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Abstract: The IoT is transforming the ordinary physical objects around us into an ecosystem of
information that will enrich our lives. The key to this ecosystem is the cooperation among the devices,
where things look for other things to provide composite services for the benefit of human beings.
However, cooperation among nodes can only arise when nodes trust the information received by
any other peer in the system. Previous efforts on trust were concentrated on proposing models
and algorithms to manage the level of trustworthiness. In this paper, we focus on modelling the
interaction between trustor and trustee in the IoT and on proposing guidelines to efficiently design
trust management models. Simulations show the impacts of the proposed guidelines on a simple
trust model.
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1. Introduction

The Internet of Things (IoT) has become one of the most important realities of our
century, able to connect billions of devices. This paradigm allows us to connect everyday
objects seamlessly to the Internet, in any place and at any time [1]. The massive amount of
data flowing through the IoT has pushed forward the development of new applications in
several domains, such as the management of industrial production plants, logistics and the
transport supply chain, e-health and smart buildings, just to cite a few.

The IoT is transforming the ordinary physical objects around us into an ecosystem
of information that will enrich our lives. The key to this ecosystem is the cooperation
among the devices, where things look for other things to provide composite services for the
benefit of human beings. Thanks to the interactions between objects, IoT applications can
be designed so that each device can play the role of a service provider or a service requester,
or both. In this scenario of object-object interactions, it is essential to understand how the
information provided by each object can be processed automatically by any other peer in
the system. This cannot clearly disregard the level of trustworthiness of the object providing
information and services, which should take into account the profile and history of it. Trust
management is a crucial aspect of the IoT that ensures the exchange of information by
the nodes, reducing the risk of untrustworthy data [2]. Trust can concern many fields in
everyday life, and it has many definitions; however, the IoT literature on trust is quite
confusing. In this paper, we adopt a specific definition of trust:

Trust is the subjective probability by which an individual, the trustor, expects
that another individual, the trustee, performs a given action on which its welfare
depends [3].

In the IoT, the requester represents the trustor, the object that looks for services,
while the trustee provides the needed information and is depicted by the provider. The
trustworthiness management model has to identify which provider is trustworthy, select it
as the requester and check if the interaction is reliable. However, malicious devices can
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perform attacks providing scarce services for their own gain. Trust models are designed in
order to detect and discard these nodes and to increase the trust of the network.

In the state-of-the-art, many researchers have proposed different models that encour-
age collaboration in IoT networks and try to detect malicious behaviours. Nevertheless,
these works consider only a subset of attacks and are strongly tied to their reference sce-
nario. Indeed, collaboration among nodes can only be achieved when trust is built between
all involved parties, since without effective trust management foundations, attacks and
malfunctions in the IoT will outweigh any of its benefits. As shown in Figure 1, the concept
of trust is tied to the perception of a trustor to evaluate a trustee’s trustworthiness under
external conditions, such as the misbehaviour of devices or errors on data process and
analysis. Therefore, it is important to understand the general problem of trust in a generic
IoT network and which behaviours all the nodes can assume. Therefore, we propose the
guidelines to design a suitable trust model in order to address it and to guarantee the
proper functioning of the IoT network. To this, game theory can represent a useful tool to
analyse the interactions between requesters and providers. In this paper, we illustrate the
game dilemma that describes the behaviour adopted by the nodes, both benevolent and
malicious. To the best of our knowledge, this is the first work that derives the guidelines
needed to design a trust management model for the IoT so that it is able to cope with the
most common attacks.

Figure 1. The concept of trust.

To summarize, the major contributions of the paper are:

• Modelling the interaction process between requesters and providers through a binary
trust game, which defines the node’s behaviours, i.e., the possible strategies, and the
possible payoffs.

• Proposing guidelines to design a suitable trust management model in two different
scenarios: an errorless scenario, where cooperative nodes are always able to deliver
the requested service, and a realistic environment, where cooperative devices can
show poor performance, because of errors, poor accuracy, or technical problems
in general.

• Analysing the performance of the proposed model to evaluate the efficiency of the
proposed guidelines.

The rest of the paper is organized as follows: Section 2 presents a brief survey on the
importance of trust in the IoT, attacks on services and the game dilemma used to design
a trust model. In Section 3, we define the scenario and the game definition; moreover,
we expose the mathematical model for all the behaviours and the rules to design a suit-
able trust model. Section 4 presents the performance and the experiment simulations,



IoT 2021, 2 52

while Section 5 draws final remarks and a discussion about the guidelines’ usability for
the community.

2. Background
2.1. Importance of Trust in the Internet of Things

Trust has been recognized as a critical factor for the Internet of Things. Trust manage-
ment allows multiple objects to share opinions about the trustworthiness of other devices.
Trust as an abstract concept can provide a uniform decision for heterogeneity and multiple
domains in the IoT [4].

Trust is the critical factor in almost every aspect of the IoT and in network applications.
Figure 2 provides a simple example of a generic network, with each node capable of
providing one or more services, as highlighted in the grey clouds; Node 1 is the node
that is requesting the service S7, as highlighted in the white cloud; in this example, we
consider that Nodes 5 and 6 can provide the requested service, and then, they represent the
providers. For each of the possible providers, the requester computes the trustworthiness
level (T15 and T16) and then chooses the provider with the highest value, which is number 5
in our example. Therefore, the goal of the paper is to provide the guidelines to design a
trust management model in order to provide suitable services to the IoT nodes, discarding
all the malicious behaviours.

Figure 2. Trust management model.

Over the last few years, many researchers have taken into account this problem,
so the literature presents trust models that implement different techniques and metrics.
However, the extensive research on the topic has created confusion about the effectiveness
of some trust parameters and how these can be used effectively to create a trustworthy
environment. Moreover, there is confusion around the concept of trust, which sometimes
gets even misunderstood with the security issue.

This subsection provides a brief overview of the main concepts used in trust models
that are well known by the research community. Accordingly, we analyse the trust models
and their parameters.

Trustworthiness is an important element in many IoT scenarios. For example, recently,
the medical industry tried to combine IoT technology with medical instruments: the
reliability of the information exchanged by IoT devices is of paramount importance for the
safety of people. In this regard, in [5], the authors proposed a trust management approach
based on Bayesian inference to detect malicious devices. The authors proposed a trust
protocol that uses information sharing among IoT devices in a centralized architecture.
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They defined the nodes’ trust in an interval [0, 1] as the probability that the packets are
normal and not bad, using 0 for a bad provider and 1 for trustworthy nodes. All the nodes
have the competency to perfectly evaluate the received service, and they start with a trust
value equal to 0.5. The threshold used to consider the node as benevolent is set according
to a particular scenario, and it can be modified by the network’s owner.

Two other approaches developed for a generic scenario were described in [6,7]. In
the first work, the authors proposed a trust management model for mobile networks that
support both direct and indirect trust opinions in a weighted sum equation. Each requester
node calculates for each interaction the providers’ trust by taking into consideration several
parameters, such as the number of packets properly forwarded and the recommendations
provided by other nodes. In their model, a value of zero was used for untrustworthy
nodes, while one was used for completely trustworthy objects; the decision threshold
was computed according to the network deployment scenarios, and the initial trust for
recommendations was set to 0.5. In [7], the authors illustrated a centralized trust mechanism
in order to detect attacks on recommendations. The system assigned to each node a
trust value in [0, 1], which was computed based on its past interactions, QoS metrics and
recommendations from other objects, while the trust threshold was set to 0.5. Similar to the
previous work, no decrement/increment of trust was evaluated, but the model computed
the trust of the provider anew during each interaction.

In recent years, many researchers have tried to improve the reliability of trust models,
in terms of the ability to detect malicious behaviours, e.g., by making use of blockchain
approaches. However, several of these works aimed to increase trustworthiness through
security mechanisms. Among them, in [8], the authors proposed a blockchain-based trust
system for IoT access control. Each node calculates the trust in an interval of [0, 1] for each
provider starting from an initial value of zero according to the previous interactions, while
the blockchain network takes care of the global recommendations from other objects. The
decision takes care of two thresholds for the internal trust and the global reputation set
by the owner. Moreover, a recent work based on the blockchain was described in [9]. The
model guarantees the nodes’ authentication thanks to the blockchain. The trustworthiness
is measured according to a voting mechanism and the reputation received from the other
nodes in the network. A different interval for trust was used by the authors; in this case,
they set [0, 2], where values of zero or two were assigned to completely trustworthy nodes
and zero to objects that only received bad recommendations. Any initial value was used,
and the trust was calculated for each interaction from scratch.

To sum up, Table 1 shows a comparison of the analysed models and their parameters.
The analysed works designed trust algorithms with different levels of performance.

Table 1. Trust models’ parameters’ comparison of the most recent studies.

Ref. Architecture Trust Interval Initial Trust Trust Threshold

[5] Centralized [0, 1] 0.5 Based on the scenario

[6] Distributed [0, 1] 0.5 Based on the scenario

[7] Centralized [0, 1] 0.5 0.5

[8] Distributed [0, 1] 0 Set by the owner

[9] Centralized [0, 2] No initial trust Set by the owner

However, all the works presented confusion in some important parameters, and these
were set as a consequence of simulations and not on the basis of theoretical analysis. Trust
models showed the highest dissimilarities, especially in the choice of the initial trust for the
nodes and of the threshold used to identify the malicious objects. Therefore, it is important
to understand how these values must be set and how they are essential in order to design a
suitable trust management model.
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2.2. Trustworthiness Attacks

In an IoT network, two different behaviours can be considered: one is always benevo-
lent, trustworthy and honest, while the other one is malicious and cheats whenever it is
advantageous for it to do so. It is then important to evaluate the consequences that may
occur to a network due to the presence of malicious nodes [10]. The goal of a malicious
device is to maintain its own resources intact by providing false or poor quality services.
At the same time, a malicious node wants to maintain a high level of trust in order to not
be discarded from the network. This strategy, even if successful for a single node, at first
sight, involves a huge risk for the network because trusting the information from malicious
devices could lead to serious compromises within the network, and this has a direct impact
on the applications that can be delivered to users [11]. In this paper, we are concerned with
trust-related attacks, and in particular, we consider malicious devices that can perform the
following attacks on services:

Malicious with Everyone (ME): This is the simplest attack. The malicious node
provides only false services to everyone [12]. It is the first malicious behaviour considered
by a generic trust management model and is often used as a reference attack.

On-Off Attack (OOA): This is a dynamic attack in which the malicious object periodi-
cally changes its behaviour from an ON to an OFF state, and vice versa [13]. In the OFF
state, the node acts maliciously and provides bad services, while during the ON condition,
the node behaves benevolently to build up its trust value.

Whitewashing Attack (WA): A malicious node with a low value of trust leaves the
network and then re-joins using a new identity [14]. Therefore, the object returns to its
default reputation value and can start to provide bad services again.

Opportunistic Service Attack (OSA): A malicious node provides opportunistically
good services to attract service requesters [15]. When it has a high reputation level, it starts
to act maliciously. The node tries to maintain its trust at an adequate value.

2.3. Binary Trust Games

In many situations, from social to economic, the interactions among peers presuppose
trust. These interactions have been formalized and described as games with two players
and two periods of play, and the resulting games have been referred to as trust games [16].
A trust game can be considered as a one-sided prisoner’s dilemma game.

Each device acts as a player that chooses its own strategy based on the information
it has in order to maximize its payoff [17]. This way, the game can be used to study
the dynamics between untrustworthy and trustworthy nodes. An analysis of the two-
player game (requester versus provider) can provide the tools to design a suitable trust
model. This study is supported by decision-making theorems that help to analyse the
strategies of the player: one of them is the Nash equilibrium. According to it, the dominant
strategy for each player exists if no one changes its behaviour, and each player’s payoff is
optimal when considering the decisions of other players. This study helps us to identify
the nodes’ behaviour in the IoT and how the network owner can improve the trust for all
the interactions.

In the IoT, both the requester and the provider face a binary choice, not a continuous
one: the trustor has the binary choice to trust the trustee or not, and in case the trustor de-
cides to trust, the trustee faces a binary choice to either honour it or abuse the demonstrated
trust. The binary trust game was formalized in [18]. Figure 3 illustrates the original game
proposed in the state-of-the-art [18]. We add a brief description of it for the sake of clarity,
but we refer to the cited paper for a more detailed description. In the game, a player, the
trustor, is endowed with an amount of e 10, and it has to decide to keep the whole amount
for itself or to transfer the sum to a second player, the trustee. In the first case, the game
ends with an amount of e 0 for the second player, so the trustee is not trustful. Otherwise,
if the trustor provides the sum to the trustee, the e 10 is quadrupled, and consequently, the
trustee receives e 40. Now, it has to decide between two behaviours: it can be a trustworthy
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player giving e 22 to the first player while keeping e 18 for itself or it can act maliciously
by keeping e 40 for itself and leaving the trustor with an amount of e 0.

Figure 3. Decision tree for the binary trust game.

For many years, researchers have studied the binary trust game in order to analyse
the mutual benefit originated from a form of reciprocity. In [19], the authors illustrated
the impact of a set of different motives of choices in the dual-role game. They employed
data from a large experiment in which all the participants made a decision from both of
the roles. At the end of the experiments, they identified four types of players: trustful
and trustworthy, non-trustful and non-trustworthy, trustful and non-trustworthy and non-
trustful and trustworthy. Most results from the analysis illustrated how especially strategic
considerations rule the behaviours, and not altruism or spitefulness. Furthermore, in [20],
the authors used the game in order to study the evolution of trust and trustworthiness
in different populations. They showed how the network structure has little effect on the
evolution of trust and trustworthiness and how other parameters rule the players’ decisions,
e.g., rewards or individual differences among participants.

Moreover, the binary trust game is employed in other scenarios. Among these works,
in [21], the authors conducted experiments based on the mentioned game in order to
analyse the form of behaviours in many important economic decisions. The cooperation
regarding economic psychology was also illustrated in [22]. The authors showed how
cooperation is affected by many parameters. People try to mitigate the risk of decisions
according to details from other encounters, while if they are strangers, they have to rely
on their intuitions in order to predict the behaviour of the other player. Another work
was presented in [23] for a physiological human scenario. The authors used the game in
order to study human behaviour concerning cooperation and to describe the personality
characteristic that would play this significant role. On the other hand, the game was
employed also to describe the highly uninhibited and impulsive personality that refuses
game cooperation, acting maliciously.

All these works tried to explain the different behaviours in a two-player game that
requires trust. This paper aims to provide the essential elements needed to design trust-
worthiness management algorithms in an IoT scenario. We address this goal by applying a
binary trust game to the IoT scenario in order to capture the potential insights from the
evolution of trust and trustworthiness due to the objects’ interactions.

3. The Trustworthiness Model

In this section, we model the trust game between the generic requester and the generic
provider, and we provide the guidelines to build a trust management algorithm able to
detect malicious behaviours.
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3.1. Scenario

The IoT is composed of billions of intelligent nodes that are uniquely addressable,
where each node can provide a combination of sensing, actuation and computational
services. Things are then able to look autonomously for other things to request their
services to compose them for the benefit of human beings. In order to deliver trustworthy
applications back to the users, nodes have to understand which, among the nodes in the
network, are trustworthy and can then lead to successful collaborations.

In such a scenario, the requester has the role of the trustor and has to trust that the
provider, which is then the trustee, will provide the required service. For every service
request, both the requester and provider have costs and benefits associated with them, so
each node needs to find a trade-off between the cost and the benefit related to a request.
From the point of view of the requester, it has a cost cr associated with its request, which
can be related for example to the delay in providing the service back to the user, but it has
an obvious benefit br related to obtaining the desired service. The provider, instead, has
to consider the cost cp to solve the request, which can be tied for example to the energy
consumption to make a sensing measurement, and a benefit bp for its reputation, which
can be increased or decreased according to its behaviour.

In our scenario, the requester has to select one of the providers based on their level
of trust: the higher the level of trust, the higher the probability to receive the desired
service, and thus to maximize the payoff. The trust level is computed according to the
trustworthiness management model implemented, which has the fundamental role of
identifying malicious nodes. The goal of this paper is to study the trust game between the
requester and the provider as a framework and to propose guidelines to design suitable
trust models.

3.2. Game’s and Payoffs’ Definitions

The proposed trust game consists of a finite set of devices acting as players, where a
link between two devices denotes the possibility of interactions or transactions between
them. The game is based on pairwise interactions, i.e., every device interacts or transacts
with other directly connected devices in pairs. Pairwise interactions proceed in two phases.
A requester needs a service and can choose whether to select a provider, the trustee, to
retrieve it (i.e., being trustful) or to do nothing (i.e., being not trustful). In the latter case,
the game ends, and both players get a zero payoff: the trustor has not received the service,
and the trustee did not have any chance to take part in the game. In the former case, the
trustor needs to consume some of its resources in order to send the request to the provider,
which in return has to decide to defect or collaborate. If it collaborates, both players
receive a reward, respectively Rr for the requester and Rp for the provider. However, if
the provider defects, i.e., it behaves maliciously, it receives a greater reward, equal to T
(temptation), while the requester receives a negative payoff S. The negative payoff is due
to the false service received by the requester that must be discarded, while the malicious
provider safeguards its resources and obtains a greater reward. During a single interaction,
for the provider, defection always results in a better payoff than cooperation, since the
requester cannot punish it, and so, it represents a dominant strategy. The best strategy for
the requester is then to be not cooperative and not to ask for services. Mutual defection is
the only strong Nash equilibrium in the game, so this results in a network where nodes do
not interact with each other.

Figure 4 illustrates the decision tree for the evaluated trust game.
However, two IoT nodes can interact more than once in succession, and they can

remember the previous actions of their opponents and change their strategy accordingly.
Under these conditions, the game becomes iterated; nevertheless, if the game is played
exactly N times and both players know the number of transactions, then it is still optimal
to defect in all rounds, and the Nash equilibrium is to always defect. The proof is inductive:
the provider could defect on the last transaction since the requester will not have a chance
to change its strategy later. Therefore, both will defect on the last transaction. Thus, the
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provider might as well defect on the second-to-last interaction, since the requester will
defect on the last no matter the provider’s behaviour, and so on.

Figure 4. Decision tree for the trust game.

For these reasons, we consider an iterated trust game with an unknown number of
transactions, where the complete payoff is determined according to the strategy adopted in
each game. The incentive to behave maliciously in the short term is compensated by the
possibility for the requester to punish the provider after the abuse of trust. For cooperation
to emerge between rational game players, the total number of rounds must be unknown to
the players. In this case, “always defect” may no longer be a strictly dominant strategy, but
it remains a suboptimal Nash equilibrium. Based on the previous considerations about the
cost and benefit for the two players, the payoffs are determined as follows:

S = −br − cr

T = bp

Rr = br − cr

Rp = bp − cp

(1)

The punishment S reflects the request’s cost cr and the false benefit received, specified
by −br. Moreover, the temptation T is related to the benefit of the malicious behaviour bp,
without any cost. In addition, the payoffs Rr and Rp are the results of the collaboration
between the players: the first depends on the request’s cost cr and on the benefit of the
received service br, whereas the second payoff concerns the provider with the cost to
provide the service cp and the benefit in terms of its reputation bp. From this, we model the
payoffs’ constraints as follows:

Requester : Rr > 0 > S

Provider : T > Rp > 0
(2)

The punishment S is the worst payoff for a requester: this is due to the resources used
for the request and to the false service received. Regarding the provider, the temptation T
is greater than the payoff resulting from collaboration and the related reward. Moreover,
the requester and provider payoffs are related by the following:

Rr > T (3)

This relation shows how the requester obtains a greater payoff than the provider since
the requester receives the desired service, while the requester increases its reputation.

The relations in terms of benefit and cost are shown below:

br − cr > bp (4)
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where it is remarked how the requester has a benefit/cost greater than the provider;
this is due to the requester being more interested in the communication to receive the
needed service.

3.3. Strategies and Attacks

In order to provide general guidelines for the development of trust algorithms, we
consider a generic trust model. Due to the iterated nature of the considered trust game,
the nodes’ strategies must reflect their past interactions. For each interaction k, the generic
trust value assigned to the provider can be expressed as:

T(k) = T(k− 1) + ∆ (5)

where T(k− 1) represents the trust value during the previous transaction, while ∆ indicates
the trust variation based on the provider’s behaviour in the last round:

∆ =

{
−∆−, malicious behaviour
∆+, benevolent behaviour

(6)

When there is no previous information, i.e., during the first interaction, an initial trust
value is assigned to each provider, so that T(0) = Tinit.

The requester changes its behaviour based on the computed trust value and chooses
a strategy in the iterated games in order to increase its total payoff. To simplify the
analysis, all the parameters are in the range [0, 1], so that, e.g., a trust value of zero indicates
untrustworthy nodes, while a trust value of one is used for completely trustworthy nodes.
Moreover, whenever the trust value of a device is lower than a given threshold Tth, the
node is immediately labelled as malicious.

The evolution of trust depends on the strategy adopted by the provider in the previous
interaction, which has a direct impact on the trust variation ∆. Two different behaviours
can be considered in a network: one is always benevolent (or cooperative) and provides
only good services; therefore, its trust is always increased after a transaction, and ∆ = ∆+.
The other behaviour is a strategic one corresponding to an opportunistic participant who
cheats whenever it is advantageous for it to do so. A node that performs maliciously
usually provides false or scarce services in order to save its resources. Below, we model the
most studied attacks on trust in the literature and study the strategies that can be used to
develop a suitable trust model.

A node performing the Malicious with Everyone (ME) strategy acts maliciously with
everyone. Regardless of the interaction, the node sends only false services, and its trust
value is then always reduced (∆ = −∆−). We can then model its trust evolution as follows:

T(k) = T(k− 1)− ∆− (7)

Another malicious attack is the Whitewashing Attack (WA), which shows a very
simple dynamic behaviour. This behaviour is similar to the ME, which provides only bad
services, with the difference that a node performing this attack can re-join the network
and then re-initialize its trust value. Similar to the previous case, ∆ = −∆−, and the trust
evolution is the same as Equation (7).

A more complex dynamic attack is the On-Off Attack (OOA), where the malicious node
changes its behaviour from benevolent to malicious, and vice versa, every M interactions.
In this case, we can model the trust variation ∆ based on the first behaviour adopted by the
provider. If the node starts with malicious behaviour, ∆ can be expressed as:

∆ =

{
−∆−, if 2nM < k ≤ (2n + 1)M
∆+, if (2n + 1)M < k ≤ (2n + 2)M

(8)



IoT 2021, 2 59

Otherwise, if the node initially acts as a benevolent node, ∆ can be computed as:

∆ =

{
∆+, if 2nM < k ≤ (2n + 1)M
−∆−, if (2n + 1)M < k ≤ (2n + 2)M

(9)

with n ∈ N . The two Equations (8) and (9) illustrate the oscillatory behaviour of this attack.
The last strategy is represented by the Opportunistic Service Attack (OSA). A node

performing this attack provides bad service only when its trust is at an acceptable level. It
represents a rational player that performs attacks with the aim to maximize its own payoff.
The node adapts its strategy in order to not be detected: to do this, it defines its own trust
limit TOSA and behaves so that its trust value is always higher than this limit. Indeed,
this limit must be greater than the threshold Tth in order for the node to be considered as
benevolent (TOSA ≥ Tth). The trust variation can then be described as:

∆ =

{
∆+, if T(k− 1)− ∆− < TOSA

−∆−, if T(k− 1)− ∆− ≥ TOSA
(10)

When the node senses that its trust is dropping below the trust limit, it sends good
services, and then, ∆ = ∆+. Otherwise, the node continues to provide bad services
(∆ = −∆−).

Table 2 shows all the parameters used in the proposed investigation.

Table 2. Trust model parameters. WA, Whitewashing Attack; OOA, On-Off Attack; OSA, Oppor-
tunistic Service Attack.

Parameter Description

k Generic interaction between a requester and a provider

K Total number of interactions between the two players

Tinit Initial trust value for a provider node

Tth Threshold to consider a node as “benevolent”

∆ =

{
∆−

∆+
Decrement/increment of the trust value based on the provider’s behaviour

k′ Re-join interaction for a WA node in which the trust is re-initialized

M Number of interactions after an OOA node changes its behaviour

TOSA The lowest trust value accepted for an OSA node for itself

3.4. Trust Management Model Guidelines

The goal of a trust model is to detect malicious nodes without discarding the coopera-
tive nodes. With ideal conditions, a cooperative node will always provide good services,
and thus, it will receive a positive trust variation (i.e., ∆ = ∆+, which as described before
can have a value in the range [0, 1]). For this reason, the only condition to not discard any
cooperative node is trivial:

Tinit ≥ Tth (11)

The initial trust represents a crucial parameter for a trust model: it establishes the
number of interactions that a malicious node can take advantage of in order to act ma-
liciously. A high value confers the best trust to the nodes, while a low value makes the
model suspicious. In the community, many works take on the choice of the initial value
using the static characteristics of the nodes, e.g., the computation capabilities of the nodes
[24] or social relationships between the objects’ owners [25].

However, due to the presence of malicious behaviours, stricter conditions are necessary.
Indeed, the goal of any trustworthiness management model consists of maximizing the
payoff for the cooperative nodes and thus isolating malicious objects as quickly as possible,



IoT 2021, 2 60

i.e., with the lowest number of transactions, so that they are not selected as providers. Since
a requester will discard a provider if its trust value drops below a certain threshold Tth, we
can express the goal of a trust algorithm as:

max{payo f f }req → min(k) : Tprov(k) < Tth (12)

Ideally, the highest payoff for the requester is achieved if the model is able to detect a
malicious node at the first malicious transaction. Starting from Equation (12), we derive
the most suitable configurations for the trust model parameters: the initial value of trust
Tinit, the trust variation ∆+ and ∆− and the threshold Tth.

In order to detect an ME attack after the first malicious transaction, the following
relation must be true:

T(1) = Tinit − ∆− < Tth (13)

where the reader should remember that T(0) = Tinit. From Equation (13), we have three
parameters, so we need to set two of them and calculate the last. Three conditions can then
be set as follows:

Tth > Tinit − ∆−

Tinit < Tth + ∆−

∆− > Tinit − Tth

(14)

Similar considerations can be derived for a node implementing a WA. However, a node
performing this attack re-initializes its trust value every k′ transactions, so the conditions
to maximize the payoff of the requester have to be generalized as follows:

min{k} → k = k′ + 1 (15)

∀(entry) : (Tinit − ∆−) < Tth (16)

where T(k′) = Tinit, and for each re-initialization, the malicious node performing WA is
identified at transaction k′ + 1. The conditions found in Equation (14), calculated for an
ME attack, are still valid also for the WA.

Other conditions can be obtained considering other attacks. As described before, a
node performing an OOA has two distinct behaviours: the node starts with M malicious
interactions or with M cooperative interactions. The first behaviour is similar to the ME
attack: a trust algorithm can maximize the payoff of the requester by detecting the malicious
node during the first (malicious) transaction, and thus, we obtain again the same conditions
as Equation (14). However, if the malicious node starts with M cooperative transactions, the
first malicious interaction is the k = (M + 1)-th. In order to identify malicious behaviour,
the trust model’s parameters should be set in order to satisfy the following:

T(M + 1) = Tinit + M∆+ − ∆− < Tth (17)

which takes into account that the first M positive interactions have increased the trust of
the node. However, M is a typical parameter of the OOA, so in order to avoid leaving
any degree of freedom to the malicious node, it is important to set a condition that is
independent of M and that can be obtained with:

∆+ = 0 (18)

With this condition, both malicious and cooperative nodes are never rewarded when
providing good services, but they are still punished when delivering bad ones. Applying
this condition to (17), it is possible to obtain the same relation as in (13), which can be solve
applying the conditions in (14).

Another condition can be obtained by analysing nodes performing the OSA. As
mentioned earlier, in the OSA, the malicious nodes set a trust limit TOSA higher than the
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threshold Tth and use this limit to decide its behaviour. From this, we can set an ideal value
for Tth: a value lower than one allows the node to act maliciously, while with a value equal
to one, regardless of the trust limit TOSA set by the malicious node, the node performing
OSA is forced to provide only good services and is unable to assume malicious behaviour.

Table 3 summarizes the evaluated parameters. In order to prevent OSAs, we must
have the threshold Tth set to one. As a consequence of Equation (11), the initial value of
trust must be set to Tinit = 1. Moreover, from the considerations on the OOA, ∆+ is set to
zero, while, from the third condition in (14), ∆− has to assume any value greater than zero
in order to immediately detect any malicious behaviours.

Table 3. Adequate value for the trust model to detect the malicious behaviours.

Parameter Value

Tth 1

Tinit 1

∆+ 0

∆− x ∈ (0, 1]

3.5. Probability of Error

The conditions obtained in the previous section represent an ideal scenario where the
benevolent node will always cooperate. However, in a real IoT system, a cooperative device
can be discarded from a network due to errors related to several reasons: well-behaving
devices can show poor performance, due to errors, poor accuracy, or technical problems in
general. This problem is usually overlooked by trust algorithm models, while it should
be fundamental for them to be able to discern a malicious node from a poorly-behaving
one. A trust model should be designed to take into account the errors of cooperative nodes,
according to some admissible error rate for the model. If we consider that a benevolent
node has a probability p to provide an unintentional bad service, then we can express the
trust value calculated by the generic trust model as:

T(k) = T(k− 1) + (1− p)∆+ − p∆− (19)

In order to not isolate any benevolent node, a trust model should always be sure that
T(k) ≥ Tth. To this end, the following conditions must be met:

(1− p)∆+ − p∆− ≥ 0

∆+ ≥ p
(1− p)

∆−
(20)

and since ∆− ∈ (0, 1], it is possible to observe a first difference w.r.t. the errorless sce-
nario: ∆+ cannot be equal to zero, in order for a trust model to balance any error from
cooperative nodes.

However, Condition 19 can still be violated, and some cooperative nodes can be
discarded: in the worst-case scenario, the first k interactions are all affected by errors.
Considering consecutive transactions among nodes as independent, we can compute the
probability of such a scenario as pk. It is then possible to set a maximum admissible error
Amax for the trust model as:

Amax = pk+1 (21)

so that, by knowing the admissible model error Amax and the probability of error on the
single transaction p, we can compute how many consecutive transactions k can be tolerated
by the trust model as:

k = logp Amax − 1 (22)
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This value determines that any node should not be discarded before k transactions,
even if they are all malicious/have errors. This condition can be expressed as:

T(k) = Tinit − k∆− ≥ Tth (23)

The goal of the trust model is still to isolate the malicious nodes; similar to what we
have done in the previous section, we aim to find the conditions that allow the trust model
to isolate the malicious nodes as soon as possible. For nodes performing ME attacks and
WAs, the first useful transaction to detect the malicious nodes is the (k + 1)-th transaction,
and then, the following condition must be true:

T(k + 1) = Tinit − (k + 1)∆− < Tth (24)

so that the first k transactions allow errors to occur, while the system recognizes a malicious
behaviour afterwards. Similar to (14), three conditions can be set as follows:

Tth > Tinit − (k + 1)∆−

Tinit < Tth + (k + 1)∆−

∆− >
Tinit − Tth

k + 1

(25)

where each parameter is described based on the other two and ∆− ∈ (0, 1
k+1

).
Another condition can be obtained by analysing the OOA. If the node implementing

OOA starts with a malicious behaviour performing M malicious transactions, it is possible
to devise the same condition as Equation (25). However, if the malicious node starts
with M benevolent transactions, the trust model can identify the malicious node at the
k = (M + k + 1)-th transaction, if the following condition is satisfied:

(Tinit + M∆+ − (k + 1)∆−)− Tth < 0 (26)

In order to minimize the impact of M and the number of transactions needed to detect
the OOA, ∆+ should be set at the minimum admissible value, which can be derived from
Equation (20) as:

∆+ =
p

(1− p)
∆− (27)

which allows cooperative nodes to avoid being discarded due to errors, but at the same
time, enables the trust model to quickly identify the OOA.

Finally, it is not possible to devise any further conditions by analysing OSA attack. In
order to satisfy Equation (25), it is not possible to set Tth equal to one, as in the errorless
scenario. This allows a node implementing the OSA to perform malicious transactions
with a rate equal to the error probability p, since performing a higher number of malicious
transactions would cause the node to be detected. In this way, the value for Tth must follow
Equation (25) correlated to the probability of error p, while Tinit is set equal to one in order
to overcome the scenario without error as well. Table 4 shows the adequate parameters’
values in order to design a suitable trust management model, both without or with an error
probability for cooperative nodes.
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Table 4. Final parameters’ value for the trust model to detect the malicious behaviours in the scenario
with errors.

Parameter Value

Tth Tth > Tinit − (k + 1)∆−

Tinit 1

∆+ p
(1−p)∆−

∆− x ∈ (0, 1
k+1

)

Table 5 shows all the parameters used to study the trust management models with an
error probability on cooperative nodes.

Table 5. Trust model parameters considering an error probability.

Parameter Description

p Probability of error in a generic interaction

Ath Maximum tolerable error for the trustworthiness management model

Amax Maximum error for a trust model

k Number of consecutive malicious behaviours permitted by the trust model

4. Experiments and Results
4.1. Experimental Setup

In order to test the effectiveness of the guidelines for a trustworthiness model exam-
ined in the previous section, we need to simulate the binary game and all the possible
behaviours. To this end, we make use of a full mesh network of N = 100 devices, where
each device interacts K times, not known beforehand by the devices, with each other device,
alternating the roles of provider and requester. This way, all nodes can play all the possible
strategies in the game. For each pairwise interaction, two players, one acting as a requester
and the other as a provider, play the game and change their strategies according to their
behaviour in the previous rounds and according to the adopted trust model.

According to Equation (4), we can set the values of all the payoffs. Different values
might be assigned to the parameters; however, if they respect the exposed relations, the
final game would be the same. In this case, the greatest value is assigned to the requester’s
benefit since it receives the required service, while the provider has a minor benefit related
to its reputation. Taking into account the cost, the provider needs to use its own resources
in order to solve the request, and then, the cost is higher w.r.t. the requester, where the cost
is associated with the time spent to obtain the service and with the resources needed to
send the request. For each game, the payoff for the two nodes, requester and provider, is
computed according to the payoffs’ values, and the total payoff for a node is the sum of all
the games.

The interactions follow the trust model based on the guidelines exposed in Section 3 in
order to detect the malicious behaviours and guarantee a high payoff for the benevolence.
To do this, we set ∆− equal to 0.1 in order to satisfy the condition ∆− > 0 and Tinit = 1
to grant the highest possible initial trustworthiness to all the nodes, while ∆+ and Tth
are consequently evaluated for the specific set of simulations. The maximum admissible
error for the algorithm is set to Amax = 10−3 in order to reach a compromise between the
errors due to the cooperative nodes and the bad services provided by malicious nodes:
considering an error probability equal to p = 0.2, k = 3.29 that allows a number of
consecutive errors starting from Tinit equal to 3.

Moreover, malicious nodes are designed according to the description supplied in
Section 2.2. All the behaviours, both benevolent and malicious, are used to measure the
effectiveness of the guidelines for the trust management model. The ME behaviour always
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provides bad services and defects in all transactions. Similarly, a node implementing
the WA acts maliciously with everyone, but after a fixed number of transactions, 25 for
our simulations, it resets its trust value by leaving and re-entering the network. Nodes
performing the OOA change their state from ON to OFF, and vice versa, every M = 5
interactions, starting from the cooperative behaviour, which is harder to detect. Finally, the
OSA node represents a smart attacker that modifies its TOSA threshold, which is used in
order to choose a behaviour. In the first set of simulations, the OOA node sets TOSA = Tth
so as to have more possibilities to act malicious and to increase its payoff.

Table 6 shows all the configuration parameters for the proposed simulations, the
different payoffs used for the game and the trust model details.

Table 6. Simulation parameters.

Parameter Description Value

N Number of nodes 100

K Number of interactions between two players 100

br Benefit value for the requester 0.5

bp Benefit value for the provider 0.3

cr Cost value for the requester 0.1

cp Cost value for the provider 0.2

∆− Decrement of the trust value 0.1

Tinit Initial trust value 1

Amax Maximum tolerable error for the model 0.001

p Probability of error 0.2

k Consecutive malicious behaviours permitted 3

∆+ Increment of the trust value 0.025

Tth Decision threshold 0.625

4.2. Experimental Results

We evaluate the performance of the proposed guidelines by analysing the binary trust
game in the simulated IoT network. Each device is alternately a requester or a provider
and has interactions with all the other nodes.

We first examine a scenario with a population composed of only cooperative nodes
and no trust management model: the goal is to understand which is the payoff that can be
achieved in an ideal network. Each requester trusts all the providers, while providers have
benevolent behaviour and collaborate in all interactions. The payoff average value for a
single node is 24.75. This value consists of the maximum payoff achievable in a game of
100 interactions by a cooperative node. The node is not interested in preserving its own
resources and then collaborates in each game.

Starting from the case with only cooperative nodes, we add malicious nodes to the
network to illustrate how the attackers can obtain a greater payoff. Out of the total number
of nodes in the network, we replace 5% of the nodes for each type of attack’s behaviour, so
that the final network is composed of 80 cooperative nodes and 20 malicious nodes, evenly
distributed among the four types of attacks. No trust algorithm is implemented, so the
requesters will always choose to play the game, while malicious providers will behave
according to the implemented attack. Table 7 illustrates the resulting average payoffs
for all the behaviours: the results show how cooperative nodes achieve the minimum
payoff, which is lower than the previous scenario due to the negative payoff S. Indeed, a
requester interacting with a malicious provider will not receive any service, so its average
payoff decreases from 24.75 to 16.00. On the other hand, malicious nodes receive the best
payoff by acting maliciously: this payoff is higher w.r.t. the case with only cooperative
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nodes, because malicious nodes do not have to use their resource to produce the service
(sense the environment or act on something). ME, WA and OSA can always defect without
being detected due to the absence of the trustworthiness management model. The OOA
behaviour presents a slightly lower payoff due to a certain number of transactions during
the ON state, where the node performs benevolently; anyway, the malicious interactions
allow them to receive a greater payoff w.r.t. the cooperative nodes.

Table 7. Average payoffs of nodes without any trust model. ME, Malicious with Everyone.

Benevolent ME WA OOA OSA

Average Payoff 16.00 26.40 26.40 21.20 26.40

The employment of a suitable trust model is essential in order to detect the malicious
nodes and increase the payoff of the cooperative nodes. To this end, the next set of
experiments examines the same network used in the previous scenario, i.e., with both
cooperative and malicious nodes, but adopting a trust management model. Starting with
the scenario where cooperative nodes always deliver the right service, i.e., they are not
subject to errors, we design the trust model according to Section 4.1: Tinit = 1 and ∆− = 0.1
in order to trust all nodes at start and to detect as fast as possible the malicious behaviours.
Moreover, Tth and ∆+ are set based on Table 3: for the case without errors for cooperative
nodes, Tth = Tinit = 1 to detect the attackers at their first malicious transactions and
∆+ = 0 to never increase the trust for intelligent malicious nodes, such as the OSA. Table 8
illustrates the average payoffs of the nodes using the trust model previously described. The
trust model is able to detect the ME, WA and OOA behaviours, thus reducing their average
payoff with an advantage for the cooperative nodes. Even with a very low value of ∆−,
the model discards these malicious nodes after the first malicious transaction. The result is
that when a malicious node acts as a provider, it will not be trusted, and then, it will not
receive a payoff from any of the benevolent requesters: it will only be able to accumulate
payoff when it acts as a requester and trusts other nodes. The WA behaviour resets its
trust reputation after 25 interactions, then it has a slightly higher payoff than the ME
attack, but nevertheless, it is detected immediately after the first malicious interaction. The
OOA behaviour can achieve an even higher payoff compared to the other two behaviours
by acting as a benevolent node and providing good services in its ON state (the first M
transactions); however, when the node switches to the OFF state, it is immediately detected
at the first malicious interaction. Finally, the OSA behaviour exhibits the highest payoff
equal to the cooperative nodes. The node performing the OSA changes its behaviour in
order to be chosen as the provider and to not be discarded. However, since the model can
detect a malicious node at its first interaction, the malicious node must always perform
benevolently and thus achieve the same payoff as the cooperative nodes. Finally, we can
observe how the average payoff of a cooperative node in this scenario is equal to 21.73,
which is lower when compared to the payoff of 24.75 of the benevolent node in a completely
cooperative network. This is tied to the presence of malicious nodes that decreases the
average payoff for cooperative nodes even though the trust model detects them at the
first interaction.

Table 8. Average payoffs of nodes in a no error scenario with a trust model.

Benevolent ME WA OOA OSA

Average Payoff 21.73 17.28 17.57 17.76 21.73

We now want to analyse the results when cooperative nodes can send bad services
to the requester due to unintentional errors. The focus of the next test of simulations is to
test how the trust model can be designed in order to take into account an error probability.
Figure 5 shows the average payoffs for different values of the error probability p. For
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each value and considering Tinit = 1, the model can set Tth according to Equation (24).
The figure shows the average payoff for all the possible behaviours. The ME and WA
behaviours show a lower payoff w.r.t. cooperative nodes, thus indicating how they are
always detected: while the cooperative nodes make errors with a certain probability, ME
and WA always send scarce services, and the model can easily detect them. Similarly, the
OOA is discarded until an error probability of 0.5, because this behaviour is similar to
a condition of a percentage of error equal to 50%. This results in a greater payoff of the
OOA nodes with an error probability greater than 0.5. Furthermore, the OSA is able to
reach the best payoff in all the simulations sending scarce services in a percentage equal to
the probability of error (e.g., for a probability of error equal to 0.2, the OSA is able to act
maliciously for 20% of its interactions). Moreover, OSA takes advantage of the admissible
error set by the model sending for each requester a number of k bad services in the
first interactions.
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Figure 5. Average payoffs for different probabilities of error for the cooperative nodes.

Figure 6 shows the trust model error in discarding cooperative nodes, considering a
scenario with N = 105 cooperative nodes and a probability of error equal to 0.2. The orange
line shows the computed value for the maximum admissible error Amax as referenced. The
Figure shows how the value of k is essential to overcome the probability of error of the
cooperative nodes and obtain an acceptable error of the trust algorithms. By increasing
the value of k, the model can decrease the number of discarded cooperative nodes, i.e., the
trust model error, at the cost of increasing the vulnerability to attacks.
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Figure 6. Trust model error for different values of k.

Furthermore, the importance of the parameter ∆+ is illustrated in Figure 7. At the
end of the simulation, i.e., after 100 transactions, the figure shows how the worst error
is when ∆+ = 0 since the cooperative nodes are all discarded and no errors are allowed.
The minimum value that allows a maximum admissible error Amax equal to 0.001 is
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∆+ = p
1−p ∆−: this value allows cooperative nodes to avoid being discarded due to errors

and, at the same time, enables the trust model to quickly identify the attacks.
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Figure 7. Model error for different values of ∆+.

Finally, the last two sets of simulations are aimed at understanding how malicious
nodes can change their parameters in order to overcome the trust model. According to the
previous simulations, the probability of error p is set equal to 0.2, and the simulations focus
on an individual malicious node. Each malicious node tries to bypass the trust model in
order to increase its own payoff at the expense of the cooperative nodes. The ME attack has
no way to modify its behaviour, and with a probability of error p < 1, it is always detected
during the first transaction by the trust model. Concerning the WA, a node can change how
often it re-enters the network, but since its behaviour is similar to the ME attack, the node
is always detected at the first malicious transaction. The worst-case scenario is when a
node implementing the WA re-enters the network after each malicious interaction, and the
WA can never be detected. However, the high cost of leaving and re-entering the network
with a different identity limits this behaviour.

Analysing the OOA behaviour, a node has two choices available: which state is used
for the first transactions and the duration of each state, i.e., the value of M. As stated in
the previous section, the best choice for a node is to start with a benevolent behaviour
in order to increase its trust value. Figure 8 illustrates then the average payoff of a node
implementing the OOA with different values of M. With an error probability equal to 0.2
and Amax set to 0.001, the model can allow a number of k = 3 consecutive errors starting
from the first interaction. This means that a node performing the OOA will be detected as
malicious after four malicious interactions. The average payoff is then tied to the number
of benevolent interactions the node performs when it is in the ON state, so that the average
payoff increases for M > k. Before this condition, the average payoff shows an oscillatory
behaviour due to the variation in the number of cooperative transactions.

Finally, the behaviour of the OSA node is described in Figure 9. The model threshold
Tth is set according to Equation (24) with a value near 0.7, because ∆− = 0.1. The figure
shows how the best value for TOSA is equal to Tth, where the node can perform the
highest number of bad services, and thus, its average payoff is maximum. We can also
note how the percentage of bad services the OSA behaviour is able to deliver is higher
than the error probability of a node (p = 0.2): this is due to the ability of the OSA to
exploit the tolerance margin due to the maximum admissible error by the algorithm, Amax.
With TOSA < Tth, the node is immediately detected, and its payoff is lower; while with
TOSA > Tth, the node does not fully exploit malicious opportunities, and then, it cannot
achieve the maximum payoff.
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Figure 8. Average payoff for an OOA node for different values of M.
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threshold variation.

5. Discussion and Conclusions

In this paper, we modelled the interactions among nodes in the IoT following a binary
trust game to study how trust can arise between them. In particular, we analysed the
interactions between a service requester, which acts as the trustor, and a service provider,
the trustee. Based on this model, we proposed guidelines that can be used to design trust
management algorithms.

Even if a network composed of only cooperative nodes can achieve on average the
highest payoff, malicious behaviours are still implemented since they are able to take
advantage of cooperative nodes in the short term. The proposed guidelines help trust
models to quickly identify the most common attacks, such as the whitewashing attack, the
on-off attack and even the opportunistic service attack by setting suitable values for the
initial trust, the trust variation or the trust threshold. Moreover, we analysed two different
scenarios: an errorless scenario, where cooperative nodes are always able to deliver the
requested service without errors, and a scenario where well-behaving devices can show
poor performance, due to errors, poor accuracy or technical problems in general, and can
then be labelled erroneously as malicious.

Unexpectedly, we discovered that the rewards of the cooperative nodes are not useful
unless they are prone to errors, and therefore, it is necessary to reward them to balance the
trust lost due to errors. Nevertheless, it is not possible for a trust algorithm to never discard
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a cooperative node due to errors: to this end, trust algorithms should always declare their
maximum acceptable error.

In the future, we aim to extend this model in order to take into account recommen-
dations from other nodes and the possible attacks related to this. Moreover, we plan to
improve the evaluation of the costs and benefits for the nodes: we want to consider the cost
associated with the implementation of a particular malicious behaviour and the differences
in terms of costs and benefits based on the service requested. Finally, we also want to
introduce in the model the ability of a requester to identify a malicious attack and how this
impacts the setting of trust parameters.

Author Contributions: Conceptualization, C.M. and M.N.; methodology, C.M. and M.N.; software,
C.M.; validation, C.M. and M.N.; formal analysis, C.M. and M.N.; investigation, C.M. and M.N.;
resources, C.M. and M.N.; data curation, C.M. and M.N.; writing—original draft preparation, C.M.
and M.N.; writing—review and editing, C.M. and M.N.; visualization, C.M. and M.N.; supervision,
M.N.; project administration, C.M. and M.N.; funding acquisition, M.N. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Italian Ministry of University and Research (MIUR),
within the PON R&I 2014-2020 framework (Project AIM (Attrazione e Mobilità Internazionale)).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A survey on internet of things: Architecture, enabling technologies,

security and privacy, and applications. IEEE Internet Things J. 2017, 4, 1125–1142. [CrossRef]
2. Sharma, A.; Pilli, E.S.; Mazumdar, A.P.; Gera, P. Towards trustworthy Internet of Things: A survey on Trust Management

applications and schemes. Comput. Commun. 2020, 160, 475–493. [CrossRef]
3. Gambetta, D. Can We Trust Trust? In Trust: Making and Breaking Cooperative Relations; Department of Sociology, University of

Oxford: Oxford, UK, 2020; pp. 213–237.
4. Pourghebleh, B.; Wakil, K.; Navimipour, N.J. A comprehensive study on the trust management techniques in the Internet of

Things. IEEE Internet Things J. 2019, 6, 9326–9337. [CrossRef]
5. Meng, W.; Choo, K.K.R.; Furnell, S.; Vasilakos, A.V.; Probst, C.W. Towards Bayesian-based trust management for insider attacks

in healthcare software-defined networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 761–773. [CrossRef]
6. Alnumay, W.; Ghosh, U.; Chatterjee, P. A Trust-Based predictive model for mobile ad hoc network in internet of things. Sensors

2019, 19, 1467. [CrossRef] [PubMed]
7. Yuan, J.; Li, X. A reliable and lightweight trust computing mechanism for IoT edge devices based on multi-source feedback

information fusion. IEEE Access 2018, 6, 23626–23638. [CrossRef]
8. Putra, G.D.; Dedeoglu, V.; Kanhere, S.S.; Jurdak, R. Trust management in decentralized iot access control system. In Proceedings

of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 2–6 May 2020;
pp. 1–9.

9. Wu, D.; Ansari, N. A Trust Evaluation Enhanced Blockchain-Secured Industrial IoT System. IEEE Internet Things J. 2020.
[CrossRef]

10. Azzedin, F.; Ghaleb, M. Internet-of-Things and information fusion: Trust perspective survey. Sensors 2019, 19, 1929. [CrossRef]
11. Azad, M.A.; Bag, S.; Hao, F.; Shalaginov, A. Decentralized self-enforcing trust management system for social Internet of Things.

IEEE Internet Things J. 2020, 7, 2690–2703. [CrossRef]
12. Nitti, M.; Girau, R.; Atzori, L. Trustworthiness management in the social internet of things. IEEE Trans. Knowl. Data Eng. 2013,

26, 1253–1266. [CrossRef]
13. Caminha, J.; Perkusich, A.; Perkusich, M. A smart trust management method to detect on-off attacks in the internet of things.

Secur. Commun. Networks 2018, 2018. [CrossRef]
14. Talbi, S.; Bouabdallah, A. Interest-based trust management scheme for social internet of things. J. Ambient. Intell. Humaniz.

Comput. 2020, 11, 1129–1140. [CrossRef]
15. Chen, R.; Guo, J.; Wang, D.C.; Tsai, J.J.; Al-Hamadi, H.; You, I. Trust-based service management for mobile cloud IoT systems.

IEEE Trans. Netw. Serv. Manag. 2018, 16, 246–263. [CrossRef]
16. Dasgupta, P. Trust as a commodity. Trust. Mak. Break. Coop. Relat. 2000, 4, 49–72.
17. Huang, L.; Jia, G.; Fang, W.; Chen, W.; Zhang, W. Towards Security Joint Trust and Game Theory for Maximizing Utility:

Challenges and Countermeasures. Sensors 2020, 20, 221. [CrossRef] [PubMed]

http://doi.org/10.1109/JIOT.2017.2683200
http://dx.doi.org/10.1016/j.comcom.2020.06.030
http://dx.doi.org/10.1109/JIOT.2019.2933518
http://dx.doi.org/10.1109/TNSM.2018.2815280
http://dx.doi.org/10.3390/s19061467
http://www.ncbi.nlm.nih.gov/pubmed/30917499
http://dx.doi.org/10.1109/ACCESS.2018.2831898
http://dx.doi.org/10.1109/JIOT.2020.3030689
http://dx.doi.org/10.3390/s19081929
http://dx.doi.org/10.1109/JIOT.2019.2962282
http://dx.doi.org/10.1109/TKDE.2013.105
http://dx.doi.org/10.1155/2018/6063456
http://dx.doi.org/10.1007/s12652-019-01256-8
http://dx.doi.org/10.1109/TNSM.2018.2886379
http://dx.doi.org/10.3390/s20010221
http://www.ncbi.nlm.nih.gov/pubmed/31906035


IoT 2021, 2 70

18. Ermisch, J.; Gambetta, D. People’s Trust: The Design of a Survey-Based Experiment; Institute for the Study of Labor (IZA), Research
Paper Series; Discussion Papers 2216; IZA: Bonn, Germany, 2006.

19. Espín, A.M.; Exadaktylos, F.; Neyse, L. Heterogeneous motives in the trust game: a tale of two roles. Front. Psychol. 2016, 7, 728.
[CrossRef]

20. Kumar, A.; Capraro, V.; Perc, M. The evolution of trust and trustworthiness. J. R. Soc. Interface 2020, 17, 20200491. [CrossRef]
21. Breuer, W.; Helduser, C.; Schade, P. Breaking the rules: Anticipation of norm violation in a binary-choice trust game. Econ. Lett.

2016, 146, 123–125. [CrossRef]
22. Zürn, M.; Topolinski, S. When trust comes easy: Articulatory fluency increases transfers in the trust game. J. Econ. Psychol. 2017,

61, 74–86. [CrossRef]
23. Ibáñez, M.I.; Sabater-Grande, G.; Barreda-Tarrazona, I.; Mezquita, L.; López-Ovejero, S.; Villa, H.; Perakakis, P.; Ortet, G.;

García-Gallego, A.; Georgantzís, N. Take the Money and Run: Psychopathic Behavior in the Trust. Front. Psychol. 2017, 7, 1866.
[CrossRef]

24. Jayasinghe, U.; Lee, G.M.; Um, T.W.; Shi, Q. Machine learning based trust computational model for IoT services. IEEE Trans.
Sustain. Comput. 2018, 4, 39–52. [CrossRef]

25. Militano, L.; Orsino, A.; Araniti, G.; Iera, A. NB-IoT for D2D-enhanced content uploading with social trustworthiness in 5G
systems. Future Internet 2017, 9, 31. [CrossRef]

http://dx.doi.org/10.3389/fpsyg.2016.00728
http://dx.doi.org/10.1098/rsif.2020.0491
http://dx.doi.org/10.1016/j.econlet.2016.07.038
http://dx.doi.org/10.1016/j.joep.2017.02.016
http://dx.doi.org/10.3389/fpsyg.2016.01866
http://dx.doi.org/10.1109/TSUSC.2018.2839623
http://dx.doi.org/10.3390/fi9030031

	Introduction
	Background
	Importance of Trust in the Internet of Things
	Trustworthiness Attacks
	Binary Trust Games

	The Trustworthiness Model
	Scenario
	Game's and Payoffs' Definitions
	Strategies and Attacks
	Trust Management Model Guidelines
	Probability of Error

	Experiments and Results
	Experimental Setup
	Experimental Results

	Discussion and Conclusions
	References

