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ABSTRACT Antibiotic-resistant bacteria rapidly spread in clinical and natural envi-
ronments and challenge our modern lifestyle. A major component of defense against
antibiotics in Gram-negative bacteria is a drug permeation barrier created by active
efflux across the outer membrane. We identified molecular determinants defining
the propensity of small peptidomimetic molecules to avoid and inhibit efflux pumps
in Pseudomonas aeruginosa, a human pathogen notorious for its antibiotic resistance.
Combining experimental and computational protocols, we mapped the fate of the
compounds from structure-activity relationships through their dynamic behavior in
solution, permeation across both the inner and outer membranes, and interaction
with MexB, the major efflux transporter of P. aeruginosa. We identified predictors
of efflux avoidance and inhibition and demonstrated their power by using a library
of traditional antibiotics and compound series and by generating new inhibitors of
MexB. The identified predictors will enable the discovery and optimization of anti-
bacterial agents suitable for treatment of P. aeruginosa infections.

IMPORTANCE Efflux pump avoidance and inhibition are desired properties for the
optimization of antibacterial activities against Gram-negative bacteria. However, mo-
lecular and physicochemical interactions defining the interface between compounds
and efflux pumps remain poorly understood. We identified properties that correlate
with efflux avoidance and inhibition, are predictive of similar features in structurally
diverse compounds, and allow researchers to distinguish between efflux substrates,
inhibitors, and avoiders in P. aeruginosa. The developed predictive models are based
on the descriptors representative of different clusters comprising a physically intui-
tive combination of properties. Molecular shape (represented by acylindricity),
amphiphilicity (anisotropic polarizability), aromaticity (number of aromatic rings), and
the partition coefficient (LogD) are physicochemical predictors of efflux inhibitors,
whereas interactions with Pro668 and Leu674 residues of MexB distinguish between
inhibitors/substrates and efflux avoiders. The predictive models and efflux rules are
applicable to compounds with unrelated chemical scaffolds and pave the way for
development of compounds with the desired efflux interface properties.

KEYWORDS Pseudomonas aeruginosa, antibiotic resistance, machine learning models,
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CitationMehla J, Malloci G, Mansbach R, López
CA, Tsivkovski R, Haynes K, Leus IV, Grindstaff
SB, Cascella RH, D’Cunha N, Herndon L,
Hengartner NW, Margiotta E, Atzori A, Vargiu
AV, Manrique PD, Walker JK, Lomovskaya O,
Ruggerone P, Gnanakaran S, Rybenkov VV,
Zgurskaya HI. 2021. Predictive rules of efflux
inhibition and avoidance in Pseudomonas
aeruginosa. mBio 12:e02785-20. https://doi.org/
10.1128/mBio.02785-20.

Editor Gerard D. Wright, McMaster University

Copyright © 2021 Mehla et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Helen I. Zgurskaya,
elenaz@ou.edu.

This article is a direct contribution from Olga
Lomovskaya, a Fellow of the American
Academy of Microbiology, who arranged for
and secured reviews by Richard Lee, St. Jude
Children's Research Hospital, and Lynn Silver,
LL Silver Consulting, LLC.

Received 25 November 2020
Accepted 30 November 2020
Published 19 January 2021

January/February 2021 Volume 12 Issue 1 e02785-20 ® mbio.asm.org 1

RESEARCH ARTICLE
Therapeutics and Prevention

 on January 19, 2021 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

https://orcid.org/0000-0002-5985-257X
https://orcid.org/0000-0003-4013-8867
https://orcid.org/0000-0001-8637-3139
https://orcid.org/0000-0003-0825-0824
https://orcid.org/0000-0002-5300-4369
https://orcid.org/0000-0001-8929-4727
https://doi.org/10.1128/mBio.02785-20
https://doi.org/10.1128/mBio.02785-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:elenaz@ou.edu
https://mbio.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mBio.02785-20&domain=pdf&date_stamp=2021-1-19
http://mbio.asm.org/


Antibiotic resistance is a global threat expected to cause an estimated 300 million
premature deaths by 2050 (1–3). Bacteria have evolved with both intrinsic and

acquired resistance mechanisms to protect themselves from antimicrobial agents, lead-
ing to inefficacy of almost all available antibiotics and challenging the treatment
options available against bacterial infections (4, 5). As a proxy for especially intractable
infections, we focus in this study on Pseudomonas aeruginosa, a Gram-negative bacte-
rium causing various hospital-acquired infections, including pneumonia (6), blood-
stream infections (7, 8), and infections in cystic fibrosis patients (9). Multidrug-resistant
P. aeruginosa clinical isolates are resistant to nearly all available antibiotics and have
been identified as a serious threat by the Centers for Disease Control and Prevention
(2). Antibiotic resistance is enabled by various molecular mechanisms that often act
synergistically to protect bacteria against antibiotics (10–12). In P. aeruginosa, as in all
Gram-negative bacteria, active efflux of antibacterial compounds by multidrug efflux
pumps across the outer membrane (OM) permeability barrier is a major defense mech-
anism (13, 14).

Gram-negative cell envelopes are extremely effective in protecting cells from antibi-
otics due to the synergy between active efflux pumps and the OM, which creates a per-
meation barrier with enhanced efficacy (15–18). The system is characterized by a highly
nonlinear behavior leading to efficient efflux of antibiotics that slowly permeate the
OM even if they are poor substrates of efflux pumps in biochemical terms. As a result,
the combined action of active efflux and the OM barrier protects cells from a broad
range of compounds, including both “good” and “bad” substrates of efflux pumps.

The major challenge in developing new antibacterial agents is to improve their in-
tracellular accumulation in Gram-negative bacteria, and consequently antibiotic effica-
cies, by modifying their structures (19–21). This improvement can be achieved either
by increasing influx of antibiotics across the OM, by designing molecules that avoid
the efflux mechanism, or by inhibiting active efflux pumps with efflux pump inhibi-
tors (EPIs) (22–24). In addition, antibacterial and EPI properties can be combined
within the same chemical structure to create potent drugs that inhibit their own
efflux. Understanding how various physicochemical properties of compounds corre-
late with these different mechanisms of penetration is crucial for tackling effectively
antibiotic resistance of P. aeruginosa and other critical and high-priority Gram-nega-
tive pathogens.

Recent studies demonstrated that heuristics or “rules” of accumulation differ for the
penetration across the OM barrier and for the avoidance of efflux pumps, and at the
lower level of rules hierarchy, bacterial species-specific differences in composition of
the OM and efflux pump play an important role (13, 20, 21, 25). In Escherichia coli,
higher levels of accumulation were proposed to be dictated mainly by the presence of
primary amines and such physicochemical descriptors as amphiphilicity, low globular-
ity (a quantity describing molecular shape with low values associated with planar-like
molecules), and rigidity (26–29). These rules, however, are applicable mainly to E. coli
and other enterobacteria, because they are dominated by permeability properties of
general porins (25, 27). These porins are highly abundant in the enterobacterial OM
and sift molecules based on their size, shape and electrostatic properties.

In contrast, the OM of P. aeruginosa carries an arsenal of substrate-specific porins
that limit uptake to certain nutrients (30). In addition, P. aeruginosa constitutively
expresses several efflux pumps with different substrate specificities. MexAB-OprM is
the major constitutively expressed pump, which is largely responsible for intrinsic re-
sistance to a variety of antibiotics under laboratory conditions (31–33). Substrate spe-
cificities of these transporters and the efflux constant, KE, which relates to the rates of
active and passive efflux of a drug in the range of its low concentrations, are the major
drivers of efflux avoidance rules (“efflux rules”) (15, 16). The unique features of P. aeru-
ginosa and the lack of separation of the efflux and OM contributions in earlier models
necessitate the quest for species-specific descriptors and rules of permeation.

In this study, we developed and validated new models that describe the avoidance
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and inhibition of active efflux in P. aeruginosa. To achieve this, we analyzed a series of
260 peptidomimetic compounds (Rempex compounds) active against P. aeruginosa.
Rempex compounds possess two biological features of interest. First, they are EPIs that
target MexAB-OprM and homologous efflux pumps and potentiate the antibacterial ac-
tivity of levofloxacin and other antibiotics in P. aeruginosa cells (34–36). Second, they
possess an intrinsic antibacterial activity and inhibit the growth of P. aeruginosa at cer-
tain concentrations. The compounds were optimized in medicinal chemistry programs
specifically against P. aeruginosa and vary broadly in their properties (34, 37, 38). These
features make Rempex compounds an excellent tool for deciphering predictive general
rules of permeation and efflux avoidance in P. aeruginosa. We experimentally segre-
gated contributions of active efflux from OM permeation and developed novel compu-
tational approaches to quantify molecular recognition by the inner membrane (IM)
efflux transporter MexB and permeation through the OM. Finally, we applied machine
learning algorithms to precisely identify descriptors of efflux substrates, inhibitors, and
avoiders. The developed approach combines experimental data and predictors account-
ing for different physicochemical conditions allowing us screen for compounds with spe-
cific properties and to effectively guide drug design against P. aeruginosa infections.

RESULTS AND DISCUSSION
Rempex compounds readily permeate the outer membrane of P. aeruginosa

and are substrates of efflux pumps. To follow the fate of compounds in cells and to
identify descriptors associated with different permeation barriers, we first separated
the contributions of the OM barrier and active efflux in measured activities of com-
pounds. For this purpose, the bacterial growth-inhibitory activities for all Rempex com-
pounds were analyzed in four P. aeruginosa strains: the wild-type strain, PAO1; the PD6
strain, lacking six efflux pumps (DmexAB-oprM, DmexCD-oprJ, DmexXY, DmexJKL,
DmexEF-oprN, and DtriABC); and their hyperporinated derivatives, PAO1-Pore and PD6-
Pore, respectively (39). These strains were previously shown to differ dramatically in
their susceptibilities to various classes of antibiotics because of differences in efflux
proficiency and permeation across the OM (13, 15). To normalize to the differences in
target inhibition potency among compounds, our key measured parameters were
efflux ratios and OM barrier ratios, defined as the 50% inhibitory concentration for the
parent/mutant (IC50 parent/IC50 mutant), for efflux mutants and hyperporinated mutants,
respectively (see Table S1 in the supplemental material). More specifically, the IC50

ratios for PAO1/PAO1-Pore and PD6/PD6-Pore define the contribution of the OM bar-
rier to the activities of compounds in the presence and absence of efflux, respectively.
For the majority of compounds, these ratios were 1, suggesting that unlike most antibi-
otics (13, 28), Rempex compounds readily permeate the OM barrier, likely using the
self-promoted uptake mechanism (40, 41). Activities of only a few compounds were
slightly affected by the OM. Among them are compounds 58 and 46 (Fig. 1A), whose
activity is enhanced by hyperporination of efflux-deficient PD6-Pore cells by 16- and 8-
fold, respectively.

The IC50 ratios of PAO1/PD6 and PAO1-Pore/PD6-Pore define the contribution of
the efflux to the activities of compounds in the presence and absence of the OM bar-
rier, respectively. Unlike with the OM ratios, the activities of ;75% of compounds were
significantly affected by active efflux ($4-fold), with the highest ratios of 100 to 200
characteristic for such compounds as 71 and 32 (Fig. 1A). Thus, most Rempex com-
pounds are substrates of P. aeruginosa efflux pumps.

The total contribution of the permeability barrier in activities of compounds is fur-
ther elucidated by the IC50 ratio between PAO1 and PD6-Pore cells. Among com-
pounds with the largest PAO1/D6-Pore ratios (128 to 256) are compounds 58 and 28,
whose activity is affected by both active efflux and OM barrier (Fig. 1A).

Lastly, a comparison of the PAO1/PD6-Pore IC50 ratio and the IC50 in the PD6-Pore
strain provides a measure of how the changes in the antibacterial activity on the target
correlate with the permeation of a compound. There is a weak negative correlation
(Pearson coefficient, r= 20.16, P = 0.004) between these two properties, suggesting
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that permeation is not the major limiting factor in the antibacterial activity of Rempex
compounds (Fig. 1B).

Rempex compounds inhibit efflux. EPIs potentiate antibiotics’ activities by
increasing their intracellular accumulation (37, 42). We analyzed the EPI activities using
two different assays. We first analyzed the potentiation of the antibacterial activity of
the antibiotic levofloxacin in PAM1032 cells overproducing the MexAB-OprM pump
due to an nfxB mutation (37). Specifically, we identified the minimal potentiating con-
centration that reduces the MIC of levofloxacin by 8-fold (MPC8). The compounds var-
ied broadly in their MPC8 values starting from 0.3mM (compounds 17 and 32) and up
to 190mM (Fig. 1C). Overall, MPC8 values moderately correlated (r = 0.30, P = 0.01) with
IC50 values in PD6-Pore cells. This result suggests that for some of the Rempex com-
pounds, the potentiation of the levofloxacin activity is due to their antibacterial prop-
erties. However, certain compounds significantly deviate from this trend (Fig. 1C),
pointing out that the EPI and antibacterial activities are independent from each other
for these compounds.

In a second, bacterial growth-independent, assay, we analyzed the ability of com-
pounds to inhibit efflux of the fluorescent probe Hoechst 33342 (HT), which diffuses
slowly between leaflets of the cytoplasmic membrane and is pumped out from cells by
efflux transporters. HT fluorescence increases 134- and 32-fold upon binding to DNA
and lipids, respectively (15). We carried out the HT assay in hyperporinated PAO1-Pore
cells to increase the permeation of both the probe and the compounds across the OM
and to achieve efflux-saturating concentrations of compounds in the periplasm (15).
We extracted the initial rates and intracellular steady-state concentrations of HT accu-
mulation in cells from the time-dependent changes in HT fluorescence in the presence
of increasing concentrations, c, of compounds (15).

FIG 1 Antibacterial activities of Rempex compounds and their dependence on permeation and efflux. (A)
Structures and activities (MICs, mg/ml) of representative Rempex compounds discussed in the text. The
complete list of Rempex compounds and their activities are shown in Table S1. (B) Relationship between
antibacterial activities of Rempex compounds (IC50) and the effect of the permeability barrier on these activities
as expressed by the ratio PAO1/PD6-Pore (r = 20.16, P = 0.004). (C) Plot of levofloxacin potentiation of Rempex
compounds (MPC8) as a function of their antibacterial activities (IC50) (r = 0.30, P = 0.01).
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At c = 16mM (the highest concentration of compounds used in the assay), about 50
compounds increased the intracellular concentration of HT by at least 2-fold. Some of
the strongest inhibitors, (e.g., compounds 17 and 61) increased the initial rates of HT
uptake by more than 10-fold (Fig. 2). This increase in the rates of HT accumulation was
observed only in efflux-proficient PAO1-Pore cells, whereas few or no changes in rates
were seen in efflux-deficient PD6-Pore cells. Furthermore, the increased rates of the
probe accumulation in hyperporinated cells are specific to efflux inhibition, because in
these cells the OM barrier does not limit the probe permeation. Thus, Rempex com-
pounds inhibit active efflux specifically and independently from their ability to pene-
trate the OM of P. aeruginosa.

If both the bacterial growth-dependent and –independent assays measured the
ability of compounds to inhibit active efflux, we would expect that the outcomes of
the assays correlate with each other. Indeed, we found that the effect of Rempex com-
pounds on the kinetics of HT accumulation correlates negatively, albeit weakly (r =
20.20, P = 0.0005), with their levofloxacin potentiating (MPC8) activities (Fig. 3A).
Importantly, the most efficient inhibitors of HT efflux also have the lowest MPC8 values
(Fig. 3B). Thus, both assays report on efflux inhibition, but additional factors also
contribute.

As shown above, antibacterial and levofloxacin potentiating activities of com-
pounds have a similar positive trend (r = 0.30, P = 0.01 [Fig. 1C]). In agreement, the ac-
tivity in terms of the inhibition of HT efflux negatively correlates with the IC50s of com-
pounds in PD6-Pore cells. However, this correlation is statistically weak (r = 20.11, P =
0.04), and many compounds deviate from it. Hence, the inhibition of HT efflux by
Rempex compounds is defined by some properties that are independent from their
antibacterial and potentiating activities.

Efflux avoidance dominates clustering of compound activities. Relationships
between various activities of compounds were analyzed by hierarchical clustering. On
the dendrogram (Fig. 3C), Rempex compounds separate into two large groups. The dis-
tinction between groups 1 and 2 mainly arises from the impact of efflux inactivation in
bacterial growth inhibition assays. Group 1 primarily comprises compounds that are

FIG 2 Efflux inhibition activities. (A and D) Structures of compounds 17 and 61. (B and C) Inhibition of efflux
of the fluorescent probe bisbenzimide (Hoechst 33342 [HT]). Efflux-proficient PAO1-Pore cells and efflux-
deficient PD6-Pore cells were incubated with 4mM HT and increasing concentrations of 17, and changes in
fluorescence of HT were recorded as a function of time. Fluorescence was converted into HT concentrations,
and the kinetic curves were fitted into a double exponential equation to extract initial rates and the steady-
state levels (SS) of the intracellular accumulation of HT. Initial rates were normalized to values at a zero
concentration of compound 17, and both parameters are plotted as a function of the inhibitor concentration.
(E and F) The same as panels B and C but for compound 61.
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not affected by the inactivation of efflux (that is, they are not efflux substrates). Group
2 primarily comprises compounds that are strongly affected by the inactivation of
efflux (that is, they are efflux substrates). Investigating further the subclusters of the
two primary groups, we found that the compounds cluster according to their efficien-
cies in inhibition of HT efflux, as well as according to their antibacterial and levofloxa-
cin potentiating activities.

Principal-component analysis (PCA) showed that between groups 1 and 2, four sub-
groups could be defined comprising compounds that are either effective inhibitors of
HT efflux (green, EPI; blue, EPI/substrate) or do not have significant EPI activities (red,
Avoider/non-EPI; cyan, Substrate). Although the subgroups lack a distinct boundary
dividing them (Fig. 3D), the preponderance of points belonging to each of these sub-
groups falls into separate quadrants of the PCA plot. Thus, efflux inhibitory activities
and efflux avoidance are not strongly interlinked, and these properties are associated
with distinct compounds.

Physicochemical, permeation, and MexB interaction descriptors of compounds.
To identify properties of compounds that correlate with their biological activities, we
assembled several subsets of numerical descriptors and carried out an agglomerative
clustering analysis to find the relationships between various descriptors belonging to
either the same or different subsets.

The chemical structures of compounds, their physical properties, and their interac-
tions with the solvent were represented by 73 physicochemical descriptors (see
Table S2 and Table S3, “Physico-chemical properties” column, in the supplemental ma-
terial). These descriptors are frequently used in quantitative structure-activity

FIG 3 Relationships between activities of Rempex compounds. (A) Relationship between efflux inhibition
activities expressed as MPC8 values (growth-dependent inhibition) and fold change in HT accumulation (growth-
independent inhibition). (B) Relationship between EPI and antibacterial activities of compounds. (C) Hierarchical
clustering of analyzed activities of compounds expressed as ratios (see also Materials and Methods). Class 1, ratio
of initial rates of HT uptake at ratio of 0 to 16mM (HT16mM/HT0mM); class 2, HT accumulation levels in the slow
step (HT16mM/HT0mM); class 3, EPISS, total HT accumulation ratio (HT16mM/HT0mM); class 4, fold difference in HT
fluorescence (HT16mM/HT0mM); class 5, MICPD6/MPC8 PD6; class 6, MICPAO1/MPC8 PA1032; class 7, IC50 PAO1/MPC8 PA1032;
class 8, MICPAO1/MICPD6; class 9, MICPAO1-Pore/MICPD6-Pore; class 10, MICPAO1/MICPD6-Pore; class 11, IC50 PAO1/IC50 PD6; class
12, IC50 PD6-Pore/IC50 PAO1-Pore; class 13, IC50 PAO1/IC50 PD6-Pore. The bar on the top is colored as follows: red, efflux
avoiders and non-EPIs; green, EPIs; blue, compounds that are both EPI and substrates; cyan, substrates. (D) PCA
plot with four classes of compounds colored as in panel C.
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relationship (QSAR) studies (QSAR descriptors), along with those derived from quan-
tum-mechanical (QM) calculations (QM descriptors) and microsecond-long molecular
dynamics (MD) simulations in explicit water solution (MD descriptors) (Fig. 4A). (43).

Diffusion of compounds across membranes was represented by 35 permeation
descriptors (Table S3, “Permeation descriptors” column). Rempex compounds readily
permeate the OM of P. aeruginosa, as seen from the values of the OM ratios—close to
1 for most of them (Fig. 1A). To generate the permeation descriptors, compounds were
placed into seven different layers of the OM model corresponding to the outer and
inner cores of lipopolysaccharide (LPS; cores 2 and 1), lipid A headgroup, hydrophobic
core of the bilayer, glycerol layer of the inner leaflet, the phospholipid layer head-
group, and water (Fig. 4B). For each simulation, the following molecular descriptors
were evaluated: (i) membrane-ligand interaction energy, (ii) number of hydrogen
bonds between a compound and its surrounding water shell, (iii) number of hydrogen
bonds between the ligand and the surrounding OM environment, (iv) lateral mean
squared displacement, (v) ligand hydration shell, and (vi) ligand cumulative entropy
(Table S3, “Permeation descriptors” column).

Since ;75% of Rempex compounds are efflux substrates, they likely interact with
MexB, the IM transporter of the MexAB-OprM efflux pump. MexB is responsible for rec-
ognition, binding, and transport of substrates with very different molecular properties

FIG 4 Physicochemical, permeation, and interaction descriptors. (A) Physicochemical descriptors illustrated on compound 32 as
an example. (B) Representation of the OM model for calculating membrane permeability descriptors. For each drug, seven
different MD simulations were performed, recapitulating the effect of the OM on drug translocation. Structurally, each slab
corresponds to the following chemical regions along the OM (from top to bottom): Core-2, rhamnose and glucose; Core-1,
heptose, keto-deoxyoctulosonate (KDO1 and KDO2), and N-acetylglucosamine (NAG1 and NAG2); Lipid-A, hydrophobic tails of the
lipid A region; Hydrophobic, interface between the outer leaflet and the inner leaflet; Glycerol, glycerol moiety of the DPPE inner
leaflet; Heads, ethanolamine and phosphates pertaining to DPPE head groups; Water, interfacial water region between the inner
leaflet and the water bulk. (C) The top panel shows the front (left) and top (right) views of the MexB homotrimer. The three
protomer conformations access, binding, and extrusion are colored in cyan, yellow, and green, respectively. The affinity sites deep
binding pocket (DP) and access pocket (AP) are represented in blue and red, respectively. The bottom panel shows clusters of
contacts with MexB amino acid residues in the AP and DP sites. The cluster number and its residues are shown in different colors.
(D) PCA plot of clusters comprising all descriptors.
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(31–33, 35, 42). As expected, we found that, with a few exceptions, most of the com-
pounds bound the purified MexB in surface plasmon resonance (SPR) assays, with equi-
librium dissociation constant (KD) values ranging from the sub- to the mid-micromolar
range (see Fig. S1 in the supplemental material). To quantify interactions of Rempex
compounds with MexB at a molecular level, we carried out ensemble docking calcula-
tions using available X-ray crystal structures of MexB (44, 45), along with a few confor-
mations extracted from microsecond-long MD simulations (46). The MexB trimer is sug-
gested to functionally rotate through three main conformations—access (A), binding
(B), and extrusion (C)—which enable access, binding, and extrusion of substrates from
cells, respectively (23). Rempex compounds were docked to the two major putative
substrate binding pockets of MexB, as known from X-ray crystallography: (i) the access
pocket (AP) of the access monomer and (ii) the deep binding pocket (DP) of the bind-
ing monomer (Fig. 4C) (47). Docking calculations yielded about 60 descriptors of bind-
ing of Rempex compounds inside the AP and DP sites of MexB (Table S2, docking
descriptor definitions). These descriptors include average binding affinities and the
total number of contacts between compounds and specific residues lining the two an-
alyzed pockets (Fig. 4C; Table S3, “MexB docking descriptors” column).

We next performed a cluster analysis on these three sets of descriptors separately
and on all 174 descriptors combined (“all descriptors”) to identify possible correlations
among different properties (Fig. 4D; Table S3, “All properties” column). We indeed
identified 29 clusters, most of which had a clear association and included descriptors
related to specific properties of compounds: molecular symmetry, size, charge and po-
larity, and number of rings (Table S3). A comparison with the results of clustering on
property-specific subsets of descriptors (physicochemical, docking, and permeation)
showed that for the most part, descriptors of physically related properties (e.g., size,
number of rings, or entropy of permeation) are clustered together, regardless of the
subset of descriptors considered. Thus, the identified clusters appear to be reliable and
generally consistent with physical intuition.

Derivation of predictive models of permeation and efflux in P. aeruginosa. To
assess the importance of different descriptors, we trained a linear predictive model
based on experimental measurements and determined the relative importance of dif-
ferent predictors through the relative weight of their coefficients. To fit this model, we
employed representative descriptors from the clusters discussed above. Seven distinct
variables derived from experimental ratios were used for model outputs (see Table S4
and supplemental methods in Text S1 in the supplemental material): efflux = IC50 PD6-Pore/
IC50 PAO1-Pore, permeation = IC50 PD6-Pore/IC50 PD6, EPI-1 = g(MICPAO1/MPC8 PA1032), EPI-2= g
(MICPD6-Pore/MPC8 PA1032), EPIMPC = g(IC50 PAO1/MPC8 PA1032), and EPISS = SS16 mM/SS0 mM.
SSconcn (e.g., SS16 mM) refers to the steady-state HT accumulation ratio at that concentra-
tion, and fold difference is the fold difference in HT fluorescence (HT16 mM/HT0 mM).

To identify the most generalizable descriptors, we performed feature selection
employing regression analyses for (i) all descriptors and (ii) the following specific sub-
sets: LigMexB descriptors (all except permeation descriptors), Lig descriptors (QSAR,
QM, and MD descriptors), docking descriptors, and permeation descriptors. (See Fig. S2
in the supplemental material for an overview of the procedure.) The top descriptors
were then used to fit a model able to predict whether a given compound based on its
specific descriptors is a strong or weak (i) membrane permeator, (ii) efflux avoider, or
(iii) efflux inhibitor.

Overall, we found that for the permeation, efflux, EPIMPC, and EPISS experimental
ratios (four ratios out of seven analyzed), the LigMexB and “all descriptors” subsets of
descriptors generated the best-performing models (see Fig. S3 in the supplemental
material). We focused on a set of final models fitted with “all descriptors” (Fig. 5),
because these descriptors incorporate molecular-level interactions and diffusion of
compounds across both the OM and the IM. These final models were assessed and
found to be well performing through the metrics of enrichment, precision, and recall
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as a function of both probability and ranking (see Text S1, supplemental methods, and
Fig. S4 in the supplemental material).

Efflux avoidance and inhibition correlate with distinct molecular descriptors.
We next identified among the top descriptors those that correlate with experimental
measurements by inspecting the corresponding coefficients in the binomial regression
models. A positive (negative) coefficient implies that the descriptor positively (negatively)

FIG 5 Top descriptors correlating with and distinguishing between efflux avoiders and inhibitors. (A) Efflux avoidance descriptors. Orange bars, permeation
descriptors; green bars, docking descriptors; blue bars, physicochemical descriptors. (B) Efflux inhibitor descriptors (IC50 PAO1/MPC8 PA1032). Bars are colored as
in panel A. (C) Efflux inhibitor descriptors (SS16 mM/SS0 mM). Bars are colored as in panel A. (D) Descriptors that distinguish between avoiders and inhibitors.
Descriptor definitions are in Table S3.
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correlates with the outcome. The larger the magnitude of the coefficient, the more impor-
tant it is to the outcome (Fig. 5).

(i) Efflux avoiders.We assumed molecules with efflux ratios IC50 PD6-Pore/IC50 PAO1-Pore

of #0.25 to be weak efflux avoiders, while we considered compounds with ratios
IC50 PD6-Pore/IC50 PAO1-Pore of $0.25 to be strong efflux avoiders (Table S4). The best model
predicts positive correlations with the docking descriptors’ contacts with P668 of the
AP and S276, Q273, and Q46 of the DP and the permeation descriptors of diffusion
within lipid A and within the glycerol moieties of phospholipids (Fig. 5A). Also, an
increase in the number of hydrogen bond acceptors (physicochemical descriptor) in a
compound is correlated with strong efflux avoidance. On the other hand, increase in
hydrogen bonding with water and lipid moieties of the membranes (permeation),
more contacts with L674 in the AP site (docking), and increased acylindricity and aniso-
tropic polarizability of compounds (physicochemical) appear to make them better
efflux substrates (negative correlation).

(ii) Efflux inhibitors. From the two types of EPI assays, the growth-dependent IC50 PAO1/
MPC8 PA1032 (EPIMPC) ratio and the growth-independent SS16 mM/SS0 mM (EPISS) ratio generate
the best-performing models for efflux inhibitors (Fig. S4). For both of these ratios, the
“good”/“bad” cutoffs were set at 0.5.

As in the case of efflux substrates, the top descriptors that discriminate between
“good” and “bad” EPIMPC are dominated by permeation descriptors. The best EPIMPC

ratios track descriptors indicative of slow diffusion within the phospholipid head-
groups and lipid tails of the membrane (Dxy) and lower hydrogen bonding with lipid
moieties and with penetrating water (HB) (Fig. 5B). The dominance of these descriptors
suggests that they represent unique features of compounds, perhaps related to the
fact that MexB and similar pumps appear to capture their substrates from the lipid
bilayers and a water-lipid interface (48, 49). The difference in hydrogen-bonding pro-
files between inhibitors and avoiders likely reflects the compound affinities to various
layers of the OM model and their optimal positions in these layers. With respect to
docking descriptors, more potent inhibitors have fewer contacts with L674 in the AP
and more with T89 and R128 in the DP (Fig. 5B). Among physicochemical descriptors,
the number of aromatic bonds, total density functional theory (DFT) energy and rela-
tive shape anisotropy Kappa2 increase with the potency of EPIMPC, whereas pi energy
and lipophilicity (as expressed by xLogP3) decrease with increasing potencies (nega-
tive correlation) (Fig. 5B).

Interestingly, the top descriptors for the growth-independent EPISS are dominated
by interactions with MexB (Fig. 5C). Average binding affinity to the AP as well as con-
tacts with L674 and P668 in the same site correlate positively with the activity of EPISS.
In addition, more contacts with T130 and F136 in the DP correlate with higher EPISS
activities. In contrast, seven out of eight top permeation descriptors negatively corre-
late with these ratios. Most of these descriptors are hydrogen bonding with polar moi-
eties and water. Thus, decreasing hydrogen bonding propensity is expected to
increase the activity of EPISS (Fig. 5C). Among the physicochemical features, the acylin-
dricity and the number of heteroaromatic rings negatively correlate with EPISS.

(iii) Properties distinguishing between efflux avoiders and efflux inhibitors.
Finally, a combination of experimental ratios defining efflux avoidance (IC50 PD6-Pore/
IC50 PAO1-Pore) and efflux inhibition (EPIMPC) and the same thresholds as used for the mod-
els above were employed to identify descriptors that may be useful in distinguishing
these two properties, rather than being solely predictive of one or the other. Initially,
we considered four possible classes: good avoidance and good inhibition (efflux $

0.25, EPIMPC $ 0.5) (GG), good avoidance but bad inhibition (efflux $ 0.25, EPIMPC #

0.5) (GB), bad avoidance but good inhibition (efflux # 0.25, EPIMPC $ 0.5) (BG), and bad
avoidance and bad inhibition (efflux # 0.25, EPIMPC # 0.5) (BB). Assessment of class bal-
ance shows that approximately 57% of compounds are in the BB class, 23% are in the
GB class, 20% are in the BG class, and 0% are in the GG class. Due to the lack of exam-
ples in the fourth class, we trained a 3-class multinomial regression classifier. In this
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model, precision and recall for all three classes are good, as well as the enrichment for
classes 1 and 2, which are of greater interest (approximately 2 to 3) (Fig. S4).

An inspection of the model parameters shows that there is little predictivity for the
BB class (relying solely on its intercept and presumably not being class 1 or class 2).
Hence, we analyzed which descriptors are related to GB (avoider-not-EPI) alone, which
are related to BG alone (EPI-not-avoider), and which are related to both (Fig. 5D). Three
permeation descriptors have the largest coefficients and clearly separate compounds
belonging to these two classes: (i) diffusion within lipid A layer; (ii) hydrogen bonding
with core 1 layer, and (iii) total energy of interactions with phospholipid headgroups.
Compounds that are neither good substrates nor EPIs (avoider-not-EPI, GB) positively
correlate with diffusion in lipid A and binding to phospholipid headgroups, but nega-
tively with hydrogen bonding with core 1. In contrast, compounds that are both efflux
substrates and inhibitors (EPI-not-avoider, BG) have inverse properties and show a pos-
itive correlation with hydrogen bonding in core 1 and a negative coefficient for diffu-
sion in lipid A and binding to headgroups (Fig. 5D).

Three docking descriptors distinguish the two classes: contacts with (i) L674 and (ii)
P668 in the AP and (iii) average affinity to the DP of MexB (Fig. 5D). Compounds avoid-
ing efflux have fewer contacts with L674 and lower preference for the DP, but more
contacts with P668. In contrast, substrates/inhibitors interact more with L674 of the AP
and the DP and negatively trend with P668.

Finally, three physicochemical properties distinguish the two classes: (i) molecular
shape as described by acylindricity, (ii) anisotropic polarizability (Anisotropic_pol), and
(iii) partition coefficient (LogD) (Fig. 5D). The propensity to be a substrate/inhibitor
increases with increasing acylindricity and anisotropic polarizability but decreases with
increasing partition coefficient and lipophilicity.

Taken together, these results demonstrate that for the bacterial growth-dependent
measurements, there is an interrelatedness between the propensities of a compound
to be an EPI and to be recognized as an efflux substrate, suggesting that both rely on a
similar set of compound properties. However, efflux pump avoiders and EPIs/sub-
strates can be separated based on their molecular interactions with membranes and
MexB, their shape, lipophilicity, and electrodynamic response properties.

Models identify efflux avoiders and EPIs/substrates among structurally unrelated
compounds. We next tested whether our models can rank unrelated compounds
based on their ability to avoid or inhibit efflux. For this purpose, we calculated the
LigMexB subset of descriptors for a library of 674 molecules. The library comprised
compounds of the Chembridge Diversity set with unknown antibacterial properties,
known efflux inhibitors, and traditional antibiotics that were not part of the training or
testing set for any of the regression models described above. We next used the devel-
oped efflux and EPIss models to identify which of these molecules might be expected
to avoid or inhibit efflux.

The 15 top-ranked efflux avoiders (probability of $0.76) are dominated by antibiotics,
including three monobactams, seven cephalosporins, and sulbenicillin from the penicillin
class (Fig. 6; see Table S5 in the supplemental material). The remaining four species are
from a previously reported series of compounds with EPI activities in E.coli (50). MIC meas-
urements for 11 of the top compounds showed that 9 have MICs in at least one of the
four P. aeruginosa strains. For most of these compounds, the efflux ratios MICPD6/MICPAO1

and MICPD6-Pore/MICPAO1-Pore ranged between 1 and 0.25, showing that indeed efflux plays a
negligible role in their antibacterial activities (Fig. 6).

Eleven compounds ranked high (probability of $0.75) to have EPI-like properties and
were different from the predicted efflux avoiders (Fig. 6; Table S5). Among these top-
ranked putative EPIs, three are antibiotics of the fluoroquinolone class and three are EPIs
showing good potentiation for a range of antibiotics against both E coli and P. aeruginosa
(52). We tested EPI compounds on the ability to inhibit efflux of HT, the activity used to
generate the EPIss model, and we found that all three compounds increase the intracellular
accumulation of HT by at least 4-fold (Fig. 6). Fluoroquinolones are intrinsically fluorescent
and could not be tested in this assay. However, these antibiotics potentiate the activities
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of penicillins and carbapenems (53, 54), and efflux inhibition could play a role in this
synergism.

Thus, predictive rules for efflux avoidance and inhibition identified using a series of
Rempex analogs appear to be applicable to a broader chemical diversity of compounds.

Models guide optimization of compounds for efflux inhibition. To further vali-
date the identified efflux inhibition “rules,” we applied them to a series of compounds
that do not have EPI activities against P. aeruginosa. The previously reported OU-266
series acts on AcrA, the periplasmic component of the E. coli AcrAB-TolC efflux pump
and potentiates activities of novobiocin in this bacterium but not in P. aeruginosa (50).
Furthermore, unlike Rempex compounds (Fig. 1) and the top predicted efflux inhibitors
from the test library (Fig. 6), this series does not have considerable antibacterial proper-
ties. We next generated a limited series of OU-266 derivatives (Test S1, supplemental
methods) and used the identified predictive descriptors of efflux inhibition to optimize
their EPI-like properties.

The major predictors of EPIs are their acylindricity (mean values for Rempex series,
2.00), anisotropic polarizability (mean, 178.7 Atomic Units [AU]), and the number of ar-
omatic rings (mean, 2.43), all positively correlating with EPI activity, and the partition
coefficient LogD (mean, 23.36), which correlates negatively (Fig. 7). In addition, inter-
actions with L674 (mean, 1.43) and P668 (mean, 1.53) in the AP of MexB correlate with
EPI-like properties positively and negatively, respectively (Fig. 5D). The properties of
OU-266 notably deviate from the mean values calculated for Rempex compounds, but
the molecule is asymmetric, with a hydrophobic and a polar terminus reminiscent of
some of the features seen in Rempex compounds (Fig. 7). The addition of the second
dihydroimidazoline ring in OU-109 aligned several of the top properties with the
desired values. In particular, the acylindricity, the number of H-bond acceptors, and

FIG 6 Structures, properties, and activities of the top predicted efflux avoiders and inhibitors. The tables show (i) the predicted
probabilities for the compounds to avoid and to inhibit efflux, (ii) the measured efflux (IC50 PD6-Pore/IC50 PAO1-Pore) and SSconcn (SS16 mM/
SS0 mM) ratios, and (iii) the selected calculated descriptors predicted to tune between efflux avoiders and inhibitors. (See Table S3 for
a complete list of descriptors.)
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the contacts with P668 in MexB all moved into the optimal range. These changes led
to a potent EPI activity against MexAB-OprM, as seen from the MPC values of OU-109
in combinations with the fluoroquinolones levofloxacin and ciprofloxacin, novobiocin,
and different b-lactams (Fig. 7). Replacing 2-chlorophenyl with 4-chlorophenyl in OU-
96 reduced anisotropic polarizability to the desired level and further reduced LogD,
but these changes increased undesired contacts with P668 and, as a result, reduced
EPI activity. The isopropylbenzene group increased hydrophobicity of OU-71 and OU-
199 and enhanced their antibacterial activity without significant improvement of their
EPI potencies. On the hydrophobic terminus of OU-266, the chlorophenyl can be sub-
stituted with a bromonaphthalene moiety in OU-72 without significant loss of EPI activ-
ity. However, this substitution enhanced the antibacterial activity and efflux of the
compound by MexAB-OprM, as seen from the MICs of 6.25 to 12.5mM in PD6-Pore cells
and the lack of growth inhibition in PD6-Pore(MexAB-OprM). Further increasing the
aromaticity in OU-1 shifted their LogDs and contacts with both P668 and L647 into
undesired areas, leading to the loss of EPI properties (Fig. 7).

Thus, the top predictors of efflux inhibition discovered in this study can effectively
guide the further development of compounds for efficient efflux inhibition in the chal-
lenging pathogen P. aeruginosa.

FIG 7 Structures, properties, and activities of EPIs optimized against MexAB-OprM. The top table shows the
values of efflux inhibition predictors calculated for the indicated compounds. Values highlighted in green show
desired changes, and those in yellow to orange show undesired changes. The bottom table shows the
antibacterial (MIC) and EPI (MPC4 and SS50 mM/SS0 mM) activities of indicated compounds (CAR, carbenicillin; CTX,
cefotaxime; LVX, levofloxacin; CIP, ciprofloxacin; NOV, novobiocin). Values highlighted in green show desired
changes, and those in red show undesired changes. MICs were measured in efflux-deficient PD6-Pore cells and
their complemented derivative carrying the plasmid-borne MexAB-OprM. MPC4 activities were analyzed in the
complemented PD6-Pore(MexAB-OprM). CC50 (50% cytotoxic concentration) values with asterisks are from
reference 50.
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Conclusions.

� Intracellular accumulation predictors generated using the model E. coli species
have limited utility in optimization of antibacterial activities against P. aeruginosa,
because of the powerful active efflux and the permeability barrier of the OM of
this species.

� Interactions of compounds with the major efflux pump MexB and with the
different layers of the OM of P. aeruginosa can be converted into numerical
descriptors. In combination with traditional physicochemical properties of
compounds, these descriptors can be used in modeling of efflux avoidance and
permeation in P. aeruginosa.

� Antibacterial and efflux inhibitory activities of compounds correlate weakly and
can be separated using bacterial growth-independent efflux inhibition assays. The
two activities correlate with different sets of descriptors.

� Efflux ratios are reliable reporters of the propensity of compounds to avoid or to
be captured by efflux pumps. Interactions with membranes, specific residues of
MexB in AP, and the affinity to DP dominate efflux avoidance predictors likely
reflect the contributions of specific residues to affinities of compounds to the
substrate binding sites of MexB.

� Growth-dependent and -independent efflux inhibitory activities correlate with
each other, albeit weakly, suggesting that they report on different properties of
compounds. These properties correlate with different descriptors.

� Permeation predictors are prominent in both efflux inhibition and avoidance
models, suggesting that these predictors represent properties of compounds that
are not rendered by MexB docking and physicochemical descriptors. Possibly,
these descriptors reflect the ability of MexB and similar pumps to capture their
substrates from the lipid bilayer and at the water-lipid bilayer interface.

� The majority of Rempex compounds efficiently permeate the OM of P. aeruginosa—
presumably by the self-promoted uptake mechanism—and their activities are only
weakly affected by the OM barrier. Alternative libraries of compounds are needed to
generate reliable models for OM permeation.

� Efflux avoidance and inhibition models are predictive of such properties among
unrelated compounds, and the two models select different chemical classes of
compounds. These models can be useful for in silico prefiltering of large compound
libraries for the desired properties.

� Model-based optimization of efflux inhibitory activities leads to gain in antibiotic
potentiation activities against P. aeruginosa.

MATERIALS ANDMETHODS
Chemicals and strains used. All strains used were described previously (13, 28). The cells were

grown in Luria-Bertani (LB) broth (10 g/liter tryptone, 5 g/liter yeast extract, and 5 g/liter NaCl) at 37°C
with shaking. Rempex compounds were generated in the discovery/optimization campaign by Rempex
Pharmaceuticals and provided by Qpex Biopharma. The EPI compounds in Fig. 6 and Table S5 were dis-
covered, developed at, and provided by Basilea Pharmaceutica International, Ltd.

Antibacterial activities were tested using a 2-fold serial dilution broth assay as described previously (13).
The antibacterial activities are expressed as MIC (defined as at least 90% of growth inhibition) and IC50.

The kinetics of Hoechst accumulation was analyzed as described previously in a temperature-con-
trolled microplate reader (Tecan Spark 10M) in a fluorescence mode (15). Compounds were prescreened
for possible interference with Hoechst fluorescence, and those compatible were further analyzed to es-
tablish concentration dependencies. The kinetic analysis was performed using a MatLab program as
described previously (15).

MexB purification and surface plasmon resonance assays. MexB was purified from P. aeruginosa
PAO1 cells harboring pMexB plasmid (55) using Cu21 metal affinity chromatography as described previ-
ously (39, 56). Surface plasmon resonance (SPR) experiments were performed using a Biacore T200 (GE
Healthcare) equipped with a research-grade CM5 S2 sensor chip. The purified MexB was immobilized by
amino coupling. The immobilization and subsequent binding experiments were conducted in a running
buffer containing 25mM HEPES-NaOH (pH 7.0), 150mM NaCl, and 0.2% Triton X-100 as described previ-
ously (56). Rempex compounds were screened for binding to the immobilized MexB at a concentration of
25mM, followed by kinetic analysis of a selected subset of compounds at six different concentrations. Each
compound/analyte was injected over the ligand and reference flow cells simultaneously at a flow rate of
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30ml/min and at a temperature of 25°C. The complex was allowed to associate and dissociate for 20 to 30 s
and 150 s, respectively. The data were fit into a simple 1:1 binding (interaction) model or two-state kinetic
model using the global data analysis for the association and dissociation rate constants ka and kd, respec-
tively, and Rmax available within Biacore Insight Evaluation software.

QSAR, QM, and MD calculations. For each compound, we generated the 2D structure data file (SDF
format) and the protonation/charge state most populated at physiological pH 7.4 using the MOE pack-
age (57). We then used the ChemAxon’s Marvin suite of programs (58) to obtain 1-2-3D descriptors com-
monly used in QSAR studies, such as number of heavy atoms, isoelectric point, van der Waals volume
and surface, number of rotatable bonds, number of H-bond donors/acceptors, etc. (Table S2). These
descriptors include LogP values obtained with the XLOGP3 program (59). The configuration of the major
microspecies has been used as an input to QM calculations performed with the Gaussian16 package as
described in previous work (43). We optimized the ground-state structure employing a polarizable con-
tinuum model (60) as to mimic the effect of water solvent particularly to avoid formation of strong intra-
molecular H-bonds. To confirm the geometry obtained to be a global minimum on the potential energy
surface, we performed full vibrational analyses, obtaining real frequencies in all cases. On the optimized
geometry, we then performed single-point energy calculations in vacuum to generate the atomic partial
charges fitting the molecular electrostatic potential. Under the constraint of reproducing the electric
dipole moment of the molecule, we used the Merz-Kollman scheme (61) to construct a grid of points
around the molecule. Atomic partial charges were then generated through the two-step restrained elec-
trostatic potential method (62) implemented in the AnteChamber package (63). Using this program, we
derived general Amber force field (GAFF) parameters (64). QM descriptors associated with the ground-
state optimized structure include static polarizabilities, frontier molecular orbital energies, permanent
dipole moment, and rotational constants. For each compound, we performed 1-ms-long all-atom MD
simulation in explicit water solution (0.1 M KCl) using the Amber18 package as described before (43).
From MD simulations, we obtained structural and dynamic features of the compounds investigated by
means of the PTRAJ and CPPTRAJ programs of Amber18 (65). The number and population of structural
clusters were determined using a hierarchical agglomerative algorithm (66).

Ensemble docking to MexB. All molecular docking calculations were performed using the software
AutoDock Vina (67), implementing a stochastic global optimization approach. The program was used
with default settings except for the exhaustiveness (giving a measure of the exhaustiveness of the local
search), which was set to 1,024 (default of 8). Protein and ligand input files were prepared with
AutoDock Tools (68). Flexibility of both docking partners was considered indirectly by using the ensem-
ble of conformations. In particular, for each compound we used 10 different cluster representatives
extracted from MD simulations in explicit water solution, while for MexB, we considered 6 conforma-
tions, including available X-ray crystal structures (PDB ID no. 2V50, 3W9I, and 3W9J) (44, 45) and MD
snapshots extracted from MD simulations (46). For each docking run, we retained the top 10 docking
poses. We performed two sets of guided docking runs into the two major substrate binding pockets of
MexB: the access pocket of the access monomer (AP) and the deep binding pocket of the binding mono-
mer (DP). In each case, the docking search was performed within a cubic volume of 40 by 40 by 40 Å3

centered in the center of mass of the pocket. The interaction between each compound and MexB was
quantified by means of a statistical analysis of all putative binding poses, yielding about 60 descriptors.
These descriptors include average binding affinities (predicted according to the docking scoring func-
tion) as well as the total number of contacts with single residues lining the two pockets (see Table S2).

Permeation descriptors of interactions with the OM. Initial coordinates of the P. aeruginosa OM
were downloaded (51). The model has been parameterized in line with the GLYCAM force field (69), and
parameters are adapted to run in the GROMACS (70) molecular dynamics engine. The OM model consists
of an inner leaflet composed of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and an outer leaf-
let composed of a truncated LPS structure. The membrane is fully solvated using the TIP3P water model (71),
and anionic charges in the LPS molecules are counterbalanced with Ca21 cations. A schematic representation
of the model is provided in Fig. 5, and its parameterization was described previously (72). Similarly, parame-
ters for drug molecules, derived as described above (43), were consistently adapted from the general Amber
force field (GAFF) (64) and transformed into GROMACS input files using the AnteChamber PYthon Parser
interfacE (ACPYPE) tool (73).

To extract the molecular descriptors of drug permeation across the OM membrane, each drug was
placed into seven different molecular environments corresponding to specific regions along the direc-
tion perpendicular to the OM (Fig. 4). These regions were explicitly selected in order to cover the influ-
ence of both the inner (DPPC) and outer leaflet (LPS) of the OM. Thus, seven independent simulations
per drug were necessary in order to recapitulate the influence of the OM into the permeation process.
The whole procedure was automated via a series of bash scripts, which iteratively connected the pulling
code and energy minimization in GROMACS (70).

All simulations were run with the GROMACS 5.4.1 molecular dynamics engine2 with a time step of 2
fs. The LINCS algorithm (74) was applied to constrain all bond lengths with a relative geometric toler-
ance of 1024. In line with its original parameterization, short-range interactions (van der Waals and
Coulomb) were calculated using a cutoff scheme of 0.9 nm, which were evaluated based on a pair list
recalculated every 5 time steps. Long-range interactions were handled using a reaction field (75) correc-
tion with a permittivity dielectric constant of 66. After initial setup, each system was energy minimized
using 3,000 steps of conjugated gradient, followed by a thermal equilibration of 1 ns. A harmonic poten-
tial of 1,000 kJ mol22, along the Z vector connecting the center of mass (COM) of the drug and the OM
of the membrane, was applied in order to maintain the relative position of the drug with respect to
each of the seven different regions of the membrane as described in the system setup section. During
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equilibration, bilayers were coupled to 1.0 bar using a Berendsen barostat (76) through a semi-isotropic
approach with a relaxation time of 1.0 ps. Afterwards, production runs were coupled using a Parrinello
barostat (77) algorithm, and a constant temperature of 310 K was maintained by weak coupling of the
solvent and solute separately to a velocity-rescaling (78) scheme with a relaxation time of 1.0 ps.
Production simulations were run for 20 ns, and trajectories were saved each 20 ps.

A total of 4,207 (;84 ms) trajectories were analyzed using an in-home-developed bash script, which
was directly interconnected to the in-built GROMACS tools.

Statistical and machine learning methods. Figure S2 shows an outline of the developed algorithm.
There are two phases to feature selection. In the first phase, we employ a single sparse LASSO fit (using
the cvglmnet function in the glmnet_python package), with a regularization parameter tuned to retain
50% 6 2% of the total descriptors in the batch of descriptors considered. In the second phase, using the
retained ;50% of the descriptors, we run two further (nonsparse) regressions, employing shuffling of
the data along with 5-fold cross-validation to assess the robustness of the coefficients that result for
each descriptor in a simple binomial model. We retain at most one descriptor from each cluster com-
puted by correlation clustering of the descriptor (sub)set. We choose to retain the descriptor with the
largest ratio of average coefficient divided by standard deviation of coefficient, as we expect that to be
the most consistent and hence most generalizable representative of this cluster. Finally, we refit in an
identical manner using the cluster representatives and discard any descriptor with an average that is
within a standard deviation of zero as being unimportant. We run the second phase 100 times on differ-
ent stratified subsets of the training data in order to perform a bootstrap analysis of the consistency
with which specific descriptors are chosen.

The modeling experiments and parameters are summarized in Table S4. Seven different variables
derived from the following experimental ratios were used for model outputs (Table S4): efflux= IC50 PD6-Pore/
IC50 PAO1-Pore, permeation= IC50 PD6-Pore/IC50 PD6, EPI-1=g(MICPAO1/MPC8 PA1032), EPI-2=g(MICPD6-Pore/MPC8 PA1032),
EPIMPC = g(IC50 PAO1/MPC8 PA1032), and EPISS = SS16 mM/SS0 mM. SSconcn refers to the steady-state HT accumulation
ratio at that concentration, and fold difference is the fold difference in HT fluorescence (16mM/0mM). The
function g is a rescaling factor defined as where xi is the i-th entry in the ratio list and the MAX function is
taken over the entire list.

For model fitting, we selected models created with the same number of total descriptors to avoid
size effects. We employed up to the total number of descriptors retained during feature selection for the
smallest subset (permeation). For final model fitting and assessment, we arrange the descriptors in order
of the number of times they were chosen by the bootstrap phase of feature selection and then
choose the top N descriptors, where N is the number returned by searching for a “gap” in the ordered
descriptors by using the L method of Salvador and Chan (79) as a relatively conservative estimate
that nonetheless does not retain descriptors in the tail of the distribution of the number of times
they appeared in the bootstrap phase of feature selection. Once the final set of descriptors is
selected, the LogisticRegressionCV class of the scikit-learn package was employed to learn a non-
sparse binomial classifier employing the neg_log_loss scoring penalty with “balanced” class weight
and an L2 penalty. The random state was arbitrarily set to 0 for consistency and ease of debugging.

In case of a 3-class multinomial regression classifier, feature selection was performed in a similar
manner as for the binomial classifiers, except that in phase 1 we retain all descriptors that have a non-
zero coefficient for any class, and in phase 2, we choose cluster representatives for all three classes. If
two or more classes choose the same cluster representative, we retain it. Otherwise, we choose from the
different class representatives randomly. Finally, we retain all descriptors for which at least for one class
the average value is more than 1 standard deviation away from zero.

Model fitting is likewise performed in a similar manner, except that we employ an elasticnet penalty,
which is a balance between L1 and L2 penalties that allows some of the descriptors to go to zero, in
order to loosen the restrictions on descriptors relating to different classes, and we use the ovr, or one-
vs-rest, formulation. Because of this, we use all top descriptors (76) returned from feature selection on
the full set of all descriptors.

In order to assess the quality of the classifiers learned, we employed bootstrapping to estimate
errors (Fig. S2). For each model, we fit on an arbitrarily chosen training set of 75% of the data using the
train_test_split function of the scikit-learn package. We ensured that the class balance was the same for
both this and the retained 25% testing set.
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