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Abstract

A new approach towards a fully CAD-integrated structural analysis of masonry arch structures is proposed. It is ad-

dressed to professionals dealing with restoration or structural rehabilitation of historical constructions. By using it,

they can easily produce estimates of the carrying capacity of curved members, especially, but not exclusively, arches10

of arbitrary shape. A CAD (Computer Aided Design) environment, which is widely popular among professionals,

is employed to provide a NURBS (i.e. Non-Uniform Rational B-Splines) representation of the arch geometry. On

the basis of such a representation it is then possible performing both an isogeometric finite element elastic analysis

and a limit analysis of the structure up to the collapse load. In this way the load bearing capacity of the arch may

be assessed. Moreover, the developed method is also devised for handling the presence of FRP (Fiber-Reinforced15

Polymers) reinforcement strips at the extrados and/or the intrados. This allows for the design of properly dimensioned

reinforcement and its verification according to recently developed building codes. The entire procedure relies upon

a sound theoretical background. This approach leads to the development of a practical computational tool for the

analysis of masonry arches, which is based on a combination of Isogeometric Analysis and of a suitable implemen-

tation of the Safe theorem originally proposed by Heyman. The proposed tool has finally been implemented into a20

MATLABr-based code named ArchNURBS which is going to be distributed as an open-source software.

Keywords: masonry arches, NURBS, isogeometric analysis, limit analysis, FRP reinforcement

1. Introduction

The paper is concerned with an ancient topic, the analysis of the structural behavior of curved masonry members

like arches, which is here being revisited through modern tools leading to the implementation and development of a25

new MATLABr -based open-source computational tool named ArchNURBS.

Currently, there is a large amount of literature regarding the analysis up to collapse of masonry arches and several

methods are available for the assessment of the mechanical behaviour of historical masonry constructions and we
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refer to [1] and [2] for an extensive state-of-the-art survey. A number of pieces of commercial softwares which allow

evaluating the bearing capacity of a masonry arch have been developed [3, 4, 5]. However, these softwares mainly30

cover those cases in which the arch shape is a polyline. Nonetheless, even though many arches may be correctly

represented by a polyline, there is a wide class of arches which are not. For instance, as shown in Figure xx, this is

the case of either rounded stone voussoirs arches or masonry arches in which the dimensions of the blocks are much

smaller than the arch characteristic dimensions (i.e. span and midspan rise). Furthermore, a suitable approach capable

of accurately and efficiently analyzing these cases is still lacking. Computer Aided Design (CAD) may be a natural35

environment in which to develop a tool for the analysis of such arches which is both efficient and readily usable for

professionals in the field of structural engineering and structural rehabilitation of historical masonry constructions,

among which CAD design representation techniques are currently widespread.

The main reason which makes CAD representation particularly suitable for a subsequent integrated structural

analysis of curved masonry members lies in the fact that CAD representation of an arch of arbitrary shape is obtained40

through the use of Non-Uniform Rational B-Splines (NURBS). NURBS consist of polynomials which match each

other smoothly (i.e. they are continuous with their derivatives up to a certain order) in such a way that a given set of

points lying in a known range are suitably approximated with a sufficiently high degree of regularity. Development of

NURBS began in the 1950s and was carried out by engineers who needed a mathematically precise representation of

freeform surfaces like those used for ship hulls, aerospace exterior surfaces, and car bodies, which could be exactly45

reproduced whenever it was technically needed. NURBS are commonly used in Computer-Aided Design (CAD),

Manufacturing (CAM), and Engineering (CAE) systems and are part of numerous industry-wide standards. They

can be efficiently handled by the computer programs and yet allow for easy human interaction. In general, editing

NURBS geometries is highly intuitive and predictable. Moreover, NURBS exactly represent particular geometries

such as circles, parabolas and ellipses [6].50

In the last decade, NURBS have been extensively studied and developed for both describing the geometry of a

structural model and for representing (in the role of basis functions) the displacement field within the Finite Element

Method (FEM) [7]. Even if the use of polynomial functions belonging to the spline family for the approximate

solution of boundary value problems dates back almost four decades (see e.g. [8, 9, 10, 11]) this new method, which

is known as Isogeometric Analysis (IGA), was precisely developed to cover the wide existing gap between the worlds55

of FEM and CAD (see e.g. [7, 12, 13, 14, 15]). As it is well-known, the term isogeometric is referred to a coincidence

of the geometric model, which is built in a CAD environment, and the structural model (i.e. FEM model) used for

performing stress analysis. In traditional FEM analysis structural model and geometric model never coincide since

they are both representations of a true object but relying on different basis functions. This, in turn, produces accuracy-

related issues in the computations, particularly for curved thin structures like arches. Besides, if NURBS are used60

as basis functions, their smoothness is inherited by the FEM model, too: this is particularly important because it

allows circumventing some serious difficulties in developing finite elements, e.g. flexible beams and plates where

both bending and shear deformation must be accounted for. Moreover, the better a function is approximated, the
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smaller the error affecting its derivatives: since stress fields are not the primary solution variables, but need to be

computed by differentiating displacements through post-processing techniques, smoother displacement fields ensure65

a more accurate approximation of the stresses.

On the other side, the growing interest in the preservation of masonry structures gave, in the past, an impulse

towards the development of new efficient tools for evaluating the ultimate load-bearing capacity of these structures,

and in particular of masonry arches. From a mechanical point of view, the analysis of masonry arches begins with the

contributions of the late 1600s English school (Hooke, Gregory) who stated the analogy between the inverted shape70

of a catenary and a compressed arch. Nowadays a sound theoretical framework for the evaluation of masonry arches

exists and it can be affirmed (following Huerta [16] and Como [17]) that the modern theory of limit analysis of masonry

structures, which has been developed mainly by Heyman [18, 19], is a powerful tool for properly understanding and

analyzing masonry curved structures. For the sake of completeness, also the previous papers of Pippard [20] on the

analysis of masonry arch bridges and by Kooharian [21] (whose seminal idea appeared in his Ph.D. thesis at the75

Brown University in 1952) must be cited. Many other methods of analysis, other than limit analysis, can be used, of

course, for determining the ultimate load carrying capacity of masonry arch bridges, e.g. non-linear FEM analysis,

discrete element analysis, hydrid discrete/finite element methods etc. (see, for instance, [22, 23, 24]) and a number

of commercial FEM codes have been developed (e.g. DIANA). However, with such methods the collapse load is

identified as a by-product of an indirect and potentially long iterative non linear analysis procedure, which is often80

prone to numerical instabilities. Moreover, a non-linear incremental analysis of a masonry structure requires the

definition of many material parameters which have to be precisely known in order to get reliable results. Finally, limit

analysis may simply be extended to the case of masonry having a limited compressive strength (see e.g. [25, 26]) and

to the case of FRP (fiber-reinforced polymers) reinforced arches (see e.g. [27, 28, 29]).

In this paper, a new open-source CAD-based tool for the analysis of masonry arches which is specifically addressed85

to professionals in the field of structural engineering and structural rehabilitation of historical masonry constructions

is proposed. The tool, named ArchNURBS and developed in MATLABr environment, is based on a combination of

IGA and limit analysis, both relying on the NURBS representation of the arch which can be easily obtained from

CAD design softwares which are very popular among professional architects and civil engineers. For the reasons

discussed previously, NURBS representation of the arch guarantees the highest accuracy of the analyses, especially90

when compared to a standard polyline representation of the same arch. IGA is used in order to allow for a finite-

element elastic analysis of the arch which can be useful to assess the response of the arch under usual service loads

which might not drive the thrust line out of the shape of the arch. It is here to be noticed that even if standard curved

finite elements could be used to accurately analyze an arch of arbitrary shape, these instruments are quiet advanced

and often out-of-reach for a professional engineer or architect whereas IGA allows for greater accuracy without any95

particular additional effort for the final user. On the other hand, limit analysis, for which an equilibrium formulation

is chosen, is used in order to assess the ultimate bearing capacity of the arch. Therefore, the tool allows for a fast

evaluation of the mechanical response of a masonry arch under various loading conditions. Furthermore, algorithms
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which allows to take into account the effect of masonry crushing and of additional FRP reinforcements placed at the

intrados or extrados of the arch have been devised and implemented.100

The need for such a tool is particularly felt, especially if one considers the widespread damages that the 2012

Emilia earthquake produced to ancient hystorical buildings, with a great loss for Italian cultural heritage; after the

earthquake professionals engineers and architects have been called to assess the safety of very many ancient masonry

constructions, in which arched and vaulted systems are recurrent, and to devise effective seismic retrofit interventions.

An other reason lies in the fact that since the exact shape of the arch to be studied is usually not known in advance, a105

precise surveying of the structure is needed. This surveying is very often carried out through the use of laser scanning

techniques which may be imported in a CAD environment as a cloud of points. A CAD exact representation of

the arch geometry is then possible and constitutes the basis upon which both the elastic and limit analysis can be

performed in an integrated way, by exploiting new computational mechanics tools, in particular IGA [7]. It should be

noticed that surveying gives the actual arch configuration, which usually already exhibits elastic deformations (which110

are generally neglectable) and inelastic settlement of the arch springers.

ArchNURBS is thus the first computational tool which, exploiting the procedures above mentioned, allows for the

evaluation of the load bearing capacity of arch structures arbitrarily loaded, starting from a NURBS representation of

the topographical survey of the real arch obtained in a CAD design environment.

The paper is organized as follows: in Section 2 a synthetic survey on NURBS description of the shape of masonry115

arch is provided. The adopted structural models and isogeometric elastic analysis are recalled and commented upon

in Section 3. The limit analysis based on the NURBS geometry representation and its application to FRP reinforced

arches and to masonry arches having a limited compressive strength will be addressed in Section 4. Section 5 is

devoted to presenting some meaningful numerical examples developed within ArchNURBS. Finally, conclusions and

suggestions for future developments will be put forth in Section 6.120

2. Geometry description

Description and computation of geometries in commercial CAD packages are based on B-splines and NURBS.

More precisely, NURBS basis functions are built on B-splines basis functions which are piecewise polynomial func-

tions defined by a sequence of coordinates Ξ = {ξ1, ξ2, ...,ξn+p+1}, which is known as the knot vector, in which the

so-called knots ξi ∈ [0, 1] are points in a parametric domain whereas p and n denote the order and the number of125

the basis functions, respectively. The distance between two consecutive knots is named knot span and it represents

the equivalent of the element domain for traditional finite elements. Once the order of the basis functions and the

knot vector are known, the i-th B-spline basis function Ni,p can be computed by means of the Cox-de Boor recursion

formula [30, 9], which is not reported here for the sake of brevity.

As previously mentioned, B-splines are the starting point for the computation of the NURBS basis functions.130
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Indeed, given a set of weights wi ∈ R, the NURBS basis functions Ri,p read

Ri,p(ξ ) =
Ni,p(ξ )wi

∑
n
i=1 Ni,p(ξ )wi

. (1)

NURBS share many properties with B-spline basis functions [6]. Among these, they are both non-negative, they have

a compact support and build a partition of unity (PoU), that is

n

∑
i=1

Ni,p(ξ ) =
n

∑
i=1

Ri,p(ξ ) = 1 (2)

for each ξ ∈ [0,1] (see [7]). Hence, it is noteworthy from (1) and (2) that B-spline basis functions are NURBS

basis functions with weights wi are all equal to 1. However, NURBS basis functions have the great advantage of135

representing exactly the geometry of a wide set of curves such as circles, ellipses and parabolas [6] and of the surfaces

generated by them.

B-spline and NURBS geometries are computed as linear combinations of basis functions [6, 31]. For instance, if

we consider a set of B-spline basis functions Ni,p (the same holds for the NURBS basis functions) with i = 1, ..., n,

we define the curve C(ξ ) ∈ Rd as140

C(ξ ) =
n

∑
i=1

Ni,p(ξ )Bi, (3)

where the coefficients Bi ∈ Rd are known as control points (in the following, we assume d = 2 since this work

focus on planar curves). Differently from standard Lagrange and Hermite approximations, B-spline geometries do not

usually interpolate these points. The continuity of the curve follows from that of the adopted basis functions [7] that,

in general, is C p−1 throughout the domain. However, if a knot has multiplicity m, the continuity decreases m times at

that point (see [6]).145

Modeling CAD geometries inevitably involves several ingredients, such as knots, order of the approximation

and control points. However, in many practical applications only few of these parameter are known a priori. In

reverse engineering processes, for example, CAD models are created by interpolating or approximating a set of points

Pi ∈ R2 usually obtained from the real object by means of laser scanners. Nonetheless, the parameterization of

the input data for B-spline and NURBS geometries addresses a crucial issue concerning the fairness of the final150

curve. Hence, there have been several attempts to improve the accuracy of B-spline and NURBS approximations

and interpolations [9, 32, 33, 34, 31]. In particular, some of these parameterization techniques, such as the uniform

method, the arch-length method and the centripetal method are available in several CAD softwares [35].

The easiest way to assess the quality of the computed curve is to evaluate the distance between the CAD geometry

C(ξ ) and the analytical representation of the real curve F(ξ ). Therefore, the distance between these two curves at the155

parametric point ξ is calculated as

d(ξ ) = min
ξ

{|C(t) − F(ξ )|} . (4)
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30◦

60◦

L = 9 m
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Figure 1: Polycentric arch (red circles denote the interpolating points Pi)

no of Pi 10 20 40
E∞ [m] 1.34e-2 0.79e-2 0.39e-2
E2 [m] 1.64e-3 3.73e-4 2.74e-5

Table 1: Maximum and mean errors on the approximation of the polycentric arch.

Once the value of d(ξ ) has been evaluated for n given data points, we define the errors in the L∞ norm:

E∞ =
n

max
i=1
{dn} , (5)

and in the L2 norm:

E2 =

[
1
n

n

∑
i=1

d2
n

]2

. (6)

Thus, for the sake of completeness we investigate the quality of the NURBS curve in Figure 1 in approximating of

a polycentric arch composed of three circular arcs jointed together with C 1 continuity. The radius Ri and the center160

of each portion are also shown. The NURBS curve has been drawn in AutoCAD R© 2013 by interpolating the set of

points Pi indicated by red circles in Figure 1 with cubic NURBS basis functions. In particular, the position of these

points has been calculated by dividing each of the three circular arcs in equal parts. As it is shown in Table 1, both

the maximum (i.e. E∞) and the mean (E2) errors between NURBS approximations and the polycentric arch decreases

with the number of interpolating points as it is expected.165

3. Linear elastic analysis

In this Section we introduce the Isogeometric Analysis of curved Timoshenko beams [36]. Interesting studies on

Isogeometric Analysis of curved rods (even though Kirchhoff-Love rods) in the three dimensional space may be found

in [37, 38].

As it is depicted in Figure 2, we consider a Cartesian reference system O(x,y) and a local reference system170

O′(t ′,n′) where t ′ and n′ are the tangent and the normal vectors to the beam axis. Further, we introduce the curvilinear

abscissa s ∈ [0, l] which spans the centroidal line of the plane curved beam of length l defined by the parametric
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y

x

O′

n′

t ′

O

Figure 2: Reference system O(x,y) and local reference system O′(t ′,n′)

representation 
x(s) =

n
∑

i=1
Ni,p(s(ξ ))xi and

y(s) =
n
∑

i=1
Ni,p(s(ξ ))yi

(7)

where xi and yi are the control points coordinates. Thus, the unit tangent and normal vectors of a NURBS curve at a

parametric point s are calculated as [39]175

t ′ =
(x,s , y,s)√

x2
,s + y2

,s

(8)

and

n′ = (y,s ,−x,s) ·
x,ssy,s − x,sy,ss(

x2
,s + y2

,s
)2 (9)

where comma denotes differentiation. Further, the curvature radius reads

R(s) =

(
x2
,s + y2

,s
)3/2

|x,s y,ss − x,ss y,s|
. (10)

In order to describe the kinematics of a curved Timoshenko beam we consider the displacement and the load

vectors180

u = [u, v, φ ]T and p = [qt , qr, m]T , (11)

referred to the local reference system (where (·)T denotes the transpose). In particular, u and v are the tangential and

normal displacement of the cross-section centroid, φ the cross-section rotation, qt and qr the tangential and radial

distributed loads and m the distributed bending couples. Hence, by assuming small deformations, the equilibrium,

compatibility and constitutive equations for the plane-curved Timoshenko beam are

N,s −
T
R

+ qt = 0, T,s +
N
R

+ qr = 0 and M,s − T + m = 0, (12)
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ε = u,s −
v
R
, γ = v,s +

u
R
+ φ and χ = φ,s, (13)

N = EAε, T = GAksγ and M = EJχ, (14)

where the generalized stresses N, T and M denote the axial force, the shear force and the bending moment, whereas

the generalized strains ε , γ and χ are the axial, the shear and the curvature deformations. Finally, the constants E, G,

A, J and ks indicate the Young’s modulus, the shear modulus, the cross sectional area, the area moment of inertia and185

the shear-correction factor.

The first step towards the finite element solution of the problem is represented by the definition of the total potential

energy of the system

Π =
1
2

∫ l

0

(
EAε

2 +GAksγ
2 + EJ χ

2) ds −
∫ l

0
(qtu + qrv + mφ) ds. (15)

Subsequently, by making use of the iso-parametric formulation, the discrete displacement field uh(ξ ) ∈ R2 is defined

as

uh(ξ ) =
n

∑
i=1

Ni,p(ξ )ui, (16)

where ui = [ui, vi, φi] are the displacements at the control points Bi. It is worth noticing that, according to eq. (3), the

displacement field in (16) has been discretized with B-spline basis functions. Nonetheless, NURBS basis functions

might have been used in cases where a a NURBS-described curve is given. Hence, by making use of eqs. (15) and (16)

the discrete solution of the problem is defined as:

argmin
u,v,φ

{ ne

∑
e=1

[
1
2

∫
ξe+1

ξe

[
EA
(

ε
h
)2

+GAks

(
γ

h
)2

+ EJ
(

χ
h
)2
]

ds −
∫

ξe+1

ξe

pT uh ds
]}

, (17)

where ne is the number of spans whereas ξe and ξe+1 are the knots which correspond to the e-th span. Once the

numerical solution uh is known, the generalized stresses and strains are calculated by means of eq. (13) and (14).190

Therefore, N, T and M and ε , γ and χ are defined with the same NURBS basis functions used for the approximation

of the displacement field uh. Accordingly, the computation of the thrust line, which descends from the ratio M/N, is

straightforward.

As in standard finite element discretizations, the numerical solution can be improved by refining the approxi-

mation. In particular, in IGA there are three different refinement techniques. The first two are knot insertion (h-195

refinement) and order elevation (p-refinement) which do not alter the geometry and the continuity of the curve. The

third method,which is known as k-refinement, consists in order elevation of the basis functions and consequent knots

insertion. This increases the continuity of the approximation without changing the geometry [7, 40]. In the developed
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program each of these methods may be used.

4. Limit analysis200

It is well established that when mechanism and equilibrium formulations of limit analysis are linearized, they

produce dual Linear Programming (LP) problems [41] . In particular Livesley [42] has shown that the equilibrium

formulation can be applied to masonry arches. involve the discretization of the arch into a number of rigid blocks.

Many researchers have developed procedures to model masonry arches as discrete rigid blocks: among them we

recall [43, 44, 45].205

In this paper a joint equilibrium formulation, similar to that originally adopted by Livesley [42] and then proposed

for masonry arches in [46] is used. Let us incidentally observe that, while an equilibrium formulation has been

formally used, assuming a finite number of blocks (and hence of interfaces) provides actually an upper bound estimate

to the collapse multiplier.

The adopted model relies on the following traditional assumptions, originally proposed by Heyman (see [47]) for210

the limit analysis of masonry arches:

(i) sliding failure of adjacent units in the arch cannot occur;

(ii) masonry has zero tensile strength;

(iii) masonry has infinite compressive strength.

Therefore, a procedure based on an equilibrium formulation and the above assumptions for the limit analysis of215

masonry arches is set out as follows.

The structure is divided into c elements (blocks) in much the same way as for elastic analysis. Subsequently to

this subdivision, d = c+1 interfaces are generated. For each block the equations of equilibrium are written, in such a

way as to express contact forces q = [Ti,Ni,Mi] (which are respectively the shear force, the axial force and the bending

moment) acting on the i-th inter-element boundary and any external load acting on the element f, which can be either220

a dead load fD or a live load λ fL. Such equations may be expressed as:

Aq−λ fL = fD, (18)

where A is a suitable textcolorred(3c×3d) equilibrium matrix containing the direction cosines of the normal versor

n′ of the transversal section at each contact. These equations are the equilibrium constraints of the problem.

No-tension yield constraints on q are then defined:

Mi ≤ 0.5Niti

Mi ≥−0.5Niti

∀ contact i = 1, ...,c. (19)
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where ti is the depth of the arch section at contact i. Finally the limit analysis problem for proportional loading is225

now written as Maximize the load factor λ , subject to the equilibrium constraints (18) and the yield constraints (19):

max{λ}. (20)

Using this formulation the LP problem variables are the contact forces (T1,N1,M1, ...,Tc,Nc,Mc) and the unknown

load factor λ . In ArchNURBS the linear programming problem is solved through the MATLABr function linprog.m

which is part of the MATLABr Optimization Toolbox.

The yield constraints expressed in (19) are valid only if the material has an infinitely large compressive strength.230

If it is assumed, instead, that masonry exhibits a limited (i.e. finite) compressive strength σcrush, and that thrust is

transmitted through a rectangular crush block, then, as it is suggested in [48], eq. (19) may be replaced by:

Mi ≤ Ni

(
0.5ti−

Ni

2σcrush b

)
Mi ≥−Ni

(
0.5ti−

Ni

2σcrush b

)
∀ contact i = 1, ...,c, (21)

where σcrush is the masonry compression strength and b is the width of the arch transversal section. However, the

constraints in eq. (21) are non-linear. Therefore, in order to continue using a Linear Programming (LP) solver, these

constraints need to be approximated as a set of linear constraints (see e.g. [46, 48]). In order to maximize computa-235

tional efficiency, an iterative solution algorithm which involves only refining the representation of the failure envelope

(through linear constraints) where required is used. The algorithm can be summarized as follows.

Step 1. Initially solve the global LP problem with the original linear constraints (19) plus the additional linear con-

straint Ni < Ni,max on each contact i, where Ni,max is the maximum centered axial force which the arch section

is capable to bear before crushing occurs;240

Step 2. Substitute Ni from the last solution into the inequality constraints, eqs. (21), for each contact i. If a constraint

is violated, calculate the violation factor ei, i.e.:

ei =
|Mi|

Ni

(
0.5ti− Ni

2σcrush b

) , (22)

and store, from the previous solution, the values of axial force corresponding to contacts where violation has

occurred. Let’s call these values Ni,0;

Step 3. For each contact with ei ≥ 1.0 (i.e. such that violation occurs) set an additional linear constraint which is245

tangential to the original failure envelope described by eqs. (21) at the point corresponding to N = Ni,0;

Step 4. Solve the new global LP promblem;
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Step 5. Repeat from step 2 until the maximum value of ei < 1+ tlr where the tolerance tlr is taken as a suitably small

value.

Moreover, if sliding between blocks is to be taken into account, additional sliding yield constraints to the linear250

programming problem (20) are needed. As suggested in [45], while assuming a simple associative friction model, the

following linear constraints may be defined:

Ti ≤ µiNi

Ti ≥−µiNi

∀ contact i = 1, ...,c, (23)

where µi is a suitable friction coefficient for each contact i. This particular friction model has been chosen for

simplicity reasons whereas in literature more advanced models exist which involve non-associative friction laws and

the use of non-linear programming methods (see e.g. ... ).255

For the sake of simplicity, backfill (which is considered as a dead load and tbus enters in Eq. (18)) is modeled as

an external vertical force acting upon each block, which is given by the weight of the volume of the backfill portion

lying above each block and is applied to the center of mass of the same volume. Again, It is necessary to point out

that in literature much more sophisticated models for backfill exist, which are capable of taking into account effects

like load diffusion and the gradual build-up of passive pressures (see e.g. ...).260

Furthermore, it is possible to modify the same analysis in order to take into account the presence of CFRP (Carbon

Fiber Reinforced Polymer) reinforcement strips at the intrados and/or extrados of the arch. Many researchers have

proposed different solutions to this problem (see, e.g., [27, 28, 29]). In the present paper we deal with the problem

by modifying the original equilibrium formulation including two further variables (Fi,intrados,Fi,extrados) for each of the n

CFRP reinforced interfaces. These variables represent the inner force acting within the FRP strip at the interface at the265

intrados and extrados respectively and enters into the equilibrium constraints (18). The new variables are subjected to

the additional yield constraints:

0 < Fi,intrados < Fd

0 < Fi,extrados < Fd

∀ reinforced contact i = 1, ...,n, (24)

where Fd is the design delamination resistance of the CFRP strip which may be evaluated, for example, following

prescriptions contained in Chapter 5 of [49].

5. Numerical examples270

In this section three numerical examples obtained with the computational tool ArchNURBS are presented. In

particular, the influence of the geometric representation of the rigid blocks in which the arch is subdivided on the limit
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Mechanical Properties Example discussed in Section 5.1 Examples discussed in Sections 5.2 and 5.3
Masonry Young’s modulus (E) 2800 MPa 1500 MPa
Masonry shear modulus (G) 860 MPa 500 MPa
Masonry mass density (ρm) 1800 kg/m3 1800 kg/m3

Masonry compressive strength ( fc) 6.0 MPa 2.4 Mpa
Backfill mass density (ρb) 1600 kg/m3 1600 kg/m3

Table 2: Masonry mechanical properties and backfill density for examples in Sections 5.

load multiplier λ is first discussed. Then, the limit analysis for the three-centered arch described in Section 2 and a

real world arch are taken into consideration in the second and third example, respectively.

5.1. Influence of the voussoirs geometry275

Many arches in the real-world occurrences are made of stone voussoirs which generally have a rounded shape

rather then a quadrangular shape as shown in Figure 3(a). When the size of these voussoirs is not small their exact ge-

ometric representation is of paramount importance in order to obtain accurate estimates of the collapse load multiplier

λ .

The structural analysis tool proposed in the present work allows for an exact description of the rounded shape of280

the voussoirs of the arch by exploiting the NURBS features. On the contrary, most of existing commercial software

codes approximate the shape of rounded voussoirs with a quadrangular shapes.

Hence, we consider a semi-circular arch with mean radius 2.125 m and section depth 0.250 m and width 0.500 m.

The backfill height is assumed equal to 3.00 m and it is loaded with a uniformly distributed vertical live load of

1 kN/m. The arch is subdivided into ten voussoirs. Material properties of the stone-voussoirs and of the backfill are285

reported in Table 2.

In this case a collapse load multiplier λ = 9.8 is computed for the arch model with rounded voussoirs. The

obtained value is the exact collapse load multiplier for the rounded voussoirs arch here described.

On the other hand, if the arch is modeled by means of ten quadrangular voussoirs λ = 8.9. Therefore, the geomet-

rical approximation of the rigid blocks implies an error of 9.2 % on the estimate of λ .290

Of course, the error could be greatly reduced if an higher number of quadrangular blocks was chosen to model

the arch but then the number of interfaces between blocks (on which hinges positions are constrained to be) would be

changed in respect to the original problem. In addition, computational efficiency would be clearly reduced.

In Figures 3(b)-(c) a comparison between the two arch models is shown along with a plot of the corresponding

thrust line.295

5.2. Three-centered arch

The three-centered arch presented in Section 2 is examined. In particular, its depth and width are assumed equal

to 0.560 m and 0.500 m, respectively. Material properties used for masonry and for the backfill are reported in
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Figure 3: (a) Example of rounded voussoirs arch (Calvene, Italy). Thrust lines computed with (a) quadrangular voussoirs and (b) rounded voussoirs
example arch models.
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Figure 4: Three-centered arch: thrust line (red solid line) obtained without backfill (a) and with backfill (b). The collapse load multipliers
corresponding to these configurations are 1.42 and 28.26, respectively.

Table 2. The masonry mechanical properties chosen are typical for low quality masonry as suggested in the explicative

circular [50] related to the Italian Building Code [51].300

The arch is supposed to be loaded by a downward linear uniform live load of 1 kN/m. This load is amplified by

a load multiplier λ . The arch has been subdivided into 90 rigid blocks. First, limit analysis is performed without

considering any backfill. In this case the collapse load multiplier is λ = 0.78. As it is illustrated in Figure 4(a) the

resulting collapse mechanism is a symmetrical five hinges mechanism. The corresponding thrust line and position of

hinges at collapse is indicated by a red line and red circles, respectively.305

The same analysis has been then carried considering a backfill having a height of 4.00 m and a specific weight as

indicated in Table 2. In this case, despite the collapse mechanism and the position of the collapse thrust line being

similar to those obtained in the previous case, the load multiplier increases to λ = 21.62. Therefore, the particular

geometry of the arch is very sensitive to the stabilizing effect of the backfill.

It is worth noticing that a relatively high collapse load multiplier has been calculated in the last case. Such a value310

is due to the fact that the shape of the arch nearly contains the funicular for that particular load configuration [19].

5.3. A masonry arch from Torre Fornasini

The third arch here analyzed is a real world masonry arch belonging to the groin vault which bears the first story

of Torre Fornasini, a historical masonry tower construction in Poggio Renatico (Italy), which was severely damaged

by the earthquake which struck Emilia on May 2012. The tower, depicted in Figure 5, has been subjected to extensive315

seismic retrofit intervention which comprised reinforcement of the extrados of the vault with Carbon Fiber Reinforced

Polymers (CFRP) strips [52]. In particular, the analyzed arch is the segmental arch shown in Figure 6(a). It is

characterized by a span equal to 4.13 m, a midspan rise equal to 1.81 m, a depth equal to 0.14 m and a width equal to

0.25 m. Again, material properties assumed for masonry and specific weight for the backfill are reported in Table 2.

The arch is loaded by a downward acting linear uniform live load equal to 1 kN/m multiplied by a load multiplier320

λ . The arch has been subdivided into 90 rigid blocks. First, limit analysis is performed without taking into account

any backfill. In this case a solution cannot be determined since the arch is not stable under its own weight. Then,
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the same analysis is carried out by considering a backfill with specific weight reported in Table 2 and a maximum

heigth equal to 2.15 m. Under these assumptions, the optimization problem can be solved and the resulting collapse

mechanism is a symmetrical five-hinges mechanism which is depicted in Figure 6(b). The collapse load multiplier is325

λ = 1.43. In order to evaluate the effect of the limited compressive strength of masonry on the load capacity of the

structure the same limit analysis has been carried out, allowing for a masonry compressive strength equal to 2.4 MPa,

as indicated in Table 2 and as prescribed by the explicative circular [50] related to the Italian Building Code [51],

following the algorithm described in Section 4.In this case the collapse load multiplier drops to λ = 0.86. As it has

been explained in the previous Section it is also possible to account for the effect of FRP reinforcement. Indeed,330

during the seismic retrofit intervention a 200 mm wide strip of carbon fiber tissue (MapeWrap C Uni-AX produced

by MAPEI) was applied to the extrados of the vault. This tissue has thickness of 0.2 mm, Young’s elastic modulus of

230 GPa (for tensile stress only) and ultimate strain of 2%. FRP delamination force has been calculated by following

the Italian FRP Design Guidelines [49]. By performing a limit analysis of the FRP reinforced arch, without taking

into account the effect of limited compressive strength of masonry, the collapse load multiplier results λ = 5.94. In335

Figure 6(c) the symmetric five hinges collapse mechanism is shown: in this case the mechanism which develops only

after FRP delamination has occurred at both sides of the arch. On the other hand, when the effect of finite compressive

masonry strength is considered and coupled to the FRP reinforcement, the collapse load multiplier drops to λ = 3.44.

Finally, an analysis of the original arch without reinforcement has been considered by accounting for possible sliding

of masonry blocks as explained in Section 4. Therefore, after performing this limit analysis it can be observed that340

adopting a friction coefficient µ = 0.3, as it is widely suggested in literature (see e.g. [53]), the original solution does

not change: collapse still occurs by formation of a five hinges mechanism and the collapse multiplier is still λ = 1.43.

Besides, if the friction coefficient is reduced to µ = 0.275 it is observed that collapse mechanism modifies since

sliding occurs at the arch imposts. In this last case the collapse multiplier is λ = 1.02 and the corresponding collapse

mechanism and collapsed thrust line at collapse are shown in Figure 6(d).345

6. Conclusions

This work introduced a new simple fully CAD-integrated approach to the analysis of masonry arches addressed

to professionals in the field of structural rehabilitation of historical masonry constructions which cannot or do not

want to get involved into more advanced computational tools. In particular, the proposed software provides a simple

instrument for the accurate evaluation of the load bearing capacity of masonry arches. Furthermore, the open source350

computational tool ArchNURBS, which has been implemented in MATLABr, is freely available online (http:...)1.

The new tool is based on NURBS description of the shape of the arch, which is designed in a CAD environment

starting from a surveying data. A preliminary isogeometric finite element elastic analysis and a rigid-blocks limit anal-

1Authors: to be added before print
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(a) (b)

Figure 5: (a) External view and (b) first story masonry groin vault of Torre Fornasini (Poggio Renatico, Ferrara, Italy).
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Figure 6: A masonry arch from Torre Fornasini in Poggio Renatico, (Ferrara, Italy) and represented in (a) has been examined. The thrust line (solid
red line) and the position of the hinges (red circles) at collapse are illustrated in (b). Moreover, the solution of the limit analysis has been studied
by considering (c) the FRP reinforcement indicated with a solid blue line (blue solid squares denote the FRP delamination points) and (d) sliding
between blocks (with µ = 0.275).
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ysis of the masonry structure are possible. Furthermore, limited compressive strength for masonry, sliding between

blocks and presence of FRP reinforcement can be dealt with.355

Some relevant examples of rigid-blocks limit analysis of masonry arches obtained with ArchNURBS have been

presented. Future research directions include a more sophisticated treatment of the problem of friction between

blocks and the adoption of a more advanced model for the backfill. Finally, an extension of the tool to the analysis of

three-dimensional masonry structures and in particular vaulted masonry systems will be developed.
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