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Abstract
In this paper, we generalize a classical result of Bour concerning helicoidal surfaces in the 
three-dimensional Euclidean space ℝ3 to the case of helicoidal surfaces in the Bianchi–
Cartan–Vranceanu (BCV) spaces, i.e., in the Riemannian 3-manifolds whose metrics have 
groups of isometries of dimension 4 or 6, except the hyperbolic one. In particular, we prove 
that in a BCV-space there exists a two-parameter family of helicoidal surfaces isometric to 
a given helicoidal surface; then, by making use of this two-parameter representation, we 
characterize helicoidal surfaces which have constant mean curvature, including the mini-
mal ones.

Keywords Helicoidal surfaces · Constant mean curvature surfaces · BCV spaces · Bour’s 
theorem

Mathematics Subject Classification 53A10 · 53C40 · 53C42

1  Introduction and preliminaries

Helicoidal surfaces in the Euclidean three-dimensional space ℝ3 are invariant under the 
action of the 1-parameter group of helicoidal motions and are a generalization of rotation 
surfaces. Since the beginning of differential geometry of surfaces, much attention has been 
given to the surfaces of revolution with constant Gauss curvature or constant mean curva-
ture (CMC-surfaces). The surfaces of revolution with constant Gauss curvature seem to 

Work supported by GNSAGA-INdAM, Italy, by Fondazione di Sardegna (Project STAGE) and Regione 
Autonoma della Sardegna (Project KASBA). The second author was also supported by the Thematic 
Project,: Topologia Álgebrica, Geométrica e Diferencial, Fapesp process number 2016/24707-4.

 * Paola Piu 
 piu@unica.it
 Renzo Caddeo 
 caddeo@unica.it
 Irene I. Onnis 
 irene.onnis@unica.it
1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Via Ospedale 72, 

09124 Cagliari, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-021-01143-0&domain=pdf


 R. Caddeo et al.

1 3

have been known to Minding (1839, [24]), while those with constant mean curvature have 
been classified by Delaunay (1841, [16]). Helicoidal minimal surfaces were studied by 
Scherk in 1835 (see [37] and, also, [40]), but it is rather recent the classification of the heli-
coidal surfaces in ℝ3 with nonzero constant mean curvature, given by Do Carmo and Dajc-
zer in [18]. Also, in [35] Roussos proved that a helicoidal surface in ℝ3 has constant mean 
curvature if and only if its principal axes make a constant angle with the orbits. Another 
important result in this direction was given independently in 1865 by Beltrami [3] and Dini 
[17] that classified ruled Weingarten surfaces (i.e., surfaces for which a non-trivial relation 
between their mean and Gauss curvatures holds) in ℝ3 , proving the following

Theorem 1 (Dini-Beltrami) Any non-developable ruled Weingarten surface in Euclidean 
3-space ℝ3 is a piece of a helicoidal ruled surface, defined as the orbit of a straight line 
under the action of a 1-parameter group of screw motions. In particular, the Gaussian cur-
vature is nowhere zero if it is nonzero at some point. The only minimal ruled surface is the 
classical right helicoid.

Later, Kühnel presented in [22] a new and modern proof of this result. More recently, 
Dajczer and Tenenblat characterized the ruled Weingarten hypersurfaces in ℝn+1 , n ≥ 3 , 
(see [14]).

These topics are related to the Bonnet problem ( [8]) which asks whether the knowledge 
of the metric and of the mean curvature is sufficient to determine a surface in ℝ3 ; it has 
been treated not only from a classical viewpoint, but also from a modern viewpoint involv-
ing sophisticated techniques of integrable systems theory. In [12], Cartan proved that, 
beside the CMC surfaces in ℝ3 , the only ones admitting a non-trivial isometric deformation 
preserving the principal curvatures are finite-dimensional families of cones, cylinders or 
helicoidal immersions. In [34] Roussos showed that if a Bonnet surface with nonconstant 
mean curvature in the Euclidean 3-space is flat, then it is a piece of some deformation 
of the cylinder over a logarithmic spiral or a generalized cone. In [6], Bobenko and Eit-
ner investigated the nontrivial Bonnet surfaces in ℝ3 without umbilical points; a discus-
sion of Bonnet surfaces with umbilics is contained in the dissertation of Eitner. In book 
[7], Bobenko and Eitner gave a detailed local and global description of Bonnet surfaces in 
ℝ3 with and without umbilics. Also, the second half of the book is devoted to the study of 
Bonnet surfaces in !3 and ℍ3 . More recently, in [23] Jensen, Musso and Nicolodi obtained 
sufficient conditions for non-existence of compact Bonnet pairs in ℝ3.

The starting point of the work [18] of do Carmo and Dajczer is a result of Bour about 
helicoidal surfaces in ℝ3 (see [9], p. 82, Theorem II), for which he received the mathemat-
ics prize awarded by the Académie des Sciences de Paris in 18611. Bour proved that there 
exists a 2-parameter family of helicoidal surfaces isometric to a given helicoidal surface in 
ℝ3 . For this, firstly he obtained orthogonal parameters (u, t) on a helicoidal surface M for 
which the families of u-coordinate curves are geodesics on M parametrized by arc length, 

1 The problem that sometimes bears the name of Bour was proposed in 1861 by the Académie des Sci-
ences and consists in determining all the surfaces that are isometric to a given surface (M, ds2) . E. Bour 
demonstrated that each helicoidal surface is applicable to a surface of revolution and that the helices on the 
first surface correspond to the parallels on the second. Bour’s work [9] contains several theorems on ruled 
and minimal surfaces; but in its printed version this work does not include the complete integration of the 
problem’s equations in the case of surfaces of revolution; in fact, it is this result that enabled Bour to win 
the Academy’s grand prix.
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and the t-coordinate curves are the trajectories of the helicoidal motion. Such parameters 
are called natural parameters, and the first fundamental form with respect to them takes 
the form ds2 = du2 + U2(u) dt2 . Reciprocally, given the natural parameters (u, t) on M and 
a function U(u), Bour determined a 2-parameter family of isometric helicoidal surfaces 
which have induced metric given by ds2 = du2 + U2(u) dt2 that includes rotation surfaces. 
An exposition of Bour’s results about the theory of deformation of surfaces can be found in 
the Chapter IX of [15].

By using the result of Bour, in [18] Do Carmo and Dajczer established a condition for a 
surface of the Bour’s family to have constant mean curvature. Also they obtained an inte-
gral representation (depending on three parameters) of helicoidal surfaces with nonzero 
constant mean curvature, which is a natural generalization of the representation for Delau-
nay surfaces, i.e., CMC rotation surfaces, given by Kenmotsu (see [21]).

In [36], the authors obtain a generalized Bour’s theorem for helicoidal surfaces in the 
products ℍ2 ×ℝ and !2 ×ℝ and use it to determine all isometric immersions in these 
spaces that give the surfaces which are helicoidal and have the same constant mean 
curvature.

In regard to the study of CMC helicoidal surfaces in BCV spaces, in [19] and in [25, 29] 
the authors use the equivariant geometry to classify the profile curves of these surfaces in 
the Heisenberg group ℍ3 and in ℍ2 ×ℝ , respectively. The case of rotational minimal and 
constant mean curvature surfaces in the Heisenberg group is treated in [10]. J. Ripoll in 
[32, 33] classified the CMC invariant surfaces in the 3-dimensional sphere !3 and also in 
the hyperbolic 3-space ℍ3.

The aim of this paper is to generalize the results obtained in [18] and [36]. The paper is 
organized as follows. Section 2 is devoted to give a short description of the Bianchi–Car-
tan–Vranceanu spaces and the helicoidal surfaces in these spaces. In Sect. 3, we establish 
a Bour’s type theorem for helicoidal surfaces in the BCV spaces (see Theorem 2) and, as 
an immediate consequence of this result, we have that every helicoidal surface in a BCV-
space can be isometrically deformed into a rotation surface through helicoidal surfaces. 
Moreover, Corollary 1 refers to the particular case of isometric rotation surfaces.

In Sect. 4, we use techniques of equivariant geometry, in particular the Reduction Theo-
rem of Back, do Carmo and Hsiang (see [2]), to deduce a differential equation that the 
function U(u) must satisfy in order that a helicoidal surface of the Bour’s family deter-
mined by U(u) has constant mean curvature. We solve this equation by making a transfor-
mation of coordinates, treating separately the case of the space forms ℝ3 and !3 from the 
other BCV spaces. In this way, we obtain Theorem 4 that provides a description, in terms 
of natural parameters, of all helicoidal surfaces of constant mean curvature in a BCV-
space, including the minimal ones. We conclude by showing that in ℝ3 these results give a 
natural parametrization of all the helicoidal minimal surfaces obtained by Scherk in [37].

2  Helicoidal surfaces in Bianchi–Cartan–Vranceanu spaces

A Riemannian manifold (M, g) is said to be homogeneous if for every two points p and q 
in M , there exists an isometry of M , mapping p into q. The classification of 3-dimensional 
simply connected homogeneous spaces is well known and can be summarized as follows. 
First of all, the dimension of the isometry group must be equal to 6, 4 or 3 (see [4] or [20]). 
Then, if the isometry group is of dimension 6, M is a complete real space form, i.e., the 
Euclidean space !3 , a sphere !3(k) , or a hyperbolic space ℍ3(k) . If the dimension of the 
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isometry group is 4, M is isometric to SU(2) , the special unitary group, to ̃SL(2,R) , the 
universal covering of the real special linear group, to Nil3 , the Heisenberg group, all with 
a certain left-invariant metric, or to a Riemannian product !2(k) ×ℝ or ℍ2(k) ×ℝ . Finally, 
if the dimension of the isometry group is 3, M is also isometric to a simply connected Lie 
group with a left-invariant metric, for example, that is called SOL , one of the Thurston’s 
eight models of geometry [38].

An explicit classification of 3-dimensional homogeneous Riemannian metrics based on 
the dimension of their isometry group was first given by Luigi Bianchi in 1897 (see [4] or 
[5]). Later Élie Cartan in [11] and Gheorghe Vranceanu in [39] proved that all the metrics 
whose group of isometries has dimension 4 or 6, except the hyperbolic one, can be repre-
sented in a concise form by the following two-parameter family of metrics

for !, " ∈ ℝ , and B = 1 +
!
4
(x2 + y2) , (x, y, z) ∈ ℝ3 , positive. Thus, the family of metrics 

g!," that can rightfully be named the Bianchi–Cartan–Vranceanu metrics (BCV metrics) 
consists of all three-dimensional homogeneous metrics whose group of isometries has 
dimension 4 or 6, except for those of constant negative sectional curvature. In the follow-
ing, we shall denote by N!," the open subset of ℝ3 where the metrics g!," are defined.

With respect to (1), we have the following globally defined orthonormal frame

and, also,

Proposition 1 ([30, 31]) The isometry group of g!," admits the basis of Killing vector fields

Therefore, the group of isometries of the BCV spaces contains the helicoidal subgroup, 
whose infinitesimal generator is the Killing vector field given by

We consider the surfaces in N!," which are invariant under the action of the one-param-
eter group of isometries GX of g!," generated by X. For convenience, we shall introduce 
cylindrical coordinates

(1)g!," =
dx2 + dy2

B2
+

(
dz + "

ydx − xdy

B

)2

,

(2)E1 = B
!
!x

− "y
!
!z

, E2 = B
!
!y

+ "x
!
!z

, E3 =
!
!z

(3)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

X1 =
(
1 −

! y2

2B

)
E1 +

! xy

2B
E2 +

2" y

B
E3,

X2 =
! xy

2B
E1 +

(
1 −

! x2

2B

)
E2 −

2" x
B

E3,

X3 = −
y

B
E1 +

x

B
E2 −

" (x2 + y2)

B
E3,

X4 = E3.

X = −y
!
!x

+ x
!
!y

+ a
!
!z

, a ∈ ℝ.
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with r ≥ 0 and ! ∈ (0, 2") . In these coordinates, the metric (1) becomes

where B = 1 +
!
4
r2 . Moreover, the Killing vector field X takes the form

and a set of two invariant functions is

Thus, the orbit space of the action of GX can be identified with

and the orbital distance metric of B is given by

where B = 1 +
!
4
"2
1
.

Now, consider a helicoidal surface M (with pitch a) that, locally, with respect to the 
cylindrical coordinates, can be parametrized by

and suppose that the profile curve "̃(u) = (#1(u), #2(u)) is parametrized by arc-length in 
(B, g̃) , so that

Therefore, from

it follows that the coefficients of the induced metric of the helicoidal surface are given by

and

⎧
⎪
⎨
⎪⎩

x = r cos !,

y = r sin !,

z = z,

g!," =
dr2

B2
+ r2

(
1 + "2 r2

B2

)
d#2 + dz2 − 2

" r2

B
d#dz,

X =
!
!"

+ a
!
!z

!1 = r, !2 = z − a ".

(4)B ∶= N!,"∕GX = {(#1, #2) ∈ ℝ
2 ∶ #1 ≥ 0}

(5)g̃ =
d"2

1

B2
+

"2
1
d"2

2

"2
1
+ (a B − # "2

1
)2
,

(6)!(u, ") = (#1(u), ", #2(u) + a "),

(7)
!′2
1

B2
+

!2
1
!′2
2

!2
1
+ (aB − " !2

1
)2

= 1.

⎧
⎪
⎨
⎪⎩

!u = "′
1

(
cos #
B

E1 +
sin #
B

E2

)
+ "′

2
E3,

!# =
"1
B

(cos # E2 − sin # E1) +

(
a −

$ "2
1

B

)
E3 = X

(8)E(u) = 1 + !′
2
(u)2

(
a B(u) − " !1(u)

2

B(u)#(u)

)2

, F(u) = !′
2
(u)

(
a B(u) − " !1(u)

2

B(u)

)
,
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where !(u) is the volume function of the principal orbit.

3  A Bour’s type theorem

In this section, we show that every helicoidal surface in a BCV-space admits a reparametri-
zation by natural parameters and, conversely, given a positive function U, it is possible to 
find a 2-parameter family of isometric helicoidal surfaces associated with it that are param-
eterized by natural parameters.

Theorem 2 In the BCV-space N!," there exists a two-parameter family of helicoidal sur-
faces that are isometric to a given helicoidal surface of the form (6) and that includes a 
rotation surface. More precisely, for a given positive function U(u) and arbitrary constants 
m ≠ 0 and a, the helicoidal surfaces (6) whose profile curve "̃(u) = (#1(u), #2(u)) is given 
by

with

where

are all to each other isometric and have first fundamental form given by du2 + U(u)2 dt2.

Proof From (8), we have that the induced metric of a helicoidal surface (6), with pitch a0 , 
is given by

where

G =
!1(u)

2

B(u)2
+

(
a −

" !1(u)
2

B(u)

)2

= #(u)2,

(9)

⎧
⎪
⎪
⎨
⎪
⎪⎩

!1(u) = 2

√
m2 U2 − a2

(1 +
√
")2 − 4#2m2U2

,

!2(u) = ∫
mU (4 + $ !2

1
)

4 !2
1

√
!2
1
−

m4 U2 U′2 (4 + $ !2
1
)2

16"
du,

(10)!(u, t) =
t

m
+ ∫

(4 " − a #) $2
1
− 4a

4mU $2
1

√
$2
1
−

m4 U2 U′2 (4 + # $2
1
)2

16%
du,

!(u) = (1 − 2a ")2 + (m2 U(u)2 − a2)(4"2 − #),

(11)
g! = E(u) du2 + 2F(u) du d" + #(u)2 d"2

= du2 + #(u)2
(
d" + $′

2
(u)

a0 B(u) − % $1(u)
2

B(u)#(u)2
du

)2

,

!(u)2 =
"1(u)

2

B(u)2
+

(
a0 B(u) − # "1(u)

2

B(u)

)2

.
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Now we introduce a new parameter t = t(u, !) that satisfies:

As the Jacobian |!(u, t)∕!(u, ")| is equal to 1, it follows that (u, t) are local coordinates on a 
helicoidal surface M and, also, that we can write (11) as

We now observe that the u-coordinate curves are parametrized by arc length and also that 
are geodesics of M (see [28]) which are orthogonal to the t-coordinate curves, i.e., the heli-
ces. Consequently, the local parametrization !(u, "(u, t)) is a natural parametrization of the 
helicoidal surface M.

Conversely, given a function U(u) > 0 , we want to determine functions !, "1, "2 of (u, t) 
such that

where B = 1 +
!
4
"2
1
.

From the first equation of (14), we have that !i = !i(u) , i = 1, 2 . Then, from the second, 
we obtain

where B(u) = 1 +
!
4
"2
1
(u).

Therefore,

 and hence, there exists a constant m ≠ 0 such that

Thus, the second equation of system (14) becomes

(12)dt = d! + "′
2
(u)

a0 B(u) − # "1(u)
2

B(u)$(u)2
du.

(13)g! = du2 + "(u)2 dt2.

(14)

⎧
⎪
⎪
⎨
⎪
⎪⎩

du2 =
d!2

1

B2
+

!2
1
d!2

2

!2
1
+ (a B − " !2

1
)2
,

±U(u) dt =

√
!2
1
+ (a B − " !2

1
)2

B

[
d# +

B(a B − " !2
1
)

!2
1
+ (a B − " !2

1
)2

d!2

]
,

(15)

⎧
⎪
⎪
⎨
⎪
⎪⎩

!"
!u

= −
B(u) [aB(u) − # $2

1
(u)]

$2
1
(u) + (a B(u) − # $2

1
(u))2

$′
2
(u),

!"
!t

= ±
B(u)U(u)√

$2
1
(u) + (aB(u) − # $2

1
(u))2

,

!2"
!t!u

= 0

(16)±
B(u)U(u)√

!2
1
(u) + (a B(u) − " !2

1
(u))2

=
1

m
.
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If we consider the function f ∶= 1∕!1 , equation (16) can be written as

and therefore,

with

As ‖∇f‖!," = f 2 + !∕4 , we conclude that

Then, differentiating (16) and using (18), we get

 and hence,

Therefore, taking into account the first equation of system (14), we obtain

Thus, as

it turns out that

Also, from (17) we have

(17)d! =
dt

m
−

B(u) (a B(u) − " #2
1
(u))

#2
1
(u) + (aB(u) − " #2

1
(u))2

d#2.

(a2 − m2 U2) ‖∇f‖2!," + (1 − 2a ") ‖∇f‖!," + "2 − !∕4 = 0

‖∇f‖!," =
1 − 2a " +

√
#

2 (m2 U2 − a2)
,

! = (1 − 2a ")2 + (m2 U2 − a2)(4"2 − #).

(18)!2
1
=

4(m2 U2 − a2)

(1 +
√
")2 − 4#2m2U2

.

(19)m2 B2 UU′ =
√
! "1 "

′
1

(20)
(!′

1
)2

B2
=

m4 B2 U2 U′2

!2
1
"

.

d!2
2
=

m2 B2 U2

!2
1

(
1 −

!′2
1

B2

)
du2

=
m2 B2 U2

!4
1

(
!2
1
−

m4 B2 U2 U′2

"

)
du2.

B = 1 +
!
4
"2
1
,

(21)!2(u) = ∫
mU (4 + " !2

1
)

4 !2
1

√
!2
1
−

m4 U2 U′2 (4 + " !2
1
)2

16#
du.
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Consequently, the natural parametrization of the helicoidal surface (6) with given first fun-
damental form g! = du2 + U(u)2 dt2 can be calculated by means of equations  (18), (21) 
and (22).   ◻

Remark 1 If ! = 0 = " , the BCV-space is the Euclidean space ℝ3 and Theorem 2 becomes 
the classical one ([9], p. 82, Theorem II) due to Bour.

Remark 2 The family of helicoidal surfaces ! (u, t) ∶= "[U,m,a](u, t) in the BCV-space N!," 
obtained in Theorem 2 depends on two parameters m ≠ 0 and a, and for m = 1 and a = a0 it 
contains the original helicoidal surface. Also, when m = 1 and a = 0 , we obtain a rotational 
surface isometric to the given helicoidal surface. Therefore, by varying the constant a from 
a = 0 to a = a0 , we get an isometric deformation from a rotational surface to a given heli-
coidal surface.

Example 1 In the Heisenberg space ℍ3 equipped with the metric g!," with ! = 0 and 
! = 1∕2 , we consider the function U(u) = (u2 + 2)∕2 . If we suppose that m = 1 , from for-
mulas (9) we get

In particular, for a = 1∕2 we obtain the curve

the profile curve of the helicoidal catenoid that is a helicoidal minimal surface (see [19]), 
parametrized by

Also, as

(22)!(u, t) =
t

m
+ ∫

(4 " − a #) $2
1
− 4a

4mU $2
1

√
$2
1
−

m4 U2 U′2 (4 + # $2
1
)2

16%
du.

(23)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

!1(u) =

√√
u4 + 4u2 + 8 (1 − a) + 2 (a − 1),

!2(u) = ∫
(2 + u2)

2 !1(u)
2

√
!1(u)

2 −
u2 (u2 + 2)2

u4 + 4u2 + 8 (1 − a)
du,

"(u, t) = t + ∫
!1(u)

2 − 2a

(u2 + 2) !1(u)
2

√
!1(u)

2 −
u2 (u2 + 2)2

u4 + 4u2 + 8 (1 − a)
du.

"̃(u) = (
√
u2 + 1, (u + arctan u)∕2),

!(u, ") =
(√

u2 + 1 cos ",
√
u2 + 1 sin ",

u + " + arctan u

2

)
.

!(u, t) = t − arctan u +
√
2 arctan

(
u√
2

)
,
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we have that the parametrization

represents a natural parametrization of the helicoidal catenoid with

Now, if we start from a = 1∕2 and in the equations  (23) we consider all the decreasing 
values of a in the interval [0, 1/2], we obtain an isometric deformation of the helicoidal 
catenoid into a rotational surface (obtained for a = 0 ), through helicoidal surfaces para-
metrized by natural parameters Fig. 1.

Corollary 1 The rotation surfaces given by ![U,n,0](u, t) , with n ≠ 0 , give rise in the BCV-
space N!," to a 1-parameter family of isometric surfaces that are also isometric to the heli-
coidal surfaces ![U,m,a](u, t) . This family is determined by the formulas:

! (u, t) = "(u, #(u, t)) =

(
cos

(
t +

√
2 arctan

(
u√
2

))
+ u sin

(
t +

√
2 arctan

(
u√
2

))
,

sin

(
t +

√
2 arctan

(
u√
2

))
− u sin

(
t +

√
2 arctan

(
u√
2

))
,
1

2

(
u + t +

√
2 arctan

(
u√
2

)))

g! = du2 + U(u)2 dt2.

Fig. 1  Isometric deformation of 
the helicodal catenoid into a rota-
tion surface in ℍ3 . The surfaces 
in the picture are obtained for 
a = 1∕2, 1∕4, 1∕8 and a = 0 , 
respectively; only that with angu-
lar pitch a = 1∕2 is a minimal 
surface (see Remark 5)
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where ! = 1 + (4"2 − #) n2 U2.

From the formula for the Gaussian curvature of an invariant surface obtained in [26, 
27], it follows that the helicoidal surfaces of the Bour’s family in the BCV-space N!," 
have all the same Gaussian curvature given by 

With regard to the mean curvature H of these surfaces, in next section we shall see that dif-
ferent values of a and m can give rise to different values of H.

4  Helicoidal surfaces of constant mean curvature

In this section, we will describe the helicoidal surfaces in the BCV spaces that have the 
same constant mean curvature. We start by computing the mean curvature of a helicoi-
dal surface (6). It turns out that the mean curvature of an invariant immersion is tightly 
related to the geodesic curvature of the profile curve, as shown by the remarkable fol-
lowing theorem. But first we recall that if on a three-dimensional connected Riemannian 
manifold (N3, g) , we consider the 1-parameter subgroup GX of isometries generated by 
X, an orbit G(p) of p ∈ N is called principal if there exists an open neighborhood U ⊂ N 
of p such that all orbits G(q), q ∈ U , are of the same type as G(p) (i.e., the isotropy sub-
groups Gq and Gp are conjugated). This implies that G(q) is diffeomorphic to G(p). We 
denote with Nr the regular part of N, that is, the subset consisting of points belonging to 
principal orbits [1]. Then, we have

Theorem 3 (Reduction Theorem [2]) Let H be the mean curvature of a GX-invariant sur-
face Mr ⊂ Nr and kg the geodesic curvature of the profile curve Mr∕GX ⊂ Br . Then,

where ! is the unit normal of the profile curve and ! =
√
g(X,X) is the volume function of 

the principal orbit.

Let now "̃(u) = (#1(u), #2(u)) be a curve in Br , parametrized by arc-length, that under 
the action of GX generates the helicoidal surface. From (5), it follows that

(24)

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

!1(u) =
2 nU√

2(1 +
√
") − # n2 U2

,

!2(u) = ∫
√√√√ (1 +

√
")2

2(1 +
√
") − # n2 U2

−
n2 (1 +

√
")4 U2

" [2(1 +
√
") − # n2 U2]2

du,

$(u, t) =
t

n
+ 2% ∫

√√√√ 1

2(1 +
√
") − # n2 U2

−
n2 (1 +

√
")2 U′2

" [2(1 +
√
") − # n2 U2]2

du,

K(u) = −
U′′(u)

U(u)
.

H(x) = kg(!(x)) − D
!
ln"(!(x)), x ∈ Mr,
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and the geodesic curvature of "̃ takes the expression

where ! is the angle that "̃ makes with the !

!"1
 direction. Also, as

the normal derivative is given by

 and thus, we obtain that the mean curvature is given by

Proposition 2 A helicoidal surface ! (u, t) ∶= "[U,m,a](u, t) has constant mean curvature H 
if and only if U(u) satisfies the differential equation

where

Proof If we consider a helicoidal surface ! (u, t) of the Bour’s family, from (25) we can 
write equation (27) as

 and therefore, using (20) we get

(25)!′
1
= B cos ", !′

2
=

√
!2
1
+ (a B − # !2

1
)2 sin "

!1

(26)
kg =

(g̃22)"1"
′
2
− (g̃11)"2"

′
1

2
√
g̃11g̃22

+ #′

=
B ["2

1
+ (a B − $ "2

1
)2] (g̃22)"1

2 "2
1

sin # + #′,

! =

(
− B sin !,

√
"2
1
+ (a B − # "2

1
)2

"1
cos !

)
,

D
!
ln! =

4 "1 [8a# − 4 + "2
1
($ + 2a$ # − 8#2)] sin %

16 "2
1
+ [a (4 + $ "2

1
) − 4# "2

1
]2

(27)H = !′ +

(
1

"1
−

#
4
"1

)
sin !.

(28)H

√
4 (m2 U2 − a2)

(1 +
√
!)2 − 4"2m2U2

−
m4 B2 U2 U′2

!
= 2 − B − m2 B

(
UU′

√
!

)′

,

(29)! = (1 − 2a ")2 + (m2 U2 − a2)(4"2 − #) and B = 2
1 − 2a" +

√
!

(1 +
√
!)2 − 4"2m2U2

.

H = −

( !′
1

B

)′
√

1 −
( !′

1

B

)2 +

(
1

!1
−

"
4
!1

)√
1 −

(!′
1

B

)2
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Then,

Now, differentiating (19) we get

 and hence, taking into account (18), (19) and (20), we can write equation (31) as

  ◻

4.1  The solution of the mean curvature equation

Next, we will give a description of the helicoidal surfaces in N!," with constant mean 
curvature H. For this purpose, we assume that the helicoidal surfaces are parametrized 
by natural coordinates (u, t) and we determine explicitly the expression of the function 
U(u) that gives the metric, by integrating (28).

Theorem  4 In the BCV-space N!," ,  the helicoidal surface 
! (u, t) ∶= ("1(u), #(u, t), "2(u) + a #(u, t)) with !1(u), !2(u) and !(u, t) given by (9) and (10) 
has constant mean curvature H if and only if U(u) is given by:

1. if ! = " = H = 0 , 

(30)
−
(!′

1

B

)′

+

(
1

!1
−

"
4
!1

)[
1 −

(!′
1

B

)2]
= H

√
1 −

(!′
1

B

)2

=
H

!1

√
!2
1
−

m4 B2 U2 U′2

#
.

(31)

H

√
!2
1
−

m4 B2 U2 U′2

"

= !1

[
−
(!′

1

B

)′

+

(
1

!1
−

#
4
!1

)(
1 −

(!′
1

B

)2)]

= 1 −
(!′

1

B

)2

−
!1 !

′′
1

B
+

3# !2
1

4

(!′
1

B

)2

−
k

4
!2
1
.

!1 !
′′
1
=

m2 B2

√
"

(U′2 + UU′′) +
m4 B2

"

(
# B +

# − 4$2√
"

)
U2 U′2 − !′2

1

H

√
!2
1
−

m4 B2 U2 U′2

"

= 2 − B −
m2 B√

"
(U′2 + UU′′) +

m4 B

"

(
4#2 − $√

"
−

$ B

4
+

B2 − B

!2
1

)
U2 U′2

= 2 − B −
m2 B√

"
(U′2 + UU′′) +

(4#2 − $)m4 B

"3∕2
U2 U′2.
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2. if ! = 4"2 ≠ −H2 , 

3. if −H2 = ! ≠ 4"2 , 

4. if −H2 < ! ≠ 4"2 , 

5. if −H2 > ! ≠ 4"2 , 

where b, bi, ci ∈ ℝ , are the constants given by

These expressions define a 1-parameter family {Uc(u)} of functions U(u) such that the 
helicoidal surface ![Uc,m,a]

(u, t) has constant mean curvature and equal to H.
Proof Using the transformation of coordinates given by

where

U2(u) =
u2 + a2 + c2∕4

m2
;

U2(u) =
c1 +

√
c2
1
+ c2 (H

2 + 4!2) sin(
√
4!2 + H2 u)

m2(H2 + 4!2)
;

U2(u) =

(b1
2
u2 + b2

)2

+ b3

m2 (4!2 + H2)
;

U2(u) =
(H2 + !)2 b3 +

[
b1 +

√
b2
1
+ b (H2 + !) sin(

√
H2 + ! u)

]2

m2(4"2 − !)(H2 + !)2
;

U2(u) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

(H2 + !)2 b3 +
[
b1 −

√
−b2

1
− b (H2 + !) sinh(

√
−(H2 + !) u)

]2

m2(4"2 − !)(H2 + !)2
, b2

1
+ b (H2 + !) < 0,

(H2 + !)2 b3 +
[
b1 −

√
b2
1
+ b (H2 + !) cosh(

√
−(H2 + !) u)

]2

m2(4"2 − !)(H2 + !)2
, b2

1
+ b (H2 + !) > 0,

b = (1 − 2a!) [" (1 + 2a!) − 8!2] − c2, b1 = 4!2 − 2a"! − cH,

b2 = −
b

2 b1
, b3 = 4a! − a2" − 1,

c1 = 1 + (1 − 2a !)2 − cH, c2 = −c2 − 4a2 (1 − a !).

(32)

⎧
⎪
⎪
⎨
⎪
⎪⎩

x(u) = mU(u),

y(u) =

√√√√ (x2(u) − a2) [(1 +
√
!(u))2 − 4"2 x2(u)]

[1 − 2a" +
√
!(u)]2

−
x(u)2 x′(u)2

!(u)
,
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equation (28) becomes

with

Therefore,

 and thus,

where c is an arbitrary constant. Consequently, we have the following cases:
Case 4!2 − " = 0 From (32) and (34), if we suppose that 1 − 2a ! > 0 , then we have 

Putting z = x2 , the above expression is transformed into the following

where 

Consequently, 

!(u) = (1 − 2a ")2 + (4"2 − #)(x2(u) − a2),

(33)H y(u) =
2

B(u)
− 1 −

(
x(u) x′(u)√

!(u)

)′

,

B(u) = 2
1 − 2a! +

√
"(u)

(1 +
√
"(u))2 − 4!2 x2(u)

.

y′(u) =
x(u) x′(u)

y(u)
√
!(u)

[
2

B(u)
− 1 −

(
x(u) x′(u)√

!(u)

)′]
=

H x(u) x′(u)√
!(u)

(34)y(u) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

H x2(u) + c

2
√
!(u)

, 4"2 − # = 0,

H
√
!(u) + c

4"2 − #
, 4"2 − # ≠ 0,

(
2 x(u) x′(u)

)2
= 4

[
(1 − 2a !) − !2 (x2(u) − a2)

]
(x2(u) − a2) − (H x2(u) + c)2.

(35)z′(u) =
√

−(H2 + 4!2) z2(u) + 2c1 z(u) + c2,

c1 = 1 + (1 − 2a !)2 − cH, c2 = −c2 − 4a2 (1 − a !).
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(i) If H2 + 4!2 = 0 , we have that the BCV-space is ℝ3 and c1 = 2 , c2 = −c2 − 4a2 . Thus, 
adjusting the origin of u, we get 

 and since z = m2 U2 we have 

 We observe that when c = 0 , the helicoidal surface ![U,m,a] is a helicoid.
ii) If H2 + 4!2 ≠ 0 , by integrating (35) we have that 

 up to a constant. Thus, as z = m2 U2 , it follows that 

Case 4!2 − " ≠ 0 In this case, as 

from (32) and (34) we get

Thus,

√
z +

c2
4

= u

(36)U2(u) =
u2 + a2 + c2∕4

m2
.

u =
1√

H2 + 4!2
sin−1

(
(H2 + 4!2) z − c1√
c2
1
+ c2 (H

2 + 4!2)

)
,

(37)

U2(u) =
c1 +

√
c2
1
+ c2 (H

2 + 4!2) sin(
√
4!2 + H2 u)

m2(H2 + 4!2)

=
1

m2(H2 + 4!2)

[
1 + (1 − 2a !)2 − cH

+ 2
√
(1 − 2a!)2 − H (1 − 2a!)(Ha2 + c) − !2 (Ha2 + c)2 sin(

√
H2 + 4!2 u)

]
.

x2(u) =
1 + a2! − 4a " − #(u)

! − 4"2
,

x(u) x′(u)√
#(u)

=
(
√
#(u))′

4"2 − !
,

(H
√
!(u) + c)2 = (4"2 − #)2 y2(u)

= (1 − 2a" −
√
!(u)) (# + #

√
!(u) + 2a#" − 8"2) −

(
(
√
!(u))′

)2

.

(38)(
√
!(u))′ =

√
−(H2 + ")!(u) + 2 b1

√
!(u) + b,
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where 

In the sequel, we integrate equation (38), up to a change of the origin of u, considering the 
following possibilities: 

i) If H2 + ! = 0 , then we obtain that 

 with 

 Then, substituting in the first equation of (29), we get 

ii) If H2 + ! > 0 , then the integration of (38) gives 

 Therefore, substituting in the first equation of (29), we obtain 

iii) If H2 + ! < 0 , then the integration of (38) gives 

 Therefore, substituting in the first equation of (29), we obtain 

  ◻

b = (1 − 2a!) (" (1 + 2a!) − 8!2) − c2, b1 = 4!2 − 2a"! − cH.

√
!(u) =

b1
2
u2 + b2,

b1 = 2a! H2 + 4!2 − cH, b2 = −
b

2 b1
.

(39)

U2(u) =
1

m2

(
!(u) − (1 − 2a")2

4"2 + H2
+ a2

)

=

(b1
2
u2 + b2

)2

+ a2H2 + 4a" − 1

m2 (4"2 + H2)
.

√
!(u) =

1

H2 + "

[
b1 +

√
b2
1
+ b (H2 + ") sin(

√
H2 + " u)

]
.

(40)U2(u) =
(H2 + !)2(4a" − a2! − 1) +

[
b1 +

√
b2
1
+ b (H2 + !) sin(

√
H2 + ! u)

]2

m2(4"2 − !)(H2 + !)2
.

√
!(u) =

⎧
⎪
⎨
⎪⎩

1

H2 + "

[
b1 −

√
−b2

1
− b (H2 + ") sinh(

√
−(H2 + ") u)

]
, b2

1
+ b (H2 + ") < 0,

1

H2 + "

[
b1 −

√
b2
1
+ b (H2 + ") cosh(

√
−(H2 + ") u)

]
, b2

1
+ b (H2 + ") > 0.

(41)U2(u) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

(H2 + !)2 b3 +
[
b1 −

√
−b2

1
− b (H2 + !) sinh(

√
−(H2 + !) u)

]2

m2(4"2 − !)(H2 + !)2
, b2

1
+ b (H2 + !) < 0,

(H2 + !)2 b3 +
[
b1 −

√
b2
1
+ b (H2 + !) cosh(

√
−(H2 + !) u)

]2

m2(4"2 − !)(H2 + !)2
, b2

1
+ b (H2 + !) > 0.



 R. Caddeo et al.

1 3

Remark 3 In particular, if we consider m = 1 and a = a0 in the expressions of U(u) obtained 
in Theorem 4, we see that an arbitrary helicoidal surface in N!," has constant mean curva-
ture H if and only if the functions !1(u), !2(u) and !(u, t) are given by (9) and (10) by substi-
tuting the corresponding function U(u).

Remark 4 Putting ! = " = 0 in the equations  (36) and (37), we obtain the following 
expressions:

the second of which was given by Do Carmo and Dajczer in [18].

Example 2 (General helicoidal minimal surface in ℝ3 ) Considering in ℝ3 the function 
U(u) =

√
u2 + a2 + c2 , we obtain that the natural parametrization of a general helicoidal 

minimal surface given by

This family of surfaces called second Scherk’s surfaces2 includes the catenoid and the heli-
coid that correspond to the cases a = 0 and c = 0 , respectively. We observe that all the 
surfaces of the family for which the sum a2 + c2 is the same are isometric to each other 
and, also, every helicoidal minimal surface in ℝ3 belongs to one of the families of isometric 
surfaces obtained deforming catenoids into helicoids.

Remark 5 From Theorem 4, in the Heisenberg space ℍ3 ( ! ≠ 0 and ! = 0 ) the helicoidal 
minimal surfaces are determined by the function

Therefore, among the helicoidal surfaces in ℍ3 obtained in Example 1 the only minimal 
surface is the helicoidal catenoid because the function U(u) = (u2 + 2)∕2 can be obtained 
just choosing in (43) c2 = 1 = m and a = 1∕2.

U2(u) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

u2 + a2 + c2∕4

m2
, if H = 0,

2 − cH + 2
√
1 − cH − a2 H2 sin (H u)

m2 H2
, if H ≠ 0,

(42)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

!1(u) =
√
u2 + c2,

!2(u) = c cosh−1
(√

u2

a2 + c2
+ 1

)
+ a arctan

(
a u

c
√
u2 + a2 + c2

)
,

"(u, t) = t − arctan

(
a u

c
√
u2 + a2 + c2

)
.

(43)
U2(u) =

(
2 !2u2 + 1 − 2a! +

c2

8!2

)2

+ 4a ! − 1

4m2 !2
.

2 In 1835, H.F. Scherk made an important contribution to minimal surfaces theory with his work [37] that 
contains the first examples of minimal surfaces obtained from the integral of Monge and Legendre. Also, he 
investigated minimality of surfaces given as graphs z = z(r, !) (where (r, !, z) are cylindrical coordinates in 
ℝ3 ) satisfying the condition !2z

!r!"
= 0 and determined all the helicoidal minimal surfaces. Detailed accounts 

and further information can be found in [13], on p.  60, and in [15], on p.  327.
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