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Abstract: The ongoing pandemic of severe acute respiratory syndrome (SARS), caused by the SARS-
CoV-2 human coronavirus (HCoV), has brought the international scientific community before a state
of emergency that needs to be addressed with intensive research for the discovery of pharmacological
agents with antiviral activity. Potential antiviral natural products (NPs) have been discovered from
plants of the global biodiversity, including extracts, compounds and categories of compounds with
activity against several viruses of the respiratory tract such as HCoVs. However, the scarcity of
natural products (NPs) and small-molecules (SMs) used as antiviral agents, especially for HCoVs,
is notable. This is a review of 203 publications, which were selected using PubMed/MEDLINE,
Web of Science, Scopus, and Google Scholar, evaluates the available literature since the discovery
of the first human coronavirus in the 1960s; it summarizes important aspects of structure, function,
and therapeutic targeting of HCoVs as well as NPs (19 total plant extracts and 204 isolated or semi-
synthesized pure compounds) with anti-HCoV activity targeting viral and non-viral proteins, while
focusing on the advances on the discovery of NPs with anti-SARS-CoV-2 activity, and providing a
critical perspective.

Keywords: natural products; phytochemicals; antiviral protease inhibitors; ACE2; coronavirus;
SARS-CoV; MERS-CoV; antiviral agents; cytopathic effect; virus-host interactome

1. Introduction

Coronaviruses (CoVs), are enveloped, positive strand RNA viruses, with a genome of
27–33 kb, the largest in all RNA viruses. Their virion is spherical (approx. 125 nm diameter),
with club-shaped spike-proteins (S protein) that stick out from the surface and result in
a crown-like appearance of the enveloped virion [1]. There are seven known human
CoVs (HCoVs), (Figure 1) two of which (HCoV-229E, HCoV-NL63) belong to the alpha
genera of the subfamily Orthocoronavirinae [2] and the remaining five, HCoV-OC43, HCoV-
HKU1, MERS-CoV, SARS-CoV and SARS-CoV-2, belong to the beta genera. Most of the
circulating HCoVs cause symptoms of common cold, although they occasionally can also
cause severe or fatal disease. Three beta-CoVs, namely MERS-CoV, SARS-CoV and SARS-
CoV-2, emerged in the last 20 years causing several epidemics of acute respiratory illness
associated with high mortality: 10% CFR for SARS CoV-1 and 34% for MERS-CoV [3,4].
The SARS-CoV-2-induced COVID-19 pandemic has caused more than one million deaths
since the onset of the disease on 12 December 2019 [5,6]. The genomic sequences of
SARS-CoV and SARS-CoV-2 are 79.6% identical and their half-lives in aerosols and in
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plastic, metal and cardboard surfaces are reportedly similar [5,7]. The comparatively far
higher contagiousness and pandemic potential of SARS-CoV-2 are thought to reflect in
part the substantial prevalence of undocumented contagious infections compared to the
documented ones [7]. The contagiousness of the virus renders its containment difficult and
the demand for prophylactic and therapeutic agents an utmost necessity that drives the
scientific community in a massive screening effort. In this scenario, bioactive molecules
from the vegetable kingdom are a source worthful to mine. The modern tools of NPs
chemistry (fast identification, dereplication, fast chemical profiling, in silico screening) and
biological evaluation (high throughput in vitro screening assays, live infection assays, high
throughput genomics and proteomics of host’s response to infection) provide ample means
to explore plant biodiversity for discovery and/or development of NPs/SMs that can help
cope with COVID-19 and here we summarize the efforts accomplished up to date.
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Figure 1. Timeline of HCoV discovery.

The aim of this review is to summarize the anti-HCoV activity of natural products
and derivatives thereof and their potential for prevention and/or treatment of coronavirus
infections, COVID-19 in particular. We have reviewed the bibliography related to human
coronaviruses and natural products since the discovery of the first HCoV in the 1960s, up
to December 2020. Scopus, PubMed/MEDLINE, Web of Science, and Google Scholar, were
employed for the literature search. A total of 135 references related to CoVs and NPs were
assessed, while results corresponding to non-human coronaviruses were excluded. Finally,
52 original publications presenting results on anti-HCoV activity were incorporated in
the review, corresponding to 19 total plant extracts and 204 isolated or semisynthesized
pure compounds.

2. SARS-CoV-2 and SARS-CoV: Structural Aspects and Therapeutic Targeting

SARS-CoV is by far the most studied HCoV among the seven strains. It has a genome
size of almost 30 kb [4]. Electron microscopy has shown that the viral particles have an
average diameter of 80–140 nm and bear characteristic proteinaceous spikes (S) on the
envelope. The surface S protein, encoded by the most variable structural gene of the
genome [8], is involved in attachment and entry into the host cell, by interacting with key
host cell receptor, the angiotensin-converting enzyme 2 (ACE2) [9], and thus it is the main
target for antiviral peptides and antibodies. The ACE2 is a metalloprotease expressed in
the lung, intestine, liver, heart, vascular endothelium, testis and kidney cells [4]. Entry
into a host cell is an essential step of transmission of SARS-CoV. S protein binds to ACE2
through its S1 subunit but requires at least two protease cleavages to drive fusion through
its S2 subunit. Proteolysis at the S1/S2 boundary and a second site within S2 is known to



Molecules 2021, 26, 448 3 of 29

release a fusion peptide, which anchors on the host cell membrane to trigger a change of
S2 conformation that promotes virus insertion into the target cell [10]. Several proteases,
including extracellular proteases (e.g., elastases in the respiratory tract) and host cell
surface proteases (e.g., transmembrane protease serine 2, TMPRSS2) could cleave S protein
to render it fusion-competent. TMPRSS2 is reportedly requisite for S protein priming and
S2-driven fusion of viral and host membranes [11,12]. However, SARS-CoV can also enter
host cells through endocytosis and processing for fusion by endosomal cysteine proteases
(e.g., cathepsin L), whose activity is however not essential in presence of TMPRSS2 [13,14].
A combination of a TMPRSS2 inhibitor and a cathepsin L inhibitor can effectively block
SARS-CoV entry to host cells [15]. There are two major domains in S1, the N-terminal
domain (S1-NTD), which is known to bind sugars, and the C-terminal domain (S1-CTD),
which is responsible for recognizing the host receptor. ACE2 interacts specifically with a
single region of S1-CTD, known as receptor binding domain (RBD). Host susceptibility to
SARS-CoV infection is primarily determined by the affinity of RBD for ACE2 [16]. The RBD
binds to the outer surface of the peptidase domain of ACE2, without involving or affecting
the peptidase activity, which is not requisite for virus entry [10]. Determination of the
crystal structure of SARS-CoV RBD complexed with ACE2 (PDB code: 2AJF) and functional
studies have resolved several mechanistic aspects of ACE2 recognition by SARS-CoV and
can help to develop effective vaccines.

SARS-CoV-2 is very closely related to SARS-CoV. The S1 and S2 subunits of SARS-
CoV and SARS-CoV-2 are largely conserved, with the S2 subunits sharing the higher
sequence identity (88%). Nevertheless, the SARS-CoV-2 S protein contains a furin-cleavage
site that is involved in the biogenesis of the virus and differentiates it from all other
SARS-like coronaviruses [17,18]. Like SARS-CoV, SARS-CoV-2 binds to ACE2 with high
affinity [11,19,20]. The crystal structures of SARS-CoV and SARS-CoV-2 RBD bound to the
S-binding domain of ACE2 are nearly identical [21]. The cryo-EM structure of SARS-CoV-2
S protein trimer is also reported [18,22]. The RBD is encoded by the most variable gene
of SARS-CoV-2 genome. Although most of the amino acid residues that are essential for
binding of SARS-CoV RBD to ACE2 are conserved in SARS-CoV-2 RBD, the latter is not
recognized by several monoclonal antibodies directed to SARS-CoV RBD [22]. However,
sera from mice immunized with SARS-CoV could inhibit SARS-CoV-2 host cell entry by
nearly 90% [18]. Both SARS-CoV and SARS-CoV-2, use TMPRSS2 for S protein priming,
and camostat mesylate (an approved TMPRSS2 inhibitor) was reported to partially inhibit
SARS-CoV-2 cell entry. However, in cell lines expressing both TMPRSS2 and cathepsins B
and L (CathB/L), full inhibition was observed with a combination of camostat mesylate
and E-64d, an inhibitor of CathB/L [11].

The genome of both SARS-CoV and SARS-CoV-2 encodes also several non-structural
proteins (Nsps), including RNA-dependent RNA polymerase (RdRp, nsp12), [23,24] heli-
case/NTPase (simply helicase) [25], and two cysteine proteases involved in viral nascent
polyprotein processing in different sites, namely 3CLpro (chymotrypsin-like protease, also
known as the main protease, Mpro) [26,27] and PLpro (papain-like protease) [28]. RdRp
is the catalytic center of the replication/transcription complex formed by its interaction
with multiple Nsps (nsp7, nsp8), [23] while it is the target of remdesivir, a nucleotide
analogue that has recently been approved by FDA, for COVID-19 treatment [29,30]. The
two cysteine proteases of the two SARS-CoVs, share a great similarity and are an attractive
target for antiviral discovery. 3CLpro [31] and PLpro [32] participate in the proteolytic cleav-
age cascade of the viral polyproteins (1a and 1ab), which is essential for the maturation
and replication of the virus. Specifically, 3CLpro cleaves pp1a and pp1b in more than
11 positions, and also releases the key-factors for replication RdRb and helicase [33]. PLpro

cleaves the polyprotein in 3 sites and also has a deubiquitinating (DUB) and deISGylating
(deISG) activity. This latter property poses implications for the host immune response
in viral infection. It has been shown that ISGylation is important for viral clearance and
protection, while ubiquitination is implicated in innate immune signaling pathways [34].
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3. NPs with Anti-HCoV Potential

Before the emergence of SARS-CoV and MERS-CoV, the investigation of NPs as
anti-HCoV agents was limited to only a few studies. The two epidemics have spurred
however the interest in the discovery of anti-HCoV agents, including the investigation of
agents active against the “common cold” HCoVs, 229E, NL63, OC43 and HKU1. Screen-
ing chemical libraries against target proteins and/or viral replication in cell-based assays
have been extensively employed, resulting in the discovery of several antiviral natural
products/small molecules (NPs/SMs) [35–38]. It was found that NPs/SMs are a rich
source of drug potential leads against coronaviruses due to their pronounced structural
diversity and complexity. Several compilations of pre-2020 findings on NPs/SMs with
activity against coronaviruses were recently reported, some of which could serve as leads
for the development of new drugs [39–50]. Among the identified molecules the majority
is represented by NPs (Figure 2a) and most of them have been found as inhibitors of
SARS-CoV (Figure 2b). Among them, the most numerous classes are flavonoids, triter-
penes and alkaloids (Figure 2c), which is not surprising since in these classes reside the
greatest number of NPs described as endowed with inhibitory activity against replication
of multiple different viruses. In addition, flavonoids are a class of NPs present in almost
every plant species and are strongly represented in various NP-based chemical libraries
available for screening.

In the majority of studies, the initial screening involves the addition of the compound
or extract to be tested in the normal cell culture, and a subsequent inoculation with the
desired viral strain. The cytopathic morphology of the cells is evaluated under a microscope,
while the cytotoxicity of the compound/extract is evaluated in normal cells and compared.
Compounds with low cytotoxicity are then typically evaluated in multiple concentrations
for their ability to inhibit viral replication (EC50) and host cell growth (CC50), and the
selectivity index (SI, CC50/EC50 ratio) is used to identify the lead compounds, where higher
SI refers to compounds more active than toxic. To a first step in investigating the molecular
mechanisms underlying the antiviral activity, interactions of the lead compounds with
identified targets, such as viral proteases, host proteases, or viral S proteins, are evaluated.
Due to the additive complexity of the host/virus system, it is rather difficult to correlate
cytopathic effects (CPE) to specific target interaction/inhibition, and this is the case for most
natural products tested for their anti-HCoV potential, where extensive mechanistic studies
are limited. Available in the Supporting Information are Table S1 (Plant extracts tested for
anti HCoV activity in various strains), Table S2 (Pure natural products and nature-derived
compounds tested for anti HCoV activity in various strains), Table S3 (Inhibitory activity
of extracts against the main protease of SARS-CoV, 3CLpro) and S4 (Inhibition of HCoV
enzymes from natural and nature-derived products), summarizing the results of anti-HCoV
evaluation (viral enzyme inhibition, cell-based assays against viral propagation) of NPs
against all strains.

3.1. “Common Cold” HCoVs

HCoV-229E (alpha-HCoV) and HCoV-OC43 (beta-HCoV) were identified in the mid-
60s, as two of the strains causing the common cold [51–53]. The presence of non-typical
respiratory viral strains was suspected since 1962, yet difficulties in cultivating viruses
impeded scientists from discovering those strains earlier [52]. Van der Hoek, reviews
the discovery and clinical manifestations of those “old HCoVs” [54]. Replication of both
strains in the human body produces similar symptoms, such as excess nasal excretions,
light cough, malaise and rarely, fever. Nevertheless, those strains were proven serologically
unrelated, as antibodies isolated from OC43-infected persons, were unable to neutralize
229E. Lower respiratory tract infection was found more common in children and the
elderly, manifested with bronchitis, bronchiolitis, croup, and pneumonia, while healthy
adults presented mainly common cold. The prevalence of old CoVs infection in the
general population has been studied in several cases, although difficult because of the
varying clinical manifestations. Reverse-transcription PCR (RT-PCR) has been used for the
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identification of HCoV viral strains, in one of the largest studies among the UK population,
revealing the autumn-winter seasonality of OC43, the lack of seasonality for 229E and
its high detection in immunocompromised patients [55]. There are several indications
that viral infection from 229E reprograms the host cell transcriptome with a subsequent
fine-tuning of NF-κB, in order to ensure optimal replication [56].
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HCoV-229E uses human aminopeptidase N/CD13 glycoprotein (APN) to infect host
cells. APN is a metalloprotease expressed in lung, intestinal, and kidney epithelium. The
receptor was discovered in 2004, nearly 40 years after the discovery of the virus [57], while
the X-ray crystal structures of the RBD of the S protein in complex with hAPN, as well
as the electron cryomicroscopy structure of the 229E S-protein, was reported in 2019 [58].
Characterization and mapping of the fusion core of the S protein revealed that the domain
HR1 folds into an unusually long helix, in post-fusion conformation, while there are very
strong interactions between domains HR1 and HR2 that should be taken into account when
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designing antiviral agents mimicking HR2 binding to HR1 [59–61]. As in many CoVs, the
S protein of 229E is cleaved by TMPRSS2, human airway trypsin-like protease (HAT) [62],
and cathepsin L (CPL) [63]. Recent data show that cleavage into S1/S2 subunits by TM-
PRSS2 is not a prerequisite for infection, as the virus can use alternatively the endocytic
pathway [64]. HCoV-NL63 is closely related to 229E and was discovered in 2004 in infants
and immunocompromised patients [65,66]. NL63 uses the same receptor as SARS-CoV for
viral entry (ACE2) [67], while the crystal structure of the S protein RBD in complex with
ACE2 was reported in 2009, revealing that although NL63 and SARS recognize the same
receptor regions, their RBD cores have no structural homology [68]. Currently, there are
very few attempts to investigate the antiviral activity of extracts against 229E and NL63. A
standardized extract of Pelargonium sidoides (Geraniaceae) displayed weak activity against
229E (EC50 = 44.50 µg/mL) and is approved in Germany as a phytotherapeutic against res-
piratory infections, was tested in a panel of respiratory viruses and showed a weak activity
against 229E with an EC50 of 44.50 µg/mL [69]. In an early study, Stevia sp. extracts rich in
steviosides used as a natural sweetener, showed virostatic and virucidal activity against
229E, yet there was no follow-up of the results reported [70]. Indole alkaloids indigodole
B and tryptanthrine, isolated from Strobilanthes cusia (Acanthaceae) have been shown to
reduce NL63 titers in early and late stages of LLC-MJ2 cells infection, while inhibiting
enzymes vital for viral replication (PLP2, RNA polymerase) [71]. Isolated NPs/SMs that
have been tested for their effect in 229E in vitro replication include saikosaponins isolated
from Bupleurum and Heteromorpha species (Apiaceae) [72], pentacyclic triterpenes isolated
from Euphorbia neriifolia (Euphorbiaceae) [73], xanthones isolated from Calophyllum blancoi
(Guttiferae), [74] and the flavagline silvestrol that is isolated from plants of the genus Aglaia
(Meliaceae) [75]. Silvestrol (Figure 3) in particular, had an EC50 in the nanomolar range
(3.0 nM) in infected MRC-5 cells and an excellent Selectivity Index (>3300), showing no sig-
nificant cytotoxic effect in the primary cells used [75]. Tacrolimus, an immunosuppressant
drug isolated from the soil bacterium Streptomyces tsukubaiensis [76], was found to inhibit
replication in NL63 and 229E with an EC50 of 5.1 and 5.4 µM, respectively [77].

Molecules 2021, 26, x FOR PEER REVIEW 7 of 29 
 

 

 
Figure 3. NPs active against HCoVs replication. 

The sialoglycan binding site of the S protein is conserved among all CoVs that bind 
to 9-O-acetyl-sialic acids, including the two HCoVs OC43 and HKU1. Sialic acids are im-
portant receptors in many human pathogens including Influenza viruses. Specifically, In-
fluenza A/B hemagglutinin esterase (HE) and Influenza C/D hemagglutinin esterase fu-
sion protein (HEF), all use modified sialic acids for infection. Also, it has been proposed 
that the HE protrusions of OC43 have a phylogenetic relationship with Influenza C HEF, 
while at the same time act in synergy with the 9-O-acetyl-sialic acids-binding domain of 
the OC43 S protein [79]. It is observed that ligand specificity of HKU1 and OC43 S protein 
and Influenza C/D HEF is similar, as all recognize 9-O-acetylsialic acids through hydrogen 
bonding with the 9-O-acetylcarbonyl moiety and formation of a hydrophobic pocket ac-
commodating the 9-O-acetylmethyl group [82].  

To our knowledge, no study on the antiviral potential of extracts against OC43 and 
HKU1 exists up to now, while no NPs were ever tested for HKU1 antiviral activity. Nev-
ertheless, several studies exist concerning purified NPs/SMs, with emphasis on isoquino-
line alkaloids. Cepharanthine, fangchinoline and tetrandrine isolated from Stephania 
tetrandra (Menispermaceae) have been very recently shown to inhibit OC-43 induced cell 
death of lung cells, in early stage of infection, and suppress viral replication [83,84]. Ad-
ditionally, in a recent screening for broad spectrum anti-HCoV agents against NL63, OC43 
and MERS, alkaloids lycorine (Table S1) and emetine inhibited viral replication of all 
strains with EC50 below 5 μM [84]. In the same study, the in vivo antiviral activity was 
established against a lethal intraperitoneal injection of OC43 in female BALB/c mice, 
where after administration of lycorine for 14 days post-inoculation (15 mg/kg) more than 
80% of the mice were still alive [84]. 

  

Figure 3. NPs active against HCoVs replication.

HCoV-OC43 is more similar to HCoV-HKU1 (beta-HCoV) that was recovered in 2005
from adult patients with pneumonia [78]. Their fundamental difference from all other
HCoVs is that their virions have two surface projections participating in infection: the
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common in all HCoVs S protein, and protrusions comprised of hemagglutinin esterase
(HE) [79]. In the case of both OC43 and HKU1 the S protein binds to 9-O-acetyl-sialic acids,
attached to glycoproteins and lipids of the host cell membrane, in order to infect while the
HCoV HE protrusions don’t seem to play a vital role [80,81].

The sialoglycan binding site of the S protein is conserved among all CoVs that bind
to 9-O-acetyl-sialic acids, including the two HCoVs OC43 and HKU1. Sialic acids are
important receptors in many human pathogens including Influenza viruses. Specifically,
Influenza A/B hemagglutinin esterase (HE) and Influenza C/D hemagglutinin esterase
fusion protein (HEF), all use modified sialic acids for infection. Also, it has been proposed
that the HE protrusions of OC43 have a phylogenetic relationship with Influenza C HEF,
while at the same time act in synergy with the 9-O-acetyl-sialic acids-binding domain
of the OC43 S protein [79]. It is observed that ligand specificity of HKU1 and OC43 S
protein and Influenza C/D HEF is similar, as all recognize 9-O-acetylsialic acids through
hydrogen bonding with the 9-O-acetylcarbonyl moiety and formation of a hydrophobic
pocket accommodating the 9-O-acetylmethyl group [82].

To our knowledge, no study on the antiviral potential of extracts against OC43 and
HKU1 exists up to now, while no NPs were ever tested for HKU1 antiviral activity. Never-
theless, several studies exist concerning purified NPs/SMs, with emphasis on isoquinoline
alkaloids. Cepharanthine, fangchinoline and tetrandrine isolated from Stephania tetrandra
(Menispermaceae) have been very recently shown to inhibit OC-43 induced cell death of
lung cells, in early stage of infection, and suppress viral replication [83,84]. Additionally, in
a recent screening for broad spectrum anti-HCoV agents against NL63, OC43 and MERS,
alkaloids lycorine (Table S1) and emetine inhibited viral replication of all strains with EC50
below 5 µM [84]. In the same study, the in vivo antiviral activity was established against a
lethal intraperitoneal injection of OC43 in female BALB/c mice, where after administration
of lycorine for 14 days post-inoculation (15 mg/kg) more than 80% of the mice were still
alive [84].

3.2. MERS-CoV

A limited number of NPs have been tested for anti-MERS-CoV activity in cell-based
infection assays, while their activity has not been associated with a specific target. The
majority of the NPs/Sms tested exhibited good activity (EC50 < 20 µM), nevertheless,
SI was found relatively low for most compounds. Alkaloids like emetine (ipecac alka-
loids), lycorine (Amaryllidaceae alkaloids), harmine (β-carboline alkaloids), and conessine
(steroidal alkaloids) exhibit increased potency with EC50 < 5 µM. Emetine in particular,
was found to inhibit viral S-mediated entry [84] Notably, silvestrol, a flavagline isolated
from the tree bark of Aglaia sp. (Meliaceae) [85] is the only NP with an EC50 in the nanomo-
lar range (1.3 nM), by inhibiting the expression of MERS N-protein and nsp8 [75]. Only
one original publication investigates a large panel of secondary metabolites isolated from
Broussonetia papyrifera (Moraceae), for their ability to inhibit MERS two major proteases
PLpro and 3CLpro. Limited potency was found for all tested compounds, against both
proteases (IC50 > 27 µM) [86]. Recently, a library containing 502 NPs/SMs of various origin
was screened for anti-MERS activity, in a MERS pseudovirus pre- infection assay. After
confirmation of the actives in pre- and post- infection assays with MERS, dihydrotanshi-
none was identified to both block the viral entry by binding to the S protein of MERS, and
possibly inhibiting viral replication [87].

3.3. SARS-CoV

Limited studies exist examining the anti-SARS-CoV activity of plant extracts, while
some promising results of antiviral activity have no follow-up to determine the mechanism
of action and specific targets [88–94]. A study on more than 200 plant extracts against
two SARS-CoV viral strains (BJ-001 and BJ-006) revealed that the ethanol cortex extract of
Lycoris radiata (Amaryllidaceae) inhibited the virus-induced CPE in both strains (EC50 2.4
and 2.1 µM, respectively) and had good SI (>350). After fractionation of the active extract,
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the antiviral activity was attributed to the alkaloid fraction that contains lycorine, although
the specific mechanism of action has not been identified [89].

The anti-herpes activity of aloe emodin, a known anthraquinone isolated from Rheum
palmatum (Polygonaceae), has prompted studies for anti-HCoV activity. Aloe emodin has
been studied in multiple aspects of viral infection, although no studies of cell-based direct
anti-SARS-CoV activity have been performed with the use of a real SARS strain. Aloe
emodin is shown to bind the S protein of SARS-CoV thus possibly inhibiting host cell
entry [95], inhibit the ion channel formed by the 3a protein of SARS and OC43 strains pos-
sibly inhibiting virus release, [96] and very weakly inhibit the activity of SARS 3CLpro [97].
Other examples of NPs/SMs with rather well-defined modes of anti-HCoV action tetra-
O-galloyl-β-D-glucose, which binds to the S protein of SARS, inhibiting host cell entry of
the virus [98], and cyclosporine A and derivatives thereof, which are known to suppress
SARS-CoV and MERS-CoV replication by inhibiting cyclophilin A [99].

Notable anti-SARS-CoV activity is attributed to the phenanthraindolizidine alkaloids
tylophorine (Figure 3) and tylophorine N-oxide isolated from Tylophora indica (Apocy-
naceae), with EC50 0.018 and 0.34 µM, respectively [100]. As shown from published data,
natural and semisynthetic pentacyclic triterpenes have shown very good anti-SARS-CoV
activity, with betulonic acid being the most active with an EC50 of 0.63 µM [37,101–103].
Interestingly, the 3β-OH analogue of betulonic acid (betulinic acid), had a weak antiviral
activity (EC50 > 10 µM), although it strongly inhibited SARS-CoV 3CLpro (IC50 = 10 µM),
contrary to betulonic acid (IC50 > 100 µM) [102]. Diterpenoids with various structures
have also a significant potency against SARS-CoV, with the abietane diterpene ferruginol
isolated from Chamaecyparis obtusa (Cupressaceae) showing an EC50 of 1.39 µM, while the
labdane diterpene pinusolidic acid inhibited SARS-CoV infection with an EC50 of 4.71 µM
and an excellent SI (159) [102].

Some other structurally diverse NPs /SMs have shown anti-SARS-CoV activity with
EC50 close or below 10 µM (reserpine, β-yohimbine [37], gallic acid [98], honokiol, forskolin,
magnolol [102], luteolin [98]), yet most of the compounds tested exhibited limited activity
(EC50 > 20 µM) [37,91,102,104,105].

Significant efforts towards the discovery of viral cysteine protease inhibitors from
NPs/SMs have been made. 3CLpro is inhibited by several NPs with diverse structures
such as biflavonoids (amentoflavone, ginkgetin, sciadopitysin, bilobetin) [106], flavonoids
(apigenin, quercetin, hyperoside, quercetine L-fucose derivatives, herbacetin, luteolin,
pectolinarin, rhoifolin, hesperetin, kazinol A, kazinol B, broussoflavan A, papyriflavonol A,
kaempferol, 4-hydroxyisolonchocarpin [86,97,106,107], isolflavones (daidzein) [97], pen-
tacyclic triterpenes (betulinic acid, celastrol, iguesterin, pristimerin, tingenone) [102,108],
phytosterols (β-sitosterol) [109], lignans (savinin) [102], indole alkaloids (indican, indigo,
indirubin, semisynthetic isatin analogues) [97,110,111], glucosinolates (sinigrin) [97], an-
thraquinones (emodin, aloe emodin) [109], theaflavins (3-Isotheaflavin-3-gallate, theaflavin-
3,3′-digallate) [112], phenanthrenes (crytotanshinone, tanshinone IIa, dihydrotanshinone
I, tanshinone I, methyl tanshinonate, tanshinone IIB, rosmariquinone) [113], phlorotan-
nins (dieckol, 7-phloroeckol, 2-phloroeckol, dioxinodehydroeckol, phlorofucofuroeckol A,
fucodiphloroethol G) [114], chalcones (broussochalcone B, 3′-(3-methylbut-2-enyl)-3′,4,7-
trihydroxyflavane, isoliquiritigenin, broussochalcone A) [86,115], (diarylheptanoids (hir-
sutenone, hirsutanonol, rubranoside B, rubranoside A, rubranol, oregonin, platyphyllenone,
platyphyllonol 5-O-β-D-xylopyranoside, platyphyllone, curcumin) [102,116], and diaryl-
propanoids (kazinol F) [86]. Among the NPs tested, the pentacyclic triterpene iguestrin,
isolated from the root methanol extract of Tripterygium regeli (Celastraceae) was the most
active with an IC50 of 2.6 µM, followed by pristimerin (5.5 µM) [108], amentoflavone
(8.3 µM) [106], and 3-theaflavin-3-gallate (9.8 µM) [112]. Notably, semisynthetic diversely
substituted analogues of isatin, a small molecule of natural origin derived from the oxida-
tion of the purple dye indigo, were found very active towards 3CLpro, with IC50 ranging
from the lower micromolar range (0.95 µM), to 23.5 µM [110,111].
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Similarly, several NPs/SMs inhibit SARS-CoV PLpro, like chalcones (bavachalcones,
broussochalcones) [86,115,117], cinnamates, [118] coumarins, [117] diarylheptanoids (hir-
sutenone, curcumin, hirsutanonol, rubranosides A and B, rubranol, oregonin, isoliquiriti-
genin, papyriflavonol A) [86,116], diarylpropanoids (kazinols) [86], flavonoids (tomentins,
quercetin, diplacone, mimulone, kaempferol, hyperoside, etc.) [86,119], isoflavones (corylifol A,
neobavaisoflavone, bavachinin) [117], and phenanthrenes (tanshinones, rosmariquinone) [113].
Notably, tanshinone derivatives isolated from Salvia miltiorrhiza (Lamiaceae) have been
found to exhibit very good inhibitory activity against PLpro, with cryptotanshinone having
an IC50 of 0.8 µM [113], while an unusual a chalcone derivative with a hyperoxide group
isolated from the ethanol leaves extract of Angelica keiskei (Apiaceae) showed an IC50 of
1.2 µM [115].

Finally, only one study investigates the inhibition of SARS-CoV helicase from NPs.
The known flavonoids scutellarein and myricetin were found to inhibit nsp13 with IC50
0.86 and 2.71 µM, respectively [120].

Very few NPs or NPs-inspired SMs/SMs, have been investigated for their in vivo anti-
HCoV effect. In a 2006 study, several in vitro viral inhibitors were also tested for in vivo
efficacy. Chloroquine and phosphate salts, amodiaquine and pentoxifylline were first
evaluated in vitro against SARS-CoV replication, with EC50 ranging from 1 to 10 µM [121].
Chloroquine and amodiaquine are quinoline analogues of quinine, the latter isolated from
the bark of Cinchona sp. (Rubiaceae), and pentoxifylline is a synthetic analogue of theo-
phylline present in tea and cocoa tee. The in vitro promising results were not verified in
the BALB/c SARS-CoV infection model, where all the aforementioned compounds did
not reduce the virus titer in the lungs post-infection, in a statistically significant man-
ner [122]. More recently, a study of the effect of compassionate use of hydroxychloroquine
or chloroquine in-hospital outcomes for COVID-19 was unable to confirm the benefit of
such treatment [123]. The discovery of most of these NPs/SMs was based on high through-
put 3CLpro inhibitory assays. For instance, herbacetin, pectolinarin and rhoifolin were
found to efficiently block the enzymatic activity of SARS-CoV 3CLpro following a screening
of a large flavonoid library against purified 3CLpro using a tryptophan-based fluorescence
method to monitor flavonoid-dependent inhibition of proteolysis of a custom-synthesised
fluorogenic substrate [124].

Glycyrrhizin (Figure 3) was found to inhibit both SARS-CoV penetration in host cells
and virus replication (SI 67). A 2003 study investigating the effect of glycyrrhizin during
several stages of infection of Vero cells i.e., during virus absorption, after absorption, and
both during and after absorption reported that glycyrrhizin was most effective both during
and after adsorption (EC50 300 mg/L) [125]. This study prompted for the development
of several glycyrrhizin analogues that showed very potent SARS replication inhibitory
activity and, in some cases, SI > 41. For carbamido- analogues of glycyrrhizin, the EC50 was
significantly low, and that lead to the speculation that those analogues bind to the S protein
of SARS through the glucosamine moiety, thus blocking viral entry to the cell [101]. When
tested against HCoV-NL63, glycyrrhizin showed no antiviral effect [126]. Glycyrrhizin
moderately inhibits infection of Vero cells with porcine epidemic diarrhea virus (PEDV),
a coronavirus prevalent in the swine industry. It inhibits viral entry and replication,
while virus assembly and viral release remain unaffected. Interestingly, it was found that
glycyrrhizin significantly decreases the mRNA of proinflammatory cytokines, namely IL-6,
IL-8 and TNF-a, suggesting that it reduces the proinflammatory response of the host cells
during viral infection [127]. This reduction in the proinflammatory effects by glycyrrhizin,
has been confirmed also with infection of lung epithelial cells with the highly pathogenic
H5N1 influenza strain [128]. For SARS, the antiviral mechanism of action of glycyrrhizin
is unclear and may include both the interaction with a specific molecular target, and the
attenuation of proinflammatory host cell response, as suggested by the previous studies.

SARS infection inflicts a dysregulation in the immune response of the host and is fol-
lowed by upregulation of proinflammatory cytokines and activation NF-κB. NPs inhibiting
NF-κB, and thus having the potential to diminish the severity of SARS infection, have been
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studied in mouse models. Caffeic acid phenethyl ester (CAPE) and parthenolide, although
having no impact on SARS replication, were found to significantly decrease the levels of
proinflammatory cytokines and lung pathology of SARS infected BALB/c mice [129]. Most
importantly, treatment with these drugs that inhibited NF-κB activation led to reduction
in inflammation and lung pathology in both SARS-CoV-infected cultured cells and mice
and significantly increased mouse survival after SARS-CoV infection. These data indicated
that activation of the NF-κB signaling pathway represents a major contribution to the
inflammation-induced after SARS-CoV infection and that NF-κB inhibitors are promising
antivirals in infections caused by SARS-CoV and potentially other pathogenic human
coronaviruses.

3.4. SARS-CoV-2
3.4.1. Virtual Screening Approaches

Crystallography of HCoV enzymes and reports on their potential ligands, have as-
sisted computational methods (docking-scoring calculations of protein-ligand interactions
using similarity to known actives) to discover SARS-CoV-2 inhibitors [27]. Virtual screen-
ing is extensively employed for the moment, to identify potential ligands from SMs and
in-house NPs libraries [130–132].

Regarding 3CLpro, recent efforts, have identified potential inhibitors among: alka-
loids [133–138], and especially indole alkaloids [139–144]; terpenoids [138], and especially
diterpenes [133,145]; sesquiterpenes [134,146,147], sesquiterpene lactones [148], and triter-
penes [133,136,140,149]; anthocyanins [150,151] and proanthocyanidins [152,153]; ellagitan-
nins [153,154]; flavonoids [133,137,140,144,147,148,152,155–161], biflavonoids [162], and
macrocyclic flavonoids [148]; isoflavones [144,148]; chalcones [163,164]; lignans [133,134];
coumarins [159]; caffeic acid esters and cinnamates [144,153,165,166]; stilbenes [148]; di-
arylheptanoids [165,167]; polyketides [138]; quinones [168]; oligosaccharides [157]; dep-
sipeptides [169]; and xanthones [164].

In a more limited number of studies, potential affinity to PLpro has been suggested for
flavonoids and biflavonoids [133]; chalcones [163]; caffeic acid esters [133]; terpenoids and
sesquiterpene lactones [133,138]; polyketides [138]; and alkaloids [133,138].

The active site of RdRp has been also investigated as a possible target of inhibition
finding multiple possible ligands, such as flavonoids, xanthones [133], polyketides [138],
terpenes and sesquiterpene lactones [133,138], and alkaloids [138,143]. Finally, alkaloids,
polyketides and terpenes have shown affinity for non-structural protein 15 (nsp15) of SARS-
CoV-2 [138], while several NPs have been investigated as potential ligands to virulence
factors Nsp1 (suppresses type-I IFN expression), Nsp3c (promotes replication of the viral
genome and transcription of viral mRNA) and ORF7a (inhibits virus restriction) [133].

Homology modeling is a tool that was also used for the identification of NPs that
interfere with the S protein interface with the human receptor ACE2. The only NP that
was identified through virtual screening to potentially interfere with ACE2-mediated host
cell entry, was hesperidin [170], although selected flavonoids and epigallocatechins have
shown an affinity for the S protein. Recent research indicated that the S protein of SARS-
CoV-2 contains a furin-like cleavage site that is absent from SARS-CoV, pointing to the
need of developing specific furin inhibitors [17]. This is a new finding that is currently
under intensive investigation [171].

It has been demonstrated that the serine protease TMPRSS2 is needed for S protein
priming and host cell entry [11]. Virtual screening of natural SM libraries against a TM-
PRSS2 structure built by homology modeling detected several potential protease inhibitors,
including norsesquiterpenes, diterpenes and xanthones, [133,164,172] alkaloids, [173] chal-
cones, [164] coumarins, [173] and flavonoids. [174] Interestingly, SARS-CoV infectivity is
reportedly associated TMPRSS2 expression levels, which are induced by androgens and
suppressed by estrogens, implying that natural estrogen receptor agonists (e.g., genistein)
and androgen receptor antagonists (e.g., atraric acid, indole-3-carbinol, niphatenone B)
could impact SARS-CoV-2 infection [175–178].
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3.4.2. Actual Screening of NPs for Anti-SARS-CoV-2 Activity

The first results from the physical screening of NPs for anti-SARS-CoV-2 using host
cells and/or viral enzymes have been published very recently. A high throughput cell-
based screening assay was established by Zhang et al. [179] according to which the effect
of potential inhibitors in the CPE in Vero-E6 cells is assessed in the entire viral cell cycle.
Known inhibitors were used as positive controls (remdesivir, chloroquine, neutralizing
human antibody CB62 and IFN-α), while multiple concentrations of DMSO in the culturing
media was used in order to determine potential solvent effects on CPE. A library of
1058 compounds was screened, in a two-level assay: the first screening revealed 30 hits
(>50% protection from CPE), 17 of which have never been associated with SARS-CoV-
2 through different assays. (Table 1) Further evaluation showed that viral propagation
was inhibited in a dose-dependent manner, while EC50 values ranged between 0.011 and
11.03 µM. In an attempt to identify possible mechanisms of action of active compounds
bufalin and digoxin, it was postulated that those compounds target the ion transport
function of Na+/K+-ATPase, and intracellular ion homeostasis [179], with the most potent
inhibitor represented by the quassinoid derivative bruceine A (Table 1) that displayed an
EC50 value of 0.011 µM and a SI of 2854.

The only existing study for associating anti-SARS-CoV-2 activity of an extract with
isolated components, concerns the investigation of plant biodiversity of Thailand. Three
extracts from respective plants are reported to have viral infection inhibition, namely
Andrographis paniculata (Acanthaceae), Zingiber officinale (Zingiberaceae), and Boesenbergia
rotunda (Zingiberaceae), are reported to display viral infection inhibition. The extract of
B. rotunda and the isolate panduratin A (Table 1) suppressed SARS-CoV-2 infectivity in
Vero E6 cells with EC50 of 3.62 µg/ mL and 0.81 µM, respectively [180].

Concerning the inhibition of SARS-CoV-2 main protease 3CLpro, only three pub-
lications exist for the moment, reporting the flavonoids baicalin and baicalein, as po-
tent inhibitors with an IC50 of 6.41 and 0.94 µM, respectively, as well as inhibitors of
SARS-CoV-2 replication in Vero E6 cells [181]. Baicalin has also been investigated for the
in vitro propagation of SARS-CoV in Vero-E6 cells, though no significant activity was
found (EC50 > 100 µM) [105]. Additionally, the labdane diterpene andrographolide and a
semisynthetic derivative displayed inhibitory activity against 3CLpro [182], while tannic
acid was found active with an IC50 of 2.1 µM [183].

Finally, the well-known flavonoid quercetin (Figure 3) has been proposed as a SARS-
CoV-2 3CLpro inhibitor (Ki = 7.4 µM), while molecular simulations showed that it binds to
the active site of the enzyme [184]. Flavonoids have been highlighted in the past as HCoVs
protease inhibitors. Quercetin itself weakly inhibits SARS-CoV 3CLpro (IC50 23.8 µM), and
shows no inhibition in MERS-CoV 3CLpro, while it is reported to potently inhibit SARS-CoV
PLpro (IC50 8.6 µM) [106]. Although these results may seem promising, quercetin has not
been tested in cell viral infection assays, and additionally, like many dietary flavonoids and
polypenols, has poor oral bioavailability [185].

NPs have not yet been investigated thoroughly for anti-HCoV activity. Nevertheless,
NPs such as the Nobel Prize awarded antimalarial drug artemisinin, isolated from Artemisia
annua (Asteraceae), have shown notable bioactivity against viruses of the Herpesviridae
family (e.g., herpes simplex virus type 1 and Epstein-Barr virus), hepatitis B virus, hepatitis
C virus, and bovine viral diarrhea virus [186].
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Table 1. Antiviral activity of selected NPs against HCoV-NL63, HCoV-OC43, MERS-CoV, SARS-CoV, and SARS-CoV-2.

Structure Name Source Target Assay Ref.

1 
 

 

 

 

 

 

Cryptotanshinone Salvia miltiorrhiza
Lamiaceae

SARS-CoV Enzyme inhibition (IC50) PLpro 0.8 µM, 3CLpro

226.7 µM [113]

SARS-CoV-2 CPE inhibition (EC50) 5.024 µM [179]

1 
 

 

 

 

 

 

Tanshinone IIA Salvia miltiorrhiza
Lamiaceae

SARS-CoV Enzyme inhibition (IC50) PLpro 1.6 µM, 3CLpro

89.1 µM [113]

SARS-CoV-2 CPE inhibition (EC50) <11 µM [179]

1 
 

 

 

 

 

 

Isobavachalcone Psoralea sp.
Fabaceae

SARS-CoV Enzyme inhibition (IC50) PLpro 7.3 µM [117]

SARS-CoV-2 CPE inhibition (EC50) <11 µM [179]

1 
 

 

 

 

 

 

Bavachin Psoralea sp.
Fabaceae

SARS-CoV Enzyme inhibition (IC50) PLpro 38.4 µM [117]

SARS-CoV-2 CPE inhibition (EC50) <11 µM [179]
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Table 1. Cont.

Structure Name Source Target Assay Ref.

1 
 

 

 

 

 

 

Psoralidin Psoralea sp.
Fabaceae

SARS-CoV Enzyme inhibition (IC50) PLpro 4.2 µM [117]

SARS-CoV-2 CPE inhibition (EC50) <11 µM [179] 

2 

 

 

 

 

Tetrandrine
Stephania tetrandra
Menispermaceae

HCoV-NL63

CPE inhibition (EC50)

2.05 µM [84]

HCoV-OC43 0.29 µM/0.33 µM [83,84]

MERS-CoV 12.68 µM [84]

SARS-CoV-2 CPE inhibition (EC50) <11 µM [179]

 

2 

 

 

 

 

Cepharanthine Stephania tetrandra
Menispermaceae

HCoV-OC43 CPE inhibition (EC50) 0.83 µM [83]

SARS-CoV-2 CPE inhibition (EC50) <11 µM [179]
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Table 1. Cont.

Structure Name Source Target Assay Ref.

 

2 

 

 

 

 

Lycorine Lycoris sp.
Amaryllidaceae

HCoV-NL63

CPE inhibition (EC50)

0.47 µM

[84]HCoV-OC43 0.15 µM

MERS-CoV 1.63 µM

SARS-CoV 169.8 µM [89]

SARS-CoV-2 CPE inhibition (EC50) <11 µM [179]

 

2 

 

 

 

 

Reserpine Rauvolfia serpentina
Apocynaceae

SARS-CoV CPE inhibition (EC50) 3.4 µM [37]

SARS-CoV-2 CPE inhibition (EC50) <11 µM [179]
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Digoxin 
Digitalis sp. 

Plantaginaceae 

SARS-CoV-2 CPE inhibition (EC50) 

0.1541 μΜ 

[179] 

 

Bruceine A 
Brucea javanica 

Simaroubaceae 
0.011 μΜ 

 

Brusatol 
Brucea javanica 

Simaroubaceae 
0.0492 μΜ 

 

Bufalin 
Toad venom 

Bufonidae 
0.018 μΜ 

Digoxin Digitalis sp.
Plantaginaceae SARS-CoV-2 CPE inhibition (EC50) 0.1541 µM [179]
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Bruceine A Brucea javanica
Simaroubaceae 0.011 µM
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Brusatol Brucea javanica
Simaroubaceae 0.0492 µM
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Digoxin 
Digitalis sp. 

Plantaginaceae 

SARS-CoV-2 CPE inhibition (EC50) 

0.1541 μΜ 

[179] 

 

Bruceine A 
Brucea javanica 

Simaroubaceae 
0.011 μΜ 

 

Brusatol 
Brucea javanica 

Simaroubaceae 
0.0492 μΜ 

 

Bufalin 
Toad venom 

Bufonidae 
0.018 μΜ 

Bufalin Toad venom
Bufonidae 0.018 µM

 

4 

 

 

 

 

 

Bufotalin Toad venom
Bufonidae 0.0259 µM
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Table 1. Cont.
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Toad venom
Bufonidae 0.0657 µM

 

4 

 

 

 

 

 

Cinobufagin Toad venom
Bufonidae 0.018 µM

 

4 

 

 

 

 

 

Alantolactone Inula helenium
Asteraceae 1.724 µM

 

4 

 

 

 

 

 

Isoalantolactone Inula helenium
Asteraceae 1.483 µM
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Dehydrocostus lactone Saussurea costus
Asteraceae 2.322 µM
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Liensinine Nelumbo nucifera
Nelumbonaceae 2.537 µM
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Isoliensinine Nelumbo nucifera
Nelumbonaceae 1.615 µM
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Momordinic Bassia scoparia
Amaranthaceae 3.529 µM

 

6 

 

 

 

Oridonin Isodon sp.
Lamiaceae 1.462 µM

 

6 

 

 

 

Panduratin A Boesenbergia rotunda
Zingiberaceae SARS-CoV-2 CPE inhibition (EC50) 0.81 µM [180]
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3.4.3. Host Interactions and Future Prospects

Compounds targeting host cell components may help to treat SARS-CoV-2 infection. It
has been reported that certain NPs (cholesterol, β-sitosterol, betulinic acid, hopane and gly-
cyrrhizin), may reduce SARS-CoV-2 infectivity by inhibiting lipid-dependent attachment
of the virus to host cells [187,188]. It is also reported that 25-hydroxy-cholesterol shows
broad antiviral activity by blocking membrane fusion in the viral infection stage [189]. A
recent study of SARS-CoV-2 human protein interactome reported that as many as 332 hu-
man proteins are intercepted by SARS-CoV-2 proteins, with several of these interceptions
potentially targeted by NPs/SMs already approved by FDA or in preclinical or clinical
development [190].

This study [190] revealed that the SARS-CoV-2 infection, replication and biogene-
sis program interfered with host components involved in DNA replication, regulation
of gene expression, RNA processing and translation, protein expression and ubiquitina-
tion, ER/Golgi function and vesicle trafficking, nuclear transport, mitochondrial import
receptors, extracellular matrix cytoskeletal function, IFN signaling, NF-kB-mediated in-
flammatory response and innate immune response and lipid modification. Some of these
interactions could be targeted by NPs/SMs. For instance, the non-structural protein 6
(Nsp6) component of the viral replication complex may interfere with the function of
vacuolar ATPase ATP6AP1 and the endoplasmic reticulum endomembrane compartments
to favor coronavirus replication, an interference that might be inhibited by the macrolide
antibiotic bafilomycin A1, an ATPase inhibitor in preclinical development. With regard
to host proteases, the interactome study reported that 3CLpro may interfere with histone
deacetylase 2-mediated inflammation and interferon response to SARS-CoV-2 infection in
a manner inhibited by the fungal metabolite apicidin, a histone deacetylase inhibitor in
preclinical development [191].

Virus-encoded helicase interacts with the centrosomal protein CEP250 and the interac-
tion might be targeted by the natural polyketide WDB002. Virus-encoded 3′-5′ exonuclease
interacts with the purine biosynthesis enzyme IMPDH2, a target of cyclophilin A, which
in turn is involved in the packaging of the viral capsid; the IMPDH2-CypA interaction is
modulated by the natural product sanglifehrin A [190].

At the beginning of the pandemic, the use of kinase inhibitors was proposed as a ther-
apeutic strategy against COVID-19. Some kinase inhibitors, such as imatinib, dasatinib and
trametinib, that have been shown to inhibit viral replication in vitro [192], may rely on an
indirect inhibition of TMPRSS2 function. Indeed, although there is no demonstrated associ-
ation between TMPRSS2 and kinase inhibition, it has been postulated that kinase inhibition
could result in the inhibition of TMPRSS2 function, localization, or activity, and the ob-
served blocking of the infection. Abl kinase and the ERK/MAPK, and PI3K/AKT/mTOR
signaling pathways have been shown to play a role in the relevant MERS-CoV and SARS-
CoV infection [192,193]. Imatinib, a BCR-Abl kinase inhibitor, is under clinical investigation
for having beneficial results in hospitalized adults with COVID-19 [194], although it has
been shown that it has no antiviral activity [195].

The role of kinases in the pathology of COVID-19, and especially in the inflammatory
responses, is investigated intensively. In a recent study [196] it was found a causal link
between life-threatening COVID-19 and high expression of TYK2, the gene encoding
Tyrosine Kinase 2, a member of the JAK family kinases. TYK2 abnormalities have been
established in several autoimmune diseases such as systemic lupus [197], rheumatoid
arthritis [198], and multiple sclerosis [199]. Small molecule TYK2 inhibitors are under
clinical trials for their safety and efficacy in psoriasis [200,201], and other autoimmune
diseases associated with inflammation [202]. The natural product parthenolide is shown to
inhibit all three Janus kinases (JAK1, JAK2 and TYK2), thus inhibiting STAT3 signaling [203].
Interestingly, parthenolide and caffeic acid phenyl ethyl ether (CAPE), were tested as NF-κB
inhibitors in a mouse in vivo model of SARS-CoV, and found to significantly reduce lung
inflammation and pathology [129].
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4. Conclusions

Natural products have played an active and important role in drug discovery up until
today. Nevertheless, their valorization as antiviral agents remains limited. It is indicative
that antiviral NP research has peaked only around imminent threats, as happened with
SARS-CoV. Our review of the bibliography covering the study of NPs against HCoVs,
revealed that there are many possibilities in examining more thoroughly available NPs
in order to discover new antiviral agents. NP databases and NP libraries with physical
samples available for bioactivity screening may have shortened the time needed for a
compound to reach bioactivity evaluation, but as shown from the literature survey, tested
compounds tend to revolve around very common and not very diverse structures. In
terms of anti HCoV activity and NPs, the available literature is limited in order to draw
sound conclusions about structure-activity relationships. Nevertheless, the data show that
there is a trend for alkaloids, triterpenoids/triterpene saponins, and polyhydroxylated
flavonoids. HCoVs and NPs research has been fragmented up to this point, driven by
states of emergency, such as the emergence of SARS-CoV in 2002, and the current threat
of SARS-CoV-2. Although there are a number of published results, there is a lack of
systematic investigation of NPs showing promising activity, and this needs to be addressed
by research efforts defining the mechanism of action of these compounds. Under this scope,
compounds based on NPs scaffolds with higher potency, more favorable physicochemical
properties, and diminished toxicity, can be designed, thus providing a multidisciplinary
approach that antiviral discovery needs. NPs offer great chemodiversity that needs to be
further exploited, especially under the current pressure of this global pandemic.

Supplementary Materials: Table S1: Natural products tested for anti-HCoV activity in cell based
assays; Table S2: Natural products tested for HCoV viral enzyme inhibition. Table S3: Inhibitory
activity of extracts against the main protease of SARS-CoV, 3CLpro; Inhibition of HCoV enzymes
from natural and nature-derived products; Table S4: Inhibition of HCoV enzymes from natural and
nature-derived products.
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