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A Model Selection Approach for Variable
Selection with Censored Data

Maŕıa Eugenia Castellanos∗,§, Gonzalo Garćıa-Donato†,§,¶, and Stefano Cabras‡,§

Abstract. We consider the variable selection problem when the response is sub-
ject to censoring. A main particularity of this context is that information content
of sampled units varies depending on the censoring times. Our approach is based
on model selection where all 2k possible models are entertained and we adopt an
objective Bayesian perspective where the choice of prior distributions is a delicate
issue given the well-known sensitivity of Bayes factors to these prior inputs. We
show that borrowing priors from the ‘uncensored’ literature may lead to unsatisfac-
tory results as this default procedure implicitly assumes a uniform contribution of
all units independently on their censoring times. In this paper, we develop specific
methodology based on a generalization of the g-priors, explicitly addressing the
particularities of survival problems arguing that it behaves comparatively better
than standard approaches on the basis of arguments specific to variable selection
problems (like e.g. predictive matching) in the particular case of the accelerated
failure time model with lognormal errors. We apply the methodology to a re-
cent large epidemiological study about breast cancer survival rates in Castellón,
a province of Spain.

MSC2020 subject classifications: Primary 62C10, 62C10; secondary 62F15.

Keywords: Bayes factors, Bayesian model averaging, conventional priors, model
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1 Introduction and motivation

In variable selection we have k possible explanatory variables but it is uncertain which of
these is relevant to explain the response. We consider this situation in survival regression
analysis where the response is subject to censoring.

Our research is rooted in the Bayesian paradigm and more concisely on methods
based on the posterior distribution that assigns to each candidate model (a total of 2k

called the model space) its probability conditional on the observed data. The underlying
general problem is normally called “model selection” on which, and unlike “estimation”
problems, the true model is unknown. The posterior distribution is a simple function
of the Bayes factors (Kass and Raftery, 1995) and the prior model probabilities. In this
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paper we are mostly interested in objective methods, meaning that the prior inputs do
not require any information a priori. See Berger (2006) and Consonni et al. (2018) for
an updated review of objective Bayesian methods with particular emphasis on priors
for model selection. The derivation of objective priors in model selection problems is
very intriguing and a well known drawback of Bayes factors is a high sensitivity to prior
specifications and that, in general, they cannot be derived using improper or vague
priors (see e.g. Berger and Pericchi, 2001).

In survival problems, the information content in a sample varies among the differ-
ent experimental units, defining likelihood functions that discriminate among censored
and uncensored observations. In addition, objective priors are expected to reflect this
particularity since these are normally derived as formal rules applied to the likelihood
function (see Kass and Wasserman, 1996). In fact, in estimation problems, several au-
thors have argued about the relevance of deriving specific objective priors in survival
problems. For instance, De Santis et al. (2001) show that censoring considerations in
the rules for deriving Jeffreys priors lead to proposals with better coverage frequentist
intervals. In model selection problems, advances in Bayesian methods have mainly fo-
cused on relevant modeling aspects while the prior assignment is not specifically faced
and, in general, these are borrowed from the uncensored literature. For instance Sha
et al. (2006) develop variable selection methods in genetics using the original spike-
and-slab priors by George and McCulloch (1993) and quite more recently (Nikooienejad
et al., 2018), in a similar scenario but within Cox proportional hazards models, derive
methods armed with the standard non-local priors by Johnson and Rossell (2010). Also
Held et al. (2016) consider objective variable selection methods based on the test-based
Bayes factors by Johnson (2008) implemented in combination with the original hyper
g-priors (Liang et al., 2008) (with the interesting discussion on the convenience of us-
ing the number of uncensored observations and not the sample size to scale the prior
covariance matrix).

Variable selection priors typically depend, in various ways, on the observed values of
the covariates. This is the case of the g-prior, introduced for the linear model by Zellner
and Siow (1980); Zellner (1986), and that is the basis for our proposal. For the normal
regression model

y = β01+ X̃β + ε, ε ∼ Nn(0, σ
2In),

where X̃ is the n × k design matrix with 1�X̃ = 0 (so values of the covariates are
centered around their mean), the g prior is a distribution for β conditional on (β0, σ)
that has the form:1

β | β0, σ ∼ Nk(0, σ
2g n (X̃

�
X̃)−1). (1.1)

The parameter g is either fixed at certain value (e.g. g = 1) or it is assumed to follow
a distribution, π(g), giving rise to the so called hyper-g priors (Zellner and Siow, 1980;
Zellner, 1986; Liang et al., 2008; Bayarri et al., 2012). Clearly, the values of the covariates
contribute to the g prior in the construction of the covariance matrix.

1In the literature it is more common to see the g prior parameterized in terms of gn so the covariance

matrix is σ2g (X̃
�
X̃)−1. Which representation is used is, of course, irrelevant and in this paper we have

opted for the one introduced above because it better fits the arguments that accompany our proposal.



M. E. Castellanos, G. Garćıa-Donato, and S. Cabras 273

A main question that underlies our research is whether, in the situation with censored
data, adopting the g prior (or more generally any ‘uncensored’ prior) without further
considerations is a sensible approach. If this is done, then we are implicitly assuming that
all values of covariates contribute uniformly to the prior even if they are associated with
experimental units with very different censoring times. An illustration of the potential
misbehavior of such default procedures is presented in Section 3 where, we show how
a group of experimental units with very small censoring times (hence with negligible
contribution to the likelihood) may severely modify the result of the variable selection
exercise.

In this paper we derive generalizations of g and hyper-g priors for variable selection
in survival problems when employing the accelerated failure time model with lognormal
errors. The developed ideas are potentially useful for other type of parametric or semi-
parametric models usually employed in survival analysis. This family of priors, that has
been deeply studied in Berger and Pericchi (2001); Bayarri and Garćıa-Donato (2007)
has received much attention in the literature and has been extended to problems be-
yond the original Gaussian model to include various types of error distributions (see
e.g. Maruyama and Strawderman, 2010) but efforts have mainly focused on Generalized
Linear Models (Sabanes and Held, 2011; Fouskakis et al., 2018; Li and Clyde, 2018). To
the best of our knowledge this is the first attempt to extend g-priors to a context with
censored observations.

Other full Bayesian possibilities to handle the variable selection problem are rules
that, in principle, allow one to automatically obtain sensible priors. Among these, the
most popular are those related to the intrinsic or fractional Bayes factors (O’Hagan,
1995; Berger and Pericchi, 1996; Moreno et al., 1998). These methods are strongly based
on the concept of minimal training sample (see Berger and Pericchi, 2004, for a review
of the topic), whose definition is particularly intriguing in problems with observations
with different information content (as here). Strategies to circumvent these difficulties
have been developed in the series of papers Perra et al. (2013); Cabras et al. (2014)
and Cabras et al. (2015), but these approaches are computationally intensive since an
integral must be evaluated for every training sample and many integrals are actually
needed for one model comparison.

On the other hand, in the context of survival data, non Bayesian methods based on
penalized likelihoods have been extended. In particular, Zhang and Lu (2007) proposed
an adaptive LASSO for the Cox’s proportional hazards model; Antoniadis et al. (2010)
generalized to the case of the Cox proportional model the Dantzig selector methodology
proposed by Candes and Tau (2007) in the regression linear model. In Fan and Li (2002)
the smoothly clipped absolute deviation method (SCAD), a class of variable selection
procedures using non-concave penalized likelihood, is used for variable selection also in
the Cox model.

In the Bayesian setting, solving the variable selection problem reduces to finding
ways to properly summarize the posterior distribution. To achieve this, specific sum-
maries have been proposed, such as the model with the highest posterior probability or
the marginal inclusion probabilities (Berger and Pericchi, 2001). Furthermore, Model
Averaged estimates of any quantity of interest can be automatically derived, leading to
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more realistic estimates (see Steel, 2019, and references therein, for a recent review of
Model Averaging techniques). In our applications, we obtain such estimates to highlight
their interest in applied problems.

The problem of selecting among two nested models contains the major challenges
in a variable selection problem, but in terms of notation, it is much simpler to handle.
With this in mind, we have structured the paper with the main theoretical sections
(Sections 3 to 5) devoted to two model selection while the extension to variable selection
is deferred until Section 6. Section 2 sets the notation for the Bayesian model selection
problem in survival analysis, while Section 3 presents a motivating example. The main
contents are presented in Section 4 where we construct our proposal; discuss several of
its properties and introduce numerical approaches for its implementation. We illustrate
the resulting approach to the problem with only two competing models in a classic
transplant dataset in Section 2 of the supplementary material (Castellanos et al. 2020).
In Section 5 we compare our proposal with the strategy of borrowing priors from the
uncensored literature through the study of their predictive matching properties. In
Section 7, we apply our method to analyse a recent epidemiological dataset on breast
cancer in Spain. We further pursue the comparison among definitions of BF in Section 8
by means of an illustrative simulation study. Finally, some further remarks are offered
in Section 9 while proofs of all results are provided in the supplementary material.

2 The statistical model considered

To introduce the statistical model, let yi be the time-to-event (in logarithmic scale)
for individual i = 1, . . . , n and assume that yi follows a Gaussian distribution with
density φ, cdf Φ and survival function S = 1 − Φ. Due to censoring, the response is
only observed if yi < ci, where ci is (log) censoring time, and denote δi the binary
variable that records a one if yi < ci and zero otherwise. Once the experiment has
finished, we observe which individuals have or have not been censored in the vector δ

T
=

(δ1, . . . , δn). For those nu =
∑n

i=1 δi uncensored times, we observe their survival times
yT = (y1, . . . , ynu) (assuming without loss of generality that uncensored observations
correspond to individuals {1, . . . , nu}). Likewise we denote nc = n− nu.

Throughout the paper we assume that (log) censoring times cT = (c1, . . . , cn) are
known, i.e. the closing time of the study is known. The use of this information to
construct the prior will be a crucial differentiating aspect of the resulting methodology.

In this scenario, the joint density of (y, δ) assuming independence among individuals,
is

f(y, δ | θ) =
n∏

i=1

φ (yi | θ)δi [S (ci | θ)](1−δi) , (2.1)

where ynu+1, . . . , yn are immaterial as their corresponding δnu+1 = . . . = δn = 0.

Suppose now that a set of k covariates labeled x1, . . . , xk are considered as potential
explanatory variables and we want to test this possibility (model M1) against the model
with just the intercept M0. Under M1

yi = β0 + β
T
x̃i + σεi, εi ∼ N(0, 1),
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where x̃i is the k dimensional vector with the values of the covariates for individual i
centered around the mean, that is:

x̃
T

i = (xi1 − x̄1, xi2 − x̄2, . . . , xik − x̄k), i = 1, . . . , n.

Equivalently

M1 : f1(y, δ | β0, σ,β)

=

n∏
i=1

[
1

σ
φ

(
yi − β0 − β

T
x̃i

σ

)]δi [
1− Φ

(
ci − β0 − β

T
x̃i

σ

)](1−δi)

, (2.2)

and the model with only the intercept:

M0 : f0(y, δ | β0, σ) =

n∏
i=1

[
1

σ
φ

(
yi − β0

σ

)]δi [
1− Φ

(
ci − β0

σ

)](1−δi)

.

From these formulas it is easily deduced that censored observations with very negative
ci (recall ci is in logarithmic scale), basically do not contribute to the likelihood.

The model M0 normally is called the null model while M1 is the full. In the lit-
erature, the parameters that appear in both models are called common parameters.
With the centering performed to the covariates, the common parameter β0 has a simi-
lar meaning in both the full and null models, representing the overall mean of survival
times.

The full model can be written more compactly using matrix notation. For this,

and as usual, denote X̃ the n × k matrix with x̃
T

i in its i-th row. Once the data is
observed, this matrix can be partitioned (recall that we have assumed that uncensored

observations occupy the first nu positions) as X̃
T

= (X̃
T

u, X̃
T

c ) where X̃u is nu × k and

X̃c is nc × k. This way:

f1(y, δ | β0, σ,β) = Nnu(y | 1β0 + X̃uβ, σ
2I)Pr

(
Nnc(1β0 + X̃cβ, σ

2I) > cc
)
, (2.3)

where similarly to the notation above cT = (cT

u, c
T

c ) and Nn represents a n-variate
normal distribution with the first parameter being the vector mean and the second the
covariance matrix.

Centered matrices relate with their non-centered counterparts X, Xu, Xc via the

relation X̃ = (I − n−11n1
T

n)X, and

X̃u = Xu−
1

n
(1nu1

T

nu
Xu+1nu1

T

nc
Xc), X̃c = Xc−

1

n
(1nc1

T

nu
Xu+1nc1

T

nc
Xc), (2.4)

where 1n represents the n-th dimensional column vector of ones (the subindex will be
suppressed when possible).
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i yi δi X1 X2 X3 i ci δi X1 X2 X3

1 −1.6 1 −0.4 0.4 0.6 7 −48 0 −0.1 6.5 −0.4
2 1.2 1 0.6 0.2 1.9 8 −48 0 1.1 9.3 −0.3
3 0.0 1 −0.1 −0.1 −0.6
4 1.8 1 0.5 −0.0 −0.2

5 1.3 1 −1.1 −1.0 −0.9
...

...
...

...
...

...
6 3.6 1 0.4 −0.6 0.6 30 −48 0 0.3 6.5 −0.6

X̄ −0.02 −0.18 0.23 −0.05 5.6 −0.05

Table 1: Simulated dataset.

3 Motivating example

Consider the dataset in Table 1 with n = 30 of which, the first six observations are
uncensored while the remaining 24 are censored with very small censoring times. Un-
censored times are the log simulated values from an exponential model, with rate equal
to the exponential of the linear predictor, following the scheme given in examples from
the R package BVSNLP (Nikooienejad and Johnson, 2018). Three covariates (k = 3) have
been used and parameters are fixed to β0 = −1, β1 = −1.8, β2 = 3 and β3 = −0.7,
while X has been simulated from a multivariate normal with vector of means equal to
0, variances equal to 0.7 and covariances equal to 0.2. With respect to covariates, for
censored observations, we change the mean of X2 to be substantially larger, the means
of X1 and X3 are similar to the ones of the uncensored observations. Particular values
of the covariates are not important by themselves, so they have not been included in
order to reduce the space. In this dataset note that the mean of X2 substantially varies
for the censored and uncensored observations.

What is relevant in this data set is that the contribution to the likelihood of the
censored observations is negligible. In fact, a frequentist analysis based on lognormal
regression, model in (2.2), produces exactly the same results (with very small p-values
(< 2 × 10−16) for parameters β1 and β2 while the one associated with β3 is 0.31) in-
dependently of whether the censored observations are used or not. We should expect a
similar robustness to adding the censored observations in objective Bayesian implemen-
tations but this is not the case. For comparison, we have collected these results and the
ones that follow in Table 2.

As fully described in Section 6, in the model selection approach to variable selection,
the posterior probability of all models that arise as combinations of groups of the inde-
pendent variables (including the null and the full model, hence a total of 23 = 8 models
in this problem) are obtained. These posterior probabilities are normally summarized
with the posterior inclusion probabilities of the covariates (Barbieri and Berger, 2004)
that contain the evidence in favor of a variable being truly explanatory for the response.

If we proceed this way in this data set, using the standard g prior given in (1.1)
only considering the uncensored observations, that is with model (2.2) without the
censoring part, we obtain inclusion probabilities (for x1, x2 and x3) of 0.86, 0.90 and 0.3
(results obtained with the R package BayesVarSel, Garcia-Donato and Forte, 2018). On
the other hand, if we consider the whole dataset, what means using model (2.2) with
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the censored and observed data, and again the original g prior, (1.1),2 the inclusion
probabilities become 0.44, 0.51 and 0.22. The influence of the values of the covariates
for the censored observations is remarkable.

This misbehavior is not exclusive of the g prior but of the strategy of directly im-
porting priors from uncensored literature to survival problems. In this regard, and for
illustrative purposes, we have used on this same dataset the methodology in Nikooiene-
jad et al. (2018) (implemented with the accompanying R package BVSNLP) which de-
velops the application of non-local priors originally proposed by Johnson and Rossell
(2010) in survival models. The results of inclusion probabilities are 0.58, 0.78 and 0.24
just considering observations 1 to 6 and turn out to be 0.46, 0.46 and 0.16 respectively
considering the whole data set.

This example is, purposely, quite extreme with a covariate (x2) having quite a differ-
ent distribution for censored and uncensored observations. Nevertheless, it warns about
the need of considering generalizations of the standard objective priors for model se-
lection specifically designed for survival problems. This is a main goal in this research
which concludes in the objective prior that we propose in Section 4. Remarkably, when
using this prior to the data set in Table 1 we obtain similar inclusion probabilities that
were obtained with the g prior only considering the observations with non-negligible in-
formation content (the uncensored ones) and exactly the same results that using matrix
ΣU (4.14) as covariance matrix in (4.3).

4 Bayes factors, posterior probabilities and the prior
proposed

Denoting π1(β0, σ,β) the prior distribution for M1, the predictive density of (y, δ),
under M1, is

m1(y, δ) =

∫
f1(y, δ | β0, σ,β)π1(β0, σ,β)dβ0 dσ dβ. (4.1)

Similarly

m0(y, δ) =

∫
f0(y, δ | β0, σ)π0(β0, σ)dβ0 dσ,

where π0(β0, σ) denotes the prior under M0.

The Bayes factor for M1 against M0 and the posterior probability of M1 can be
obtained, respectively as:

B1(y, δ) =
m1(y, δ)

m0(y, δ)
, p(M1 | y, δ) = B1 p(M1)

1 +B1 p(M1)
, (4.2)

where p(M1) is the prior probability thatM1 is the true model. When, as in this section,
only two models are considered the objective choice is p(M1) = 1/2. The choice of the

2This corresponds to use matrix ΣA in (4.6) as covariance matrix in (4.3).
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β1 β2 β3

p-values:
Model (2.2) with only uncensored data < 2× 10−16 < 2× 10−16 0.31
Model (2.2) with whole dataset < 2× 10−16 < 2× 10−16 0.31

Posterior inclusion probabilities based on model (2.2):
Only uncensored data and g-prior, g = 1 0.86 0.90 0.3
Whole dataset and g-prior (1.1) with g = 1 0.44 0.51 0.22
Whole dataset with our proposal (4.3) with g = 1 0.85 0.88 0.29

Posterior inclusion probabilities based on Cox model:
Only uncensored data 0.58 0.78 0.24
Whole dataset 0.46 0.46 0.16

Table 2: p-values and posterior inclusion probabilities (Bayesian analysis) associated
with β parameters, when fitting the lognormal model or semiparametric Cox model
(using the package BVSNLP) with different priors and either using only uncensored or
the whole dataset in Table 1.

prior distribution in variable selection problems is less clear and we discuss about it in
Section 6.

The prior for M1 can be written, π1(β, β0, σ) = π1(β | β0, σ)π1(β0, σ). Our final
proposal, as we largely discuss in the next subsections, is:

π1(β | β0, σ) =

∫
Nk(β | 0, gΣ)π(g) dg, (4.3)

where

• π(g) is defined in (4.5) (discussion in Section 4.1);

• Σ = ΣM , a matrix defined in (4.11) (discussion in Section 4.2);

• Additionally, for the common parameters we use π1(β0, σ) = π0(β0, σ) = σ−1 for
the arguments introduced in Section 4.3.

Then, properties of the proposal are examined in Section 4.4. Finally Section 4.5 and
Section 2 in the supplementary material are devoted to numerical implementation and
a real illustration.

Later, in Section 5, it is argued that the proposal is nicely endorsed by predictive
matching arguments.

4.1 General considerations

The form in (4.3) as a mixture of a multivariate normal distribution is ubiquitous in
the literature of g priors (and extensions). Centering the prior at 0 was first proposed
by Jeffreys (1961). This is a popular practice that has been formally justified using
invariance arguments in Bayarri et al. (2012).
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Above g is a mixing parameter that provides the prior with heavy tails through the
mixing density π(g), which give rise to several extensions of the g-prior in linear models.
One of the first proposals is the Jeffreys-Zellner-Siow (JZS) prior (Jeffreys, 1961; Zellner
and Siow, 1980), which implies using the inverse gamma

π(g) =
1√
2π

g−3/2e−1/2g, g > 0. (4.4)

More recently, Bayarri et al. (2012) have proposed the Robust prior

π(g) =
1

2

√
1 + n

n(k + 1)

(
g +

1

n

)−3/2
, g >

1 + n

n(k + 1)
− 1

n
, (4.5)

that comes justified by a number of compelling arguments and criteria.

Other proposals assume a constant g, like the Zellner-g prior (Zellner, 1986; Kass
and Wasserman, 1995) of using g = 1 (also called the Unit Information prior of Kass
and Wasserman, 1995) or the Benchmark prior of Fernández et al. (2001) of using
g = max{1, k2/n}.

Formulas for the model without censoring If all observations were uncensored (i.e.
δ = 1) then the problem just presented exactly coincides with that of selecting among
two Gaussian linear models, which has been examined in depth in the literature (see
e.g. Bayarri et al. 2012 and references therein). As we mentioned in the introduction,
the covariance matrix is normally chosen as

ΣA = nσ2(X̃
T

X̃)−1 (4.6)

(the superindex A is used here to indicate that All observations are equally used). It
is a well-known result that, with ΣA, the Bayes factor (again with δ = 1 so y is of
dimension n) has the expression:

Bπ(y, X̃, k, n) ≡
∫ (

1 + g
SSE(X̃)

SSE0

)−(n−1)/2
(1 + g)(n−k−1)/2 π(g) dg, (4.7)

with SSE(X̃) = yT (I − X̃(X̃
T

X̃)−1X̃
T

)y, SSE0 = yT (I − 1
n11

T
)y (the sum of

squared errors of the corresponding linear models). Notice that Bπ(y, X̃, k, n) =

Bπ(y, (1X), k, n) since SSE(X̃) = SSE(1X). This is a useful result that will be
used later.

4.2 The prior covariance matrix

As early as in the seminal paper (Zellner and Siow, 1980) it has been recognized the
importance of the Fisher information in providing a route to construct sensible prior
covariance matrices for testing and model selection.
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Consider the expected Fisher information matrix for regression parameters, I, and
its inverse, J , being partitioned as

I =
( I00 I01

I10 I11

)
, J =

( J00 J01

J10 J11

)
.

Our first attempt would be using the covariance matrix equal to J11 above (without
censoring this choice would lead to ΣA in (4.6)). Despite the popularity of this matrix in
the literature, its choice has been formally justified only recently. The justification was
given in Bayarri et al. (2012) and is based on predictive matching criteria, and discrim-
inates (4.6) with respect to other possibilities like I−1

11 or even assuming independence
among parameters. In Section 5 we also utilize predictive matching arguments to justify
our proposal. We derive J11 in the next result.

Theorem 4.1. For the model defined in (2.2):

• The Hessian matrix corresponding to parameters β is:

∂2

∂β∂β
T log f1(y, δ | β0, σ,β) = − 1

σ2
X̃

T

uX̃u − 1

σ2
X̃

T

c Diag{h(zi)(h(zi)− zi)} X̃c,

where zi = ci−β0−β
T
x̃i

σ , for i = 1, . . . , n; h(z) = φ(z)/(1 − Φ(z)) is the hazard
function and Diag{di} stands for a diagonal matrix with values at the diagonal
d1, . . . , dnc .

• The expected Fisher information matrix corresponding to (β0,β) is

I =
1

σ2

( 1
T

X̃
T

)
W (β0,β, σ)

(
1 X̃

)
, (4.8)

where W (β0,β, σ) = Diag{Φ(zi) + φ(zi)(h(zi)− zi)}.

• The block corresponding to β in the inverse matrix of I is

J11 = σ2
(
X̃

T [
W (β0,β, σ)−W (β0,β, σ)

11
T

trW (β0,β, σ)
W (β0,β, σ)

]
X̃

)−1

,

(4.9)
where trA stands for the trace of A.

Unfortunately, the matrix in (4.9) is useless for our purposes as it depends on the
parameter β for which we are constructing the prior distribution. This is a differentiating
aspect of models outside the linear model under which this matrix does not depend on β.
To overcome this difficulty we adopt the traditional idea of ‘importing’ the assessment
under the null model (i.e. β = 0) with the underlying idea that, in the variable selection
problem, the only prior available information about the non-common parameters is that
assessed by the null model that states that, with positive probability, these parameters
are zero. Another very interesting alternative would be using the MLE of β to surpass
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the dependence of the matrix on the unknown parameters. The resulting procedure,
which has been used for instance by Clyde (1999) in GLM’s, would have an empirical
Bayes flavor and is undoubtedly an alternative to our ‘null’ based approach; however,
to the greatest extent possible, we prefer using only genuine prior distributions.

Another source of concern regarding a direct use of J11 is that it is quite informative
as it contains the information in the whole sample and if it is directly used, the prior will
be very influential. Hence, we need to rescale this matrix by a certain effective sample
size, here denoted as N , to capture the notion of a prior as informative as a sample of
size one (for related ideas see Bayarri and Garćıa-Donato, 2008). In the great majority
of occasions, for practical purposes (see e.g. Kass and Raftery, 1995) the effective sample
size is simply taken as the sample size n. Nevertheless, our problem is a clear example
where using n is not a sensible option since the information content in observational
units depends on whether they are (or are not) censored. Intuitively, censored units
should contribute less to the construction of the effective sample size. Unfortunately, a
priori it is unknown which observations are censored and hence we need to rely on some
sort of weight that gives more importance to units that, in a certain sense, are more
expected to be uncensored. It is here where the use of the censoring times ci will be of
utmost importance.

There have been many attempts to define the notion of effective sample size and
the most comprehensive study is the recent paper (Berger et al., 2014). The underlying
idea is to choose the effective sample size roughly, like the precision.

One particular practical conclusion that can be extracted from Berger et al. (2014)
is that in linear models, the effective sample size, defined as the expected information
for the intercept in the null model, coincides with the sample size n. This also holds
approximately true for regression models with no pathologic values of the explanatory
variables.

In our setting, the information under the null can be easily obtained from (4.8)
leading to

N(β0,σ) ≡
n∑

i=1

Φ(zi0) + φ(zi0)
( φ(zi0)

1− Φ(zi0)
− zi0

)
, (4.10)

where zi0 = (ci − β0)/σ. In Section 2 in the supplementary material we show that the
unknown parameter N(β0,σ) captures quite precisely the idea of an effective sample size
in a problem with censored observations.

With all the considerations above, our proposal for the covariance matrix is

ΣM = N(β0,σ)σ
2
[
X̃

T (
W (β0, σ)−W (β0, σ)

11
T

N(β0,σ)
W (β0, σ)

)
X̃

]−1
, (4.11)

with
W (β0, σ) = W (β0,β = 0, σ) = Diag{wi(β0, σ)},

and wi(β0, σ) = w(zi0), for i = 1, . . . , n, and

w(z) = Φ(z) + φ(z)(h(z)− z). (4.12)
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With this notation, N(β0,σ) =
∑n

i=1 wi(β0, σ). The index M in (4.11) refers to the idea
that a mix of censored and uncensored observations is used.

Note that the matrix in (4.11) depends on (β0, σ) in a way that comes inspired by
the null model, hence it is important that both parameters have ‘the same meaning’
throughout the different models. It is at this point (and only at this point) where intro-
ducing the model with covariates being centered around their means is very important.
In fact, in this parametrization β0 has the interpretation of being the conditional ex-
pected value of Y when covariates equals their respective means, so that if covariates
have the same mean (i.e. zero) also β0 has the same interpretation independently of the
assumed model.

In what follows, and unless needed, the dependence on (β0, σ) of N , W and wi will
be removed to simplify the notation.

4.3 About the prior over common parameters

Our proposal for the prior for common parameters is the standard location-scale invari-
ant prior π(β0, σ) = σ−1. Another possibility would be to include the idea of censoring
also in this prior (e.g. the Jeffreys priors).

Considering the likelihood for the null model, the expression of the Fisher Informa-
tion matrix I(β0, σ) is given in Equation (2) in the proof of Theorem 1 in the supple-
mentary material. This result clearly suggests that Jeffreys prior using the full Fisher
information is computationally much more expensive than π(β0, σ) = σ−1.

Therefore, being not clear if the complication with respect to the standard option is
really needed, we performed a comparison of the following two priors at hand:

1. πJ (β0, σ) =
√
|I(β0, σ)|, based on Jeffreys prior using the full Fisher information

matrix, derived above;

2. π(β0, σ) = 1/σ, Jeffreys prior corresponding to the model without censoring.

While comparisons should be made more formally in terms of model selection per-
formances, an analysis of coverages often suffices. We thus analyze the coverage in
estimating the common parameters β0, σ under the null model, excluding the other pa-
rameters (in other models). The results with regard to coverage of 500 nominal 95%
credible intervals considering two different sample sizes, n = 30 and n = 50 and four
proportions of censoring, 0.2, 0.4, 0.6 and 0.8 appear in Figure 1.

We can see that almost all coverages reported in Figure 1 are compatible among the
two priors, and near of the nominal 95% considering their respective standard errors, ex-
cept for both priors at low sample sizes or data with a very high proportion of censored
observations. However, low sample size and very high proportion of censored observa-
tions is a somewhat unrealistic scenario at least compared to the considered datasets.
These results suggest that we should not expect large differences between using either
prior and here we adopt the more convenient choice (from a computational point of
view) of using π(β0, σ) ∝ 1/σ.
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Figure 1: Actual coverages of 95% credible intervals for parameters β0 and σ under
the two priors πJ(β0, σ) =

√
|I(β0, σ)| and π(β0, σ) = 1/σ (intervals are obtained with

±2× standard error).

4.4 Properties of ΣM and the proposed prior

In this section the properties and interpretation of the matrix (4.11) are examined. The
main conclusion that we extract is that, based on the prior information in the censoring
times ci, this matrix has the ability to automatically adjust for the information content
in the different observations.

Consider first the following result that concerns the function w(z) in (4.12) and an
equivalent expression for ΣM in (4.11).

Theorem 4.2. It holds true that

i) 0 ≤ w(z) ≤ 1 for all z ∈ R.

ii) w(z) is an increasing function.

iii)

ΣM = σ2
( n∑

i=1

wi(x̃i − x̃w)(x̃i − x̃w)
T
/N

)−1

, (4.13)

where x̃w =
∑n

i=1 wix̃i/N .
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From (4.13) it is easy to deduce that given (β0, σ) the matrix ΣM is equivariant to
changes in location of the covariates, and in particular

ΣM = σ2
( n∑

i=1

wi(xi − xw)(xi − xw)
T
/N(β0,σ)

)−1

,

where xw =
∑n

i=1 wixi/N(β0,σ).

Because of the positiveness of wi, it is valid to interpret them as weights that,
according to ii), are a monotone increasing function of (ci − β0)/σ. This implies that
the larger the standardized difference ci − β0 is, (it is more likely that individual i is
uncensored), the larger the value of the weight. In the extremes, if ci → ∞ then wi tends
to one and if ci → −∞ then wi → 0. This fact plus the equivalence iii) justifies that
the proposed prior covariance matrix is proportional to a weighted covariance matrix
of the explanatory variables where those units i with larger ci contribute more to the
covariance matrix.

The wi also provide an interesting interpretation of the effective sample size N
(which we recall is defined as

∑n
i=1 wi). Clearly 0 < N ≤ n and N → n if all ci → ∞.

In the other extreme, if all ci → −∞ then N → 0. Hence the proposed effective sample
size is a compromise between the number of units that are expected to be uncensored
(large ci) and censored (small ci).

Note that these results (and many that follow) hold true in the limit (e.g. when
c tends either to ∞ or −∞ because w((c − β0)/σ) tends to 1 or 0) but, for practical
purposes, it is important to know that up to the second decimal point w(z) ≈ 1 if
z > 1.50 (since w(1.5) = 0.9900) while w(z) ≈ 0 when z < −3.15 (w(−3.15) = 0.0096).
This means that the results when w((c−β0)/σ) → 1 are essentially true if c is moderately
large compared with β0 (if c is farther than 1.5 standard deviations from β0). Similarly,
w((c− β0)/σ) ≈ 0 if c < β0 − 3.15σ.

There are two specific scenarios where the expression adopted by ΣM is particularly
revealing and that we now analyze.

Homogeneous censoring times When all ci coincide, and without using any external
information, it is virtually impossible to value, a priori, which units are more likely to be
censored. Our proposed approach agrees with this observation and it can be easily seen
that ΣM would coincide with ΣA (cf. (4.6)), the equally weighted sample covariance
matrix of regressors and the prior covariance matrix used in the g-prior in the problem
without censoring.

Polarized censoring times An opposite situation to that just considered is when the
sample units are highly polarized with some of them having very small censoring times
compared with the rest. A canonical of such cases is when

c = (cu, nu. . ., cu, cc, nc. . ., cc),
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and cc tends to be arbitrarily small. Here, and for fixed (β0, σ), Σ
M → ΣU , the covari-

ance matrix only based on uncensored observations, that is,

ΣU = nuσ
2(X

T

u(I − 1nu1
T

nu
/nu)Xu)

−1. (4.14)

This implies that the proposed prior would coincide with the g-prior considering
only the values of the covariates from the uncensored individuals. As we demonstrate
in the next result, under these conditions and, as expected (since the contribution of
last nc observations to likelihood tends to vanish), the Bayes factor would tend to the
Bayes factor that only takes into consideration the uncensored observations.

Theorem 4.3. Suppose the hyper parameter g is fixed or
∫∞
0

g−k/2 π(g) dg < ∞. Let

cT = (cu, nu. . ., cu, cc, nc. . ., cc) and let the matrix X be partitioned accordingly as X
T
=

(X
T

u,X
T

c ) with conformable dimensions. If nu ≥ k + 2 then

lim
cc→−∞

B1(y, δ) = Bπ(y, (1Xu), k, nu).

Note that it can be easily seen that the condition
∫∞
0

g−k/2 π(g) dg < ∞ is satisfied
for the priors (4.4) and (4.5). This result will become more relevant in a later discussion
about predictive matching properties.

Arguably these last two scenarios are extreme and of a limited utility in practice.
Nevertheless, they illustrate how our proposed Bayes factor is somewhere in between
(averaged by the information in ci) the two alternative approaches of considering all the
observations in the same manner to construct the prior or just considering the censored
observations.

The dependence of (4.11) on (β0, σ) implies a substantial change both from a theo-
retical and a numerical perspective (we discuss the latter in Section 5). Hence, a crucial
question is to know if this dependence changes the conditions for the existence of the
conventional Bayes factor for the problem without censoring, where it is known (see
e.g. Bayarri et al., 2012) that a sufficient and necessary condition is n ≥ k + 1 (it is
necessary to ensure the existence of the inverse matrix (4.6)).

For the proposed prior, in the next result we show that, for the case where all ci are
equal, then n ≥ k + 1 when nu ≥ 2 (recall n is the number of observations, censored
or uncensored) still ensures propriety of posterior. Unfortunately, the problem is more
involved when censoring times are not constant, precisely due to the real dependence on
(β0, σ). In this last case we show that nu ≥ k + 2 is a sufficient condition for posterior
propriety.

Theorem 4.4. If either

i) n ≥ k + 1, nu ≥ 2 and ci = c for all i, or

ii) nu ≥ k + 2 and g is constant or
∫
g−k/2 π(g) dg < ∞,

then 0 < m1(y, δ) < ∞ (or equivalently the posterior is proper).
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Finally, the prior has the property of leading to Bayes factors that are equivariant
to changes in scale and/or location of the explanatory variables.

Theorem 4.5. Let the original design matrix X be transformed as Z = XD + 1nb
�,

where D is a non-singular diagonal matrix of dimension k × k and b ∈ Rk, both with
known entries. Then, the Bayes factor remains the same independently of whether X
or Z are used in the construction of ΣM in (4.11).

4.5 Computing Bayes factors

The marginal predictive distribution for each model is not available in closed-form and
has been approximated using importance sampling, in particular the algorithm proposed
in Touloupou et al. (2018).

The steps we follow to obtain the approximation of each predictive distribution are:

1. Obtain a sample from the posterior distribution π(β, β0, σ, g | y, δ), using Markov
chain Monte Carlo (MCMC) methods. In particular, a random walk Metropolis-
Hastings (RW-MH) algorithm has been employed initialized at the mode of the
posterior distribution for β, β0, log(σ) and in g = 1. The RW-MH uses for parame-
ters (β, β0, log(σ)), a multivariate normal proposal having a variance proportional
to the inverse of the Hessian at the mode previously obtained and with a fixed
scale factor, chosen in order to have an acceptance rate of 30–40%. Such proposal’s
variance is calculated over a fraction of the burn-in period and then it stays steady
for the rest of the steps. Independently for g we use as proposal the prior distribu-
tion (4.4) or (4.5). This algorithm has been also used in Cabras et al. (2014) and
since the priors are proper, the convergence of the chain to the target posterior
can be assumed. More details about the employed proposal distributions and an
explicit expression of the target one are provided in the supplementary material.

2. Construct a proposal distribution, q(·), based on the posterior sample obtained in
the above point. For (β, β0, log(σ)) we have used a multivariate t-distribution with
3 degrees of freedom and noncentrality parameters and scale matrix constructed
with the posterior sample previously obtained and for g we use as proposal dis-
tribution the prior one.

3. Sample ((θ1, g1), . . . , (θN , gN )) from the proposal distribution q(·), and use the
importance estimator to approximate the marginal predictive distribution; here
we are denoting θ = (β, β0, σ):

̂m(y, δ) =
1

N

N∑
i=1

π(θi, gi | y, δ)
q(θi, gi)

.

4. The approximated Bayes factor is

̂B1(y, δ) =
̂m1(y, δ)

̂m0(y, δ)
.
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More details about the implementation are included in Section 3 in the supple-
mentary material.

Of course, other ways of approximating Bayes factors from MCMC, such as bridge
sampling (DiCiccio et al., 1997), are possible. However, they are outside the scope
of the paper.

5 Predictive matching

Predictive matching (PM) is a powerful principle to judge the suitability of objective
priors for comparing models of varying dimensions (see Bayarri et al., 2012). PM can
be seen as a combination of two arguments: i) a convenient way to comparing priors
is through their corresponding predictive distributions (Berger and Pericchi, 2001) and
ii) one should not be able to choose among competing models when the sample informa-
tion is extremely small (this argument was first suggested by Jeffreys, 1961). As a result,
the PM principle states that two priors are properly calibrated for model comparison if
their predictive distributions match when the sample is of minimal size.

We devote this section to study PM aspects of the priors proposed in Section 4.
When relevant, these results are compared with the prior using equally all experimental
units (so ΣA in (4.6) is taken as prior covariance matrix) and when only the uncensored
observations are considered (ΣU in (4.14) is used).

It is convenient to first revisit the concept of predictive matching (PM) for the
problem without censoring (so nu = n, nc = 0), where the idea was originally developed.
In this context the underlying model is the standard linear model, δ = 1 and we simply
write mi(y, δ) = mi(y). The intuition behind PM is that when the information in the
sample is tiny, then one should not be able to reach a decision and so the Bayes factor
should be one. The notion of being very scarce in information is usually associated with
a sample y� of minimal size, meaning that 0 < mi(y

�) < ∞, for i = 0, 1, and for samples
of smaller sizes the marginal is either zero or infinite. In Bayarri et al. (2012) several
definitions of minimal size are considered depending on which type of prior is used in
mi(y

�). Of these, the one that leads to a stronger requirement on the construction of
priors and the one that we later adopt in our setting uses k+1 (the number of unknown
parameters in the full model) as minimal size. For samples of this minimal size (Bayarri
et al., 2012) show that having a covariance matrix of the form in (4.6) (or a multiple)
is a necessary and sufficient condition for predictive matching. This result provides a
formal justification for the use of this covariance prior matrix (the only result that exists
with these characteristics to the best of our knowledge).

In what follows, and without loss of generality, we assume that the values in y are all
different and that nc ≥ 1 (otherwise the results for the linear model without censoring
in Bayarri et al., 2012, apply).

A necessary condition for Predictive Matching results to apply is that the marginal
under the null exists. In our problem this function has the form:

m0(y, δ) =

∫ ∏
i∈cc

(
1− Φ

(ci − β0

σ

))
×Nnu(y | β01, σ

2I)
1

σ
dσdβ0.
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In the next result we prove that m0(y, δ) exists if we have at least two uncensored
observations.

Lemma 1. The marginal m0(y, δ) is finite if and only if nu ≥ 2.

Retaking the PM criterion, the relevant question now is which conditions must satisfy
a prior of the form (4.3) if we have k + 1 data points. This in principle leads us to the
scenario where we have n = k + 1 (at least two of these being uncensored for m0 to
exist). Nevertheless, the interesting characteristic in censored models is that censored
observations do not contribute to the likelihood in a similar way as is done by uncensored
data and, in fact, their contribution vanishes when ci → −∞. Following this argument,
a situation with nu = k + 1 and an arbitrary number nc of censored observations for
which c� = max{ci ∈ cc} → −∞ is clearly a scenario of minimal size. In summary,
there are two different scenarios of minimal size:

• Scenario I: n = k + 1, nc ≥ 1, nu ≥ 2,

• Scenario II: nu = k + 1, nc ≥ 1 and c� → −∞.

Note that the conditions defined above do not overlap and the number of uncensored
observations in Scenario I varies in 2 ≤ nu ≤ k while in Scenario II it is nu = k+1. We
derive two PM-type results that we later interpret.

Lemma 2. Consider the comparison of M1 and M0 using the prior (4.3) with Σ
independent of (β0, σ) and π0(β0, σ) = π1(β0, σ) = σ−1. Then, in the conditions of
Scenario I exact predictive matching is attained (i.e. B1(y, δ) = 1) if and only if Σ = ΣA

(or a multiple).

Lemma 3. Consider the comparison of M1 and M0 using the prior (4.3) with Σ
independent of (β0, σ) and π0(β0, σ) = π1(β0, σ) = σ−1. Then, in the conditions of
Scenario II limiting exact predictive matching is attained:

lim
c�→−∞

B1(y, δ) = 1,

if and only if Σ = ΣU (or a multiple).

These two lemmas are somehow contradictory since both ΣA and ΣU (which cannot
be used in a prior because it contains sample information) are endorsed by Predictive
Matching arguments. Obviously these matrices can be very different particularly if co-
variates for censored and uncensored observations exhibit different behavior. Lemma 2
suggests that ΣA is a sensible choice and that, in principle, all xi for i = 1, . . . , n must
be considered in the construction of the prior covariance matrix. Nevertheless, ΣA is
a bad choice when censored times are very different and Lemma 3 makes this aspect
visible in the extreme case where censored times are of arbitrarily small amount of in-
formation in which case ΣU is preferable (although in a context of minimal size, this
lemma can be seen as a formalization of the convenience of using ΣU when a subset of
the data barely contains information that was illustrated in the motivating example of
Section 3).
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These results indicate out that, while being unfeasible to exactly reproduce both
matrices with a single proposal, a prior matrix that has the ability to mimic the opti-
mal choice in the situations considered above is ideal. This is the type of behavior our
proposed matrix ΣM has and that we have illustrated in the previous section. We inter-
pret Lemmas 2 and 3 as giving support to ΣM and that the ensuing prior distribution
is endorsed by PM arguments.

Of course, this ability of ΣM is not free and nu must be at least k + 2 to ensure
the propriety of the prior that uses ΣM – given the experience in the linear model, one
should not expect any PM result at this level of minimal sample size –. Hence none of
the previous lemmas about PM apply in this case. While not optimal, this situation is
not new within the development of PM and, for instance, as shown in Bayarri et al.
(2012) for the linear model, none of the priors with covariance matrix (4.6) exist at
many PM levels (e.g. if n ≤ k), simply because this inverse matrix does not exist.

6 Variable selection

Recall that the model M1 in (2.2) contains all potential k covariates while M0 only
contains the intercept. The variable selection exercise considers these two models and
the rest of 2k − 2 models corresponding to all possible combinations of which covariates
may be relevant for the studied response y and δ.

This variable selection problem with all these entertained models can be compactly
formulated using a k binary vector γ = (γ1, . . . , γk) stating which of the covariates are
included: those corresponding with γj = 1, for j = 1, . . . , k. This way, each competing

model is denoted Mγ with (centered) design matrix X̃γ , which is the corresponding

n× kγ (kγ = 1Tγ) submatrix of the full matrix X̃ of dimension n× k. Slightly abusing
notation M(1,...,1) = M1 and M(0,...,0) = M0 and k(1,...,1) = k.

Let πγ(β0, σ,βγ) be the prior distribution for Mγ . Then, the predictive density of
(y, δ), under Mγ , is

mγ(y, δ) =

∫
fγ(y, δ | β0, σ,βγ)πγ(β0, σ,βγ)dβ0 dσ dβγ .

The prior for the parameters within each model Mγ is

πγ(βγ , β0, σ) = πγ(βγ | β0, σ)πγ(β0, σ).

For πγ(βγ | β0, σ) we use the prior (4.3) where our proposal for Σγ is ΣM defined

in (4.11) replacing X̃ with X̃γ . For the prior for common parameters we use π0(β0, σ) =
πγ(β0, σ) = σ−1.

With all the above, the Bayes factor of Mγ against M0 is given by

Bγ(y, δ) =
mγ(y, δ)

m0(y, δ)
,
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and the posterior probability of Mγ is

p(Mγ | y, δ) = Bγp(Mγ)∑
γ′ Bγ′p(Mγ′ )

=

⎛⎝1 +
∑
γ′ �=γ

p(Mγ′ )

p(Mγ)

Bγ′

Bγ

⎞⎠−1

, (6.1)

where p(Mγ) is the prior probability over the model space.

Objective choices for this distribution are the uniform, p(Mγ) = 1/2k, or the hi-

erarchical uniform prior discussed by Scott and Berger (2010): p(Mγ) ∝ 1/
(
k
kγ

)
. We

recommend this last prior, as it accounts for the multiplicity of comparisons as it has
been nicely argued by Scott and Berger (2010). Nevertheless, for specific scenarios other
choices for p(Mγ) may be more appealing (trying e.g. to force sparsity, Castillo et al.,
2015).

7 Breast cancer survival in Castellón (Spain)

Breast cancer is the leading cause of cancer mortality among women. In 1998 the Breast
Cancer Registry of Castellón (a province of Spain located on the east coast of the country
with approximately half a million inhabitants) was created to asses the importance of
this disease, obtaining health indicators (like incidence and survival) that are crucial
for health care authorities.

From this registry, we analyze data of women diagnosed with breast cancer during
the decade 2004–2013 having a total of n = 2116. The closing date of study is the 31st
of December, 2015, meaning that women that were alive at that date are treated as
censored. With these conditions we observe nu = 360 uncensored observations, implying
82.9% censored ones. The dependent variable is time to event in logarithmic scale.

Following the suggestions of previous institutional reports (Torrella et al., 2005), as
potential explanatory variables we have considered two numerical covariates: number
of nodes affected (with mode in 0, median 0, mean 2 and maximum 84) and the age at
diagnosis (range (25, 97), with mean 58.54 and median 58). In addition, four prognosis
binary factors are included in our study: the presence of local recurrences (3.2%), the
presence of metastasis (11.3%), estrogenic hormonal receptors (ER being either 0 “neg-
ative” or 1 “positive”, 79.4% for this last one) and progesterone hormonal receptors
(PGR) with the same coding (66.1% for “positive”). These make a total of 6 possible
explanatory variables with 26 = 64 competing models.

For each model we have calculated the Bayes Factors defined in (4.2) with our
proposed prior (result were quite robust to the choice of the mixing density). For the
prior probabilities over the model space we have used the Scott-Berger prior.

In Table 3 we have collected the posterior probabilities of the first two most probable
models. The most probable model is the one containing all six variables, closely followed
by the model that removes PGR. These two models accumulate a substantial posterior
mass (0.94) clearly indicating that there is strong evidence that the variables nodes,
age, metasta, recurrence and ER are explanatory variables, while the predictive power
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{nodes, age, metasta, recurrence, ER, PGR} 0.473
{nodes, age, metasta, recurrence, ER} 0.467

Table 3: Posterior probabilities for the two most probable models.

Variable nodes age metasta recurrence ER PGR
Probability 1.00 1.00 1.00 0.98 0.96 0.52

Table 4: Breast cancer dataset: inclusion probabilities.

of PGR is uncertain. These conclusions are supported as well by the posterior inclusion
probabilities – a popular summary in variable selection exercises – defined as the sum
of posterior probabilities of models that contain a variable. For our dataset these have
been collected in Table 4 where we can clearly see that all variables have very high
marginal probabilities, except PGR for which the prior inclusion probability (0.5) has
barely changed.

Interestingly, the role of PGR can be further examined using joint (as opposed to the
marginal inclusion probabilities above) measures of influence. In particular, one such
measure is the probability

Pr(PGR | ER,y, δ)

that is, the probability that PGR explains the response if ER is not contained in the
true model (this is obtained similarly to the marginal probabilities). In our problem
Pr(PGR | ER,y, δ) = 0.94 indicating that the explanatory power of PGR is absorbed
by ER and if this were absent the probability of PGR being a prognostic factor would
be very large.

In order to estimate the magnitude of the influence of each variable in (log) time to
survival we must examine the model averaged posterior distribution of the regression
coefficients. We have represented these distributions in Figure 2 using a histogram-like
representation similarly to what it is done in the illustrative example (see the supple-
mentary material). Recall that, except for PGR, there is strong evidence (essentially
accumulated in very few models) that these variables are explanatory variables. As a
consequence, these histograms are unimodal and are easy to interpret. As expected, the
variables nodes, metasta and recurrence have an important negative effect on time to
death. Particularly, the presence of metastasis has an estimated effect of −1.76 (pos-
terior mean), implying that, on average, a woman without metastasis multiplies by a
factor of 5.6 her expected time of life over a woman with metastasis. On the other
hand, a positive ER acts protectively (posterior mean equal to 0.32). Finally, for the
reasons explained earlier, PGR has two modes and must be summarized with caution
(e.g. means are useless). If this variable is assumed to have an effect, its sign is positive
but with as small an impact as PGR (mean of strictly positive values is 0.16). In Table 5
we have summarized probabilities of survival calculated with the posterior predictions
with certain values of the covariates.

It is also interesting to analyze the estimation of the effective sample N(β0,σ). The
histogram corresponding to its posterior distribution averaged over the competing mod-
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Figure 2: Breast cancer dataset. Model averaged posterior distributions of the regression
coefficients for each potential covariate. Dark gray area represents the probability of no
effect and the light gray area the distribution of probability given there is an effect.
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Survival at year
recurrence metasta nodes age ER PGR 1 5 8

+ + 0 40 – – 0.958 0.646 0.490
+ + 0 70 – – 0.678 0.178 0.100
– – 0 40 + + 1 1 0.987
– – 0 70 + + 0.996 0.917 0.832
+ + 10 40 – – 0.921 0.520 0.351
+ + 10 70 – – 0.550 0.107 0.052
– – 10 40 + + 1 0.990 0.974
– – 10 70 + + 0.992 0.854 0.742

0.999 0.941 0.873

Table 5: Model averaging estimation of survival probabilities for different values of
explanatory variables. Last row is for an average case (values of the covariates at the
sample mean).

els is represented in Figure 3. The posterior mean of this parameter is 714 uncensored
individuals with a standard deviation of 32. This can be interpreted as one uncensored
individual having similar information content to roughly five censored datum.

8 A simulation study over heart transplant data

In order to deep in the comparison, we have designed a simulated experiment obtained
from the heart transplant data set analyzed in the supplementary material. In this data
set n = 69 and in our experiment, for each person in the study, date of death is simulated
as the original date entering the study plus the simulation of a log-Normal distribution
whose logarithm has the following mean and standard deviation:

meani = 8.35− 0.04× agei + 0× spur1i + 0× spur2i, sdi = 0.6.

The parameters are set to the estimated values in the real data set to keep the experi-
ment close, as much as possible, to the real experiment. The variables spur1 and spur2
act as spurious variables (do not have any effect on the response) and are simulated as
independent normal standard random variables. The closing date for the study is the
same as in the original data set: April 1, 1974.

With the above scheme we simulated 50 data sets to which we performed variable
selection based on BFrobust, TBFEB and TBFZS . Inclusion probabilities in the form of
cloud of points are represented in Figure 2 (supplementary) and further summarized in
Figure 3 (supplementary). The method based on TBFEB is clearly much less conserva-
tive (larger proportion of true positives but also false positives) than the one based on
TBFZS and BFrobust, which remarkably, produce quite similar results (TBFZS being,
almost systematically, slightly more conservative than BFrobust; the differences enlarge
when the inclusion probabilities are close to 1/2). This numerical study is far from be-
ing exhaustive and more work (particularly theoretically) is needed to understand the
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Figure 3: Breast cancer dataset. Model averaged posterior distributions of the effective
sample size N(β0,σ).

connections between actual Bayes factors and sensible approximations as those based
on the TBFs in problems with incomplete information (censored observations in this
case). In our opinion, the close agreement between BFrobust and TBFZS that we have
seen in the experiment, reinforces the main messages motivating both approaches. On
the one side it empirically confirms the Bayesian nature of TBFZS (our prior could be
interpreted as the explicit prior behind it) and on the other side, highlights the ade-
quacy of the route that we have followed in this paper to handle, from a strict Bayesian
point of view, a variable selection problem with censored data.

9 Further remarks

In this paper we have developed a full Bayesian approach to the problem of variable
selection based on model selection when the observations are subject to censoring. In
this context, we have emphasized the importance of using adequate generalizations of
standard objective variable selection priors that, in survival problems, take into account
the different information content in observational units. We have seen, in a motivating
example and from a predictive matching perspective, the importance of such generaliza-
tions particularly in situations where the distribution of covariates substantially differs
in censored and uncensored observations. A referee has pointed out a close correspon-
dence between this situation and the mechanism of missing at random in missing data
where covariates and missingness (here censoring) are related. Following this parallelism,
in a missing completely at random context (hence the propensity of being censored is
not related with the explanatory variables) standard priors for variable selection (e.g.
g-priors with ΣA) are expected to produce sensible results. Of course, it is difficult to
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Variable nodes age metasta recurrence ER PGR
BFrobust 1.00 1.00 1.00 0.98 0.96 0.52
TBFEB 1.00 1.00 1.00 0.99 0.96 0.54
TBFZS 1.00 1.00 1.00 0.98 0.96 0.49

Table 6: Breast cancer dataset: inclusion probabilities with our proposed approach and
those obtained with the Test-Based Bayes factors.

anticipate in a given problem whether we are in one or other situation but the approach
we propose has the ability (partially because our setting works conditionally on known
censoring times, ci, and covariates) of being automatically self-adaptive without the
need to specifically model the mechanisms that underlie censoring.

Our proposal develops in the context of g priors, and we have proposed the matrix
ΣM in (4.11) as a convenient prior covariance matrix arguing that it automatically ad-
justs for this varying information among units. Throughout the paper, we have largely
discussed about the benefits of using this matrix as opposed to other naive implemen-
tations of the g prior that either use equally all units (ΣA) or only the uncensored ones
(ΣU ).

We now compare our proposal with the method for variable selection using test-
based Bayes factors (TBFs) originally proposed by Johnson (2008); Hu and Johnson
(2009) later revisited by Held et al. (2015), and recently developed in the Cox model
by Held et al. (2016). Within this approach, the Bayes factors Bγ in (6.1) are replaced
by the ratio of the integrated likelihoods for the deviance statistic under Mγ and under
M0 which, appealingly, result in simple functions of the deviance. Despite its strong
Bayesian origin, the resulting method is not a full Bayesian procedure both because the
real model is not used (but the distribution of deviance statistic under Mγ) but also
because the implicit nature of the prior for the regression parameters makes it difficult,
in many cases, to asses its strict validity as a prior distribution (i.e. the implicit prior
covariance for the regression parameters is the expected information matrix (4.8) which
itself depends on β).

TBFs depend on a hyper-parameter g′ (equivalent to our g n) that can be specified
in several ways. We here consider the specifications that seem to be closer competitors
to our approach, namely g′ estimated via Empirical Bayes (labeled TBFEB) and the
adapted Zellner-Siow prior based on the number of uncensored observations nu (labeled
TBFZS). We refer the reader to the references provided for further details.

For the Breast cancer data set we have collected in Table 6 the inclusion probabilities
based on TBFEB and TBFZS that we compare with our results (based on the mixing
prior (4.5) that we label BFrobust). The results are quite similar, BFrobust being between
both TBFs.

Our full Bayesian methodology, admittedly, is computationally very demanding so,
as it is, it’s only suitable for small to moderate k. In this regard, a main bottleneck in
our approach is a covariance matrix ΣM that is unknown since it depends on (β0, σ)
making it quite more challenging computing the integrals defining the Bayes factors. To
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have an idea of the computational burden of our approach, running the real example in
Section 7 took approximately 40 hours in a Linux machine with 32 parallel treads.

An approximate implementation of our methodology with an Empirical Bayes flavor
is using (for each entertained model) ΣM

γ (β̂0, σ̂) as the prior covariance matrix, where

(β̂0, σ̂) are the posterior means of the corresponding parameters under the null model.
In order to speed up the computation, this strategy can be accompanied with the
evaluation of the integral in (4.1) using Laplace (several authors have argued about
the convenience of Laplace approximations over numerical approaches like for instance,
Sabanes and Held, 2011). The only parameter that cannot properly handled via Laplace
integration is g (and particularly with the robust prior) since, depending on the model,
it may have a mode in the boundaries of its parametric space making the Laplace
approximation very poor. Hence, in the case of random g, this parameter is integrated
with standard numerical quadrature.

We have implemented the above described numeric strategy in R and the code is
available in a public github repository.3 The inclusion probabilities for the breast cancer
dataset in Section 7 turned out to be very similar to the exact values (values 1, 1, 1,
0.98, 0.95 and 0.49 in the order that appears in Table 6) but taking only 3 minutes to
compute them (a reduction of 99.8% of computational time). We also have computed
this approximation for the 50 simulated data sets constructed upon the heart data
set as is described above. Computational time was reduced from 850 minutes using
importance sampling to 5 minutes (94% of reduction in the computational time) using
this Laplace approximation. The results showed the accuracy of the approximation
since the maximum difference in absolute value we observed between the 150 inclusion
probabilities was 0.06.

This approach is respectful with the overall message in this paper and the resulting
posterior distribution over the model space could be easily explored with Gibbs sampling
schemes (see e.g. Garcia-Donato and Martinez-Beneito, 2013) making it feasible to face
problems with larger k that we’ll consider in future research.

Supplementary Material

Supplementary material for: “A Model Selection Approach for Variable Selection with
Censored Data” (DOI: 10.1214/20-BA1207SUPP; .pdf). Proofs of theorems and lem-
mas. Details about BF calculation and on simulation study.
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