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Abstract

In this paper we study a class of generalized Kakutani’s sequences of partitions of [0, 1], con-
structed by using the technique of successive ρ−refinements. Our main focus is to derive bounds
for the discrepancy of these sequences. The approach that we use is based on a tree represen-
tation of the sequence of partitions which is precisely the parsing tree generated by Khodak’s
coding algorithm. With the help of this technique we derive (partly up to a logarithmic factors)
optimal upper bound in the so-called rational case. The upper bounds in the irrational case
that we obtain are weaker, since they depend heavily on Diophantine approximation properties
of a certain irrational number. Finally, we present an application of these results to a class of
fractals.

1 Introduction

In this paper we will study uniformly distributed sequences of partitions of [0, 1], a concept
which has been introduced in 1976 by Kakutani, [13].

Definition 1.1. Let {πn} be a sequence of interval partitions of [0, 1] represented by πn = {[t(n)
i−1, t

(n)
i ] :

1 ≤ i ≤ k(n)}, where 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
k(n) = 1. The sequence {πn} is said to be uniformly

distributed (u.d.) if for any continuous function f on [0, 1] we have

lim
n→∞

1
k(n)

k(n)∑
i=1

f(t(n)
i ) =

∫ 1

0
f(t) dt.

Equivalently, {πn} is u.d. if the sequence of discrepancies

Dn = sup
0≤a<b≤1

∣∣∣∣ 1
k(n)

k(n)∑
i=1

χ[a,b[(x
(n)
i )− (b− a)

∣∣∣∣ (1)

tends to 0 as n → ∞ (for more details on the theory of uniform distribution see [17] or [9]; χM

denotes the characteristic function of the set M).
Kakutani’s sequence of partitions is defined in the following way. Let α ∈ ]0, 1[ be given and

start with the unit interval I = [0, 1]. In the first step this interval is divided into the two intervals
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[0, α], [α, 1] of lengths α and 1 − α. In the second step the larger interval is partitioned into two
subintervals of lengths proportional to α and 1 − α respectively. For example, if α = 1

3 then the
interval [13 , 1] is split into [13 ,

5
9 ], [59 , 1]. In this way one proceeds further. Note that one always

considers all intervals of maximal lengths at once.

Definition 1.2. If α ∈]0, 1[ and π = {[ti−1, ti] : 1 ≤ i ≤ k} is any interval partition of [0, 1], then
Kakutani’s α-refinement of π (which will be denoted by απ) is obtained by splitting all the intervals
of π having maximal length in two parts, proportional to α and 1− α respectively.

Kakutani’s sequence of partitions κn can be then written as κn = αnω, where ω = {[0, 1]}. His
observation was that for every α ∈]0, 1[, the sequence of partitions {κn} of [0, 1] is u.d. ([13]).

In a recent paper [19], Kakutani’s splitting procedure has been generalized by splitting the
longest intervals of a partition π into a finite number of parts homothetically to a given finite
interval partition ρ of [0, 1]. The resulting interval partition ρπ is called ρ-refinement of π. As for
the α-refinement (that corresponds to ρ = {[0, α], [α, 1− α]}) the following result holds (cf. [19]):

Theorem 1.3. The sequence {ρnω} of successive ρ-refinements of the trivial partition ω = {[0, 1]}
is u.d.

A natural problem which is interesting for possible applications, posed in [19], is to estimate
the behaviour of the discrepancy as n tends to infinity. The only known discrepancy bounds for
sequences of this kind have been obtained by Carbone [4] by a direct and elementary approach,
who considered so-called LS-sequences that evolve from partitions ρ with L subintervals of [0, 1] of
length α and S subintervals of length α2 (where α is given by the equation Lα+ Sα2 = 1).

In this paper, we analyze this problem with a new approach that is based on a parsing tree
(related to the Khodak coding algorithm [15]) that represents the successive ρ-refinements. In
particular we will use refinements of the results obtained in [8] about Khodak’s algorithm to give
an estimate of the discrepancy for a class of sequences of partitions constructed by successive
ρ−refinements. Suppose that ρ consists of m subintervals of lengths p1, . . . , pm. In the so-called
rational case (which means that all fractions (log pi)/(log pj) are rational, see Definition 2.1) we will
provide very precise bounds for the discrepancy. Note that LS-sequences are rational, therefore we
generalize the results of [4]. However, we are also able to cover several irrational cases (which means
that at least one of the fractions (log pi)/(log pj) is irrational).

Let us give a brief outline of the structure of the paper. In Section 2 we introduce Khodak’s
algorithm and analyze the correspondence between subintervals of [0, 1] and nodes of the parsing
tree. Moreover, we extend an asymptotic result from [8]. In Section 3 we present our main results
in the rational case. In particular, we obtain an upper bound of the form

Dn = O
(
(log k(n))dk(n)−η

)
(2)

where η is a positive constant ≤ 1 and d ≥ 0 an integer (both values are explicit). Furthermore,
this upper bound is best possible (despite a logarithmic factor in a special case).
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In Section 4 we discuss some instances in the irrationally related case for m = 2. They are much
more involved than in the rational case.

Finally, in Section 5 we give some examples and applications including LS-sequences and u.d.
sequences of partitions on a class of fractals. Some auxiliary results that are used in Section 2 are
collected in Section 6.

2 ρ-refinements and Khodak algorithm

From now on, consider a partition ρ of [0, 1] consisting of m intervals of lengths p1, . . . , pm and
the sequence of ρ-refinements of the trivial partition ω = {[0, 1]}.

Our goal is to construct recursively an m-ary tree T . An m-ary tree is an ordered rooted tree,
where each node has either m (ordered) successors (we call such a node internal node) or it is a
leaf with no successors (which we call also external node). The numbers p1, . . . , pm induce a natural
labelling on the nodes. Suppose that the unique path from the root to a node x at level l is encoded
by the sequence (j1, j2, . . . , jl), 1 ≤ ji ≤ m, then we set P (x) = pj1pj2 · · · pjl

. This can be also
considered as the probability of reaching the node x with a random walk that starts at the root and
moves away from it according to the probabilities p1, . . . , pm. For completeness the root r is labelled
with P (r) = 1. If T is a finite m-ary tree then the labels of the external nodes sum up to 1 (which
follows easyly by induction). Hence, the shape of an m-ary tree (together with p1, . . . , pm) gives rise
of a probability distribution. Note that if we have j internal nodes then there are M = (m−1)j+1
external ones.

The start of our iteration is a tree that only consists of the root which is then an external
node (with probability 1). In the first step the root is replaced by an internal node together
with m (ordered) successing leaves that are given the probability distribution p1, . . . , pm. At each
further iteration we select all leaves y with largest label P (y) and grow m children out of each
of them. This procedure describes the construction of the parsing trees of the Tunstall code [8]
(the words (j1, j2, . . . , jl) that encode the paths from the root to the leaves are the phrases of the
dictionary). Actually this construction corresponds precisely to the ρ-refinement procedure of the
sequence κn = ρnω. The leaves of the tree correspond to the intervals and the labels of the leaved
to the lengths of the intervals.

There is a second way to describe this tree evolution process, namely by Khodak’s algorithm
[15]. Fix a real number r ∈]0, pmin[, where pmin = min{p1, . . . , pm}, and consider all nodes x among
in an infinte m-ary tree with P (x) ≥ r. Let us denote these nodes by I(r). Of course, if P (x) ≥ r

then all nodes y on the path from the root to x satisfy P (y) ≥ r, too. Hence, these nodes of
I(r) constitute a finite subtree. These nodes will be the internal nodes of Khodak’s construction.
Finally, we append to these internal nodes all successor nodes d. By construction all these nodes
satisfy pminr ≤ P (d) < r and we denote them by E(r). These nodes are the external nodes of
Khodak’s construction. We denote by Mr = |E(r)| the number of external nodes. Obviously we
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have got a finite m-ary tree T (r) = I(r) ∪ E(r) and it is clear that these trees grow when r

decreases. For certain values r, precisely the external nodes y of largest value P (y) = r turn into
internal nodes and all their successors become new external nodes. Actually, the tree T (r) grows
in correspondence to a decreasing sequence of values {rj}. When r ∈]rj , rj−1] the tree remains the
same, i.e T (rj−1) = T (r).

In our correspondence between Khodak’s algorithm and the procedure of successive ρ−refinements
the values rj correspond to the partition ρj+1ω. Consequently, the number of external nodes in
E(rj) equals the number of points defining the partition ρj+1ω, i.e. Mrj = k(j + 1). Moreover, if
r ∈]rj , rj−1] then Mr = Mrj−1 = k(j).

In the following we denote by H the entropy of the probability distribution p1, . . . , pm , which
is defined as

H = p1 log
(

1
p1

)
+ · · ·+ pm log

(
1
pm

)
.

Definition 2.1. We say that log
(

1
p1

)
, . . . , log

(
1

pm

)
are rationally related if there exists a positive

real number Λ such that log
(

1
p1

)
, . . . , log

(
1

pm

)
are integer multiples of Λ, that is

log
(

1
pj

)
= njΛ, with nj ∈ Z for j = 1, . . . ,m.

Without loss of generality we can assume that Λ is as large as possible which is equivalent to assume
that gcd(n1, . . . , nm) = 1. Equivalently, all fractions (log pi)/(log pj) are rational.

Similarly we say that log
(

1
p1

)
, . . . , log

(
1

pm

)
are irrationally related if they are not rationally

related.

One of main result from [8] provides asymptotic information on the numbersMr of external nodes
in Khodak’s construction. Actually these relations can be used to prove Theorem 1.3. However, in
order to obtain bounds for the discrepancy we need more precise information on the error terms.
Therefore we have extend the analysis of [8].

Theorem 2.2. Let Mr be the number of the external nodes generated at the step corresponding to
the parameter r in Khodak’s construction, that is, the number of nodes in E(r).

1. If log
(

1
p1

)
, . . . , log

(
1

pm

)
are rationally related, let Λ > 0 be the largest real number for which

log
(

1
pj

)
is an integer multiple of Λ (for j = 1, . . . ,m). Then there exists a real number η > 0

and an integer d ≥ 0 such that

Mr =
(m− 1)
rH

Q1

(
log
(

1
r

))
+O

(
(log r)dr−(1−η)

)
, (3)

where
Q1(x) =

Λ
1− e−Λ

e−Λ{ x
Λ}

and {y} is the fractional part of the real number y. Furthermore, the error term is optimal.
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2. If log
(

1
p1

)
, . . . , log

(
1

pm

)
are irrationally related, then

Mr =
(m− 1)
rH

+ o

(
1
r

)
. (4)

In particular, if m = 2 and γ = (log p1)/(log p2) is badly approximable then

Mr =
(m− 1)
rH

(
1 +O

(
(log log 1/r)1/4

(log 1/r)1/4

))
. (5)

and if p1 and p2 are algebraic then there exists an effectively computable constant κ > 0 with

Mr =
(m− 1)
rH

(
1 +O

(
(log log 1/r)κ

(log 1/r)κ

))
. (6)

Proof. Set v = 1
r and denote by A(v) the number of internal nodes in Khodak’s construction with

parameter r = 1/v, that is,
A(v) =

∑
x:P (x)≥ 1

v

1.

Hence, the number of external nodes generated at the step corresponding to the parameter r is

Mr = (m− 1)A(v) + 1. (7)

The key relation is that that A(v) satisfies the following recurrence, (see Lemma 2, [8]):

A(v) =

{
0 v < 1
1 +

∑m
j=1A(pjv) v ≥ 1

(8)

For the asymptotic analysis of A(v) (and consequently that of Mr) we distinguish between the
rational and the irrational case. If the log(1/pj) are rationally related then A(v) is constant for
v ∈ [eΛn, eΛ(n+1)[ (for every integer n). Hence, it suffices to study the behaviour of the sequence
G(n) = A(eΛn) which satisfies the recurrence

G(n) = 1 +
m∑

j=1

G(n− nj)

with initial conditions G(n) = 0 for n < 0. The generating function g(z) =
∑

n≥0G(n)zn is then
given by

g(z) =
1

(1− z)f(z)
,

where f(z) = 1−zn1 +· · ·−znm . By Definition 2.1, it follows that e−Λ is a positive real root of f and
it is proved in [5] that if we denote by ω1, . . . , ωh all the other (different) roots (with multiplicities

5



µi) of f then |ωi| > e−Λ for i = 1, . . . , h. (Here we use the assumption that n1, . . . , nm are coprime).
Hence, it follows that

G(n) =
ΛeΛn

H(1− e−Λ)
+

h∑
i=1

Pi(n)ω−n
i − 1

m− 1
,

where Pi are polynomials of degree smaller than µi. Obviously this implies the representation (3)
of Theorem 2.2 for some η > 0. Note that in view of (7) the constant term −1/(m− 1) disappears
when we translate the asymptotics of G(n) to Mr.

Next we study the error term (without the constant term −1/(m− 1)) in more detail. W.l.o.g.
we can assume that ω1, . . . , ωk (with k ≤ h) are those roots of f(z) with smallest modulus |ωi| =
e−Λ(1−η) (with some η > 0) such that Pi 6= 0, 1 ≤ i ≤ k, and where the degrees of Pi are maximal
and all equal to d ≥ 0. This means that the difference between G(n) and the asymptotic leading
term is bounded by

δ(n) =
∣∣∣∣G(n)− ΛeΛn

H(1− e−Λ)
+

1
m− 1

∣∣∣∣ ≤ CndeΛ(1−η)n

for some constant C > 0. More precisely δ(n) can be written as

δ(n) =

∣∣∣∣∣nd
k∑

i=1

ci ω
−n
i

∣∣∣∣∣+O
(
nd−1eΛ(1−η)n

)
.

where ci 6= 0, 1 ≤ i ≤ k. Since all roots of f(z) are either real or appear in conjugate pairs of
complex numbers we can rewrite the sum

∑k
i=1 ci ω

−n
i to

ndeΛ(1−η)n
k′∑

i=1

c′i cos(2πθin+ αi)

with real numbers c′i 6= 0. By Lemma 6.1 it follows that there exists δ > 0 and infinitely many n
such that |

∑k′

i=1 c
′
i cos(2πθin+ αi)| ≥ δ. This shows that

δ(n) ≥ C ′ndeΛ(1−η)n

for infinitely many n with some constant C ′ > 0. This means that the error term in (8) is optimal.
The analysis in the irrationally related case is much more involved. Instead of using power series

we use the Mellin transform
A∗(s) =

∫ ∞

0
A(v)vs−1 dv.

By using the fact that the Mellin transform of A(av) is a−sA∗(s), a simple analysis of recurrence
(8) reveals that the Mellin transform A∗(s) of A(v) is given by

A∗(s) =
−1

s
(
1− p−s

1 − · · · − p−s
m

) , <(s) < −1.
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In order to find asymptotics of A(v) as v → ∞ one can directly use the Tauberian theorem (for
the Mellin transform) by Wiener-Ikehara [16, Theorem 4.1]. For this purpose we have to check
that s0 = −1 is the only (polar) singularity on the line <(s) = −1 and that (s + 1)A∗(s) can be
analytically extended to a region that contains the line <(s) = −1. However, in the irrationally
related case this is granted a lemma of Schachinger [18]. In particular, one finds A(v) ∼ v/H but
this (simple) procedure does not provide any information about the error term.

In order to make our presentation as simple as possible we will restrict ourselves to the case
m = 2 and we will also assume certain conditions on the Diophantine properties of the irrational
number

γ =
log p1

log p2
.

We use the simplified notation p = p1 and q = p2.
The principle idea to obtain error terms for A(v) is to use the formula for the inverse Mellin

transfrom

A(v) =
1

2πi
lim

T→∞

∫ σ+iT

σ−iT
A∗(s)v−sds, σ < −1, (9)

and to shift the line of integration to the right. Of course, all polar singularities of A∗(s) (which
are given by the solutions of the equation p−s + q−s = 1 and s = 0) give rise to a polar singularity.
Unfortunately, the order of magnitude of A∗(s) is just of order O(1/s). Hence the integral in (9)
is not absolutely convergent. It is therefore convenient to smooth the problem and to study the
function A1(v) =

∫ v
0 A(w) dw which is given by

A1(v) =
1

2πi

∫ σ+i∞

σ−i∞
A∗(s)

v−s+1

1− s
ds =

1
2πi

∫ σ+i∞

σ−i∞

1
s(s− 1)(1− p−s − q−s)

v−s+1 ds, σ < −1.

By [18] we know that all zeros of the equation p−s + q−s = 1 that are different from −1 satisfy
−1 < <(s) ≤ σ0 for some σ0. Furthermore there is κ > 0 such that in each box of the form

Bk = {s ∈ C : −1 < <(s) ≤ σ0, (2k − 1)τ ≤ =(s) < (2k + 1)τ}, k ∈ Z \ {0},

there is precisely one zero of p−s + q−s = 1 that we denote by sk Hence, by shifting the line of
integration to the right and by collecting all residues we obtain (for some σ1 > max{σ0 + 1, 1})

A1(v) =
v2

2H
+

∑
k∈Z\{0}

vsk

sk(sk − 1)H(sk)
− v − 1

1− p−1 − q−1

+
1

2πi

∫ σ1+i∞

σ1−i∞

1
s(s− 1)(1− p−s − q−s)

v−s+1 ds,

where H(s) = p−s log(1/p) + q−s log(1/q). Clearly the integral can be estimated by

1
2πi

∫ σ1+i∞

σ1−i∞

1
s(s− 1)(1− p−s − q−s)

v−s+1 ds = O
(
v−σ1+1

)
.
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Hence we just have to deal with the sum of residues
∑
vsk/(sk(sk − 1)H(sk)). First it is an easy

exercise to show that there exists δ > 0 such that |H(sk)| ≥ δ for all k ∈ Z \ {0}. Thus, we do not
have to care about this factor.

Next assume that γ is a badly approximable irrational number which means that γ has a bounded
continued fraction representation. Here Lemma 6.2 shows that all zeros sk 6= −1 of the equation
p−s + q−s = 1 satisfy <(sk) > −1 + c/=(sk)2 for some constant c > 0. Hence it follows that
<(sk) > −1 + c1/k

2 for some constant c1 > 0 and we can estimate the sum of residues by∣∣∣∣∣∣
∑

k∈Z\{0}

vsk

sk(sk − 1)H(sk)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

0<|k|≤K

vsk

sk(sk − 1)H(sk)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
|k|>K

vsk

sk(sk − 1)H(sk)

∣∣∣∣∣∣
≤ C1v

2−c1/K2
∑

0<|k|≤K

1
k2

+ C2v
2
∑
|k|>K

1
k2

≤ C3v
2

(
v−c1/K2

+
1
K

)
.

By choosing K =
√
c1(log v)/(log log v) we, thus, obtain the upper bound

∑
k∈Z\{0}

vsk

sk(sk − 1)H(sk)
= O

(
v2

√
log log v√

log v

)

and consequently

A1(v) =
v2

2H

(
1 +O

(√
log log v√

log v

))
.

Finally by an application of Lemma 6.5 this implies

A(v) =
v

H

(
1 +

(log log v)1/4

(log v)1/4

)
.

Similarly we can deal with the case if we know that all solutions of the equation p−s + q−s = 1
(that are different from −1) satisfy <(sk) > −1+D/=(sk)2C for some positive constants C,D (this
is satisfied if p and q are algebraic, see with Lemma 6.3). Then we obtain (as above)∣∣∣∣∣∣

∑
k∈Z\{0}

vsk

sk(sk − 1)H(sk)

∣∣∣∣∣∣ ≤ C4v
2

(
v−c2K−2C

+
1
K

)
.

Hence, if we choose K = (c2(log v)/(log log v))1/(2C) we obtain (after a second application of
Lemma 6.5

A(v) =
v

H

(
1 +

(log log v)1/(4C)

(log v)1/(4C)

)
.

This completes the proof of Theorem 2.2.
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3 Discrepancy bounds in the rational case

In this section, we are going to consider a partition ρ of [0, 1] consisting of m intervals of lengths
p1, . . . , pm such that log

(
1
p1

)
, . . . , log

(
1

pm

)
are rationally related.

By Theorem 2.2 we know that Mr is asymptotically given by

Mrn =
c′

rn
+O

(
(log rn)dr−(1−η)

n

)
, r = rn = e−Λn, (10)

for some η > 0 and some integer d ≥ 0, where c′ = (m− 1)Λ/(H(1 − e−Λ)) and the error term is
optimal. Recall also that k(n) = Mrn−1 which gives an asmyptotic expansion for k(n) of the form

k(n) ∼ (m− 1)Λ
H(eΛ − 1)

eΛn.

Theorem 3.1. Suppose that the lengths of the intervals of a partition ρ are p1, . . . , pm and suppose
that log

(
1
p1

)
, . . . , log

(
1

pm

)
are rationally related. Furthermore let η > 0 and d ≥ 0 be given as in

Theorem 2.2.
Then the discrepancy of the sequence of partitions {ρnω} is bouded by

Dn =


O
(
(log k(n))dk(n)−η

)
if 0 < η < 1,

O
(
(log k(n))d+1k(n)−1

)
if η = 1,

O
(
k(n)−1

)
if η > 1.

(11)

Furthermore there exists δ > 0 and infinitely many n such that

Dn ≥


δ (log k(n))dk(n)−η if 0 < η < 1,
δ (log k(n))dk(n)−1 if η = 1,
δ k(n)−1 if η > 1.

(12)

Proof. For notational convenience we set

∆n = sup
0≤y≤1

∣∣∣∣∣∣
k(n−1)∑

i=1

χ[0,y[(x
(n−1)
i )− k(n− 1)y

∣∣∣∣∣∣
Then we have Dn ≤ 2∆n+1/k(n).

Fix a step in the algorithm corresponding to a certain parameter r of the form r = e−nΛ for
some integer n ≥ 0, and consider an interval A = [0, y[⊂ [0, 1]. We want to estimate the number of
elementary intervals belonging to E (r) which are contained in A.

For this purpose, let us fix another parameter r, of the form r = e−nΛ with an integer 0 ≤ n ≤ n,
corresponding to a previous step in Khodak’s construction. At this previous step, we have Mr

intervals Ij generated by the construction. If we denote by l(Ij) the lengths of the intervals Ij , then
we have that

pminr ≤ l(Ij) < r, for j = 1, . . . ,Mr, (13)
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(since the lengths of I ∈ E (r) correspond to the values P (d) of the external nodes in E(r)).
Suppose that precisely the first h of these intervals Ij are contained in A, so U = I1∪. . .∪Ih ⊂ A.
Now, we want to estimate the number of elementary intervals in E (r) contained in Ij . Khodak’s

construction shows that this equals precisely the number of external nodes in the subtree of the
node x that is related to the interval Ij . An important feature of Khodak’s construction is that
subtrees of T (r) rooted at an internal node x ∈ I(r) are parts of a self-similar infinite tree and
therefore they are constructed in the same way as the whole tree. So, one just has to replace r by

r
P (x) . Hence, by using this remark in (10), the number NIj of subintervals of Ij (corresponding to
the value r) equals

NIj = M r
l(Ij)

=
c′

r
l(Ij) +O

(
(log r)d l(Ij)

1−η

r1−η

)
.

Therefore, we have that the number NU of elementary intervals in E (r) contained in U is

NU = NI1 + . . .+NIh
=
c′

r
(l(I1) + . . .+ l(Ih)) +O

 | log r|d

r1−η

h∑
j=1

l(Ij)
1−η

 .

By using (13) and the fact that h ≤Mr = O(1/r) we obtain

NU =
c′

r
(l(I1) + . . .+ l(Ih)) +O

(
(log r)d r

(−η)

r(1−η)

)
Since the total number of intervals equals Mr = c′/r +O(| log r)|dr−1+η) it follows that

NU −Mrl(U) = O

(
(log r)d r

(−η)

r(1−η)

)
+O(| log r)|dr−1+η) = O

(
| log r|d r

(−η)

r(1−η)

)
.

Since NA −Mrl(A) = (NU −Mrl(U)) + (NA\U −Mrl(A \ U)) it remains to study the difference

NA\U −Mrl(A \ U) = NA\U −Mr/l(Ih+1)
l(A \ U)
l(Ih+1)

+Mr/l(Ih+1)
l(A \ U)
l(Ih+1)

−Mrl(A \ U).

The second term can be directly estimated by∣∣∣∣Mr/l(Ih+1)
l(A \ U)
l(Ih+1)

−Mrl(A \ U)
∣∣∣∣ = O

(
| log r|d r

(1−η)

r(1−η)

)
,

whereas the first term is bounded by∣∣∣∣NA\U −Mr/l(Ih+1)
l(A \ U)
l(Ih+1)

∣∣∣∣ ≤ ∆n−n

Summing up and taking the supremum over all sets A = [0, y[ we obtain the recurrence relation

∆n ≤ ∆n−n +O

(
| log r|d r

(−η)

r(1−η)

)
. (14)

10



We now set n = 1 and recall that r = e−Λn (and also r = e−Λn = e−Λ). Thus, we get

∆n ≤ ∆n−1 +O
(
ndeΛn(1−η)

)
. (15)

We distinguish between three cases.

1. 0 < η < 1. In this case we get

∆n = O

∑
k≤n

kdeΛk(1−η)

 = O
(
ndeΛn(1−η)

)
which implies Dn = O

(
(log k(n))dk(n)−η

)
.

2. η = 1. In this case we get ∆n = O(nd+1) and consequently Dn = O
(
(log k(n))d+1k(n)−1

)
.

3. η > 1. Here we have

∆n = O

∑
k≤n

kde−Λk(η−1)

 = O (1)

which rewrites to Dn = O
(
k(n)−1

)
.

In order to give a lower bound of the discrepancy it is sufficient to handle the case 0 < η ≤ 1.
If η > 1 we just use the trivial lower bound Dn ≥ 1/k(n) which meets the upper bound. For the
remaining case 0 < η ≤ 1 we consider the interval A = [0, p1[. We also recall that we can write Mr

(for r = rn = e−Λn) as
Mr = c′ eΛn + δn,

where δn has an representation of the form

δn = ndeΛn(1−η)
k∑

i=1

ci cos(2πθin+ αi) +O
(
nd−1eLn(1−η)

)
.

Similarly to the above we obtain

NA −Mrl(A) = Mr/p1
−Mrp1

= δn−n1 − p1δn

= ndeΛn(1−η)

(
k∑

i=1

ci cos(2πθin+ αi − 2πθin1)− p1

k∑
i=1

ci cos(2πθin+ αi)

)
+O

(
nd−1eΛn(1−η)

)
.

By applying Lemma 6.1 it follows that there exists δ > 0 and infinitely many n with

|NA −Mrl(A)| ≥ δndeΛn(1−η).

Consequently

Dn ≥
1
Mr

|NA −Mrl(A)| ≥ δ′nde−Λnη

for some δ′ > 0. This proves completes the proof of the lower bound (12).

11



4 The irrational case

As mentioned above, the case where log
(

1
p1

)
, . . . , log

(
1

pm

)
are rationally related is much more

difficult to handle, since the error term in the asymptotic expansion for Mr is not that explicit in
general, see Theorem 2.2. Nevertheless, we can provide upper bounds in some cases of interest.

Suppose that m = 2, set p = p1 and q = p2 and γ = (log p)/(log q). It is an easy exercise to
show that the number of intervals k(n) is given asymptotically by

k(n) ∼ m− 1
H

exp
(√

2n log
1
p

log
1
q

)
.

This follows from the fact that the equation k log p+ ` log q = x has at most one solution in integer
pairs (k, `). Hence, if we fix r in Khodak’s construction then the corresponding number n of steps
equals the number of non-negative integral lattice points (k, `) with k log p+ ` log q ≥ log r which is
given by

n =

(
log 1

r

)2
2 log 1

p log 1
q

+O

(
log

1
r

)
.

We have considered the case when γ is badly approximable, that is, the continued fractional
expansion of γ is bounded, and the case where p and q are algebraic.

Theorem 4.1. If γ /∈ Q and it is badly approximable, then the discrepancy is estimated by

D∗
n = O

((
log log (k(n))

log (k(n))

) 1
8

)
as n→∞.

Furthermore, if p and q are algebraic and γ /∈ Q then

D∗
n = O

((
log log (k(n))

log (k(n))

)κ)
as n→∞,

where κ > 0 is an effectively computable constant.

Note that the upper bounds for the discrepancy we obtained are worse than k(n)−β for any
β > 0. Actually it seems that we cannot do really better in the irrationally related cases. This
is due to the fact that lim infk 6=0<(sk) = −1 where sk, k 6= 0, runs through all the zeros of the
equation p−s + q−s = 1 different from s0 = −1 . Actually it seems that the continued fraction
expansion of γ = (log p)/(log q) could be used to obtain more explicit upper bounds. However,
since they are all rather poor it is probably not worth working them out in detail. The case m > 2
is even more involved, compare with the discussion of [10].

Proof. We use a procedure similar to that of the proof of Theorem 3.1. However, we have to use
the asymptotic expansion

Mr =
c′′

r
+O

(
1
r

(
log log 1

r

log 1
r

)κ)

12



with c′′ = (m− 1)/H and with a suitable κ > 0.
First it follows that

NU −Mrl(U) =
c′′

r
(l(I1) + . . .+ l(Ih)) +O

(
1
r r

(
log log r

r

log r
r

)κ)

− c′′

r
(l(I1) + . . .+ l(Ih)) +O

(
1
r

(
log log 1

r

log 1
r

)κ)

= O

(
1
r r

(
log log r

r

log r
r

)κ)
.

For the remaining interval A \ U we use the (trivial) bounds NA\U ≤ Mr/l(Ih+1) = O(r/r) and
l(Ih+1) = O(r) to end up with the upper bound

Dn = O

(
1
r

(
log log r

r

log r
r

)κ)
+O (r) .

Hence, by choosing

r =

(
log log 1

r

log 1
r

)κ/2

we finally obtain

Dn = O

( log log 1
r

log 1
r

)κ/2
 .

This completes the proof of Theorem 4.1.

5 Applications

5.1 LS-sequences

We recall that LS-sequences of partitions are iterative ρ-refinements of ω = [0, 1], where ρ

consists of L subintervals of [0, 1] of length α and S subintervals of length α2 and α is given by the
equation Lα+ Sα2 = 1.

For instance, if L = S = 1 then α =
√

5−1
2 and we obtain the so-called Kakutani-Fibonacci

sequence. Here we have p1 = α and p2 = 1− α = α2 and consequently

log
(

1
α

)
= n1Λ and log

(
1
α2

)
= n2Λ.

for Λ = − logα, n1 = 1 and n2 = 2. Since the roots of the equation 1 − z − z2 = 0 are given by
z1 =

√
5−1
2 = α = e−Λ and z2 = −

√
5−1
2 it follows that d = 0 and

η = 1 +
log |z2|

Λ
= 1 +

log
∣∣∣−√5−1

2

∣∣∣
− log

(√
5−1
2

) = 2

13



This shows that the discrepancy is of the order of 1/k(n) (and therefore it is optimal).
In the general case set L+S = m. Of course we are in the rational case since pj = α or pi = α2.

More precisely we have Λ = log(1/α) and ni ∈ {1, 2} corresponding to pi = αni . The zeros of the
equation

1− Lz − Sz2 = 0

are given by z1 = −L+
√

L2+4S
2S = α and z2 = −L−

√
L2+4S

2S . Hence,

η = 1 +
log
∣∣∣−L−

√
L2+4S

2S

∣∣∣
L

= 1 +
log
(

L+
√

L2+4S
2S

)
L

. (16)

Consequently we have η < 1 if and only if L+
√

L2+4S
2S < 1 or if S > L+ 1. Similarly we have η = 1

if and only if S = L+ 1 and η > 1 if and only if S < L+ 1. This is in perfect accordance with the
results of Carbone [4]. The discrepancy bounds are (or course) also of the same kind.

5.2 Sequences Related to Pisot Numbers

A Pisot number β is an algebraic integer (larger than 1) with the property that all its conjugates
have modulus smaller than 1. A prominent example of Pisot numbers are the real roots of a
polynomial of the form

zk − a1z
k−1 − a2z

k−2 − · · · − ak = 0, (17)

where aj are positive integers with a1 ≥ a2 ≥ · · · ≥ ak, see [3]. In this case the polynomial in (17)
is also irreducible over the rationals.

Suppose now that ρ is a partition of m = a1 + a2 + · · · + ak intervals, where aj intervals have
length αj , 1 ≤ j ≤ k, where α = 1/β and β is the Pisot number related to the polynomial (17).
Note that we have

a1α+ a2α
2 + · · ·+ akα

k = 1.

Since all conjugates of α have now modulus largen than 1 it follows that η > 1. This means that
the order of magnitude of the discrepancy is optimal, namely 1/k(n). LS-sequences are a special
instance for k = 1, a1 = L and a2 = S with L ≥ S.

5.3 Multiple Zeros

In the Pisot case all zeros of the polynomial are simple, since the polynomial is irreducible.
However, this is not necessarily true in less restrictive cases. For example, let α = 1/5 and consider
one interval of length α = 1/5, 16 intervals of lengths α2 = 1/25 and 20 intervals of lengths
α3 = 1/125. Since α + 16α2 + 20α3 = 1 we have a proper partition ρ. Here the roots of the
polynomial z + 16z2 + 20z3 = 1 are z1 = α = 1/5 and z2 = z3 = −1/2 (which is a double root).
Hence, we obtain η = 1− (log 2)/(log 5) = 0.56932 . . . < 1 and d = 1. Consequently the discrepancy
is bouded by

Dn = O((log k(n)) k(n)−η),
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and this upper bound is optimal.

5.4 The rational case on fractals

The same procedure of ρ-refinements could be used also to construct u.d. sequences of partitions
on fractals generated by an iterated function system (IFS) satisfying the Open Set Condition (OSC).
This class of fractals has been already considered in [12], where the authors introduced a general
algorithm to produce u.d. sequences of partitions and of points on fractals generated by an IFS
consisting of similarities which have the same ratio and which satisfy the OSC.

Now we can extend these results eliminating the restriction that the similarities have the same
ratio. In fact, we can get the same results as obtained on [0, 1] in Section 3 by introducing a new
correspondence between nodes and subsets of the fractal.

Let ϕ = {ϕ1, . . . , ϕm} be a system of m similarities on Rd having ratios c1, . . . , cm ∈ ]0, 1[
respectively and satisfying the Open Set Condition (OSC). Let F be the attractor of ϕ and let S
be its Hausdorff dimension. Moreover, we will consider the normalized S-dimensional Hausdorff
measure P on the fractal F , that is,

P (A) =
HS(A)
HS(F )

for any Borel set A ⊂ F ;

recall that P is a regular probability measure.
Start with a tree having a root node of probability 1, which corresponds to the fractal F , and

m leaves corresponding to the m imagines of F through the m similarities, i.e. ϕ1(F ), . . . , ϕm(F ).
The probability of each node is given by the probability P of the corresponding subset, that is,
pi = P (ϕi(F )) = cSi . At each iteration we select the leaves having the highest probability and
grow m children out of each of them. On the fractal, this corresponds to apply successively the m
similarities only to those subsets having the highest probability at this certain step. By iterating
this procedure, we obtain a parsing tree associated to the sequence of partitions on the fractal F .

Let us denote by {πn} the sequence of partitions of F generated in this way, such that

πn =
{
ψjk(n)

ψj(k(n)−1)
· · · ψj1(F ) : j1, . . . , jk(n) ∈ {1, . . . ,m}

}
.

where k(n) is the number of sets constructed at the step n.
Let us denote by En the collection of the k(n) sets En

i belonging to the partition πn and by E

the union of the families En, by varying n. The sets of the class E are called elementary sets.
In [12], it is proved that the class E is determining and consists of P -continuity sets. Now, if

we choose a point t(n)
i in each En

i ∈ En, we can consider the elementary discrepancy of this set of
points on the fractal, i.e.

DE
n = sup

E∈E

∣∣∣∣∣ 1
k(n)

k(n)∑
i=1

χE(t(n)
i )− P (E)

∣∣∣∣∣.
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By using a procedure similar to the one used in the proof of the Theorem 3.1 we get the following
estimates for the elementary discrepancy if log

(
1
p1

)
, . . . , log

(
1

pm

)
are rationally related:

DE
n =

{
O
(
(log k(n))dk(n)−η

)
if 0 < η ≤ 1,

O
(
k(n)−1

)
if η > 1.

(18)

Furthermore, both upper bounds are best possible. We just have to observe that the number N (n)
E

of elementary sets in En that are contained in an elementary set E is given by Mr/P (E) which implies

N
(n)
E =

c′

r
P (E) +O

(
| log r|d r−1+ηP (E)1−η

)
. (19)

This proves (18) directly for η ≤ 1 and also shows that this bound is optimal. If η > 1 then we
argue recursively. The elementary interval E is either contained in E1 = {ϕ1(F ), . . . , ϕm(F )}, which
means that we can use (19) for P (E) ∈ {p1, . . . , pn}, or it is part of ϕj(F ) for some j. In the latter
case we rewrite NE − k(n)P (E) to

NE − k(n)P (E) =
(
NE − k(n− 1)

P (E)
P (Ej)

)
+
(
P (E)
P (Ej)

− k(n)P (E)
)

which leads to a recurrence of the form

∆E
n = sup

E∈E

∣∣∣N (n)
E − k(n)P (E)

∣∣∣ ≤ ∆E
n−1 +O

(
ndeλn(1−η)

)
.

Hence ∆E
n = O(1) and consequently DE

n = O(1/k(n)) (which is also optimal).
In particular it follows that the sequence of partitions {πn} is u.d. with respect to P . Actually,

this remains true in the irrationally related case, too. However, we can only derive effective upper
bounds for the discrepancy in very specific cases.

There are few papers devoted to uniformly distributed sequences on fractals and to estimates of
the discrepancy, see [7, 6, 11]. The various types of discrepancy considered depend very much on
the geometric features of the fractal. Moreover, the only kind of discrepancy which makes sense for
all the fractals generated by IFS and satisfying the OSC is the so-called elementary discrepancy. A
unifying approach has been proposed by Albrecher, Matoušek and Tichy in [1], but it concerns the
average discrepancy.

6 Auxiliary Results

In this section we collect some auxiliary results that are used in the proof of Theorem 2.2 (see
Section 2).
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6.1 Trigonometric Sums

Lemma 6.1. Let f(n) =
∑k

i=1 ci cos(2πθin+αi), ci, αi, θi ∈ R be defined for non-negative integers
n and suppose that f is not identically zero. Then there exists δ > 0 such that |f(n)| ≥ δ for
infinitely many non-negative integers n.

Proof. We have to distinguish two cases:

Case 1 θ1, . . . , θk are rationally related.
There exist Λ ∈ R \ {0} and ki ∈ Z such that θi = Λki. In this case, we can rewrite the
function as follows

f(n) =
k∑

i=1

ci cos(2πΛnki + αi) =
k∑

i=1

ci cos(2π{Λn}ki + αi),

where {x} denotes is the fractional part of x.

Hence, f(n) = g({Λn}) where g(x) =
∑k

i=1 ci cos(2πkix+ αi) is a periodic non-zero function
of period 1.

Case 1.1 If Λ ∈ Q, then Λ = p
q for some coprime integers p, q ∈ Z and the sequence f(n)

attains periodically the set of values

g

({
pn

q

})
, n = 0, . . . , q − 1.

Since they are not all equal to zero there exists δ > 0 such that |f(n)| = |g({Λn})| ≥ δ

for infinitely many n. In particular we can use a linear subsequence qn + r for which
|f(qn+ r)| ≥ δ.

Case 1.2 If Λ /∈ Q, then the sequence {Λn} is u.d. modulo 1 and consequently dense in [0, 1].
Hence, there (again) exists δ > 0 such that |f(n)| = |g({Λn})| ≥ δ for infinitely many n.

Case 2 θ1, . . . , θk are irrationally related.
Here we divide the θi in groups which are rationally related. Assume that we have s groups
{θi : i ∈ Ij}, j = 1, . . . , s, and in each group we write

θi = Λjki, i ∈ Ij

with ki ∈ Z and some Λj ∈ R \ {0}.

In this case, we distinguish between three different sub-cases:

Case 2.1 1,Λ1, . . . ,Λs are linearly independent over Q (and consequently Λ1, . . . ,Λs /∈ Q).
We set fj(x) =

∑
i∈Ij

ci cos(2πxki + αi) (where we assume w.l.o.g. that fj is non-zero)
and g(x1, . . . , xn) =

∑s
j=1 fj(xj) Then

f(n) =
s∑

j=1

fj({nΛj}) = g ({nΛ1}, . . . , {nΛs}) .
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By Kronecher’s Theorem, the sequence ({nΛ1}, . . . , {nΛs}) is dense in the cube [0, 1]s.
Thus, it follows (as above) that there exists δ > 0 such that |f(n)| ≥ δ for infinitely
many n.

Note that by same reasoning it follows that for every ε > 0 we have |f(n)| ≤ ε for
infinitely many n. (Here we also use that fact that f has zero mean.) This observation
will be used in Case 2.3.

Case 2.2 1,Λ1, . . . ,Λs are linearly dependent over Q and Λ1, . . . ,Λs /∈ Q.
In this case there exist q, p1, . . . , ps ∈ Z such that q = p1Λ1 + . . . + psΛs. Suppose
(w.l.o.g.) that p1 > 0 and consider the subsequence of integers (p1n):

f(p1n) =
s∑

j=1

fj(nΛjp1)

= f1(n(q − Λ2p2 − · · · − Λsps)) +
s∑

j=2

fj(nΛjp1).

By using the addition theorem for cos and rewriting the sum accordingly we obtain a
representation of the form

f(p1n) =
s∑

j=2

∑
i∈Ij

f̃j(nΛjpj),

where f̃j are certain trigonometric polynomials. This means that we have eliminated Λ1.

In this way we can proceed further. If 1, p2Λ2, . . . , psΛs are linearly independent over Q
then we argue as in Case 2.1. However, if 1, p2Λ2, . . . , psΛs are linearly dependent over
Q then we repeat the elimination procedure etc. Note that this elimination procedure
terminates, since we assume that Λ1, . . . ,Λs /∈ Q. Hence, we always end up in Case 2.1.

Case 2.3 Λ1, . . . ,Λs are not all irrationals.
Here we represent f(n) = h1(n) + h2(n), where

h1(n) =
∑

j∈{j:Λj∈Q}

fj(n) and h2(n) =
∑

j∈{j:Λj 6∈Q}

fj(n).

If h1 is non-zero then we can argue as in Case 1.1. All appearing θi are rational and
consequently there exits a linear subsequence qn+ r such that |h1(qn+ r)| ≥ δ for some
δ > 0. Next we reduce the sum h2(qn+ r) to a sum of the form that is discussed in Case
2.1. (possibly we have to eliminate several terms as discussed in Case 2.2.). Consequently
it follows that there exists infinitely many n such that |h2(qn+r)| ≤ δ/2. Hence we have
|f(n)| ≥ δ/2 for infinitely many n.

If h1 is zero for all non-negative integers we just have to consider h2. But this case is
precisely that of Case 2.2.
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6.2 Zerofree Regions

The purpose of the next two lemmas is to discuss zero-free regions of the equation 1−p−s−q−s =
0 (where p, q are positive numbers with p+ q = 1). It is clear that s = −1 is a solution and that all
solutions have to satisfy <(s) ≥ −1. (Otherwise, we would have |p−s|+ |q−s| < 1.) Furthermore, it
is easy to verify that there are no solutions (other than s = −1) of the line <(s) = −1 if and only
if the ratio γ = (log p)/(log q) is irrational, compare also with [18]. Furthermore it is known that
there exist σ0 and κ > 0 such that in each box of the form

Bk = {s ∈ C : −1 ≤ <(s) ≤ σ0, (2k − 1)τ ≤ =(s) < (2k + 1)τ}, k ∈ Z \ {0},

there is precisely one zero of p−s + q−s = 1, and there are no other zeros.
However, the positions of the zeros in Bk is by no means clear. Nevertheless, with the help

of the continued fraction expansion of γ it is possible to construct (infinitely many) zeros s of the
above equation with <(s) < −1 + ε (for every ε > 0). Therefore it is natural to ask for zero-free
regions of this equation. Actually one has to assume some Diophantine condition on γ to get precise
information.

Lemma 6.2. If γ is badly approximable then for every solution s 6= −1 of the equation

1− p−s − q−s = 0

we have that
<(s) >

c

(=(s))2
− 1 (20)

for some positive constant c.

Proof. We recall that an irrational number γ is badly approximable if its continued fractional
expansion γ = [a0; a1; . . .] is bounded, that is, there exist a positive constant D such that max

j≥1
(aj) ≤

D. Equivalently we have the property that there exists a constant d > 0 such that∣∣∣∣γ − k

l

∣∣∣∣ ≥ d

l2
(21)

for all non-zero integers k, l, see [14].
In order to make the presentation of the proof more transparent we make a shift by 1 and

consider the equation
p1−s + q1−s = 1 (22)

and show that all non-zero solutions satisfy <(s) > c/=(s)2 for some positive constant c that
depends on γ.

Suppose that s = σ + iτ is a zero of (22) with σ > 0. Furthermore, we assume that σ ≤ ε,
where ε is a sufficiently small constant (that will be fixed in a moment). Since p + q = 1 and
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|p1−s| = p1−σ = p(1+O(ε)) > p and |q1−s| = q1−σ = q(1+O(ε)) > q we can only have a solution if
the arguments of p1−s and q1−s are small. (Actually they have to be of order O(

√
ε) if ε is chosen

sufficiently small). W.l.o.g. we write

arg(p1−s) = τ log(1/p) = 2πk + η1 and arg(q1−s) = τ log(1/q) = 2πl − η2

for some integers k, l and certain positive numbers η1, η2 (which are of order O(
√
ε)). More precisely,

by doing a local expansion in (22) we obtain

η2 =
q

p
η1 +O(η2

1) and σ =
p

2qH
η2
1 +O(η4

1).

Furthermore we have

γ =
τ log 1

p

τ log 1
q

=
2πk + η1

2πl − η2

=
k

l
+

1
2π

(
1
l

+
kp

l2q

)
η1(1 +O(η1/l)).

This means that k/l is close to γ and by applying (21) it follows that

η1 ≥
d′

|l|

for some constant d′ > 0. Consequently we obtain σ ≥ d′′/l2 (for some constant d′′ > 0) which
translates directly to σ > c/τ2 for some positive constant c.

Next we consider the case of algebraic number p and q with the property that log(p)/ log(q) is
irrational.

Lemma 6.3. If p, q ∈]0, 1[ are positive algebraic numbers with p + q = 1 and the property that
log(p)/ log(q) is irrational. Then for every solution s 6= −1 of the equation

1− p−s − q−s = 0

we have
<(s) >

D

(=(s))2C
− 1 (23)

with effectively computable positive constants C,D.

The classical theorem of Gelfond-Schneider says that γ = log(p)/ log(q) is irrational for algebraic
numbers p and q then γ is transcendental. Baker’s Theorem ([2]) gives also effective bounds for
Diophantine approximation of γ that will be used in the subsequent proof of Lemma 6.3. (Recall
that the height of an algebraic number is the maximum of the absolute values of the relatively
prime integer coefficients in its minimal defining polynomial, while its degree is the degree of this
polynomial.)
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Theorem 6.4 (Baker’s Theorem [2]). Let γ1, . . . , γn be non-zero algebraic numbers with degrees at
most d and heights at most A. Further, β0, β1, . . . , βn are algebraic numbers with degree at most d
and heights at most B (≥ 2). Then for

Λ = β0 + β1 log γ1 + . . .+ βn log γn

we have either Λ = 0 or |Λ| ≥ B−C , where C is an effectively computable number depending only
on n, d, and A.

Proof. (Lemma 6.3) We apply Theorem 6.4 for the algebraic number γ1 = p and γ1 = q and the
integers β0 = 0, β1 = l, and β2 = −k. Then B = max{|k|, |l|}. W.l.o.g. we may assume that p > q

which assures that we only have to consider cases with |k| ≤ |l|. Thus

|l log p− k log q| > B−C

and consequently ∣∣∣∣ log p
log q

− k

l

∣∣∣∣ > ( 1
log q

)
B−C

l
>

(
1

log q

)
1

l1+C
, (24)

where C is effectively computable.
By using (24) instead of (21) in the proof of Lemma 6.2 we complete the proof of Lemma 6.3

easily.

6.3 Differentiating Asymptotic Expansions

Lemma 6.5. Suppose that f(v) is a non-negative increasing function for v ≥ 0. Assume that

F (v) =
∫ v

0
f(w)dw

has the asymptotic expansion

F (v) =
vλ+1

(λ+ 1)
(1 +O (g(v))) as v →∞,

where λ > −1 and g(v) is a decreasing function that tends to zero as v →∞. Then

f(v) = vλ
(
1 +O

(
g(v)

1
2

))
as v →∞.

Proof.
By the assumption we have that there exist v0, c > 0 such that for all v ≥ v0 we have∣∣∣∣F (v)− vλ+1

(λ+ 1)

∣∣∣∣ ≤ c|g(v)| v
λ+1

(λ+ 1)
.

Now, set h = |g(v)|
1
2 v. By monotonicity, for v ≥ v0 we get

F (v + h)− F (v)
h

=
1
h

∫ v+h

v
f(w)dw ≥ 1

h

∫ v+h

v
f(v)dw = f(v)
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and so

f(v) ≤ F (v + h)− F (v)
h

≤ 1
h

(
(v + h)λ+1

λ+ 1
− vλ+1

λ+ 1

)
+

1
h

(
c|g(v + h)|(v + h)λ+1

(λ+ 1)
+ c|g(v)| v

λ+1

(λ+ 1)

)
≤ 1

h(λ+ 1)

(
vλ+1 + (λ+ 1)vλh+O(vλ−1h2)− vλ+1

)
+O

(
|g(v)|v

λ+1

h

)
= vλ +O

(
vλ−1h

)
+O

(
|g(v)|v

λ+1

h

)
= vλ +O

(
vλ−1|g(v)|

1
2 v
)

+O

(
|g(v)| vλ+1

|g(v)|
1
2 v

)
= vλ +O

(
vλ|g(v)|

1
2

)
.

Similarly we obtain a corresponding lower bound.
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