
Blockchain: Research and Applications 1 (2020) 100002
Contents lists available at ScienceDirect

Blockchain: Research and Applications

journal homepage: www.journals.elsevier.com/blockchain-research-and-applications
ABCDE –agile block chain DApp engineering

Lodovica Marchesi, Michele Marchesi, Roberto Tonelli *

DMI, University of Cagliari, Italy
A R T I C L E I N F O

Keywords:
Blockchain
Smart contracts
Blockchain-oriented software engineering
UML
DApp design
* Corresponding author.
E-mail addresses: lodovica.marchesi@unica.it, lod

tonelli@dsf.unica.it (R. Tonelli).

Production and Hosting by Else

https://doi.org/10.1016/j.bcra.2020.100002
Received 2 September 2020; Received in revised fo
2096-7209/© 2020 The Authors. Published by Else
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
A B S T R A C T

Blockchain software development is becoming more and more important for any modern software developer and
IT startup. Nonetheless, blockchain software production still lacks of a disciplined, organized and mature
development process, as demonstrated by the many and (in)famous failures and frauds occurred in recent years.
In this paper we present ABCDE, a complete method addressing blockchain software development. The method
considers the software integration among the blockchain components – smart contracts, libraries, data structures –
and the out-of-chain components, such as web or mobile applications, which all together constitute a complete
DApp system. We advocate for ABCDE the use of agile practices, because these are suited to develop systems
whose requirements are not completely understood since the beginning, or tend to change, as it is the case of most
blockchain-based applications. ABCDE is based on Scrum, and is therefore iterative and incremental. From Scrum,
we kept the requirement gathering with user stories, the iterative-incremental approach, the key roles, and the
meetings. The main difference with Scrum is the separation of development activities in two flows – one for smart
contracts and the other for out-of-chain software interacting with the blockchain – each performed iteratively,
with integration activities every 2–3 iterations. ABCDE makes explicit the activities that must be performed to
design, develop, test and integrate smart contracts and out-of-chain software, and documents the smart contracts
using formal diagrams to help development, security assessment, and maintenance. A diagram derived from UML
class diagram helps to effectively model the data structure of smart contracts, whereas the exchange of messages
between the entities of the system is modeled using a modified UML sequence diagram. The proposed method has
also specific activities for security assessment and gas optimization, through systematic use of patterns and
checklists. ABCDE focuses on Ethereum blockchain and its Solidity language, but preserves generality and with
proper modifications might be applied to any blockchain software project. ABCDE method is described in detail,
and an example is given to show how to concretely implement the various development steps.
1. Introduction

The so-called “decentralized applications”, or “DApps”, is a trending
area of software development. DApps typically run on a blockchain, the
technology originally introduced to manage the Bitcoin digital currency
[1]. Blockchain software runs in a network of peer-to-peer nodes, so it is
naturally decentralized, redundant and transparent. A few years after the
introduction of Bitcoin in 2009, developers and managers realized that a
blockchain can be also the ideal environment for a decentralized com-
puter. This led to the introduction of the Ethereum blockchain, a network
ovica.marchesi@unica.it (L. Mar

vier on behalf of KeAi

rm 6 November 2020; Accepted
vier B.V. on behalf of Zhejiang U
whose nodes are also able to run Turing-complete programs [2] called
“smart contracts” (SCs) following an idea of Nick Szabo [3]. SCs are
general computer programs, though with some specific features. The
original idea behind them is that they can be used for the automated
enforcement of contractual obligations, without having to trust a central
authority, and without space and time constraints.

This interest led to a substantial amount of money flooding into
Blockchain ventures, including blockchain initiatives not linked to digital
currencies. These are the so called “permissioned” blockchains, or
distributed ledgers (DL), intended to be run by a set of nodes chosen by
chesi), marchesi@unica.it, marchesi.michele@gmail.com (M. Marchesi), roberto.

26 November 2020
niversity Press. This is an open access article under the CC BY-NC-ND license

mailto:lodovica.marchesi@unica.it
mailto:lodovica.marchesi@unica.it
mailto:marchesi@unica.it
mailto:marchesi.michele@gmail.com
mailto:roberto.tonelli@dsf.unica.it
mailto:roberto.tonelli@dsf.unica.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcra.2020.100002&domain=pdf
www.sciencedirect.com/science/journal/20967209
www.journals.elsevier.com/blockchain-research-and-applications
https://doi.org/10.1016/j.bcra.2020.100002
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.bcra.2020.100002


L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
invitation.
Note that a blockchain is a kind of DL technology (DLT), but not all

DLT is based on a blockchain, because a DL can use other cryptographic
approaches to hold immutable the transactions history (it does not need a
consensus mechanism to pack transactions history into a chain of blocks).
In the following, we will mainly talk of “blockchain”, but this often will
be interchangeable with “DLT".

All the initiatives behind blockchain technology – new digital cur-
rencies with their own blockchain, exchanges and other web-based
ventures using digital money, ICO startups, applications running on
permissioned DLs – are based on developing software inside a new
paradigm. In this context, we assisted to a run to be the first on the
market, as always happens with new technology waves. This led to quick
application development, often neglecting good development practices,
and even comprehensive testing and security assessment.

Some disasters quickly followed, with a total of literally billions of
USD (at least at the nominal exchange rate) of digital currencies stolen or
lost. Several exchanges were hacked [4], and also smart contracts were
often exploited, taking advantage of their novelty and of the hurried
software development [5,6].

It is well known that, to develop a reliable and maintainable software
system, one needs to follow an explicit development process, and use
sound SE practices. Among the latter, in the context of blockchain
development, we stress the importance of requirement elicitation, system
design, specific notations, testing and security assessment. In essence, we
need blockchain-oriented software engineering (BOSE) [7].

In this paper, we try to cope with these issues proposing a software
development process to gather the requirements, to analyze, design,
develop, test and deploy DL applications. In particular, we present a
development process for applications based on smart contracts running
on a blockchain, that is for “DApps”. We designed this process specially
referring to Ethereum blockchain, and to its Solidity programming lan-
guage, because it is by far the most popular DApp platform (see Section
2). The process covers all the standard phases of software life cycle:
requirement elicitation, design, implementation, security assessment and
testing, and ongoing maintenance. We call the process “ABCDE”, for
Agile Block Chain Dapp Engineering. ABCDE is an agile software devel-
opment process, meaning that it follows the principles of Agile Manifesto
[8]. However, we complement the agile process with a more formal
approach, using UML diagrams with a specific notation for smart con-
tracts, and a specific checklist for security assessment.

The first question we have to answer regarding ABCDE is “why a new
process”? Why not to use an existing process, waterfall, iterative or agile,
for DApp development? The answer to this question stems from the
observation that smart contracts and the software based and running on a
blockchain are application-specific software. SCs run on all the nodes
hosting a blockchain, and their execution has the strong constraint that
all outputs and state changes resulting from SC execution must be the
same in all nodes.1 Consequently, a SC is strictly forbidden to access the
external word – it can answer to external messages belonging to its public
interface, and can send messages to other SCs running on the same
blockchain; no other kind of direct interaction with the external world is
allowed. This fact implies that any DApp is intrinsically divided in two
subsystems – the SCs running on a blockchain, and the applications
allowing users and devices to interact with the SCs.

Another specificity of SC realm is the need to introduce new concepts
with respect to traditional programming. Among these, the concepts of
“address”, signing with the private key behind the address, “gas” con-
sumption, SC immutability once deployed, cryptocurrency transfer and
“oracle".

Moreover, referring to Solidity, there are further specific concepts,
such as those of “modifier” (a boolean function acting as a guard to the
1 This is in particular required by the need for reaching consensus on the set of
transactions to include into the blockchain.

2

execution of another function), of “library contract”, and there are con-
straints on the use of typical structures of object-oriented programming
languages.

A further confirmation about the need for specific SE in Blockchain
software development comes from two papers by Chakraborty et al. [9,
10], which present the results of a survey among blockchain developers.
They found that the prevalent opinion is that blockchain development is
different from traditional one, due to the strict and non-conventional
security and reliability requirements, and to other unique characteris-
tics of the DApp development domain, such as immutability, difficulty in
upgrading the software, and so on. More information on this survey is
presented in Sec. 3.

These specificities led us to conclude that a new methodology of
software development is needed for DApp development. In fact, ABCDE is
not entirely new, but it is a significant extension of classical agile
methods, such as Scrum [11]. With respect to Scrum, ABCDE does not
only describe how the development should be managed, but also in-
troduces specific practices such as the use of modified UML diagrams to
describe smart contracts, and checklists for security assessment.

A first version of the proposed development process, not yet named
ABCDE was proposed at a conference in 2018 [12]. This paper greatly
extends and updates that previous paper. In particular, we introduced
more additions to UML diagrams, we better specified security checklists
and introduced gas saving checklists, and revised the whole method
based on the feedback received by developers who used it.

The main contribution of our work are the following:

1. We propose and describe what is the first explicit proposal of a
structured process to develop DApps, based on sound software engi-
neering practices, and in particular on Agile principles.

2. We explicitly recognize that the development of smart contracts, and
of the corresponding interaction apps which allow external actors to
interact with the SCs, should be split in two flows. These flows are
carried on concurrently and iteratively, after a common start, and are
periodically integrated together.

3. We introduce a notation, augmenting some UML diagrams (Use Case,
Sequence, and Class diagrams) in the context of Solidity language, to
support SC design, accounting for their specificity. It is possible to use
different UML extensions, to represent the design of SC written in
other languages.

4. We provide checklists to fully support security and gas saving anal-
ysis. For the sake of brevity, security assessment of ABCDE method is
thoroughly presented in another paper.

The proposed ABCDE method has been tested on some real DApp
development projects, carried on at our department, and at some firms
we are consultant of.

The remainder of this paper is organized as follows. In Sec. 2 we
describe the architecture of a DApp, and introduce the specific issues and
practices needed for DApp development. In Sec. 3 we present the related
work in the same, or similar fields. Sec. 4 describes the proposed ABCDE
process in every detail, including the modifications of some UML dia-
grams to cope with Solidity concepts, security assessment and what is
needed to extend the notation to other languages for SC development. A
simplified example, drawn from a real case, is presented in Sec. 5,
together with reporting on actual uses of ABCDE. Finally, Sec. 6 presents
the conclusions and future work ideas.

2. Background

2.1. Decentralized applications

We define DApp as a software system that uses DLT, typically a
blockchain, as a central hub to store and exchange information, through
smart contracts (SCs). Note that it is not a blockchain software able to
manage a new cryptocurrency or other applications – that is, software



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
enabling blockchain nodes, which needs different kinds of development
practices, not the subject of this work.

A blockchain is an append-only, distributed data structure, managed
by a set of connected nodes, each holding a copy of the blockchain, and
able to execute SCs, programs residing in the blockchain itself. The
blockchain state is changed through sending transactions to the network –
in public blockchains, everyone can send a transaction, but only valid ones
are processed. The valid transactions are recorded in sequentially or-
dered blocks – hence the name “blockchain” –whose creation is managed
by a consensus algorithm among the nodes. All transactions are sent from
a single address, which is in turn associated to a private key. Only the
owner of the private key can sign the transactions coming from an
address, using asymmetric cryptography.

A transaction can transfer digital currency between addresses, can
create a SC, or execute one of its public functions; in this case, the
function is executed by all nodes, when the transaction is evaluated.

Most present real applications of DApps and smart contracts are
intended for the management of digital currencies or tokens, which have
a true monetary value. The use of DApps has been introduced also for
other scopes, like notarization of information, identity management,
voting, games and betting, goods provenance certification, and many
others [13].

In this paper, we will use as a reference Ethereum, which is presently
the most used blockchain to develop smart contracts on public block-
chains [14,15]. Data on DApps running on permissioned blockchains are
more difficult to find, because they refer to projects which are not pub-
licly accessible, but Ethereum is very popular also for DApps running on
permissioned blockchains. Open source DLTs such as Hyperledger and
Corda are also widely used.

The Ethereum Virtual Machine (EVM), able to execute SC bytecode,
runs on all nodes of the Ethereum blockchain [16]. In practice, the SCs
are written in high-level languages (HLL). Nowadays, the most popular
HLL for Ethereum is called Solidity.

As written in the Introduction, SCs run in an isolated environment.
The results of their execution must be the same whatever node they run
in; consequently, they cannot get information from the external world
(which mutates with time), and cannot initiate a computation autono-
mously (for instance at given times). SCs can only access and change their
state, and send messages to other SCs.

The state of a SC is permanently stored in the blockchain, using
Fig. 1. A typical architecture of an Ethereum DApp application. The block

3

storage variables. Moreover, once a SC is deployed, it is in the blockchain
forever – it cannot be modified or erased, though it can be forever
disabled.

Creating a SC and changing its state costs units of “gas”, which must
be paid in Ether (the digital currency of the Ethereum Blockchain).

Each SC has a unique Ethereum address. In Solidity, a SC can inherit
from other SCs; it has a public interface, that is a set of functions that can
be called through a transaction. The call of a public function of a SC is
called a “message”. Sending a message to a SC can be performed either by
posting a transaction coming from an address, or by executing code of the
same, or of another, SC. In the former case, the transaction must be
accepted by the network, and it will take time (at least 10–15 s), and a
greater amount of gas. In the latter case, the transaction is executed
immediately.

A SC can receive and send Ethers, from and to another SC, or an
address. A function which returns a value without changing the state of
its SC is executed immediately by the EVM and costs nothing. This kind of
function is called “view".

A typical DApp architecture is shown in Fig. 1. Here, the Ethereum
blockchain is shown on the left, highlighting that a node is composed of
its enabling software, of the EVM, and of the SC bytecode and its storage,
recorded in the blockchain. The software system running on mobile de-
vices and/or on servers, possibly on the Cloud, exchanging information
with users and external devices, which we call “App System”, is shown on
the right. Its User Interface (UI) typically runs on a web browser. The
server component stores data that cannot be stored in the blockchain, and
performs business computations. In a non-trivial system, a DApp is
typically composed of various SCs deployed on the blockchain.

ABCDE can be applied to develop DApps running both on public and
permissioned blockchains.
2.2. Agility and DApp development

Nowadays, the developments of DApps worldwide share some com-
mon characteristics. Several teams involved are typically working on ICO
projects, which gathered money through tokens and are about applica-
tions of blockchain technology [17]. Other projects are promoted by
startups trying to take advantage of the novelty of DApps to develop
disruptive solutions, or to get a niche where to thrive. In both cases, they
are typically small, self-organizing co-located teams, where experts of
chain with its SCs is shown on the left, the App System on the right.



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
system requirements are highly available.
Other characteristics of DApp development is that DApps typically are

not life-critical applications, though several among them can be mission-
critical. However, the time-to-market and the ability to get an early
feedback from the users and the stakeholders are essential, because often
the requirements of the DApp initially are only vaguely defined and are
subject to change.

All these features make DApp development an ideal candidate for the
use of Agile Methods (AMs). In fact, AMs are suited for small, self-
organizing teams, possibly co-located, working on projects whose re-
quirements can change [8]. AMs are considered to be able to deliver
quickly and often, as needed by DApp projects.

The most used AM is presently Scrum, which is iterative and incre-
mental, with short iterations (1–4 weeks) [11]. Scrum does not prescribe
specific software development practices, but is focused on the process. In
short, Scrum, as most other AMs, typically performs requirement elici-
tation through user stories (USs), that are short descriptions of how the
system answers to inputs from users, or from external devices [18]. USs
are mostly gathered at the beginning of the development, but can be
modified and augmented at any time. The project advances iteratively
implementing a subset of the USs at each iteration. The person in charge
of choosing this subset, and explaining their USs to the team is called
“Product Owner”. As described below in section 4.1, the proposed
ABCDE method is based on Scrum, and is specifically focused on the
software development process, and not on specific design or program-
ming practices.

Besides Scrum process, there are other agile practices that are well
suited to DApp development. In the followings, we list and shortly
describe agile practices that we suggest to use in ABCDE process, and
how they can be applied to smart contract development.

� Test Driven Development (TDD): this practice prescribes writing the
tests before the code [19], using an automated test suite that can be
run whenever needed. For the App System, one can use one of the
many existing testing frameworks. For SCs written in Solidity, at the
moment the most popular testing environment is Truffle [20]. Note
that performing automated testing on SCs is not trivial, because tests
need to be run on the blockchain, which is a separate entity from the
testing environment itself. This is similar to testing the interface of a
database. Also, in order to test the software interacting with the SCs,
we need a “mock object” able to simulate the blockchain, if the
required SCs are not yet implemented, and/or if we need to improve
the speed of testing.

� Continuous Integration: merging all developers working copies to a
shared mainline, even several times a day. Developing DApps, this
practice is critical, and it should be practiced both on the App System
and the SCs, checking at each merging also how the two systems
interact through transactions. This practice, and the following one,
requires the use of a version control system helping integration and
versioning, as well as of an automated test suite, to assess the absence
of undesirable side-effects.

� Collective Code Ownership: every developer is allowed to intervene on
whatever code s/he considers appropriate to modify. With small,
dynamic teams as typically happens with DApp development, this
practice should clearly be applied. As regards smart contract devel-
opment, team members modifying code written by other members
should be very careful not to infringe security and gas optimization
provisions. Note that often the team members expert in SC develop-
ment differ from those expert in App System, so their spheres of in-
fluence should remain separate.

� Refactoring: this practice too needs to have an automated test suite,
that can be run when the refactoring is made, to assess the absence of
unwanted side effects [21]. This is especially needed with the com-
plex architecture of DApps, whose components interacts through
transactions.
4

� Information Radiators (Cards, Boards, Burndown charts): making visible
the status of a project using boards that can be observed by everyone
and updated in real time can obviously greatly benefit DApp devel-
opment and its use is therefore strongly encouraged in ABCDE.

� Coding Standards: the dynamicity of the teams and the push to quickly
develop applications make necessary that the project manager (or the
Scrum Master) ensures that this practice is strictly followed. This
would greatly facilitate code understanding, and ease subsequent
maintenance activities.

� Pair Programming (PP): using ABCDE, we suggest to use PP in the case
the software to be developed is critical, is not yet well understood, or
there are new team members to train on the job.

2.3. Security assessment

In the previous subsection, we made the case for using agile practices
for developing DApps. However, many DApps deal with direct digital
currency or token usage, that is with entities that have a direct, real
monetary value. In other cases, they may deal with contractual issues,
again with strong economic implications, as in the case of document
certification, supply chain management, voting systems. Therefore, in
many cases DApps are business-critical, and very strict security re-
quirements should be assured. Code inspection, security patterns, and
thorough tests must be applied to get a reasonable security level. ABCDE
proposed security assessment will be described in Sec. 4.4.

3. Related work

3.1. Software engineering for DApp development

SE for DApp development, sometime called Blockchain-Oriented
Software Engineering (BOSE) is still in its infancy. The first call for
BOSE was made in 2017 by Porru et al. [7]. They highlight “the need for
new professional roles, enhanced security and reliability, novel modeling
languages, and specialized metrics”, and propose “new directions for
blockchain-oriented software engineering, focusing on collaboration among
large teams, testing activities, and specialized tools for the creation of smart
contracts” [7]. They also suggest the adaptation of existing design nota-
tions, such as UML, the Unified Modelling Language [22] to unambigu-
ously specify and document DApps.

The book by Xu et al. is perhaps the most complete overview of the
engineering aspects of blockchains to date [23]. Among others, it deals
with some SE issues, such as the evaluation of the suitability to use a
DApp or not, the selection and configuration of the proper blockchain
solution (public, permissioned, private), a collection of patterns for the
design of blockchain-based applications, and even model-driven gener-
ation of SC code. Some of the topics of the book were introduced pre-
viously in Ref. [24].

Wessling et al. propose a method to find how the architecture of an
application could benefit from blockchain technology. They identify the
actors involved and how they trust each others to derive a high-level
hybrid architecture of a blockchain-based application [25].

Fridgen et al. propose an approach for eliciting use cases in the
context of blockchain-based applications, applying action design
research method. Their method is evaluated in four distinct case studies
regarding banking, insurance, automotive and construction [26].

Jurgelaitis et al. propose a method based on Model Driven Architec-
ture, which could be used for describing blockchain-based systems using
a general language in order to facilitate blockchain development process
[27].

A paper by Beller and Hejderup [28] is worth mentioning, though it
does not really advocate to use SE practices to develop blockchain-based
applications. Instead, it is about “how blockchain technology could solve two
core SE problems: Continuous Integration (CI) Services such as Travis CI and
Package Managers such as apt-get”. The use of SCs to manage agile
development, including the automated compensation of developers



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
when their software passes acceptance tests was also proposed by
Lenarduzzi et al. [29].

Chakraborty et al. used an online survey to get answers from 156
active blockchain software (BCS) developers, finding that “standard
software engineering methods including testing and security best practices need
to be adapted with more seriousness to address unique characteristics of
blockchain and mitigate potential threats” [9]. The same authors published
an extended version of the same research, further highlighting that there
is a need for “an array of new or improved tools, such as: customized IDE for
BCS development tasks, debuggers for smart-contracts, testing support, easily
deployable simulators, and BCS domain specific design notations” [10]. They
found that most BCS developers feel that BCS development is different
from traditional one, due to the strict and non-conventional security and
reliability requirements, and to other unique characteristics of the DApp
development domain (e.g., immutability, difficulty in upgrading the
software, operations on a complex, secured, distributed and decentral-
ized network). As anticipated in the Introduction, these findings confirm
the expedience to devise a software engineering process such as ABCDE
for BCS development.
3.2. Security for DApps

Regarding DApp security, many publicly available documents, and
scientific papers have been already published. Among the most recent
ones, the survey of Praitheeshan et al. analyzes the literature about
Ethereum smart contract security, summarizing the main security attacks
against SCs, their key vulnerabilities, the security analysis methods and
tools [30]. They classify analysis methods in static analysis, dynamic
analysis, and formal verification, and discuss the relative pros and cons of
these classes, also providing a large bibliography with 160 references.
Huang et al. deal with SC security in a broader way, considering also
Hyperledger security, and performing a survey from a software lifecycle
perspective [31]. After a classification of security issues in SCs, both in
Ethereum and Hyperledger Fabric, they consider the securities activities
according to the various phases of DApp development (design, imple-
mentation, testing before deployment, and runtime monitoring), quoting
several references and giving practical advice. These two papers together
include references to virtually all the work which have been published
about SC security to date.

The works on SC security consider in depth the various kinds of at-
tacks and vulnerabilities of DApps, and how to find and mitigate them.
However, they typically do not take an overall approach to secure soft-
ware development life cycle. This is a relatively recent field, whose
forefront representatives are Microsoft’s Security Development Life cycle
(SDL), OWASP’s Comprehensive, Lightweight Application Security Pro-
cess (CLASP) and McGraw’ Touchpoints [32]. Though secure software
development mostly prefers waterfall-like methodologies, it can be per-
formed also with agile processes [33].
3.3. Domain-specific UML additions

Various papers have been published to suggest upgrades of Unified
Modeling Language [22] notation to enable it to better represent specific
application fields. Baumeister et al. described an extension of UML for
Hypermedia design, through the addition of a new Navigational Struc-
ture Model and new stereotypes [34].

Baresi et al. [35] extend and customize UML with web design con-
cepts borrowed from the Hypermedia Design Model. Hypermedia ele-
ments are described through appropriate UML stereotypes.

Rocha and Ducasse [36] study SC design and compare three com-
plementary software engineering models – Entity-Relationship diagrams,
UML and BPMN. To better represent SC concepts, they propose a simple
addition to UML Class Diagrams, that is a small “chain” icon in the UML
class representing a contract as a notation to more easily identify it as a
blockchain artifact.
5

4. Proposed method for DApp development

4.1. Rationale and motivation

Our approach, ABCDE, takes into account the substantial difference
between developing traditional software (the App System) and devel-
oping smart contracts, and separates the two activities. For both de-
velopments, ABCDE takes advantage of an agile approach, because agile
methods are suited to develop systems whose requirements are not
completely understood since the beginning, or tend to change, as it is the
case of DApps. This ruled out the use of plan-driven methods such as
waterfall, and iterative-incremental methods relying on longer iterations.

ABCDE is an agile method based on Scrum [11], due to Scrum’s
simplicity, its popularity – Scrum is by far the most used software
development method [37] – and also due to the specific experience of the
authors in studying and applying Scrum [38]. In Scrum, a subset of USs
are implemented at each iteration. Also a Lean-Kanban approach would
be feasible, implementing the USs in a continuous flow, with the work in
progress controlled by the Kanban board [39]. In this case, the board
should show, in different “lanes”, the USs of both the SC system and the
App System. However, because many DApp development projects are
new, and thus being built from scratch and with a dedicated team, we
deemed that Scrum is more suited than Kanban – which is instead very
suited for teams working concurrently on multiple projects. From Scrum,
we kept the requirement gathering with user stories, the
iterative-incremental approach, the key roles, and the meetings (sprint
planning, daily Scrum, sprint review, and sprint retrospective). The main
differences with Scrum are:

� the separation of development activities in two flows, each performed
iteratively, with integration activities every 2–3 iterations;

� explicitation of the activities that must be performed to design,
develop, test and integrate smart contracts and DApp system – this is
not included in Scrum;

� emphasis on documenting the smart contracts using formal diagrams,
to help development, security assessment, and maintenance – these
diagrams are not intended to be exhaustive, but are not required in
Scrum;

� specific activities related to security assessment and gas optimization.

To document in a structured way the smart contracts, we found very
useful some UML diagrams, properly modified, which are described in
section 4.3. We used UML because it is by far the most used modeling
language in software engineering, and is provided of the “stereotype”
construct which enables to add easily the required features to the dia-
grams. UML provides standard diagrams to effectively model both the
data structure of smart contracts (class diagram), and the exchange of
messages between the entities of the DApp system (sequence diagram).

Eventually, our experience in software quality assessment, made us
appreciate the systematic use of patterns and checklists. These tools
greatly help developers to proceed in a structured and systematic way.
For this reason, we used this approach for security assessment and gas
optimization, starting from an accurate literature investigation on the
subject. Sections 4.4 and 4.5 describe in detail these components of
ABCDE.

4.2. The process

As written before, ABCDE is based on Scrum. The key roles of Scrum,
and consequently of ABCDE, are Scrum Master (which might be called
ABCDEMaster), Product Owner and Team. These roles are well known, so
we will not describe them in detail.

The steps of the proposed ABCDE design method, which is currently
focused on Ethereum blockchain and Solidity language, are shown in
Fig. 2. Note that most steps are in fact performedmany times, because the
approach is iterative and incremental. In the figure, the pink circles



Fig. 2. The proposed ABCDE process; the circles represent the Scrum meetings.

L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
represent sprint planning meetings (SPM) held at the beginning of each
sprint (iteration), and sprint review meetings (SRM) held at the end of
sprints. Daily scrums (stand-up meeting held each day) and retrospective
meetings are not reported in Fig. 2.

In deeper detail, the proposed development process is the following:

1. Goal of the system. Write 10–30 words summing up the goal, and
display them in a place that is visible to the whole team. This is a
practice that, as far as we know, was introduced by Coad and Yourdon
in their 1991 book on object-oriented analysis [40], and that we al-
ways found useful. It has some similarities with the “Sprint Goal” that
Scrum method prescribes to find and make visible to the team, at the
beginning of each iteration [11], but here the goal is for the whole
system.

2. Find the actors. Identify the actors who will interact with the DApp
System. The actors are human roles, and external systems or devices
that exchange information with the DApp to build.

3. User Stories. The system requirements are expressed as user stories
(USs) [18], to be able to follow the classical agile approach for project
management, used in Scrum [11]. In this step, the DApp System under
development should be considered in full. The decision to develop it
using a blockchain, a set of servers, possibly in the cloud, or another
6

architecture, is not important here. At this point, we found useful,
though not mandatory, to use a UML Use Case Diagram to graphically
show the relationships among the actors and the USs. If the decision is
taken to implement the system using a blockchain, for instance by
applying the decision framework proposed by Scriber [41], the
following steps are taken.

4. Divide the system in two subsystems.
� The smart contracts running on the blockchain (Steps 5–6).
� The App System, that is the external system that interacts with the
blockchain, creating and sending transactions, and monitoring the
Events that may happen when a smart contract executes a function
(Steps 7–8).

At this point, an architecture of the whole system should be drafted,
highlighting what data should be put on-chain and what should be placed
out-of-chain. The guideline is that SCs should manage the data and
processing that need to be transparent and immutable for the DApp to be
trusted by its actors. This includes the management of actors’ identity.

All other data, processing and user interfaces should be managed out-
of-chain. In the case of data which must be trusted, but cannot be stored
in the blockchain due to its transparency on-chain, data privacy can be
achieved using the “Off-Chain Data Storage” pattern [23]. Leakage of



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
transaction volume and parties involved might still be possible, and can
be avoided by further obfuscating techniques.

5. Design of the smart contracts. This step is about designing the SCs,
using in our case the Solidity language. This activity has very peculiar
characteristics with respect to standard software design, as high-
lighted by Ref. [9]. The activity is performed through iterations that
include coding and delivering increments of SCs, which are the USs
chosen for each iteration. It is divided in sub-steps, which we
explicitly consider and list following a logical sequencing (but which
should not necessarily be performed in a “waterfall” sequence). These
sub-steps, as well all the sub-steps of the following main steps, derive
from our experience in smart contract and DApp development, and
from discussions had with many DApp developers. They are the
following:
5.1 Replay Steps 2 and 3 (finding Actors and USs) by focusing only on

actors directly interacting with the SCs. If external SCs are used
by the SCs of the system under development, they should be
included among the actors. For each user story defined in this
step, define also the related acceptance test(s).

5.2 Define broadly the SCs composing the SC subsystem. For each SC,
state its responsibilities to store information and to perform
computations, and the related collaborations with other SCs. For
non-trivial systems, you will typically need various interacting
SCs. Also consider the use of inheritance for abstracting common
features of SCs. Describe in detail the collaborations with external
SCs, including libraries. UML class diagrams with proper addi-
tions will be used, as shown later in Sec. 4.3.

5.3 Define the flow of messages and Ether transfers among SCs,
external SCs and the App System. Use augmented UML sequence
diagrams to document these interactions, if they are non-trivial
(see Sec. 4.3). If needed, define the state changes of SCs using
UML statecharts.

5.4 Define in detail the data structure of each SC, its external inter-
face (Application Binary Interface, ABI) and the relevant events
that can be raised by it.

5.5 Define the internal, private functions and the modifiers – special
functions that usually test the preconditions needed before a
function can be safely executed.

5.6 Define the tests and perform the security assessment practices.
This is a very important step because, as already explained above,
most SCs are very critical and deal with money. Sec. 4.4 will
describe in deeper detail the security assessment we use for
Ethereum SCs.

6. Coding and testing the SC system. Following the agile approach,
the SC system is built and tested incrementally. The coding and
testing activities are:
6.1. Incrementally write and test the SCs. Owing to the strict security

requirements, typically this activity cannot be performed in a
strict incremental way, just implementing one user story after
another. Instead, starting from the data structure and interfaces
of SCs, the overall kernel SC architecture is implemented and
tested first. This can be accomplished by using special “user
stories” which are not the description of the interaction with
users, but are about the implementation of the architecture of the
system. Then, complementary USs can be added.

6.2. Perform the security assessment and gas optimization of the code
written for the increment (see Tables reported in Refs. [42] and
in section 4.5).

6.3. Write automated Unit Tests (UTs) and Acceptance Tests (ATs) for
the SCs and USs implemented, respectively. Add the new tests to
the test suite. The most used testing environments for Solidity is
Truffle [20]. Run the whole test suite to make sure that the ad-
ditions did not break the system.

7. Design of the external interaction subsystem (App System).
This step is about designing the App System, which interacts with
7

the users and devices, send messages to the blockchain, and can
manage its own repositories (data bases and/or documents). This
activity is very similar to designing a standard web application. It just
adds another actor – the blockchain – which can receive (but cannot
send) messages, and can raise events. Note that also in this case we
must be very careful about security aspects. In fact, often the hacks of
DApps systems are made exploiting App System weaknesses, rather
that SCs’ ones.
7.1 Redefine the actors and the USs for the App System, starting from

those gathered in Steps 2 and 3, adding the new actors repre-
sented by the SCs that interact with the App System. Define the
acceptance tests of the App System.

7.2 Design the high-level architecture of the App System, including
server and client tiers, and detail the way it accesses the block-
chain, setting up and running one or more nodes, through an
external provider, or using a standard wallet.

7.3 Define the UI of the App System, typically with a responsive
approach, so that it can run on both mobile terminals and PCs.
Having a fancy UI is of paramount importance to achieve the
market success of the application. We suggest to perform UI
design using a well known standard approach, such as Usage-
Centered Design [43] or Interaction Design [44].

7.4 Define how the App System is decomposed in modules, their
interfaces and the flow of messages between them. Define, if
needed, the state diagrams of the modules, and the actions they
take when events are raised by SCs. Define the structure and
memorization of permanent data. Select which data are anchored
to the blockchain, by notarization of their hash digest through the
“Off-Chain Data Storage” pattern [23]. Define the structure of the
data or classes of the App System, including the flow of data and
control between modules. The interactions with the SCs must be
consistent with the analysis of Step 5.3. This design activity is not
performed up-front, but through iterations that include coding
and delivering increments of the App System, implementing USs
chosen for the iteration. Due to the strict security requirements,
this design phase must be quite detailed, and made consistently
with the corresponding activities of SCs design. UML class and
sequence diagrams can help to design and document also this
system.

7.5 Perform a security assessment of the external system, as
described below in Sec. 4.3.

8. Coding and testing the App System. In parallel to the SCs system,
the App System is built and tested, using the same approach of SCs
development (Scrum or Lean-Kanban). If the developments of SCs and
App System are made iteratively, every two or three iterations the
results of the two branches must be integrated, as shown in Fig. 2. If a
continuous-flow, Lean-Kanban approach is performed, the integration
should happen at the completion of a given set of USs, in both
branches; it will be activated by a specific user story put on the
Kanban board. The activities happening in parallel are:
8.1 Incrementally implement the USs of App System. This step be-

longs to the “right flow” of ABCDE (see Fig. 2), and does not differ
from the implementation of a web application.

8.2 Perform the security assessment of the code written for the
increment.

8.3 Write automated Unit Tests (UTs) and Acceptance Tests (ATs) for
the USs implemented. Add the new tests to the test suite. Run the
whole test suite to make sure that the additions did not break the
system.

9. Integrate, test and deploy the DApp System. To integrate SCs and
App System, the overall systems built up to that moment must be
deployed into a local or a testnet blockchain, and integration tests
must be run to check whether all the components interact together as
expected (e.g. events raised by SCs are collected by the App System,
messages sent by the App System activate blockchain transactions
that are validated and correctly executed, and so on).



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
4.3. UML diagrams for modeling SCs

As written before, the most popular blockchain for DApp develop-
ment is presently Ethereum, and the most used language is Solidity [45].
This language is object-oriented (OOPL) because smart contracts are
defined similarly to classes – they have internal variables, and public and
private functions able to access these variables. However, Solidity has no
true classes, but only smart contracts. Each SC can inherit from one or
more other SCs. With respect to a standard OOPL, Solidity adds specific
concepts like events and modifiers, and exhibits strong limitations in the
types available for the SC data structure, and in the management of
collections of data – the only collections available so far are the array and
the mapping. In the followings, we will describe an adaptation of UML
diagrams specific for Solidity 0.7. Possible modifications and extensions
for other SC languages will be discussed in the section about future
developments.

When designing and documenting SCs, graphic diagrams can be very
useful to highlight the connections and the exchange of messages. To this
purpose, we advocate the use of a subset of UML diagrams, being UML
the universal standard for software design diagrams. Note that some
specific concepts have to be introduced to account for peculiar SC fea-
tures. Luckily, UML has an extensibility mechanism called stereotype,
which can be used to introduce new concepts, through tagging.

The UML diagrams we considered to model SCs are Class diagrams
and Sequence diagrams. Also, UML Statecharts can be used to graphically
represent the various states of a SC, or of an App System module and its
transitions. Statecharts, however, do not need any specific stereotype. We
already suggested to use also the Use Case diagrams to graphically show
actors and related USs (in place of Use Cases).

The Class diagram enables to represent the structure and relationships
of SCs. Table 1 shows the stereotypes we introduced in UML class dia-
grams in order to tag the SC specificities, and their description.
Table 1
Additions to UML class diagram (stereotypes).

Stereotype Position Description

«contract» Class symbol – upper
compartment

Denotes a SC. May also be «abstract
contract»

«interface» ditto A kind of contract holding only
function declarations

«library
contract»

ditto A contract taken from a standard
library

«enum» ditto A list of possible values, assigned to
some variable. The values are listed
in the middle compartment. There is
no bottom compartment (holding
operations).

«struct» ditto A record, able to hold heterogeneous
data. The fields are listed in the
middle compartment. There is no
bottom compartment.

«event» Class symbol, middle
compartment

An event that can be raised by a SC’s
function, signaling something
relevant to external observers.

«modifier» Class symbol, bottom
compartment

A particular kind of guard function,
called before another function

«array» Class symbol, middle
compartment, or role of an
association

The multiple variable, or the 1:n
relationship, is implemented using
an array.

«mapping» ditto The multiple variable, or the 1:n
relationship, is implemented using a
generic mapping.

«mapping
[address]»

ditto A multiple variable, or the 1:n
relationship, which is implemented
using a mapping from an Ethereum
address to the value.

«mapping
[uint]»

ditto A multiple variable, or the 1:n
relationship which is implemented
using a mapping from an unsigned
integer to the value.

8

A special kind of transaction is used to create a SC, after its source
code has been compiled to bytecode. The other two kinds of transactions
are the transfer of Ethers, and the invocation of a function on an existing
SC (message).

To address the need to manage complex data, Solidity has the “struct”
construct. The relationships among SCs and/or structs can be effectively
captured by a UML class diagram:

� the multiple inheritance among SCs is the same as with classes;
� when a SC sends a message to another SCs, they can be linked using
an association (if they are logically associated), or a dependence;

� structs and enums can be included in the data structure of a SC, and
this relationship is modeled using a composition.

A specific concept of Solidity are events, raised when something
relevant happens, which can be caught by observer programs. Remember
that SCs cannot directly invoke functions of external systems, and thus
events are a mean for SCs to communicate with the external world.

Another peculiar concept of Solidity are the modifiers. These are
boolean functions called before a function is executed. They are able to
check constraints, and possibly to stop the function execution.

The last four stereotypes of Table 1 are about Solidity collections.
Owing to the limitations of blockchain storage, Solidity allows only two
kinds of collections – the array and the mapping. These stereotypes
denote the kind of collection used for multiple variables of a data
structure (middle compartment of UML class symbol), or for imple-
menting an association, aggregation or composition. The array is an or-
dered set of values, indexed by their position, as in most computer
languages. The corresponding stereotype is «array».

The mapping is able to store key-value pairs – the keys being stored as
hash values of the actual keys. Given a key, a mapping can efficiently
retrieve the value, but it is unable to iterate on its elements, both keys and
values. Given the importance of the mapping in Solidity, we introduced
three stereotypes to represent a mapping, denoted by the homonymous
keyword. The first is the generic mapping; the second is the mapping
having an Ethereum address as key, which is very used. The third refers
to a common Solidity pattern – using as keys positive, sequential integers,
so that it is possible to iterate over them.

Another UML diagram very useful to represent the interactions
among SCs and external actors is the Sequence Diagram, used in UML to
model messaging. In a blockchain, the relevant messages are related to
the transactions, which are sent from external actors, or from SCs to other
SCs. Remember that messages are synonyms of “calls of public functions".

A characteristic of Ethereum is that messages sent to a SC through a
transaction take time (typically 15–20 s or more) to be answered. How-
ever, if a message is sent to another SC during the execution of a function
of a given SC (Contract Internal Transaction), the time delay is negligible.
This happens because the EVM, during the execution of the calling
function, is able to locate in the blockchain and call any other SC. To
explicitly show this difference, which can be very important for response
time, security and gas consumption, we introduced the stereotypes
«trans-msg» and «internal-msg» tagging the message calls sent through a
transaction, and directly by a SC, respectively.

Another peculiarity of Ethereum is that a SC function which does not
change the Blockchain is called a “view” function, and can be called
immediately and at no cost. Again, this is because the EVM can locate the
SC in the blockchain, verify that the function is “view” and call it very
quickly, using a negligible amount of resources. All other messages are
executed only if proper gas is paid.

Another kind of message that can be sent is the transfer of Ethers from
an address to another. To represent this transfer, we use the Return
Message of UML (a dashed arrow), tagged with the stereotype «ethers».

Finally, the «fallback» stereotype tags the homonymous special
function of each SC, which is called whenever a message is not matched,
or an Ether transfer fails. This function implements recovery procedures,
and is particularly critical for security.



Table 3
Main gas saving patterns.

Name Description Ref.

Proxy Delegate When you need to call external SCs, do not include
their code. Include their interface and use the Proxy
pattern, which uses the fallback function to call the
SC functions.

[53]

Eternal Storage If a SC must hold several data, use a separate SC
acting as a storage to it. A new version of the original
SC can use the same storage SC as its predecessor,
after it has been linked to it.

[54]

Limit Storage Limit data stored in the blockchain. Store non-
permanent data in memory. Avoid changing storage
data during computations – change them only after
all the calculations.

[52,
55]

Pack variables In Ethereum, you pay gas for every storage slot of 256
bits you use. You can pack as many variables as you
want in it, but you must order their declaration
properly. Use integers smaller than 256 bits only if
you have many to pack. If not, using 256 bits integers
avoids the needed conversion to 256 bits, which costs
gas. Use datatype bytes32 rather than bytes or string, if
possible.

[52,
55]

Delete variables If you don’t need a variable anymore, delete it using
the delete keyword. In Ethereum, you get a gas refund
for freeing up storage space.

[52,
55]

Do not initialize
variables

All variables are initialized to zeroes at no cost.
Initialize them only if non-zero.

[52,
55]

Use Mappings To manage lists of data, use mappings with integer
key and not arrays. This is known to save blockchain
space.

[52,
55]

Execution Paths Thoroughly examine all possible execution paths,
looking for code whose execution can be spared.

[52,
55]

Limit external
calls

Limit calls to other SCs. Note that calling external
functions is cheaper than calling public functions. The
cheapest calls, however, are those to internal
functions.

[52,
55]

Limit modifiers The code of modifiers is “inlined” inside the modified
function, thus costing gas. Internal functions, on the
other hand, are called as separate functions. They
save a lot of redundant bytecode in deployment, if
used more than once.

[52,
55]

Use libraries The bytecode of external libraries is not made part of
your SC, thus saving gas. However, calling them is

[52,
55]

L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
Our Sequence Diagrams represent the message exchange among
external actors and SCs, all called participants, in a given scenario. The
messages between external actors follow the usual UML notation. An
external actor, however, can also send Ethers to another. Our notation
allows the use of standard frames and fragments, such as “alt”, “opt” for
condition testing, “loop” for loops and “par” for fragments running in
parallel. Table 2 reports the stereotypes we introduced in UML Sequence
diagrams to identify the participants sending messages from their unique
address, and the kinds of messages they exchange.

4.4. Security assessment for smart contracts

Assessing SC and, in general, DApp security is a difficult task, due to
the complex and new architecture of DApps. A sound method for DApp
development, however, cannot overlook security. Since DApp security
assessment covers a large amount of concepts and guidelines, we wrote a
specific paper on the subject written by our research group, which we
refer to Ref. [42]. Here we briefly recall the key advice of this paper.
Following a secure software development lifecycle approach, ABCDE
does not limit security assessment to testing, or to a specific phase per-
formed after development, but it introduces security assurance practices
in all three phases of design, coding and testing. Moreover, ABCDE
stresses that the first and foremost concept in security management is to
have a security mindset. The development team(s), and the whole or-
ganization, must be fully aware of the importance of security and pro-
tection from attacks.

Since ABCDE is an agile process, it is based on principles and practices
such as: maximize communication, short iterations, refactoring, contin-
uous testing, simplicity, intention-revealing code, use of simple tools. All
these practices surely help security. However, Agile means also incre-
mental development, where USs are continuously completed, added to
the current working system and tested. This greatly helps productivity,
but might be at the expense of security, because there is the risk that
these continuous additions may introduce unwanted side effects, and
even security breaches.

A good starting point to focus on security are the Top 10 Proactive
Controls of OWASP organization [46]. Those most relevant for DApp
Table 2
The stereotypes added to UML Sequence diagrams.

Stereotype Position Description

«person» Participant
box

A human role who posts transactions using a
wallet or an application.

«system» ditto An external software system, able to send
transactions to the Blockchain.

«device» ditto An IoT device, able to send transactions to the
Blockchain.

«contract» ditto A SC belonging to the system.
«external
contract»

ditto A SC external to the system.

«oracle» ditto A particular type of SC, which holds information
coming from the external world, provided by a
trusted provider.

«account» ditto An Ethereum address, just holding Ethers. It can
only receive or send Ethers, when its owner
activates the transfer.

«wallet» ditto An Ethereum wallet, holding the private keys to
access addresses, able to send transactions and to
interface with its owner.

«trans-msg» Message The message is sent using an Ethereum
transaction.

«internal-
msg»

Message The message is sent by a SC, so it is executed
immediately.

«view» or
pure»

Message The function called is of type “view” or “pure”, so
it costs no gas.

«fallback» Message Call to the fallback function. Only called by a SC
on itself.

«ethers» Return
Message

The dashed arrow represents a transfer of Ethers,
and is can be drawn also as a stand-alone
message.

costly and has security issues. Use libraries for
complex tasks.

Event Log If the App System needs to retrieve information about
past events, that is not useful for SC execution, let the
app directly access the Event Log in the blockchain.

[55]

Table 4
Survey on ABCDE usage.

Nr. Question Mean St.
Dev.

Min Max

1 Years of sw. development experience 8 9.21 2 35
2 Years of agile sw. development

experience
4.5 4.54 0 15

3 Years of DApp development
experience

2.6 1.70 7
months

5

4 Number of completed DApp projects 2.5 2.44 1 9
5 Number of ongoing DApp projects 1.3 0.91 0 3
6 Number of DApp projects performed

using ABCDE
1.9 1.14 1 5

7 ABCDE is overall useful 4.3 0.61 3 5
8 ABCDE is useful for requirements

elicitation
4.4 0.65 3 5

9 ABCDE is useful in system design
using UML diagrams

4.5 0.66 3 5

10 ABCDE is useful for its iterative/
incremental approach

4.0 0.68 3 5

11 ABCDE is useful in security analysis 3.8 0.70 3 5
12 ABCDE is useful in optimization of

gas consumption
3.5 0.85 2 5

13 ABCDE is useful in the testing phase 3.8 0.97 3 5
14 ABCDE is useful for integrating SC

and DApp systems
3.7 0.95 2 5

15 ABCDE is easy to use 4.4 0.50 4 5

9



Fig. 3. The User Stories of the DEX system specification.

Fig. 4. The standard UML class diagram derived from the USs.

L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
security are: An explicit definition of the security requirements needed
(C1); Reuse of software that is security-hardened (C2); Systematic input
validation (C3); Sound management of identities and related access
controls (C6, C7); Data protection (C8); Handling all errors and excep-
tions (C10).

General guidelines specific to SC security, which complement OWASP
ones, are reported in Ref. [47], section: “General Philosophy”. They are:

1. Prepare for failure. Be able to respond to errors, also in the context of
SCs, which cannot be changed once deployed.

2. Rollout carefully. Try your best to catch and fix the bugs before the SC
is fully released.

3. Keep smart contracts simple. Ensure that SCs and functions are small
and modular, reuse SCs that are proven, prefer clarity to performance.

4. Keep up to date. Keep track of new security developments and upgrade
to the latest version of any tool or library as quickly as possible.
10
5. Be aware of blockchain properties. Your previous programming expe-
rience is also applicable to SC programming, but there are several
specific pitfalls to be aware of.

Our approach includes some security checklists, to be performed
during and after design, coding and testing phases. The aim is to verify
that all security patterns and practices concerning known problems are
applied. We also include a checklist for gas optimization, which is crucial
not only for saving money, but also for sparing DOS attacks and avoiding
unwanted SC execution abort for running out of gas.

ABCDE approach is iterative and incremental. When developing
DApps which manage real value, like digital money or tokens, it’s
important that all stakeholders (or blockchain governance body) agree
on the smart contract logic and implementation. This means that all
stakeholders should be involved in each iteration, or at least in the it-
erations leading to the integration of SC and App systems. In the case this
is not possible, one has to anticipate the detailed design and coding of the



Fig. 5. The modified UML class diagram, showing the structure of the required smart contracts of the DEX system.

L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
key contracts at a given set of iterations – involving all stakeholders – and
then give the Product Owner the responsibility of checking and taking
note of all the changes.

For a detailed description of security patterns and checklists, please
refer to paper [42]. In all phases, depending on the size of the project and
the number of SCs, the checklist can be unique for the system, or youmay
use a separate checklist for each SC subsystem. A spreadsheet file with
the checklists is available at the following link: http://tiny.cc/security_ch
ecklist. Here we’ll outline the main issues and patterns for each devel-
opment phase.

4.4.1. Security in the design phase
During smart contract design, you must think more strategically, and

apply patterns and checks regarding the architecture and general
modeling of the SCs.

Here, you must decide if and how to apply decoupling and fail-safe
patterns, such as Proxy [48] and Check-Effect-Interactions [49]. Mini-
mization of dependencies, and careful planning of reuse through inher-
itance and external libraries is another activity typically performed in the
design phase [47].

You should also decide how to manage authorizations to the use of
the system, and how to avoid race conditions due to wrong assumptions
on system time and transaction ordering [50]. You should carefully plan
11
Ether management, if your SCs have to hold, receive and deliver Ethers.
To this purpose, it is wise to limit amounts and frequency of Ether
withdrawals, and use a “pull” approach to it [47].

4.4.2. Security in the coding phase
When coding smart contracts, one major class of potential issues de-

rives from code performing ‘‘external calls’’, calling functions of other
SCs during their execution. In Ethereum, a SC can call another SC’s public
function. The call can be recursive, so the called SC can in turn perform
an external call, and so on. So, external calls must be treated like calls to
‘untrusted’ software, and should be avoided or minimized. In fact, ma-
licious code could be introduced somewhere in a SC belonging to this
path. It is true that all external SCs are already present in the blockchain,
and thus are immutable. However:

� if their code is not thoroughly checked by a competent professional, a
SC might not work as intended;

� if the called SCmakes use of the Proxy pattern, it can be changed by its
author;

� in complex DApps, to avoid rewriting of the whole system in the case
of a change, mechanisms to dynamically change the address of the
called SC are typically used;

http://tiny.cc/security_checklist
http://tiny.cc/security_checklist


Fig. 6. The UML sequence diagram showing a Taker accepting an offer and sending it to the DEX for execution.

L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
� last but not least, an attacker can exploit the fact that a message sent
by the target SC can activate the fallback function of the attacking SC
– this has been performed in the DAO attack.

When it is not possible to avoid external calls, label all the potentially
unsafe variables, functions and contracts interfaces as untrusted. Also,
follow the “Check-effect-interaction” pattern.

Another important tool with security implications is the use of
assert(), require() and revert() guard functions for error handling. These
functions are the subject of security pattern “Guard Check” [51].

assert() should be used to validate state after making changes, and to
check for data consistency. When an assert() statement fails, something
very wrong happened and you need to fix the code. require() should be
used to validate data: user inputs, state conditions preceding an execu-
tion, or the response of an external call. revert() is used to handle the
same type of cases as require(), but with more complex logic [47].

4.4.3. Security in the testing phase
The most important tool to achieve security and correctness, how-

ever, is to apply thorough, automated tests. This is even more crucial
when writing smart contracts, because it is difficult or impossible to
update a SC.

ABCDE does not prescribe the use of specific testing practices, such as
Test Driven Design, but highlights the importance of testing. Presently,
the most popular testing framework for Ethereum DApps is Truffle,
whose website also provides documentation on how to test SCs and App
System code – see Ref. [20], section: Testing Your Contracts.
4.5. Gas optimization

Besides security, another important factor of smart contracts that
must be carefully designed since the beginning is their cost. Creating SCs
and writing permanent data in a public blockchain can be very costly, so
it is important to keep them to a minimum, and to limit the transactions
that write or modify these data. Also, the messages exchanged among the
App System and the SCs, and among SCs, must be properly designed and
well documented. Table 3 shows some specific patterns that can be used
12
to save gas, as more thoroughly discussed in Ref. [52].
Note that in Ethereum the maximum size of the bytecode of a SC is

restricted to 24 KBytes by the standard EIP 170 (see section 13.4.2 of
[23]). For serious SCs, that size limit can be hit easily, so many of the gas
saving patterns are useful also to make a SC viable.

5. Experimental validation

The development process which later was named ABCDE was first
devised in 2018 [12], and since then it has been used in several projects
carried on in our University group, and in firms we are consulting.
Among the projects which were developed, or which are in development,
we may quote a system to manage temporary job contracts; a couple of
systems to trace the provenance of foods (one of which developed using
Hyperledger technology) [56]; two voting systems, one managing voting
in firm shareholders’ and board of directors meetings, the other for
anonymous voting; a system to manage energy exchange in local net-
works of electricity producers and consumers; a system to automate agile
software development [29]; a system to notarize and to manage in-
centives for check-up visits.

The feedback of DApp developers using ABCDEmethod was generally
positive, and was used to improve the method – especially concerning
security and gas optimization practices. In Table 4 we report the results of
a survey conducted among 14 developers and graduate students who
used ABCDE on at least one DApp project. The scores regarding the
features of ABCDE method (questions 7–15) span from 1 (not useful at
all) to 5 (very useful); a neutral opinion corresponds to a score of 3.

As you can see, the experience in software and DApp development
varies greatly. The average number of DApp projects performed by re-
spondents is fairly high (almost 4 projects each, of which 2.5 closed and
1.3 ongoing). The overall satisfaction for ABCDE method is quite high, as
well as its ease of use. The strengths of the method are especially in the
analysis and design phases, whereas it is less appreciated (but still above
sufficiency) in gas optimization, and final integration.

The respondents gave also several suggestions on possible improve-
ments to ABCDE, some of which are reported in the final section of this
paper.



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
5.1. Building an example DApp

Here we present, as an example of ABCDE usage, a simplified version
of a DApp application aiming to implement a decentralized exchange
(DEX) for tokens managed on Ethereum blockchain. A DEX is a system
enabling the exchange of different tokens between two holders, who
interact directly, without intermediaries. We started from the well-
known 0� protocol project, the subject of a successful ICO held in
2017. The specification of the DEX can be found in the 0� Whitepaper
[57]. We present a simplified version of the whole system. In particular,
we dropped the part related to the protocol token (Section 4 of the
Whitepaper), and the signing of the offers by traders. In our example, a
trading offer is simply posted to the DEX, and who wish to accept it
simply sends a transaction to the DEX. The guarantee against frauds are
the transparency of the underlying SC, and the hash signature of each
offer, which guarantees against fraudulent changes of the offer after it is
accepted.

5.2. The first steps of ABCDE

For the sake of brevity, we will not present the App System coding
phase, and the system integration phase (phases 8 and 9), but we stop at
the end the design phases (phases 5 and 7). The steps of ABCDE are
presented below.

1. Goal of the system. To manage a decentralized exchange, able to enable
pairs of ERC20 token holders to exchange their tokens at an agreed rate on
the Ethereum blockchain.

2. Actors. The system has the following actors:
� Trader: owner of tokens, wishing to post an offer, or to accept a
posted offer.

� Maker: a trader who posts an offer to sell a given amount of her/his
tokens, in exchange to tokens of another type, at a given exchange
rate.

� Taker: a trader who accepts the offer of a Maker.
� Relayer: a web system which facilitates signaling between market
participants by hosting and propagating an order book of the offers.

� DEX: smart contract(s) on the Ethereum blockchain which accept
orders signed by both aMaker and Taker, and activate the exchange
of tokens.

� Token: a SC on the Ethereum blockchain, managing a given token
according to the ERC20 protocol.

3 User Stories. Fig. 3 shows the actors and the user stories they are
involved in, using a UML Use Case diagram, where the use cases are in
fact USs. Note that these USs just specify the DEX, and do not depend
on the specific technology used to implement it, except for the
Ethereum blockchain, which the DEX necessarily has to interact with.
Here we have no room to show the USs in detail but, given the
simplicity of the example, they are self-explaining. In Fig. 4 we show
the UML class diagram derived by an analysis of the given USs. This
diagram is not bound to a specific implementation of the relayer
system, but just shows schematically the entities, the data structures
and the operations emerging from the USs shown in Fig. 3. In short,
the system just deals with orders, posted by makers and later accepted
by takers, who are kinds of traders. The Relayer is the service which
publishes the offers and makes possible the exchange of tokens. Both
13
traders and relayer access the smart contracts implementing the to-
kens in the blockchain.

4 Divide the system into SC and App subsystems. In this case the
subdivision is trivial, because the Relayer system is a typical web
application, whereas the DEX and the Tokens are smart contracts by
design. The USs of the external app subsystem are the same of those
reported in Fig. 3, except those related with direct interaction with
the blockchain, tagged “SC” in the diagram of Fig. 3. Also the USs of
the blockchain subsystem are the same of those reported in Fig. 3, but
that tagged “AS".

5 Design of the SC subsystem. The SC system is quite simple, and
mainly involves the “DEX” SC, which interacts with the SCs managing
the supported tokens to exchange. The data managed by the DEX are
the trading fees, the list of supported tokens, and the list of the offers.
To hold these lists we use the “Eternal Storage” pattern, consisting in
storing them in an external SC, so that possible changes to the DEX
can be managed with no need to store again all these data [54].
Conversely, the use of the Proxy pattern [53] is excluded, because the
guarantee that the DEX works properly is given by inspecting its
source code. Giving the DEX’s owner the ability to change the DEX,
leaving the Proxy unchanged, would void this guarantee. We report in
Fig. 5 the UML class diagrams showing the SCs of the system. This
diagram shows some of the specific stereotypes used to document an
SC system, as described in Sec. 4.3.

The entities shown in the top of the diagram are standard library
contract “Ownable”, library “SafeMath” and “ERC20” token interface,
used in most contracts dealing with tokens. “ERC20” contract represent
at least two token contracts active on Ethereum blockchain and managed
by our DEX. The DEXStorage contract holds zero or more “Offer” records,
and is linked to the related DEX contracts. Modifiers and events are
shown in the corresponding contracts.

Fig. 6 shows a UML sequence diagram representing the interactions
among most Actors of the systems, when a Taker accepts – through her/
his wallet – an order seen in the Relayer’s book, and sends it to the DEX
for execution, including the messages exchanged among the SCs. Basi-
cally, the Taker approves, the transfer to the DEX of the tokens to give to
the Maker, plus the DEX fee; after that, the DEX cashes the tokens from
both Maker and Taker, keeps the fees and gives back the proper tokens to
both Traders’ wallets.

6 Coding of the SC subsystem. The developed SCsmake use of existing
library SCs, namely “OnlyOwner” to manage the ownership of a SC,
and “SafeMath” to avoid over- and under-flow errors. They also refer
to SCs already deployed on the blockchain and implementing the
ERC20 standard interface for managing tokens.

The contract “DEXstorage” holds and manages the mapping “tokens”
having as key the supported token symbol (4 characters) and as value the
token address, and the mapping “offers” having as key the Maker’s
address and as value the details of the offer (symbols and quantities of the
tokens to sell and buy, and their hash digest of these data). The owner of
DEXstorage is its creator, who is able to change the address of the DEX,
stored in “dexLatestVersion” variable. All other DEXstorage operations
can be performed only by the DEX. This is ensured by using “onlyLa-
testVersion” modifier. A part of DEXstorage contract follows, with the
Offer definition:



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
The contract “DEX” implements the decentralized exchange. It allows
its owner to add the supported tokens, and then the Maker to add offers.
14
Each Maker can have just one offer active at a given time. Before posting
the offer, the Maker must approve the DEX address to withdraw from the
SC managing the token to sell the offered amount, plus the selling fee.
The function “addOffer” is shown below:



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
A Taker can accept the Maker’s offer. Of course, also the Taker must
previously approve the DEX address to withdraw from the SC managing
the token to buy the offered amount, plus the buying fee. The “accept-
Offer” code is shown below:
As in the “addOffer” function, most actions are performed inside a
“require” clause, meaning that if the action aborts the whole computation
aborts, the blockchain state does not change, and the remaining gas is
sent back to the caller.
15
5.3. Security assessment

Although the DEX system is quite simple, it has strict security re-
quirements, because it manages tokens, which can usually be exchanged
with real money. In the followings, we follow the security checklist to be
applied in design phase (8 items) and coding phase (18 items), as re-
ported in Refs. [42]. For the sake of brevity, we will not report 18 checks
which are not relevant for our case study.
Limit the amount of ether: we check that all money transfers are

performed through explicit withdrawals made by the beneficiary
address.

Transaction Ordering: we added the hashing check of orders
because, lacking it, a fraudulent Maker could post a very favorable offer;
then the Maker might detect a Taker’s transaction to accept the offer, and
quickly post a faster transaction (with much higher gas value) changing



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
the offer in an unfavorable way. The hash signature of the offer solves the
problem.

Use trustworthy dependencies: we use only standard and very
proven libraries, such as “SafeMath.sol” and “ERC20. sol".

Beware of re-entrancy: using the Check-effect-interaction: all rele-
vant actions are preceded by checks. No call to other SCs are made which
might trigger reentrancy issues.

Embed addresses to grant permissions: most functions able to
modify the SC storage can be called only by the owner, or by the DEX in
the case of DEXstorage. The only functions callable by external addresses
are those used by the Maker to post an offer, and by Taker to accept an
offer.

Use platform related standards: the only external SC called are
ERC20 tokens, which are a proven Ethereum standard.

Prevent overflow and underflow and Beware of rounding errors:
the (few) relevant computations are performed using “SafeMath” library,
which protects from these kinds of errors.

Validate inputs to external and public functions: not only all
relevant actions are preceded by checks, but all actions are performed
including them inside a “require” clause. If a guard is not satisfied, the
whole action aborts.
5.4. Gas optimization

The minimization of gas consumption might be considered part of
performance optimization of any software solution. With DApps, the
blockchain itself is the main performance bottleneck, because external
transactions take time to be processed and accepted, even in a permis-
sioned blockchain. With Ethereum, optimizing the performance of smart
contracts corresponds to minimize gas consumption, which is linked also
to the number of bytecode instructions executed.

The presented code follows the main gas optimization patterns, as
16
presented in Table 3. In particular, the following patterns are relevant:
Proxy Delegate: We did not use Proxy Delegate pattern for the reason

explained in Step 5 of section 4.2.
Eternal Storage: this pattern corresponds to the use of “DEXStorage”

contract, which would allow to save a lot of gas in the case the DEX
contract needs to be upgraded. In fact, if the new DEX version uses the
same DEXstorage of the previous one, all tokens and offers can be re-
used. In this case, however, the Makers must be warned to change the
DEX address in their approval to withdraw tokens.

Pack variables: we packed the token symbol byte arrays is in the
“Offer” structure.

Do not initialize variables: we did not initialize variables with
default values.

Use Mappings: all the needed collections in our contracts are
implemented using mappings.

Execution paths: our functions do not perform heavy computations.
However we checked all possible execution paths to make sure they are
minimized.

Limit external calls: our functions are typically declared as
“external”, which are cheaper than “public” functions.

Limit modifiers: at most one modifier is used per function.
5.5. Writing automated tests

Each non-trivial function of the contracts written so far must be
provided of Unit and Acceptance Tests. Truffle framework [20] makes
available two methods for testing Ethereum smart contracts: Solidity test
and JavaScript test. For the sake of brevity, here we report just a fragment
of the Solidity unit test written to verify “addToken()" and “addOffer()"
functions of “DEXstorage” contract:



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
The automated tests follow the standard pattern of resetting the test
environment and building the “test fixture” – that is the data needed for
testing – before each test call. This is accomplished by the functions
“beforeAll()" and “beforeEach()". In this way, the test results do not
depend on test ordering. The tests are run by creating a “TestDEXstorage”
contract, and sending the proper test messages to it, which is automated
by Truffle.
5.6. Design and coding of App System

This subsection covers steps 7 and 8 of ABCDE process. The App
System is composed of the software able to present the current offers of
tokens posted by the takers, and of the software used by takers and
17
makers, respectively to post, modify or delete offers, and to accept offers.
The latter software must be provided of a wallet able to store Ethers and
send transactions to Ethereum blockchain.

The design of this subsystem includes that of its user interfaces. The
system is fairly complex, and the wallets must be designed and imple-
mented using strong security practices. We will not dig further into this
subsystem because, except for the wallet, it is a standard, web-based
system.

6. Threats to validity

In software engineering, there are three main types of validity that
contribute to the overall validity of a research, i.e., internal, construct,



L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
and external validity [58]. Our research regards the proposal of a new
software development method for DApps, so its validity assessment is
quite different from that of empirical researches.

Internal validity concerns causal relationship between independent
and dependent variables, and if there is only one explanation for the
research results. In our case, we do not have empirical results on the
validity of the method because the application field is relatively new,
ABCDE is the first proposed structured method to develop DApps, and
some teams are just starting to use it. For these reasons, we believe that
internal validity assessment is out of the scope of this threat analysis.

Construct validity concerns the correspondence between the research
and the theory that underlies the research itself. From this point of view,
a research is valid if one may exclude alternative explanations of the
results. In our case, a threat to construct validity might regard the pos-
sibility that other approaches might be better than ABCDE for DApp
development. For instance, one might argue that a waterfall process
combined to a secure software development methodology might better
address security concerns of smart contracts. Our experiences with agile
methods, which began in the late 90s, and on DApp development make us
pretty confident that ABCDE is well balanced between the need to pro-
ceed quickly in the presence of uncertain requirements – as it is almost
always the case for DApps – without compromising security. Moreover,
as reported in section 5, a survey among 14 early developers who used
ABCDE gave favorable results. Though, as always in software engineering
methods, it is possible to assume that the method assumptions and steps
actually work. As always, improvements might be made to ABCDE
method, and the release of better methods cannot be ruled out. In this
case, ABCDE will still be a yardstick for comparison for other DApp
development methods.

Threats to external validity are related to generalisation of our
approach: ABCDE was developed specifically for Ethereum DApps. Is it
equally valid for DApps intended to run on Ethereum main-net, and on
Ethereum permissioned blockchains? How about the applicability to
languages different from Solidity, and to other blockchains? Regarding
the first issue, we developed ABCDE taking into account both kinds of
DApps – for public and permissioned blockchains. The former have
typically much stricter security and gas consumption requirements,
whereas the latter tend to make use of more complex smart contracts. We
balanced the approach considering both issues, addressing security and
gas optimization with specific steps, and contract complexity with design
diagrams and iterative and incremental development. Therefore, we
believe that the validity threat of ABCDE being poorly suited to either
public or private blockchain DApps is overcome.

The applicability to other languages and blockchains is a bigger
threat, which will be mitigated only by extending ABCDE to cover these
subjects. This is work in progress, as outlined in the next section.

7. Conclusions and future work

Despite the substantial inflow of money and the strong efforts made in
the development of blockchain-based applications, the application of
sound software engineering processes and practices is still quite low.
Moreover, DApps development has peculiar characteristics that must be
addressed with specific tools and guidelines, and research on these issues
has just started, being this field still in its infancy.

We are sure that applying a sound software engineering approach
might greatly help to overcome many of the issues of DApp development.
These include specific architectural design issues, security issues related
to how a blockchain works, the need to spare gas, testing plans and
strategies in the blockchain environment, corrective and evolutionary
maintenance issues, also related to blockchain immutability.

To our knowledge, the work presented in this paper is the first
attempt to develop an organic process for DApp development named
ABCDE, from requirement gathering to design, coding, security assur-
ance, and deployment. The proposed method is presently focused on the
Ethereum blockchain and its Solidity language, which are at the current
18
time the most used to develop DApps. However, it can be adapted to
other environments. For instance, we applied it to model a DApp
developed using Hyperledger Fabric [56].

ABCDE takes advantage of agile practices, because DApp develop-
ment usually deals with rapid implementation of systems whose re-
quirements are not fully understood at the beginning, and tend to change
over time. However, given the specificity of blockchains, ABCDE com-
plements the incremental and iterative development through boxed it-
erations, typical of agility, with more formal tools. These tools include a
full modeling of interactions among traditional software and blockchain
environment, using UML class diagrams, UML Use Case diagrams (in fact,
representing user stories), UML sequence diagrams – all specialized for
blockchain-based application development using stereotypes.

ABCDE also provides valuable practices, patterns and checklists to
promote and evaluate the security of a DApp written in Solidity language,
and also to reduce its gas consumption.

In this paper, we also present an example of application of ABCDE for
the development of a simplified Distributed Exchange system to enable
trading between pairs of Ethereum tokens. This example is a useful step
by step tutorial on the application of guidelines and patterns discussed in
the paper.

We believe that ABCDE method can be really valuable to blockchain
firms and ICO startups, which might develop a competitive advantage
using it since the beginning of their development projects.

Future work will address the improvement suggestions gathered by
the survey reported in section 5.1, which include: (i) extending the
method to other DApp development environments, such as Hyperledger
Fabric; (ii) adding best practices/guidelines for DApp maintenance; (iii)
being more specific on the App System development, and on the inte-
gration and testing of SC and App systems; (iv) providing teaching ma-
terials andmore practical examples. We also plan to develop tools such as
automated compilers of ABCDE class diagrams into smart contract data
structure.

Acknowledgments

This work was partially funded by the CRYPTOVOTING project,
funded by Sardinia Region, call POR FESR Sardegna 2014–2020, Prot.
0010083, n. 1361 REA, August 01, 2018, and by the ABATA project
(Application of Blockchain to Authenticity and Traceability of Aliments),
funded by Italian Ministry for Economic Development, National Opera-
tional Program “Enterprises and Competitiveness”, project Nr, F/
200130/01–02/X45.

References

[1] S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system, url¼, https://bitcoi
n.org/bitcoin.pdf, 2008.

[2] G. Wood, Ethereum: a secure decentralised generalised transaction ledger, url¼,
https://ethereum.github.io/yellowpaper/paper.pdf, 2014.

[3] N. Szabo, Smart contracts: formalizing and securing relationships on public
networks, First Monday 2, url¼, https://ojphi.org/ojs/index.php/fm/article/view/
548.

[4] U. Chohan, The Problems of Cryptocurrency Thefts and Exchange Shutdowns, Tech.
rep., Discussion Paper Series: Notes on the 21 St Century, School of Business and
Economics, University of New South Wales, Canberra, 2018.

[5] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart contracts
(sok), in: M. Maffei, M. Ryan (Eds.), Principles of Security and Trust, Springer Berlin
Heidelberg, 2017, pp. 164–186.

[6] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, R. Hierons, Smart
contracts vulnerabilities: a call for blockchain software engineering?, in: 2018
International Workshop on Blockchain Oriented Software Engineering IWBOSE,
2018.

[7] S. Porru, A. Pinna, M. Marchesi, R. Tonelli, Blockchain-oriented software
engineering: challenges and new directions, in: Proceedings of the 39th
International Conference on Software Engineering Companion, IEEE Press, 2017,
pp. 169–171.

[8] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.
Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al., Manifesto for Agile Software
Development.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ojphi.org/ojs/index.php/fm/article/view/548
https://ojphi.org/ojs/index.php/fm/article/view/548
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref4
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref4
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref4
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref5
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref5
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref5
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref5
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref6
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref6
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref6
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref6
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref7
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref7
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref7
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref7
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref7


L. Marchesi et al. Blockchain: Research and Applications 1 (2020) 100002
[9] P. Chakraborty, R. Shahriyar, A. Iqbal, A. Bosu, Understanding the software
development practices of blockchain projects: a survey, in: ESEM 2018, October
11–12, 2018, Oulu, Finland, ACM, 2018.

[10] A. Bosu, A. Iqbal, R. Shahriyar, P. Chakraborty, Understanding the motivations,
challenges and needs of blockchain software developers: a survey, Empir. Software
Eng. 24 (2019) 2636–2673.

[11] K. Schwaber, M. Beedle, Agile Software Development with Scrum, Pearson, 2001.
[12] L. Marchesi, M. Marchesi, R. Tonelli, An agile software engineering method to

design blockchain applications, in: Proceedings of the Software Engineering
Conference Russia, SECR 2018, ACM, New York, NY, USA, 2018.

[13] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, H. Wang, Blockchain challenges and
opportunities: a survey, Int. J. Web Grid Serv. 14 (2018) 352–375.

[14] S. Tikhomirov, Ethereum: state of knowledge and research perspectives, in:
International Symposium on Foundations and Practice of Security, Springer, 2017,
pp. 206–221.

[15] State of the dapps website, url¼, https://www.stateofthedapps.com/stats, 2019.
[16] C. Dannen, Introducing Ethereum and Solidity, Springer, 2017.
[17] G. Fenu, L. Marchesi, M. Marchesi, R. Tonelli, The ico phenomenon and its

relationships with ethereum smart contract environment, in: Blockchain Oriented
Software Engineering (IWBOSE), 2018 International Workshop on, IEEE, 2018,
pp. 26–32.

[18] M. Cohn, User Stories Applied: for Agile Software Development, Addison-Wesley
Professional, 2004.

[19] D. Janzen, H. Saiedian, Test-driven development concepts, taxonomy, and future
direction, Computer 38 (9) (2005) 43–50.

[20] Truffle website, url¼, https://www.trufflesuite.com/, 2019.
[21] M. Fowler, Refactoring: Improving the Design of Existing Code, second ed.,

Addison-Wesley Professional, 2018.
[22] J. Rumbaugh, G. Booch, I. Jacobson, The Unified Modeling Language Reference

Manual, Addison Wesley, 2017.
[23] X. Xu, I. Weber, M. Staples, Architecture for Blockchain Applications, Springer,

2019.
[24] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, P. Rimba,

A taxonomy of blockchain-based systems for architecture design, in: Software
Architecture (ICSA), 2017 IEEE International Conference on, IEEE, 2017,
pp. 243–252.

[25] F. Wessling, C. Ehmke, M. Hesenius, V. Gruhn, How much blockchain do you need?
towards a concept for building hybrid dapp architectures, in: WETSEB 2018-1st
International Workshop on Emerging Trends in Software Engineering for
Blockchain, 2018.

[26] G. Fridgen, J. Lockl, S. Radszuwill, A. Rieger, A. Schweizer, N. Urbach, A solution in
search of a problem: a method for the development of blockchain use cases, in: 24th
Americas Conference on Information Systems (AMCIS), New Orleans, USA, August
2018, 2018.

[27] M. Jurgelaitis, V. Drungilas, L. Ceponiene, R. Butkiene, E. Vaiciukynas, Modelling
principles for blockchain-based implementation of business or scientific processes,
in: Proceedings of the International Conference on Information Technologies, IVUS
2019, CEUR Workshop Proceedings, 2019, pp. 43–47.

[28] M. Beller, J. Hejderup, Blockchain-based software engineering, in: Proceedings of
the 41th International Conference on Software Engineering Companion, IEEE Press,
2019, pp. 53–56.

[29] V. Lenarduzzi, I. Lunesu, M. Marchesi, R. Tonelli, Blockchain applications for agile
methodologies, in: Proceedings of the 19th International Conference on Agile
Software Development: Companion, XP 2018, ACM, New York, NY, USA, vol. 30,
2018, pp. 1–30, https://doi.org/10.1145/3234152.3234155, 3.

[30] P. Praitheeshan, L. Pan, J. Yu, J. Liu, R. Doss, Security Analysis Methods on
Ethereum Smart Contract Vulnerabilities: A Survey, arXiv preprint arXiv:
1908.08605.

[31] Y. Huang, Y. Bian, R. Li, L. Zhao, P. Shi, Smart Contract Security: A Software
Lifecycle Perspective, IEEE Access, 7.

[32] B. De Win, R. Scandariato, K. Buyens, J. Gr�egoire, W. Joosen, On the secure
software development process: clasp, sdl and touchpoints compared, Inf. Software
Technol. 51 (2009) 1152–1171.
19
[33] K. Rindell, S. Hyrynsalmi, V. Lepp€anen, Busting a myth: review of agile security
engineering methods, in: 12th International Conference on Availability, Reliability
and Security, ACM Press, 2017, pp. 1–10.

[34] H. Baumeister, N. Koch, L. Mandel, Towards a uml extension for hypermedia
design, in: International Conference on the Unified Modeling Language, Springer,
1999, pp. 614–629.

[35] L. Baresi, F. Garzotto, P. Paolini, Extending uml for modeling web applications, in:
System Sciences, 2001. Proceedings of the 34th Annual Hawaii International
Conference on, IEEE, 2001, p. 10.

[36] H. Rocha, S. Ducasse, Preliminary steps towards modeling blockchain oriented
software, in: WETSEB 2018-1st International Workshop on Emerging Trends in
Software Engineering for Blockchain, 2018.

[37] KPMG, Agile transformation – 2019 survey on agility, url¼, https://assets.kpm
g/content/dam/kpmg/nl/pdf/2019/advisory/agile-transformation.pdf, 2019.

[38] D.J. Anderson, G. Concas, M.I. Lunesu, M. Marchesi, H. Zhang, A comparative study
of scrum and kanban approaches on a real case study using simulation, in: Agile
Processes in Software Engineering and Extreme Programming, Springer Berlin
Heidelberg, 2012, 23–137.

[39] D.J. Anderson, Kanban: Successful Evolutionary Change for Your Technology
Business, Blue Hole Press, 2010.

[40] P. Coad, E. Yourdon, P. Coad, Object-oriented Analysis, vol. 2, Yourdon press,
Englewood Cliffs, NJ, 1991.

[41] B. Scriber, A framework for determining blockchain applicability, IEEE Software 35
(2018) 70–77.

[42] L. Marchesi, M. Marchesi, L. Pompianu, R. Tonelli, Security checklists for ethereum
smart contract development: patterns and best practices, arXiv preprint arXiv, htt
p://arxiv.org/abs/2008.04761.

[43] L.L. Constantine, L.A. Lockwood, Software for Use: a Practical Guide to the Models
and Methods of Usage-Centered Design, Pearson Education, 1999.

[44] H. Sharp, Y. Rogers, J. Preece, Interaction Design: beyond Human-Computer
Interaction, fifth ed., John Wiley & Sons, 2019.

[45] Solidity website, url¼, https://solidity.readthedocs.io, 2019.
[46] K. Anton, J. Manico, J. Bird, Owasp Proactive Controls for Developers, Tech. rep.,

Open Web Application Security Project, OWASP), 2018.
[47] Consensys Solidity Best Practices Website, 2019 url¼, https://consensys.github.io/s

mart-contract-best-practices/.
[48] Y. Liu, Q. Lu, X. Xu, L. Zhu, H. Yao, Applying design patterns in smart contracts, in:

International Conference on Blockchain, Springer, 2018, pp. 92–106.
[49] M. Wohrer, U. Zdun, Smart contracts: security patterns in the ethereum ecosystem

and solidity, in: Blockchain Oriented Software Engineering (IWBOSE), 2018
International Workshop on, IEEE, 2018, pp. 2–8.

[50] M. Bartoletti, L. Pompianu, An empirical analysis of smart contracts: platforms,
applications, and design patterns, in: Financial Cryptography and Data Security. FC
2017. Lecture Notes in Computer Science, Springer, Cham, 2017, pp. 494–509.

[51] Ethereum smart contract security best practices website, url¼, https://ethere
um-contract-security-techniques-and-tips.readthedocs.io/en/latest/, 2019.

[52] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, D. Tigano, Design patterns for
gas optimization in ethereum, in: Blockchain Oriented Software Engineering
(IWBOSE), 2020 International Workshop on, IEEE, 2020, pp. 9–15.

[53] Proxy patterns, url¼, https://blog.openzeppelin.com/proxy-patterns/, 2019.
[54] Solidity patterns, url¼, https://fravoll.github.io/solidity-patterns/, 2019.
[55] M. Gupta, Solidity gas optimization tips, url¼, https://mudit.blog/solidity-gas-opt

imization-tips/, 2018.
[56] G. Baralla, A. Pinna, G. Corrias, Ensure traceability in european food supply chain

by using a blockchain system, in: 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain, WETSEB, 2019,
pp. 40–47.

[57] W. Warren, A. Bandeali, 0x: an open protocol for decentralized exchange on the
ethereum blockchain, url¼, https://0xproject.com/pdfs/0x_white_paper.pdf, 2017.

[58] R. Conradi, A.I. Wang (Eds.), Empirical Methods and Studies in Software
Engineering, vol. 2765, LNCS, Springer Berlin Heidelberg, 2003.

http://refhub.elsevier.com/S2096-7209(20)30002-6/sref9
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref9
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref9
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref9
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref10
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref10
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref10
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref10
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref11
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref12
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref12
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref12
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref13
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref13
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref13
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref14
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref14
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref14
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref14
https://www.stateofthedapps.com/stats
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref16
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref17
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref17
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref17
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref17
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref17
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref18
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref18
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref19
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref19
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref19
https://www.trufflesuite.com/
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref21
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref21
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref22
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref22
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref23
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref23
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref24
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref24
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref24
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref24
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref24
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref25
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref25
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref25
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref25
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref26
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref26
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref26
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref26
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref27
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref27
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref27
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref27
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref27
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref28
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref28
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref28
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref28
https://doi.org/10.1145/3234152.3234155
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref32
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref32
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref32
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref32
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref32
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref33
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref33
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref33
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref33
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref33
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref34
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref34
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref34
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref34
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref35
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref35
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref35
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref36
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref36
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref36
https://assets.kpmg/content/dam/kpmg/nl/pdf/2019/advisory/agile-transformation.pdf
https://assets.kpmg/content/dam/kpmg/nl/pdf/2019/advisory/agile-transformation.pdf
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref38
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref38
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref38
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref38
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref38
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref39
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref39
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref40
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref40
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref41
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref41
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref41
http://arxiv.org/abs/2008.04761
http://arxiv.org/abs/2008.04761
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref43
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref43
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref44
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref44
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref44
https://solidity.readthedocs.io
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref46
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref46
https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref48
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref48
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref48
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref49
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref49
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref49
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref49
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref50
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref50
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref50
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref50
https://ethereum-contract-security-techniques-and-tips.readthedocs.io/en/latest/
https://ethereum-contract-security-techniques-and-tips.readthedocs.io/en/latest/
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref52
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref52
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref52
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref52
https://blog.openzeppelin.com/proxy-patterns/
https://fravoll.github.io/solidity-patterns/
https://mudit.blog/solidity-gas-optimization-tips/
https://mudit.blog/solidity-gas-optimization-tips/
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref56
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref56
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref56
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref56
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref56
https://0xproject.com/pdfs/0x_white_paper.pdf
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref58
http://refhub.elsevier.com/S2096-7209(20)30002-6/sref58

	ABCDE –agile block chain DApp engineering
	1. Introduction
	2. Background
	2.1. Decentralized applications
	2.2. Agility and DApp development
	2.3. Security assessment

	3. Related work
	3.1. Software engineering for DApp development
	3.2. Security for DApps
	3.3. Domain-specific UML additions

	4. Proposed method for DApp development
	4.1. Rationale and motivation
	4.2. The process
	4.3. UML diagrams for modeling SCs
	4.4. Security assessment for smart contracts
	4.4.1. Security in the design phase
	4.4.2. Security in the coding phase
	4.4.3. Security in the testing phase

	4.5. Gas optimization

	5. Experimental validation
	5.1. Building an example DApp
	5.2. The first steps of ABCDE
	5.3. Security assessment
	5.4. Gas optimization
	5.5. Writing automated tests
	5.6. Design and coding of App System

	6. Threats to validity
	7. Conclusions and future work
	Acknowledgments
	References


