances); one class ‘mild anomaly’ composed of activity

instances having score 2 or 3 (359 instances); and one class ‘strong anomaly’

composed of activity instances having score 4 or 5 (353 instances). Results are970

reported in Table 5. The classifier achieving the best accuracy is the one based

on decision table [66], with precision, recall, and F1 measure of 0.603. In gen-

eral, different classifiers (including the Decision tree that we used in our system)

achieved similar performance, with F1 measure close to 0.6.

Classifier Accuracy Precision Recall F1 score
5 Nearest Neigh. 0.437 0.433 0.437 0.344
Bayes net. 0.521 n/a 0.521 n/a
Decision table 0.539 n/a 0.539 n/a
Decision tree C4.5 0.45 0.438 0.45 0.383
Naive Bayes 0.483 0.495 0.483 0.389
Neural Net. 0.535 0.512 0.535 0.428
Random forest 0.494 0.487 0.494 0.419
Random tree 0.425 0.415 0.425 0.34
Red. Err. Prun. dec. tree 0.527 0.496 0.527 0.366
Ripper 0.462 0.449 0.462 0.326
SVM 0.531 n/a 0.531 n/a

Table 6: Results of different classifiers for the prediction of the anomaly score of activities.
We considered five classes that vary from 1 (very accurate) to 5 (very inaccurate).

We also performed experiments with five classes, that correspond to the975

original scores. In fact, there is a trade-off between granularity of scores and

accuracy of predictions: with finer-grained scores (and consequently, larger num-

ber of classes), it is reasonable to expect lower recognition rates. Results with

five classes of scores are reported in Table 6. We could not compute the value of

precision and F1 score for certain classifiers, since they never output a predic-980

tion for certain classes; hence, we marked the corresponding values as n/a (not
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available). As expected, with this setup the accuracy of classifiers decreased,

since more fine-grained classes are considered. The classifier achieving the best

accuracy is the one based on multi-class logistic regression [67], with accuracy

and F1 measure close to 0.53. In general, different classifiers, including Decision985

trees, showed similar performance, with precision, recall, and F1 measure close

to the one of the logistic regression classifier.

Classifier Accuracy Precision Recall F1 score
5 Nearest Neigh. 0.641 0.644 0.641 0.63
Bayes net. 0.687 0.688 0.687 0.676
Decision table 0.666 0.669 0.666 0.656
Decision tree C4.5 0.709 0.709 0.709 0.697
Naive Bayes 0.644 0.679 0.644 0.643
Neural Net. 0.683 0.681 0.683 0.668
Random forest 0.682 0.679 0.682 0.666
Random tree 0.648 0.645 0.648 0.631
Red. Err. Prun. dec. tree 0.701 0.697 0.701 0.679
Ripper 0.666 0.659 0.666 0.628
SVM 0.698 0.695 0.698 0.681

Table 7: Results of different classifiers for the prediction of the anomaly score of activities.
We considered two classes: no anomaly (score 1), anomaly (score 2 to 5).

Finally, we performed experiments with only two classes of anomaly: no

anomaly (that corresponds to the score 1), and anomaly (scores 2 to 5). Results

are shown in Table 7. As we expected, with this setup the accuracy of classifiers990

increased. The algorithm achieving the highest accuracy was the decision tree

classifier C4.5 [68], which achieved precision, recall, and F1 measure higher than

0.7. In general, we can conclude that Decision treed are among the most effective

machine learning algorithms both for regression and classification problems in

the considered domain.995

6.6. Results of personal anomaly level prediction

We carried out experiments to evaluate the HealthXAI mechanism for com-

puting the overall anomaly level of individuals explained in Section 5.1. At first,

we evaluated the prediction performance of different regressors using the whole

set of participants. Results are reported in Table 8.1000

The regressor achieving the highest correlation coefficient (r = 0.499) is the

one based on SVM. The M5’ model decision tree and linear regression algorithms
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Regressor Correl. coeff. Mean abs. err. Root mean squared err.
5 Nearest Neigh. 0.232 0.226 0.373
Decision stump 0.328 0.207 0.292
Decision table 0.328 0.207 0.292
Linear regression 0.454 0.2 0.272
M5 model decision tree 0.43 0.206 0.276
Neural Net. 0.308 0.245 0.385
Random forest 0.399 0.207 0.278
Random tree 0.231 0.231 0.372
Red. Err. Prun. dec. tree 0.284 0.219 0.298
Simple linear regr. 0.487 0.196 0.263
SVM 0.517 0.174 0.276

Table 8: Results of different regressors for the prediction of the overall anomaly level of
individuals. We considered three profiles of individuals: healthy seniors aged 60 or more (119
individuals, anomaly score = 0.0), elderly with MCI (53 individuals, anomaly score = 0.3),
and PwD (19 individuals, anomaly score = 1.0).

Regressor Correl. coeff. Mean abs. err. Root mean squared err.
5 Nearest Neigh. -0.017 0.128 0.196
Decision stump 0.128 0.122 0.14
Decision table 0.128 0.122 0.14
Linear regression 0.249 0.119 0.136
M5 model decision tree 0.182 0.122 0.138
Neural Net. 0.136 0.139 0.188
Random forest -0.013 0.13 0.146
Random tree -0.053 0.134 0.2
Red. Err. Prun. dec. tree -0.093 0.129 0.141
Simple linear regr. -0.463 0.137 0.148
SVM 0.008 0.101 0.195

Table 9: Results of different regressors for the prediction of the overall anomaly level of
individuals. We considered two profiles of individuals: healthy seniors aged 60 or more (119
individuals, anomaly score = 0.0), and elderly with MCI (53 individuals, anomaly score =
0.3).

achieved a correlation coefficient close to the one of SVM. These results indicate

that, despite the relatively small number of participants, there is a significant

correlation among the predicted anomaly level and the actual diagnosis of indi-1005

viduals. Also in this case, it is reasonable to assume that the correlation should

increase by considering longer-term observations of the individuals’ behaviors.

In another experiment, we considered only two typologies of individuals: cog-

nitively healthy seniors, and people with MCI. Results are reported in Table 9.

As expected, the achieved correlation is lower in this case, since the separation of1010

the classes of healthy seniors and people with MCI is rather low. Indeed, people

with MCI were still capable of completing most activities with few anomalies. In

this setup, the regressor obtaining the largest correlation coefficient (r = 0.182)

is the M5’ model decision tree. The achieved r value indicates a weak correlation
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Regressor Correl. coeff. Mean abs. err. Root mean squared err.
5 Nearest Neigh. 0.288 0.192 0.366
Decision stump -0.001 0.264 0.341
Decision table -0.001 0.264 0.341
Linear regression 0.463 0.197 0.275
M5 model decision tree 0.508 0.192 0.265
Neural Net. 0.206 0.379 0.56
Random forest 0.384 0.223 0.288
Random tree 0.155 0.24 0.41
Red. Err. Prun. dec. tree 0.111 0.252 0.327
Simple linear regr. 0.531 0.19 0.26
SVM -0.193 0.273 0.392

Table 10: Results of different regressors for the prediction of the overall anomaly level of
individuals. We considered two profiles of individuals: elderly with MCI (53 individuals,
anomaly score = 0.3), and PwD (19 individuals, anomaly score = 1.0).

among the predicted values and the ground truth. Among the other algorithms,1015

the one based on linear regression achieved weak correlation, while the other

ones essentially did not provide significant correlation.

Then, we considered two different typologies of individuals: elderly with

MCI, and PwD. Results are reported in Table 10. In this case, the achieved

correlation is larger, since there is more separation between the classes of peo-1020

ple with MCI and PwD. The regressors achieving the highest r score are those

based on linear regression and M5’ model decision tree (r = 0.49). Some regres-

sors, in particular those based on Neural networks and decision table, achieved

essentially no correlation. The regressor based on Random forest was the only

other algorithm achieving a correlation score larger than 0.4.1025

Moreover, we did experiments considering other two typologies of individu-

als: cognitively healthy seniors, and PwD. Results are shown in Table 11. In this

case, the achieved correlation level is even larger than in the previous case, since

the classes of cognitively healthy seniors and PwD are clearly separated. The

M5’ model decision tree algorithm obtained the highest correlation (r = 0.601).1030

Most other regressors achieved significantly lower correlation values. Indeed,

only regressors based on SVM and Random forest achieved a correlation score

larger than 0.52. We also note that the regressor based on Neural networks

achieved poor results in all our experiments, probably due to the relatively

small size of the dataset, and because of the limited number of features.1035

Finally, we considered only two profiles of individuals: young-old cognitively
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Regressor Correl. coeff. Mean abs. err. Root mean squared err.
5 Nearest Neigh. 0.361 0.141 0.373
Decision stump 0.358 0.178 0.333
Decision table 0.358 0.178 0.333
Linear regression 0.486 0.2 0.312
M5 model decision tree 0.581 0.185 0.281
Neural Net. 0.351 0.224 0.435
Random forest 0.505 0.169 0.298
Random tree 0.26 0.188 0.43
Red. Err. Prun. dec. tree 0.408 0.183 0.328
Simple linear regr. 0.577 0.174 0.281
SVM -0.024 0.146 0.382

Table 11: Results of different regressors for the prediction of the overall anomaly level of
individuals. We considered two profiles of individuals: healthy seniors aged 60 or more (119
individuals, anomaly score = 0.0), and PwD (19 individuals, anomaly score = 1.0).

Regressor Correl. coeff. Mean abs. err. Root mean squared err.
5 Nearest Neigh. 0.346 0.187 0.429
Decision stump 0.29 0.244 0.394
Decision table 0.29 0.244 0.394
Linear regression 0.579 0.218 0.329
M5 model decision tree 0.707 0.161 0.279
Neural Net. 0.594 0.213 0.354
Random forest 0.543 0.217 0.331
Random tree 0.309 0.217 0.463
Red. Err. Prun. dec. tree 0.546 0.186 0.333
Simple linear regr. 0.623 0.197 0.308
SVM 0.376 0.24 0.38

Table 12: Results of different regressors for the prediction of the overall anomaly level of
individuals. We considered two profiles of individuals: healthy seniors aged 60 or more (119
individuals, anomaly score = 0.0), and PwD (19 individuals, anomaly score = 1.0).
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healthy seniors aged 60-74, and PwD. Results are shown in Table 12. With

this setup, we obtained the highest correlation r = 0.693 using the M5’ model

decision tree. This value of r essentially indicates a strong correlation among

the predicted level and the diagnosis of the individual. We believe that the1040

predictions’ accuracy significantly improved because of a better model selection.

Indeed, cognitively healthy seniors aged 75 or older, which were not considered

in this setup, are more likely to suffer from physical problems or normal cognitive

age-related decline that impact the way of execution of everyday activities. As a

consequence, they may execute behaviors that resemble anomalies, even in the1045

absence of cognitive issues, and this fact may actually confuse the regression

algorithm. These results indicate the importance of carefully selecting the set

of participants used for collaboratively training the model.

6.7. Dashboard for clinicians

As discussed before, while automatic tools for behavior monitoring and1050

anomaly prediction may provide a useful support, the actual diagnosis must

be provided by a clinician based on a detailed multi-dimensional examination

of the patient. To this aim, HealthXAI provides a Web dashboard to allow clin-

icians inspecting anomalies, scores, and their automatically generated natural

language explanations. The HealthXAI dashboard can be freely accessed on the1055

Web7.

A screenshot of the dashboard is shown in Figure 11. The visualization dash-

board enables clinicians, who are the final users of HealthXAI, to analyze and

visualize at fine-grained level the information stored in the HealthXAI database

in a user-friendly way. The dashboard has been designed in order to help clini-1060

cians taking decision in shorter timescales. It includes various forms of data pre-

sentation (tables, plots, natural language explanations, numerical summaries)

to ensure high flexibility for visualization of heterogeneous and sophisticated

information. By selecting the current patient through a dropdown list on the

7https://bit.ly/HealthXAI
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34%

Touched
item Activitiy
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Activity Anomaly
level Explanation

Sweep the kitchen and dust the
living room.

68.86% The subject performed more than 2 Omissions, but
less than 6 Omissions, and less than 2 Pacing.

Obtain a set of medicines and a
weekly medicine dispenser, �ll as
per directions.

0.00% The subject performed no Omissions, and no Pacing.
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Sweep the kitchen and dust the living room. Participant uses dust pan and brush

Sweep the kitchen and dust the living room. Participants returns dust pan and brush to supply c…

Pick a complete out�t for an interview from… Participant chooses correct out�t from closet:

1 - 5 / 5 < >

Ommisions overt anomalies

Start time End time Duration (min) Length Number of
pacings Jerk straightnes

s
Normalized
straightness

Number of
sharp angles

Normalized of
sharp angles

Normalized
Jerk

Trajectory
picture

10:39:13 10:59:10 20 505.8 3 64 73 0.1 54 2.7 3.2 show

1 - 1 / 1 < >

HealthXAI
PREDICTION:

Dept. of
Mathematics and
Computer Science,
University of
Cagliari, Italy

Dept. of Geo-spatial
Information System,
K. N. Toosi University
of Technology, Iran

Show HeatMap

Figure 11: A screenshot of the HealthXAI dashboard.
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top left, clinicians can inspect spatial disorientation, wandering behaviors, sub-1065

tle and overt behavioral anomalies, together with the detailed explanations of

predictions.

The dashboard contains three main sections. The first section (on top) re-

ports overall information. In particular, the HealthXAI prediction index

indicates the level of person anomaly in percentage, computed as explained in1070

Section 5.1. Below the index, it is reported the natural language explanation

for the index prediction. The actual diagnosis of the patient is reported be-

low the dropdown list. Below, a hyperlink show heatmap allows inspecting

the heatmap showing the patient’s movement pattern in the home in the day,

which is similar to the one shown in Figure 8. Two plots below illustrates the1075

number of wandering episodes, subtle and overt anomalies in the day, as well as

statistics about locomotion anomalies in the day. These plots allow clinicians

having a quick overall vision of the anomalies executed by the patient, related

to behaviors and movements, respectively.

The second section reports a table with details about locomotion anoma-1080

lies. These refer to trajectories having pacing or lapping anomalies. For each

anomalous trajectory, the table reports its start-time and end-time, duration,

length, number of pacings, number of lappings, straightness and normalized

straightness, jerk and number of sharp angles. In the last column, a hyperlink

allows graphically inspecting the trajectory, as shown in Figure 3.1085

The third section shows details about activity anomalies. The first ta-

ble reports the predicted anomaly level of activities together with the

prediction’s explanation. The reach-touch subtle anomalies table reports

the activity during which the anomaly occurred, and the reached-and-touched

item. Table anticipation-omission overt anomalies reports the anomalous1090

activity class, and the tasks that have been executed in abnormal order. Ta-

ble perseverations overt anomalies reports the activity, the task, and the

number of repetitions of the task during the activity. Table action-additions

overt anomalies reports the activity, the task unrelated to the activity, and

the number of times that it was executed. Finally, Table omissions overt1095
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anomalies reports the activity and the necessary task that was not executed.

6.8. Discussion and limitations

Based on the experimental results, we can observe that, in general, there is

a statistically significant correlation among the predictions of HealthXAI and

the diagnosis of the cognitive health status of participants. This correlation is1100

particularly evident when considering cognitively healthy subjects and PwD.

On the contrary, we obtained a weak correlation when considering only persons

with MCI and cognitively healthy seniors. This result is consistent with other

studies in this field, such as those reported in [56], in which the separation

between MCI and cognitively healthy subjects was hardly recognized using IoT1105

data and artificial intelligence methods. We believe that this problem could

be approached by using additional sensors to recognize a larger set of subtle

inefficiencies. Indeed, based on the sensors available in our test-bed, we could

only monitor one kind of subtle inefficiency. Other kinds could be detected using

different sensors attached to everyday objects.1110

A key aspect that was not considered in this work is the long-term evaluation

of cognitive decline based on the history of anomalies. In fact, despite the used

dataset having been acquired from a large set of individuals, each individual

was monitored only for a few hours. The lack of labeled real-world datasets

acquired from large groups of individuals on the long term is a severe limitation1115

for this field of study. We believe that it is reasonable to expect achieving higher

correlation based on long-term monitoring, but this aspect should be confirmed

by experiments on large trials in real-world conditions. Long-term monitoring

should also be supported by specific techniques to adapt and update the learnt

models with historic information.1120

7. Conclusion and future work

In this paper, we tackled the challenging issue of continuous remote monitor-

ing of elderly people for supporting early detection of cognitive decline. Being
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based on solid clinical models, and empowered by a collaborative approach, our

solution has clear advantages with respect to the state of the art in terms of1125

scalability and personalization. Moreover, being based on explainable AI, our

system provides better support to clinicians in making a diagnosis. Large-scale

experiments with real-world seniors show the potential of our system.

Several research directions should be investigated in future work. The ac-

curacy of the system could be improved by considering additional kinds of sub-1130

tle inefficiencies, possibly adopting different sensor infrastructures. The dola

module may produce false positives due to contextual conditions such as the

home shape or presence of obstacles; its algorithms could be refined by assum-

ing some kind of external knowledge about the home. Personalization could

be improved by considering individual’s habits and physical conditions. Future1135

research should also focus on assessment on Multi-Criteria Decision Making

(MCDM) methods for predicting the overall anomaly level of individuals. For

the sake of this work, we used fixed parameters set based on common sense

knowledge; however, we aim at devising a method to automatically fine-tune

parameters to increase accuracy. Techniques for long-term analysis of anoma-1140

lies should also be investigated to improve the predictions. Moreover, different

explainable AI methods should be considered to cope with the machine learning

problems involved in this work. Finally, we aim at experimenting our system in

fully naturalistic environments for longer periods of time.
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