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Abstract 14 

This paper proposes a probabilistic framework to predict the failure probabilities of steel columns 15 

subject to blast loads. The framework considers the uncertainties in the blast phenomenon, the 16 

demands imposed on the column, and the capacities of the column for the limit states of flexure, 17 

and global buckling. As part of the work, we propose four probabilistic blast load models. For 18 

different types of explosives and atmospheric conditions, two models predict the incident and 19 

reflected peak pressure generated by the explosion and two models predict the incident and 20 

reflected positive time duration of the blast wave. The models are probabilistic to capture the 21 

associated uncertainties, including variations in the atmospheric conditions, the inherent variability 22 

in the blast load data even for identical experimental conditions, and model error. The blast load 23 

models are used to predict the structural demands (maximum internal moment and deflection) 24 

imposed by the blast on a column. The demand models are combined with strain-rate dependent 25 

capacity models for flexure and global buckling to estimate the conditional probability of failure 26 
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(or fragility) of a steel column for given scaled distance. As an example, fragility estimates for 27 

different columns representative of typical columns in steel frames are developed. The results 28 

highlight the importance of the explosive weight and column axial load on the failure probabilities.  29 

Keywords: Blast loading; Fragility estimates; Probabilistic blast models; Steel column; SDOF 30 

analysis 31 

1. Introduction   32 
 33 

With rapid industrialization and increasing terrorism threats in the last decade, the need for 34 

protecting structures against accidental and intentional blasts has gained significant attention (Hao 35 

et al., 2016; Zhang et al., 2019; Draganić et al., 2019). Many buildings that can be exposed to blast 36 

loads of varying intensities are steel frame structures (Krauthammer et al, 1990). Therefore, the 37 

response of steel frames and their components to blast loads has been widely studied in recent 38 

years (e.g.; Sabuwala et al., 2005; Khandelwal et al., 2009; Lee et al., 2009; Urgessa & 39 

Arciszewski, 2011; Heidarpour & Bradford, 2011; Nassr et al., 2013; Dragos & Wu, 2014). Some 40 

studies focusing on progressive collapse of steel frames due to blast loading have established that 41 

the failure of the columns causes the structural collapse (Hamburger & Whittaker, 2004; 42 

Krauthammer, 2003). Therefore, adequate design of steel columns is important to ensure the 43 

structure’s safety against blast loading (Denny et al., 2019; McConnell & Brown, 2011).  44 

Proper design of steel columns against blast loads requires the knowledge of the parameters of the 45 

transient, high-pressure wave generated by an explosion. Therefore, the pressure-time variation of 46 

a blast wave is of great significance for structural analysis. The pressure-time profile of a blast 47 

wave is determined through the peak overpressure,  and the positive phase duration, . The 48 sP ,d it
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blast wave is often reflected by surrounding surfaces which increases the peak overpressure. The 49 

increased pressure is referred to as the peak reflected overpressure, , with the corresponding 50 

positive phase duration defined as . It is generally assumed that  and  have the same 51 

value. However, Henrych, (1979) and Shi et al. (2008) reported different values for  and .  52 

Empirical equations are widely used to determine , , and   (e.g. Kingery, 1966; 53 

Henrych, 1979; Kingery & Coulter, 1983; Ngo et al.; 2007 Karlos et al., 2017). The empirical 54 

equations are generally deterministic and do not capture the variability in the blast parameters due 55 

to uncertainties in the mass of the explosive, atmospheric conditions, distance of the explosive 56 

from the target and inherent variability in the phenomenon (Netherton & Stewart, 2010). Recent 57 

studies have aimed at developing probabilistic models for  and  (Netherton & Stewart, 2010; 58 

Campidelli et al., 2015). Both studies considered the variabilties in the charge mass, atmospheric 59 

conditions, and distance between the explosive and the target. In addition, Netherton & Stewart 60 

2010 considered the inherent variability and the difference between deterministic models and 61 

experimental data, i.e., the model error, and modeled them as normally distributed variables. The 62 

distribution parameters (mean and standard deviation) for the inherent variability were assigned 63 

values based on experience and were assumed to be same for both  and . However, the choice 64 

of normal distribution can give negative values for the parameters that are non-negative in nature. 65 

Both studies do not present models for , and  66 

The probabilistic collapse analysis of steel frames has been the subject of numerous studies (e.g., 67 

Asprone et al., 2008; Asprone et al., 2010; Ding et al., 2017). Ding et al. (2017) considered the 68 

effect of the blast load on the member capacity but did not distinguish between the different limit 69 

rP

,d rt ,d it ,d rt

,d it ,d rt
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states. Karlos et al. (2017) presented failure curves for steel columns subject to blast loads using 70 

the probabilisitc models presented in Netherton & Stewart (2010). In the study global buckling 71 

was assumed as the predominant failure mode. However, the work does not consider the inherent 72 

variability and the effect of atmospheric conditions, charge mass and other factors affecting the 73 

blast parameters.  74 

This paper develops probabilistic models for incident and reflected blast parameters , , and 75 

. The proposed models are developed by combining information from existing empirical 76 

equations with information available from blast tests presented in Hoffman & Mills (1956). A 77 

Bayesian approach is used to estimate unknown model parameters. The Bayesian approach makes 78 

it possible to efficiently update the model parameters when new data becomes available. The 79 

proposed models identify the parameters that significantly affect the characteristics of blast waves. 80 

The developed models are then used to predict the structural demands (maximum internal moment 81 

and deflection) imposed by the blast on a column. The paper uses a pinned-hinged steel column 82 

presented in Nassr (2012) to predict the response. The demand models are combined with strain-83 

dependent capacity models for flexure and global buckling to estimate the conditional probability 84 

of failure (or fragility) of a steel column for given scaled distance. As an example, fragility curves 85 

for a typical column are developed. The results highlight the effects of the charge weight and the 86 

axial load on the failure probabilities. The results provide valuable information that can be used to 87 

develop efficient blast-resistant designs of steel frame buildings for different scenarios. The paper 88 

also presents fragility curves for the serviceability limit state of flexure which can be used within 89 

a life-cycle analysis framework (Jia, et al., 2017). 90 

sP rP ,d it

,d rt
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Following this introduction, the next section discusses the experimental data used for developing 91 

the models. Next, we present the proposed models and discuss the general formulation. The next 92 

section discusses the capacity and demand models chosen for the considered limit states. Finally, 93 

the paper presents the assessment of the structural fragility of steel columns and compares the 94 

effects of the charge weight and the axial load. 95 

2. Data for constructing probabilistic blast parameter models 96 
 97 

For developing the proposed probabilistic models, we use data from experimental blast load tests 98 

available in Hoffman & Mills (1956). Along with the observation for blast parameters, the database 99 

contains information about ambient pressure ( ), ambient temperature ( ), charge weight ( ), 100 

and scaled distance ( ) for each test. The scaled distance is commonly used to determine pressure-101 

time profile of a blast wave and is defined as 102 

  (1) 103 

where  is the distance of the explosive from the point of interest. In this paper, we also introduce 104 

the radius of explosive, , as a dependent variable. For the sake of simplicity, we define the 105 

dependent variables as vector , i.e. ,  106 

For some blast parameters, there were multiple gauges to record the data. However, the observed 107 

values of the parameters for some of the tests were not recorded or were illegible in the best 108 

available reproduction of the reference document. The usable data are available for 185, 191, 158 109 

and 186 tests for , , and , respectively. Table 1 gives the range for relevant parameters, 110 

where  is the explosive’s radius, calculated using pentolite density of .  111 

aP aT W

Z

1/3/Z R W=

R

r

x { , , , , }a aZ W P T r=x
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Table 1: Range of the values of the blast parameters and the physical regressors in the 112 
experimental data 113 

Blast Parameter Symbol Range 

Incident Peak Pressure ( )   0.025-3.586 

Reflected Peak Pressure ( )  0.056-25.420 

Incident Positive Phase Duration 

 ( ) 

 0.116-3.375 

Reflected Positive Phase Duration 

 ( ) 

 0.167-3.439 

Dependent variables   

Scaled distance ( )    

`Explosive weight ( )    

Ambient pressure ( )     

Ambient temperature ( )   

Explosive radius ( )   

3. Formulation of probabilistic blast parameter models 114 

To assess the fragility of a steel column subject to a blast load, we need to estimate the blast 115 

parameters , , and . Gardoni et al. 2002 and Gardoni et al. 2003, proposed a general 116 

model form to develop unbiased probabilistic models that capture our understanding of the 117 

underlying physics of a phenomenon and at the same time capture data available from laboratory 118 

testing and/or field measurements. In this section, we develop probabilistic models for the blast 119 

parameters based on Gardoni et al.’s formulation. To promote the practical use of the developed 120 

MPa sP

MPa rP

sec

,d it

sec

,d rt

1/3m/kg Z 0.59 5.87-

kg W 0.24 4.1-

hPa aP 1005 1032-

oC aT 3.3 33.2-

m r 0.03 0.085-

sP rP ,d it ,d rt
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models, the models start from accepted deterministic models. Correction terms are then added to 121 

the model to remove the possible bias in the current models and improve the quality of the model, 122 

and a model error term is also added to the model to capture the remaining variability that may 123 

arise due to inaccurate model form, missing variables, and statistical uncertainties. The general 124 

model form can be written as 125 

   (2) 126 

where  is either the blast parameter of interest or a transformation of the parameter of 127 

interest; the index  denotes the specific parameter of interest, (i.e.  represent , , 128 

and );  represents the measurable variables including environmental variables, material 129 

and geometric properties affecting the blast parameters;  is a vector of unknown 130 

parameters to be estimated;  is an existing deterministic model for the parameter of interest 131 

or it’s transformation;  is the correction term; and  is the model error which is 132 

assumed to be additive (additivity assumption), where  is the standard deviation of the model 133 

error independent of  (homoskedasticity assumption) and  is standard normal variable 134 

(normality assumption). To satisfy the additivity, homoskedasticity and normality, we can use an 135 

appropriate variance stabilizing transformation, such as those mentioned in Box & Cox, 1982. In 136 

this paper, we use a logarithmic transformation of the blast parameters to define  and of 137 

the deterministic model to define . 138 

Following Gardoni et al. (2002), we use a functional form, linear in , for , which is 139 

defined as follows: 140 

( ) ( ) ( )ˆ, ,k k k k k k kA A g s e= + +x Θ x x θ

( , )x Θk kA

k 1,2,3,4k = sP rP

,d it ,d rt x

( , )k k ks=Θ θ

ˆ ( )kA x

( , )k kg x θ k ks e

ks

x ke

( , )x Θk kA

ˆ ( )kA x

kθ ( , )k kg x θ
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  (3) 141 

where ’s are explanatory functions obtained from appropriate box-cox transformation of 142 

basis functions of ,  (i.e.,  where  is a vector of unknown 143 

exponents), and  are the components of the vector . 144 

3.1. Box-cox transformation, Bayesian updating and model selection 145 

We can estimate and  simultaneously using nonlinear regression or estimate  followed 146 

by , as detailed in Tabandeh & Gardoni (2014). However, the authors noted that the former 147 

method involves high computational time and may give inaccurate results with increasing number 148 

of regressors. Hence, we will estimate  followed by , which was found to give estimates 149 

comparable to those obtained using nonlinear regression. 150 

Following Tabandeh & Gardoni (2014), we use maximum likelihood criterion to estimate  and 151 

the log-likelihood function takes the form: 152 

  (4) 153 

where  is the covariance matrix of the random functions  154 

and  is the index for the  observation in a sample set of  observations. 155 

From Eq. (4), we can observe that the minimum of the determinant of  corresponds to the 156 

estimates for . Following Weisberg 2005, takes the form: 157 
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1
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           (5) 158 

After obtaining ’s using box-cos transformation, we estimate  using the Bayesian 159 

updating rule, defined as: 160 

   (6) 161 

where  is the posterior distribution reflecting the updated state of information about ;162 

 is the likelihood function capturing the information from the data; is the prior 163 

information which reflects the available information before collecting the data; and 164 

 is a normalizing factor. For multidimensional problems where 165 

 is not proportional to a familiar probability distribution function, predicting  can 166 

be challenging. In this paper, we use the Delayed Rejection Adaptive Metropolis DRAM method 167 

(Haario et al., 2006), an adaptive delayed rejection Markov Chain Monte Carlo MCMC simulation 168 

method to estimate the posterior statistics of the unknown model parameters. 169 

The experimental data of blast parameters often contains observations which include measurement 170 

errors because of gauge malfunction, gauge hysteresis and base line drift (Kingery, 1966). 171 

Moreover, the variables in  may have associated variabilities which are not reflected in the 172 

database. Therefore, needs to be written in a way to reflect the measurement errors 173 

associated with the parameters of interest and dependent variables. Assuming statistical 174 

independence between different observations and absence of systematic error in the measurements, 175 

can be written, as per Gardoni et al. (2002) and Tabandeh & Gardoni (2014), as: 176 

( ) ( ) ( ) ( )
1 1 1

1 1 1ˆ ( )
T

n n n

k k k q k q k q k q
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  (7) 177 

where  is the prediction residual for  observation with  and  178 

being the measured observation and variable values; 179 

is the standard deviation , with  and  as the variance and covariance matrix of measurement 180 

errors in  and ; and is the gradient row vector with respect to . In the absence of any 181 

prior information about the model parameters, we use a noninformative prior distribution 182 

. 183 

To ensure precision in the estimates, obtain small values of  and prevent over-fitting of data, 184 

 needs to be parsimonious. The parsimonious form can be obtained using a stepwise 185 

deletion process. Following Gardoni et al. (2002), we start with a model including all the 186 

explanatory functions and interaction terms and successively eliminate the function with the 187 

highest posterior coefficient of variation (COV). In the presence of interaction and higher-order 188 

terms, a main effect is removed only after the removal of the associated interaction and higher 189 

order terms. The remaining explanatory functions are re-fitted to the data and the process is 190 

repeated until every element in  has COV lower than or there is an unacceptable increase in 191 

. The definition of an unacceptable increase in  is subjective and depends on the desired 192 

model accuracy, desired parsimony in the model and the desired variability in the model 193 

parameters of . In the event of strong correlation between two parameters,  and (for the 194 
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purpose of the paper, we assume a strong correlation when ), we can linearly combine 195 

them as follows: 196 

  (8) 197 

where,  and are the posterior mean and standard deviation of , respectively. 198 

3.2. Model development for peak overpressure and positive time duration 199 

3.2.1. Deterministic models 200 

 201 

Fig 1: Pressure – Time profile of a blast wave (left) and linear approximation (right). 202 

The probabilistic models developed in the paper build upon the deterministic models for the 203 

parameters of a blast wave. An explosion causes the formation of a blast wave which decays with 204 

time.  205 

An exponential law is typically adopted to describe the time (t) history of the blast overpressure, 206 

but a good approximation of this behavior can be expressed by a linear function, Karlos & Solomos 207 

2013, Nassr et al. (2012), Nassr et al. (2013), see Figure 1 and Eq. (9). 208 
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𝑃(𝑡) = 𝑃& '1 −
*
*+
,          (9) 209 

where Ps is the peak incident overpressure that can be substituted by Pr in case of reflected 210 

overpressure, td is the positive phase duration. At the time when the blast wave reaches the point 211 

of interest, typically called the arrival time , the imposed pressure increases instantaneously to 212 

a peak overpressure value,  , over the ambient pressure 𝑃-. With time, the pressure decreases 213 

and at time , it reaches the ambient pressure. After ,  the pressure decays further to an under 214 

pressure  and eventually reaches the ambient pressure at time . Here,  and  are 215 

the positive phase duration and the negative phase duration of the blast wave respectively. From a 216 

structural safety viewpoint, the positive wave duration dominates the structural response. 217 

Therefore, this paper only considers the modelling of positive phase duration. With reference with 218 

equation (2) the following notation is assumed:	𝐴01 = 𝑃23, 𝐴05 = 𝑃2&, 	𝐴06 = 𝑡7,8, 	𝐴09 = 𝑡7,:. 219 

The parameters of a blast wave are dependent on the shape of the explosive. In this work, we 220 

consider only hemispherical explosions. Out of the many empirical relations available in literature, 221 

the equations presented in UFC 3-340-02 (2008) are most widely used to estimate the incident and 222 

reflected blast parameters for hemispherical explosives. However, the equations for  and  223 

significantly deviate from the experimental values for . Therefore, we use the 224 

modified equations presented in Karlos & Solomos (2013). corrected for the mentioned 225 

discrepancies in  and .  The following form is adopted to describe the overpressure values: 226 

𝑌 = 10∑ >?@?A
?BC    where   𝑈 = 𝐾F + 𝐾1𝐿𝑜𝑔(𝑍)    (10) 227 
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Where Y can represent 𝑃23 or 𝑃2& and Ci, K0, K1 are constant coefficients determined through a least 228 

squares fitting of experimental values. For the sake of clearness one set of coefficients is calculated 229 

for 𝑃23 and one set is calculated for 𝑃2&, see Karlos & Solomos (2013), Karlos et al. (2017) and 230 

Kingery C. N., & Bulmash G., (1984). 231 

Following Kinney and Graham (1983), we define the deterministic model for  here denoted as232 

: 233 

  (11) 234 

Shi (2008) and Henrych (1979) observed significant difference between  for 235 

. Therefore, we use the following equation proposed in Henrych (1979) for  236 

representing td,r: 237 

 (12) 238 

The above equation is valid for . For , we use the equation for 239 

presented in UFC 3-340-02 (2008) 240 
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3.2.2. Model correction 242 

As initial explanatory functions for all the blast parameters, we select  to capture potential 243 

model bias, , ,  and , 244 

where 1013.25 is the standard atmospheric pressure in hPa, is the mean weight of the explosives 245 

in the tests. We obtain the explanatory functions ’s using the methodology explained earlier 246 

in the paper and determine that log transformation is suitable for all the candidate functions.  247 

Initially, a linear term of the form . However, the diagnostic plots showed a 248 

higher-order relationship with the explanatory functions. Therefore, we propose higher order 249 

correction terms with one-way interactions for the initial run. The correction term for the initial 250 

run is defined as: 251 

  (13) 252 

3.2.3. Measurement errors in the parameters 253 

Blast waves imposes high demands on the instrumentation systems. Therefore, there are many 254 

contributors to measurement errors in the observed parameters, including but not limited to, 255 

hysteresis, non-linearity, resonances ( Netherton & Stewart, 2010). We define the true value for a 256 

parameter of interest as: 257 

   (14) 258 

where is the observed value,  is the actual value of the parameter, and is the 259 

multiplicative measurement error. 260 
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The measurement errors depend on the type of recording instrument used. However, there is not 261 

enough data available in Hoffman and Mills (1956) to specify the associated instrument error. 262 

Netherton (2012) provided a detailed literature review of the instrument tolerances observed in 263 

many studies, which can range from  to  for the instrument used in the available data. 264 

However, the range of instrument error is narrower than for the observed values of peak 265 

overpressure (Kingery, 1966). Therefore, we propose the measurement errors based on 95% 266 

confidence that the tolerance range is  for  and  for  and . 267 

Generally, instrument errors are modeled assuming a normal distribution. However, we can obtain 268 

negative values for if is normally distributed. Therefore, we assume a lognormal 269 

distribution for . Taking the mean of , , as 1 and assuming 95% confidence 270 

interval, we can determine the standard deviation for the measurement error using the following 271 

formulation presented in Olsson (2005) 272 

  (15) 273 

where and are the mean and standard deviation of , and are the mean 274 

and standard deviation of underlying normal distribution  and  is the sample size. 275 

Solving the non-linear system of equations, we can find values for and , which can be 276 

used to calculate ,  using the following equations: 277 
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    (16) 278 

Substituting the system of equations from (14) to (13), we get  for , and 279 

 for . 280 

3.2.4. Variability in charge weight 281 

The charge weight varies due to two factors: (1) user factor and (2) Net Equivalent Quantity 282 

(NEQ) factor ( ), defined as ratio of the energy output of 1 kg of the explosive to the energy 283 

output of 1 kg of TNT.  captures the difference in the charge weight from the desired value 284 

due to human error in mass selected.  signifies the variability in the energy output of a weight 285 

of the explosive with respect to an equal weight of TNT. The variation in  is caused by 286 

variations in the explosive’s volume and density during manufacture, variations in the explosive’s 287 

mix during manufacture and other factors associated with use and storage (Netherton, 2012).  288 

Therefore, the total equivalent mass of the explosive , in terms of TNT is 289 

   (17) 290 

where = desired explosive mass, = user factor and  = NEQ factor. 291 

The explosive used in the experiments conducted by Hoffman & Mills (1956) was pentolite. 292 

Commercially manufactured explosives like pentolite exhibit very low variability with typical 293 

tolerance values lying between (Kingery, 1966; Netherton, 2012).  294 
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Herein, we model as a lognormal distribution with a 95% confidence that the tolerance is 295 

. With the mean of ,  as 1, we determine the standard deviation, 296 

using similar methodology used for determining in Section 3.2.3.  297 

The energy output of Pentolite is higher than that of TNT, for the same explosive mass. However, 298 

 for pentolite exhibits significant variability. Campidelli et al. (2015) analyzed data available 299 

for of pentolite and determined the mean, , and standard deviation, , as 1.20 and 300 

0.18 respectively. But they assumed to be normally distributed, which can generate negative 301 

values of . Therefore, we assume a lognormal distribution for . The mean and standard 302 

deviation of the underlying normal distribution,  and , are 0.1712 and 0.1492, 303 

respectively, calculated using Eq. (16). As Eq (7) assumes that the errors are not systematic, we 304 

linearly transform the lognormal distribution using the following equation: 305 

 (18) 306 

Using Eq. (17), we obtain  and . Therefore, the total mass variability 307 

 is lognormally distributed with and . The logarithmic 308 

transformation of  makes the mass variability normally distributed, as required in development 309 

of the log-likelihood function. Therefore, we use and for developing the log-likelihood 310 

function as per Eq. (7). 311 
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3.2.5. Parameter estimation and model selection 313 

As there is no prior information available about  for all the blast parameters, we consider a 314 

noninformative prior distribution in Eq. (6). In this section, we present the results of stepwise 315 

deletion method used to develop parsimonious models for , , and . 316 

Fig. 2 shows the posterior COV of ’s (as dots) and mean of  (as an open square) at each step 317 

of the deletion process. The deletion process is stopped at the 13th step. Upon examining the 318 

correlation coefficients, we observe a high dependence between  and ; and  and . 319 

Given that  is the square of , the high dependence is expected. Using Eq. (8), we combine 320 

them and the correction term for ,  is determined to be: 321 

 (19) 322 

 323 

Fig 2: Stepwise deletion for , the cross points at the parameter with the higher 324 

coefficient of variation for each step. 325 
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Table 2 lists the posterior statistics of . The correction term  is a non-dimensional 326 

representation of the information contained in . Therefore, the used deterministic equation of 327 

, which is a function of , does not completely represent the contribution of scaled distance. 328 

Table 2: Posterior statistics of  329 

Parameter Mean St. Dev. Correlation Coefficients 

  

 -1.80 0.124 1  

 0.053 0.004 -0.058 1 

 330 

 Fig 3 shows a comparison between the measured and predicted values of  based on the 331 

deterministic (left) and probabilistic (right) models. A visual inspection of the deterministic plot 332 

shows that the deterministic model underestimates the value. Therefore, the intercept was expected 333 

to be positive. However, the mean value for the intercept is negative. The negative term of the 334 

intercept is present because the present square term underfits the data for high values of  . The 335 

plot for probabilistic model includes two 15% and 85% bounds for the data, the true model error 336 

(in dashed lines); and including the standard deviation of the measurement error (in dash-dot lines). 337 

It can be observed that the correction terms effectively correct the bias in the deterministic model. 338 

It can be observed that the model does not affect the variability in the observed values for repeat 339 

observations. The variability can be attributed to the measurement error in the variables, and 340 

missing variables. The effect of the measurement error can be checked by plotting the median 341 
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values of the ratio of observed and predicted values for repeat observations. The median values 342 

are represented by the crosses in the figure. For the probabilistic model, most of the median values 343 

lie evenly between the one standard deviation limits of the true model error. Also, most of the data 344 

points lie between the combined bounds. Therefore, the model can be said to give reasonable 345 

predictions for the incident peak overpressure. 346 

 347 
Fig 3: Comparison between ratios of observed and measured incident peak overpressure 348 

based on deterministic (left) and probabilistic (right) models 349 

 350 

Fig. 4 shows the posterior COV of ’s (as dots) and mean of  (as an open square) at each 351 

step of the deletion process. The deletion process is stopped at the 13th step. Upon examining the 352 

correlation coefficients, we observe a high dependence between  and ; and  and . 353 

Using Eq. (8), we combine them and the correction term for ,  is determined to be 354 

 (20) 355 
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 357 

Fig 4: Stepwise deletion for , the cross points at the parameter with the higher 358 

coefficient of variation for each step. 359 

Table 3 lists the posterior statistics of . The significant posterior statistics have the same 360 

behavior as those of . Therefore, we can say that both deterministic models for peak 361 

overpressure underestimate the actual value and miss some information conveyed by . 362 

Table 3: Posterior statistics of  363 

Parameter Mean St. Dev. Correlation Coefficients 

  

 -2.55 0.165 1  

 0.075 0.005 -0.016 1 

 364 
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 Fig 5 shows a comparison between the ratio of the measured and predicted values of  based on 365 

the deterministic (left) and probabilistic (right) models. The figure is developed like Fig 3. It can 366 

be observed that the correction terms effectively correct the bias in the deterministic model. For 367 

the probabilistic model, the median values of the ratios of observed and predicted values lie evenly 368 

between the one standard deviation limits, which includes the standard deviation of the 369 

measurement error. 370 

371 
Fig 5: Comparison between ratios of observed and measured reflected peak overpressure 372 

based on deterministic (left) and probabilistic (right) models 373 

 374 

Fig. 6 shows the posterior COV of ’s (as dots) and mean of  (as an open square) at each step 375 

of the deletion process. The deletion process is stopped at the 13th step. We observe strong 376 

correlation between  and . Using Eq. (8), we combine them and the correction term for td,i, 377 

we determine  to be 378 

  (21) 379 
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 380 

Fig 6: Stepwise deletion for , the cross points at the parameter with the higher 381 

coefficient of variation for each step. 382 

Table 4 lists the posterior statistics of . On a closer examination of the parameters, we observe 383 

that there is no intercept term. Hence, there was no significant bias in the deterministic model. 384 

However, correction terms including the charge weight and the information from  are significant. 385 

Table 4: Posterior statistics of  386 

Parameter Mean St. Dev. Correlation Coefficients 

   

 0.207 0.024 1   

 -0.156 0.013 -0.37 1  

 0.145 0.008 -0.06 0.004 1 

 387 
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Fig 7 shows a comparison between the ratios of measured and predicted values of  based on 388 

the deterministic (left) and probabilistic (right) models. It can be observed that the correction terms 389 

decrease the spread of the observed values. For the probabilistic model, the ratios lie evenly 390 

between the one standard deviation limits of the true model error. The observation with the median 391 

ratio of 1.4 lies almost completely outside the bounds. However, the observations correspond to 392 

. As per Kingery (1966), the observations of positive phase duration are difficult 393 

to measure and can be unreliable representations of the actual values for small scale distances. 394 

Therefore, more research needs to be done to ensure accurate recording of phase duration for small 395 

scale distances. 396 

 397 

Fig 7: Comparison between ratios of observed and measured incident positive phase 398 
duration based on deterministic (left) and probabilistic (right) models 399 

 400 

Fig. 8 shows the stepwise deletion process for the parameters of . The deletion process is 401 

stopped at the 14th step. The intercept term  and  are determined to be the most significant 402 

functions in the correction term for , i.e.,  becomes: 403 
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  (22) 404 

 405 

Fig 8: Stepwise deletion for , the cross points at the parameter with the higher 406 

coefficient of variation for each step. 407 

Table 5 lists the posterior statistics of . The negative mean of intercept indicates that the  408 

deterministic model overestimates the reflected positive phase duration. Hence, there was 409 

significant bias in the deterministic model. However, the correction term including the charge 410 

weight is significant. Fig 9 shows a comparison between the ratios of measured and predicted 411 

values of  based on the deterministic (left) and probabilistic (right) models. It can be observed 412 

that the correction terms decrease the spread of the observed values. For the probabilistic model, 413 

the ratios lie evenly between the one standard deviation limits, which includes the standard 414 

deviation of the measurement error. 415 

 416 
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Table 5: Posterior statistics of  419 

Parameter Mean St. Dev. Correlation Coefficients 

   

 -0.383 0.012 1   

 -0.178 0.012 0.28 1  

 0.181 0.009 -0.014 0.015 1 

 420 

421 
Fig 9: Comparison between ratios of observed and measured reflected positive phase 422 

duration based on deterministic (left) and probabilistic (right) models 423 
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4. Demand analysis of steel columns subject to blast loads 425 
 426 

To determine the fragility curves for the mentioned limit states, we need to know the column 427 

probabilistic column demands for the limit states of flexure and global buckling. For the sake of 428 

simplicity, we will denote the column demand by , where  imply the limit states 429 

of flexure and global stability, respectively;  denotes the variables associated with the capacity 430 

and demand and;  is the vector of the model parameters, where  signifies the orientation of 431 

the column with respect to the blast load. We define  for the incident case and  for the 432 

perpendicular case. Therefore,  and .The matrix  can further be 433 

partitioned as , where  is a vector of material or geometrical properties, and  is a 434 

vector of demand variables such as boundary forces and deformations. For a steel column, 435 

Modulus of elasticity ( ) and the yield strength ( ) show significant variation which has to be 436 

incorporated within the probabilistic framework (Schmidt & Bartlett, 2002). Therefore, for our 437 

model, .  438 

Actually, in next sections only the perpendicular reflected blast wave scenario is discussed and not 439 

the incident one. This is because the columns perpendicular to the blast wave in a building 440 

experience reflected blast waves due to the surrounding structure. Also, the reflected wave has 441 

higher impulse as 𝑃: is always higher than 𝑃& for same value of Z (Karlos, 2013). Thus, the effect 442 

of reflected blast wave is critical for the fragility’s assessment of a single column. However, the 443 

incident blast wave models can be useful in estimating the probability of progressive collapse when 444 

the roofs and the side walls will experience the impact of an incident blast wave.   445 

 446 
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4.1. Single degree of freedom model for column analysis  447 

The single degree of freedom model assumes that a structural member can be represented by an 448 

equivalent spring-mass system, as shown in Fig 10. To calculate the response of the column, we 449 

solve the following equation of motion as given in Nassr et al., 2013: 450 

    (23) 451 

or 452 

     (24) 453 

where  and  correspond to the mid-span acceleration and displacement of the column;  is 454 

the mass of the column;  is the lateral load imposed by the blast load;  is the resistance 455 

function;  is the equivalent lateral load due to the axial load ;  and  are the mass 456 

and load factors, and is the load-mass transformation factor given by .  457 
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 458 

Fig 10: Equivalent Single Degree of Freedom Model for Blast Loading 459 

 460 

The equivalent lateral load, represented by 𝜂(𝑡), is the secondary moment generated due to the 461 

eccentricity of the applied axial load and can be written as 462 

    (25) 463 

The dynamic deformation can be approximated using the first vibration mode and shape function 464 

. The deformed shape varies with the support conditions and the deformation behavior of the 465 

member. For a simply supported beam, the shape functions chosen for the elastic and plastic ranges 466 

are 467 
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   (26) 468 

where  is a natural coordinate,  is the cartesian axial coordinate of a point on the 469 

column measured from the left support and  is the beam length. The values for the pinned-hinged 470 

end supports are taken from Biggs (1964) and are presented in table 6, where  is the spring 471 

constant of the column and is equal to its elastic stiffness.  472 

Table 6: SDOF model parameter values for Pinned-hinged end supports 473 

Deformation 

Regime 

     Spring 

Constant   

Elastic 

Plastic 

0.64 

0.50 

0.50 

0.33 

0.78 

0.66 

  

  

  

0 

4.2. Dynamic reactions and moments  474 

Once the displacement-time history is calculated using Eq. (24), we need to determine the dynamic 475 

reactions and mid-span moment. The dynamic reactions were calculated from the SDOF models 476 

using simplified expressions which were obtained based on the dynamic equilibrium of vertical 477 

forces (Biggs, 1964). Table 7 presents the expressions for dynamic reactions for a simply 478 

supported column. Nassr, 2012 validated that the expressions in Biggs (1964) provide a reasonably 479 

accurate approximation of the dynamic reactions for simply supported conditions despite 480 

neglecting the higher vibration modes.  481 
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 483 

 484 

 485 

Table 7: Dynamic reactions for Pinned-hinged end supports 486 

Deformation Regime Dynamic Reactions 

Elastic 

Plastic 

 

 

 487 

Following Nassr (2012), we calculate the mid-span dynamic moments using the following 488 

expression based on dynamic equilibrium 489 

   (27) 490 

where  is the flange width,  is the dynamic reaction and  is the blast overpressure.  491 

The dynamic displacement and moments calculated will be used to check the column’s adequacy 492 

against the blast loads, but it requires the knowledge of the column’s capacity against moment and 493 

buckling. The next section gives a detailed explanation of the methods employed to calculate the 494 

column’s moment and buckling capacity. 495 
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5. Capacity analysis of steel columns subject to blast loads 496 

To determine the fragility curves for the mentioned limit states, we need to know the column 497 

capacities for the limit states of flexure and global buckling. Like the demand models, we denote 498 

the column capacity by , where  imply the limit states of flexure and global 499 

buckling. 500 

 501 

5.1. Calculation of plastic moment capacity 502 

For the paper, we consider the steel column to achieve flexural failure when its moment capacity 503 

is achieved. To calculate the plastic moment capacity of the column, we use the methodology 504 

presented in Nassr et al. (2012). To consider the effect of varying strain rate over the depth of the 505 

column cross section, the cross section was divided in  layers. The strain rate in the layer was 506 

determined using the following equation 507 

   (28) 508 

where ,  and  are the total stress, dynamic increase factor and width of the  layer; and 509 

 is the thickness of each layer. The dynamic increase factor considers the effect of strain rate 510 

on the yield stress and is calculated as 511 

   (29) 512 
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where  is the strain rate in the  layer. The strain rate is assumed to vary linearly over the cross-513 

sectional depth and is calculated from the maximum strain-time history. The maximum strain at 514 

the column mid-span is measured as 515 

   (30) 516 

The moment is then calculated as , where  is the distance of the  layer from the 517 

neutral axis. This methodology is used to develop the moment-curvature diagram and consequently 518 

find the plastic moment capacity of the column.  519 

5.2. Analysis of global stability of the column 520 

A column subjected to axial loads can exhibit both flexural and axial buckling, i.e., the instability 521 

can be triggered by both blast and axial loads. The actual determination of global instability 522 

requires calculation of the derivatives and second derivatives of the deflection time history. This 523 

procedure can be computationally expensive in the framework of reliability analysis because of 524 

the large number of iterations involved. Therefore, we use the methodology presented in Dragos 525 

& Wu (2014) to determine the onset of global instability using a reduced resistance function which 526 

was defined as 527 

  (31) 528 
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where is the mid-span deflection. For a loading falling in the impulsive regime, i.e., with a small 529 

value of , the deflection at which global instability occurs for an infinitely short duration blast 530 

load, , was determined as 531 

   (32) 532 

where is the plastic moment capacity of the column and is obtained as per Sec 5.1. For the 533 

quasi-static regime, i.e., a large value of , the deflection at which instability occurs for a long 534 

duration blast load is determined by 535 

   (33) 536 

where  is the maximum elastic deflection of the column. 537 

Eqs. (32) and (33) give the upper and lower bounds for the buckling capacity of the column. Thus, 538 

the actual value can lie anywhere between these two values, depending on the regime of the blast 539 

load. However, Dragos & Wu, (2014) observed small difference in the two values and therefore, 540 

we assume  as the deflection capacity of the column. This will give us a reasonable estimate 541 

of the failure probability of a column by global buckling when subjected to a blast load, while 542 

keeping the calculations computationally efficient. 543 
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6. Fragility curves for steel columns subject to blast loads 545 

The fragility of a structural component is defined as the conditional probability of attaining or 546 

exceeding prescribed limit states for a given set of boundary variables. The limit state function for 547 

the failure of the column in mode k can be depicted by the following mathematical model: 548 

   (34) 549 

In the equation,  denotes the failure of the structural component in the  failure mode 550 

and  denotes the orientation of the column with respect to the blast wave. 551 

The failure fragility of the structural component can then be defined as: 552 

   (35) 553 

As the fragility is expressed as a function of the parameters , the estimate is dependent on the 554 

treatment of the parameters. Gardoni et al. (2002) listed the various fragility estimates as 555 

i. Point Estimates of Fragility 556 

ii. Predictive Estimate of Fragility 557 

iii. Bounds on Fragility 558 

Point estimates predict the fragility based on the mean value of the parameters and therefore does 559 

not consider the variability in the model parameters . Predictive estimates, on the other hand, 560 

incorporate the epistemic uncertainties in an average sense but do not give an idea about the 561 

variation of the fragilities w.r.t . Traditionally, the exact evaluation of the distribution requires 562 
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nested reliability calculations, but approximate confidence bounds can be obtained through 563 

FORM analysis as per the methodology given in Gardoni et al. (2002). 564 

We determine the reliability index corresponding to the conditional fragility  as: 565 

    (36) 566 

Generally, is less strongly nonlinear in  than . Using a first-order Taylor 567 

series expansion around the mean point , we can compute the variance of as 568 

   (37) 569 

The 15% and 85% confidence bounds then correspond to  respectively. 570 

6.1. Fragility curves for a steel column subject to blast loads 571 

As an example, we use the developed models to estimate the fragility curves of a 3.5 m long 572 

 steel column subject to the blast load of a reflected blast wave generated from the 573 

explosion of 125 kg Pentolite. In this first analysis, the considered distance R is varying between 574 

7.5 to 20 m (i.e., scaled distance between 1 and 4 m/kg1/3) in order to ensure that the column 575 

experiences a uniform blast pressure. The yield strength and elastic modulus of steel are modeled 576 

as lognormal random variables, i.e.,  MPa and  GPa. 577 

Figure 11 presents the fragility curves for limit states of flexure and global stability for an axial 578 

load of , where  is the column’s axial capacity. 579 
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 580 

Fig 11: Fragility curves for limit states of flexure and global buckling for  with 581 
 582 

We can observe that the flexure mode is always more likely than the global buckling mode. 583 

However, considering the global behavior of a framed structure a column flexural failure can be 584 

less dangerous than a column buckling failure which can be catastrophic and lead to progressive 585 

collapse. For this reason, both fragility curves are important. To further investigate the effect of 586 

charge weight on the fragility curves, Fig. 12 presents the comparison of flexural (left) and 587 

buckling (right) fragility curves for charge weights of 125 kg and 250 kg for . 588 
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 590 

Fig 12: Effect of charge mass on fragility curves for limit states of flexure (left) and global 591 
buckling (right)  592 

Since the fragility curves in Fig. 12 are very close, we do not include the confidence bounds. 593 

However, they are expected to follow the same behavior as the bounds in Fig. 11. As expected, 594 

the increase in charge mass increases the failure probabilities of the column at the same scaled 595 

distances. The increase can be attributed to two factors: the dependence of the deterministic models 596 

of positive phase duration on the charge weight; and the inclusion of charge weight in the 597 

correction term for reflective positive phase duration (Eq. 22).  598 

The axial load on a column increases the demand and causes a decrease in the plastic moment 599 

capacity. Fig 13 shows the effect of increase in axial load on the flexural (left) and buckling (right) 600 

fragility curves. 601 
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  602 

Fig 13: Effect of axial load on fragility curves for limit states of flexure (left) and global 603 
buckling (right)  604 

Fig. 13 shows that the flexural fragility curves of the column do not experience any significant 605 

increase for columns loads between . The global buckling fragility curves 606 

experience a greater difference on the axial load, especially when the load was changed from 607 

 to . The results are significant from a design perspective as most columns have axial 608 

loads between  . Thus, Fig. 13 implies that the buckling capacity of the column 609 

should be of concern for columns loaded above to ensure sufficient collapse protection 610 

against blast loads. Fig.13 also shows that a column with an axial load close to the axial capacity 611 

is significantly vulnerable to blast loading. 612 

In the fragility curves (Figures 11-13), there is a kink in the curves representing flexural collapse 613 

at . This can be attributed to the transition of deterministic equation for  from 614 

Henrych (1979) to Kingery & Bulmash (1983). The slope of the fragility curves also changes as 615 

the rate of increase of  decreases for . 616 
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7. Conclusions 617 

Four probabilistic models are proposed to predict the parameters to determine the pressure-time 618 

behavior of blast waves. For different types of explosives and atmospheric conditions, two models 619 

predict the incident and reflected peak pressure generated by the explosion and two models predict 620 

the incident and reflected positive time duration of the blast wave. Simple correction terms are 621 

introduced in the probabilistic models to correct the inherent bias. The correction terms are 622 

developed by transforming initial candidate functions using the Box-Cox transformation. Higher 623 

order terms and interaction terms are included in the correction terms to account for the non-linear 624 

behavior of the parameters. The effect of measurement errors in the observed values and variability 625 

in the charge weight are also included. A stepwise deletion process is then used to develop 626 

parsimonious models, while maintaining an acceptable level of accuracy. The probabilistic models 627 

can be used to determine the variation in blast parameters for different types of explosives. 628 

Capacity and demand models for limit states of flexure and global buckling using the SDOF system 629 

are recognized from the literature and used to develop fragility curves for a steel column. The 630 

effects of charge weight and axial load on the fragility curves for the limit states are also presented. 631 

The results indicate that the plastic hinge mechanism occurs for much lower demands than required 632 

for the column failure. The results also indicate that the columns with high axial loads are more 633 

vulnerable to blast loads. The increase in charge mass also moderately increases the failure 634 

probabilities due to an increase in the positive phase duration.  635 

  636 
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