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1 |  INTRODUCTION

Copy number variants (CNVs), frequently occurring de novo, 
have been implicated in the genetic etiology of schizophrenia 

(SCZ) (Bassett et al., 2017; Buizer-Voskamp et al., 2011; 
Clifton et al., 2017; D'Angelo et al., 2016; Glessner et al., 
2017; Hippolyte et al., 2016; Maillard et al., 2015; Marshall 
et al., 2017; Stefansson et al., 2009). Noncoding CNVs could 
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Abstract
Background: Copy number variants in coding and noncoding genomic regions 
have been implicated as risk factor for schizophrenia (SCZ). Rare duplications of 
the RB1CC1 gene were found enriched in SCZ patients. Considering that the effect 
of such duplications on RB1CC1 expression has never been evaluated and partial 
gene duplications of RB1CC1 have also been reported in SCZ patients, it is unclear 
whether the pathogenesis is mediated by haploinsufficiency rather than genuine over-
expression of the gene.
Methods and Results: We studied a patient with schizophrenia, suicidality, and obe-
sity, who carried a de novo RB1CC1 complete duplication, as assessed by high-reso-
lution array-CGH. Molecular breakpoint cloning allowed to identify nonhomologous 
end joining (NHEJ) as driving mechanism in this rearrangement. On the contrary, trio-
based whole-exome sequencing excluded other potential causative variants related to 
the phenotype. Functional assays showed significant overexpression of RB1CC1 in 
the peripheral blood lymphocytes of the proband compared to control subjects, sug-
gesting overdosage as leading mechanism in SCZ pathophysiology.
Conclusion: We hypothesized a pathogenetic model that might explain the correla-
tion between RB1CC1 overexpression and schizophrenia by altering different cell 
signaling pathways, including autophagy, a promising therapeutic target for schizo-
phrenic patients.
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also contribute to the genetic vulnerability to the disorder 
by affecting regulatory promoters and enhancer elements 
(Fullard et al., 2017; Tansey & Hill, 2018; Won et al., 2016).

Duplications at chromosome 8q11.23, including RB1CC1 
(RB1-inducible coiled-coil 1; OMIM *606837), all with dif-
ferent breakpoint boundaries, have been reported in 9/8461 
patients and 14/11,2871 control individuals screened by a 
genome wide single-nucleotide polymorphism (SNP) array, 
highlighting a significant association with SCZ, accompa-
nied in some cases by suicidality (Degenhardt et al., 2013). 
Complete and partial RB1CC1 gains have also been reported 
in a few patients with intellectual disability (ID) and/or de-
velopmental delay (Cooper et al., 2011), and autism spectrum 
disorder (ASD) (Marshall et al., 2008).

In this study, we characterized a duplication at the 
8q11.23 region involving RB1CC1 by using a combina-
tion of high-resolution array-CGH and breakpoint cloning. 
Furthermore, we provided functional evidence of RB1CC1 
overexpression, which likely mediates SCZ pathogenesis 
through different paths, including autophagy, which is con-
sidered as a guardian against neurodegeneration and a drug-
gable target in schizophrenic patients.

2 |  MATERIALS AND METHODS

2.1 | Editorial policies and ethical 
considerations

This study was conducted in accordance with the Declaration 
of Helsinki and national guidelines. Written informed con-
sent for participation and publication was obtained from all 
subjects.

2.2 | Clinical description

The patient, a 20-year-old male, was born after a pregnancy 
complicated by gestosis during the second–third trimesters. 
He showed clumsy, uncoordinated gait, and speech delay 
since the age of 2.5 years. Clinical evaluation at 4 years as-
certained mild psychomotor delay, memory impairment, 
bulimia, obesity (BMI >45), hepatomegaly, nuchal small 
fibromas, and fecal incontinence. Brain MRI was normal. 
He started developing psychotic episodes and self-injury 
(hanging/asphyxiation) at 12 years. Neuropsychological as-
sessment revealed aggressive/suicidal behavior, obsessive-
compulsive disorder, extremely low frustration tolerance, 
sleep disturbance (despite benzodiazepine administration), 
and hypoalgesia (ICD-10-CM: F06.0).

Because of neurological features and obesity, he was first 
diagnosed with Smith–Magenis syndrome (OMIM #182290), 
which was excluded after RAI1 (*607642) negative testing.

2.3 | Array-CGH

Molecular karyotyping was performed by using a high-
density 400  K chip (Agilent), according to manufacturer's 
protocol. Data were analyzed by using the Agilent Genomic 
Workbench Standard Edition 6.5.0.58, as previously de-
scribed (Errichiello et al., 2016). Genomic coordinates are 
reported according to the GRCh38/hg38 genome assembly.

2.4 | Trio whole-exome sequencing  
(trio-WES)

Whole-exome sequencing was performed on the DNA iso-
lated from a peripheral blood sample of the patient and his 
parents by using the QIAamp DNA Blood Mini Kit (Qiagen), 
according to the manufacturer's instructions. Libraries 
were generated using a commercial target enrichment kit 
(SureSelect Human All Exome V7, Agilent Technologies), 
and sequenced on a HiSeq 2500 sequencing platform (paired-
end 2 × 100 bp; Illumina), as previously reported (Errichiello 
et al., 2017). Annotation was carried out with ANNOVAR 
and only variants with a minimum quality score of 20 and 
a minimum read depth of 10× were included in the down-
stream analysis.

In the bioinformatic analysis were excluded variants re-
ported in gnomAD v2.1.1, TOPMed, ExAC, 1000 Genomes, 
and NHLBI ESP6500, and in-house database (composed of 
approximately 1500 individuals), with a frequency above 
5% and outside exonic or splice site (beyond 30 bp of exon/
intron boundaries) regions. After a preliminary variant fil-
tering focused on a virtual panel of clinically relevant genes 
implicated in SCZ (Table S1), NGS data were further filtered 
according to possible inheritance patterns. CNV analysis was 
performed by using the Control-FREEC and EXCAVATOR 
tools.

2.5 | Cloning of the duplication breakpoints

Q-PCR reactions (PowerUp MasterMix PCR System, 
Applied Biosystems) were performed on genomic DNA to 
refine the breakpoints’ location by using specific probes for 
the distal and proximal breakpoint regions (available upon re-
quest). Then, long-range PCR (JumpStart AccuTaq LA PCR, 
Sigma-Aldrich) was set up to sequence the junction fragment 
on a 3500/3500xl Genetic Analyzer (Applied Biosystems).

2.6 | RB1CC1 expression analysis

RB1CC1 expression on the peripheral blood lympho-
cytes (PBLs) was measured by qRT-PCR of random 



   | 3 of 7ERRICHIELLO Et aL.

primer-synthetized proband's cDNA (iScript cDNA Synthesis 
Kit, Bio-Rad) against eight control PBL cDNAs using a spe-
cific TaqMan assay (Hs01089002_m1, Applied Biosystems). 
A GAPDH probe (Hs99999905_m1, Applied Biosystems) 
was used as housekeeping gene control. All assays were per-
formed on a QuantStudio 3 instrument (Applied Biosystems).

3 |  RESULTS

High-resolution array-CGH detected a de novo heterozy-
gous germline duplication at the 8q11.23 locus, as also as-
sessed by Control-FREEC/EXCAVATOR and IGV visual 
inspection on the NGS data (Figure 1a and Figure S1a), 
which arose on the maternal allele (Figure S1b). In con-
trast, neither CNVs nor variants were detected in the RAI1 
gene, which was suspected to be the culprit gene on clinical 
grounds. Breakpoint analysis refined the duplicated region to 
252,244 bp (chr8:52,555,810–52,808,053), spanning the en-
tire RB1CC1 gene and the first exon of ALKAL1/FAM150A 
(Figure 1a and Table S2). Similar duplications are reported 
in the Database of Genomic Variants (DGV), as well as in 
DECIPHER patients with mainly neurodevelopmental disor-
ders. Sequencing of the proband-specific LR-PCR fragment 
revealed a junction between two unrelated LINE-1 repeated 
DNA sequences and a 1-bp microhomology, consistent with 
a nonhomologous end joining (NHEJ) mechanism (Table 
S2). As a consequence of this duplication, RB1CC1 expres-
sion in proband's PBLs was over 27 times higher than the 
average of control samples (Figure 1b), possibly due to the 

perturbation of the negative feedback loop mechanism of the 
RB1CC1 transcription (Loehlin & Carroll, 2016).

On the contrary, trio-WES failed to identify poten-
tial candidate variants in genes associated with patient's 
neurophenotype, further strengthening the causative role 
of RB1CC1 duplication. Notably, the only variant re-
lated to SCZ was a maternally inherited hemizygous mis-
sense substitution in HS6ST2 (*300545) on chromosome 
Xq26.2: NM_001077188.2:c.347C>T, NP_001070656.1:p.
(Thr116Ile) (rs370454722). However, three European Non-
Finnish hemizygotes are listed in gnomAD v2.1.1, whereas 
Piton et al. (2011) identified a HS6ST2 truncating variant in 
a healthy XY individual, suggesting “male tolerance” and 
possible functional redundancy with other heparan sulfate 
6-O-sulfotransferase isoforms. Based on this evidence, we 
excluded a pathogenetic role of this variant, which was also 
classified as likely benign according to the ACMG guide-
lines. The molecular and clinical details of our patient have 
been submitted in the ClinVar database (#VCV000544682.1).

4 |  DISCUSSION

RB1CC1 duplications have been detected at low frequency in 
large cohorts of SCZ patients as well as in control subjects, as 
expected for a disorder characterized by remarkable genetic 
heterogeneity and reduced penetrance, due to the likely com-
bination of CNVs and susceptibility alleles (Richards et al., 
2016). It is reasonable that the contribution of rare germline 
variants in the complex SCZ genomic architecture, including 

F I G U R E  1  RB1CC1 duplication and overexpression. (a) Identification of RB1CC1 duplication by high-resolution array-CGH (400 K). The 
duplicated region, arr[GRCh38] 8q11.23(52560156_52801994)x3, encompassing RB1CC1, does not completely overlap with any CNV reported 
in DGV (Database of Genomic Variants), and does not disrupt any topologically associating domain (TAD), as assessed by 3D Genome Browser 
(http://promo ter.bx.psu.edu/hi-c/). The duplication was also confirmed on NGS data by using the Control-FREEC and EXCAVATOR CNV-calling 
tools. (b) RB1CC1 expression in patient and controls. RB1CC1 expression in proband's PBLs, adjusted for variable cDNA amount measured by 
GAPDH expression, was over 27 times higher than the average of eight healthy controls without RB1CC1 CNVs. All samples were run in triplicate

http://promoter.bx.psu.edu/hi-c/
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structural variants affecting the boundaries of topologically 
associated domains (TADs), will spread thanks to more ex-
tended whole-genome sequencing studies on large cohorts of 
patients (Halvorsen et al., 2020).

In DECIPHER are currently listed 46 individuals with a 
CNV gain but only one patient with a CNV loss spanning the 
RB1CC1 locus. The duplication involves the RB1CC1 gene 
without affecting any other known disease-causing gene in 
28 patients, of whom 18 with complete duplication and 10 
with partial duplication. Most of these individuals developed 
ID, whereas ASD and delayed speech and language devel-
opment are reported in five and two of them, respectively. 
In case #257475, a 20-year-old male, hyperactivity, short at-
tention span, and truncal obesity have been also observed. 
However, it may be speculated that SCZ or SCZ-like features 
might be underrepresented in DECIPHER, as the median age 
of RB1CC1-duplicated cases is around 6  years, when the 
SCZ clinical diagnosis is challenging. The effect of such du-
plications on RB1CC1 gene expression has never been eval-
uated in CNV carriers and, since partial gene duplications of 

RB1CC1 have also been documented in schizophrenic sub-
jects, it is unproved whether the pathomechanism is medi-
ated by haploinsufficiency due to gene disruption rather than 
genuine overexpression of the gene. Notably, Degenhardt 
et al. (2013) reported full RB1CC1 duplication in three SCZ 
patients, partial gene duplication in five patients, and a du-
plication immediately upstream of the RB1CC1 gene in an 
additional patient. Importantly, all partial gene duplications 
were detected by chromosomal microarray only without 
breakpoint-level analysis, which is essential to interpret their 
effects on gene structure in terms of orientation, location, 
and possible alteration of the reading frame causing loss-of-
function. In this regard, it has been shown that most genome 
duplications (83%) are tandem in direct orientation (head-to-
tail adjacent to the original locus) and do not disrupt genes 
(Newman et al., 2015). Xu et al. (2011) identified a rare de 
novo frameshift variant [NM_014781.5:c.3682_3683delGA, 
NP_055596.3:p.(Glu1228ThrfsTer7); HGMD #CD119371] 
in a sporadic SCZ patient, theoretically supporting a loss-of-
function mechanism. Although this variant is unreported in 

F I G U R E  2  Cascade of events triggered by the overexpression of RB1CC1 in SCZ pathogenesis. Duplication-induced overexpression of 
RB1CC1/FIP200 inhibits FAK, which physiologically regulates cell spreading and motility upon FAK-Src signaling complex formation and 
paxillin/ERK1/2 phosphorylation and activation. Upregulated RB1CC1 also blocks PYK2 tyrosine kinase activity upon PI3K/Akt pathway, which 
promotes cell survival and proliferation, and GSK3 signaling, which instead controls neurogenesis, neuronal polarization, and axon growth during 
brain development. Importantly, PYK2 indirectly enhances paxillin activation through ERK1/2 MAP kinases. Finally, overexpressed RB1CC1 
interferes with TSC1–TSC2 complex assembly/stabilization, a critical negative regulator of mTORC1. MTORC1 controls anabolic processes to 
promote cell growth and, importantly, strongly prevents autophagy initiation by regulating the activity of the ULK1 complex that is required for the 
formation of autophagosomes. Thus, the lack of mTORC1 inhibition by TSC1/TSC2 finally leads to autophagy blockade and neurocytotoxicity
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publicly available databases and multiple lines of computa-
tional evidence support its deleterious effect, it has not been 
functionally validated and, most importantly, behavioral dis-
turbances have never been observed in conditional knockout 
mice (Gan et al., 2006; Wei et al., 2009; Yao et al., 2015). 
In this study, we documented the aberrant overexpression of 
RB1CC1 in a schizophrenic patient with complete gene du-
plication. However, it cannot be ruled out that RB1CC1 might 
be sensitive to both haploinsufficiency and triplosensitivity 
culminating in neurodevelopmental anomalies. Therefore, 
more functional investigations are needed to address this 
point.

A part from RB1CC1, our duplication encompassed 
ALKAL1/FAM150A, which encodes the ALK and LTK li-
gand 1, the physiological ligand (together with ALK and 
LTK ligand 2, a.k.a. ALKAL2) of Alk (Anaplastic lymphoma 
kinase) and Ltk (Leukocyte tyrosine kinase) receptor tyro-
sine kinases (RTKs) with demonstrated oncogenic potential 
(Reshetnyak et al., 2015). Mo et al. (2017) proved that Alk 
and Ltk ligands are essential for iridophore formation in the 
adult zebrafish eye. Therefore, although we did not measure 
the expression of ALKAL1/FAM150A, it is unlikely involved 
in the complex neurobehavioral phenotype observed in our as 
well as in other previously reported patients with CNV gains 
involving ALKAL1/FAM150A.

The brain-expressed RB1CC1/FIP200 regulates a variety 
of cellular processes, including cell cycle progression, differ-
entiation, senescence, apoptosis, neural migration/spreading, 
and neurodegeneration (Wang et al., 2013). Molecular stud-
ies on RB1CC1 shed new light on the putative role of mTOR 
signaling pathway and autophagy in the pathogenesis of SCZ 
(Menzies et al., 2015; Merenlender-Wagner et al., 2015), as 
supported by the previous finding that RB1CC1, together 
with ULK1 and ULK2 serine/threonine kinases that play a 
key role in autophagy induction, is involved in the regula-
tion of axon guidance during brain development (Wang et al., 
2017). Furthermore, rare variants in ULK1 were found to be 
enriched in SCZ cases compared to controls (Al Eissa et al., 
2018). Intriguingly, overexpression of RB1CC1/FIP200 was 
shown to inhibit FAK (Fan et al., 2013) and Pyk2 kinase ac-
tivity (Abbi et al., 2002) as well as TSC1–TSC2 complex 
formation (Gan et al., 2005), which in turn negatively reg-
ulates mTORC1 (Di Nardo et al., 2014), a critical regulator 
of autophagy (Kim et al., 2011) (Figure 2). We speculated 
that aberrant RB1CC1 mRNA expression might lead to de-
creased protein solubility and aggregation-induced neurotox-
icity, following the DISC1 pathogenic model (Atkin et al., 
2012). Although confirmatory expression studies in post-
mortem brains or induced pluripotent stem cells (iPSC) of 
schizophrenic patients are needed, we suggest that RB1CC1 
upregulation might be considered as a tentative plasmatic 
biomarker for suicidality (Niculescu et al., 2017) and, most 
importantly, a druggable target in SCZ patients, as previously 

demonstrated for BECN1/Beclin 1 (Menzies et al., 2017; 
Merenlender-Wagner et al., 2014).
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