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Abstract. In the Wadi Biskra arid and semiarid areas, sustainable development is restricted by
land degradation processes such as secondary salinization of soils. Being an important high-
quality date production region of Algeria, this area needs continuous monitoring of desertifi-
cation indicators, hence highly exposed to climate-related risks. Given the limited access to
field data, appropriate methods were assessed for the identification and change detection of
salt-affected areas, involving image interpretation and automated classifications employing
Landsat imagery, ancillary and multisource ground truth data. First, a visual photointerpretation
study of the land cover and land use classes was undergone according to acknowledged method-
ologies. Second, two automated classification approaches were developed: a customized deci-
sion tree classification (DTC) and an unsupervised one applied to the principal components of
Knepper ratios composite. Five indices were employed in the DTC construction, among which
also is a salinity index. The diachronic analysis was undergone for the 1984 to 2015 images
(including seasonal approach), being supported by the interpreted land cover/land use map
for error estimation. Considering also biophysical and socioeconomic data, comprehensive
results are discussed. One of the most important aspects that emerged was that the accelerated
expansion of agricultural land in the last three decades has led and continues to contribute to a
secondary salinization of soils. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JRS.11.016025]
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1 Introduction

Efficient soil and water management and sustainability of agricultural lands depend on regular
monitoring of land degradation processes,1 especially in arid and semiarid environments. The
development of diversified production systems relies on the adaptation to drought and desert-
ification, such as agroforestry techniques and ranching of animals better adapted to local
conditions.2 Therefore, to establish strategies for sustainable development and local and regional
levels and to provide useful input for decision makers and stakeholders, constantly updated
information on the ecological state of the territory is needed.

In this paper, we focus on the assessment of land degradation dynamics in the Biskra area of
Algeria, characterized by an arid and semiarid climate. Because this area is highly vulnerable to
increases in climatic variability and anthropogenic pressures, updated mapping and constant
monitoring of land degradation indicators as well as identifying driving factors are critical,
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as these withstand the understanding of desertification dynamics. Therefore, this work proposes
an adaptive and replicable methodology and methods for the diachronic mapping of land deg-
radation indicators, such as soil salinization. This analysis incorporates remote sensing tech-
niques, two types of classification methods (visual and automated), and a large set of
ancillary data. Its main objective is the assessment of a classification scheme that best copes
with the issues risen by this type of study area and that can be reliable and easily replicable
both in time and space (other environmentally similar areas). This analysis is finalized at the
estimation of quantitative and qualitative change of land cover and the arguing of possible driv-
ing factors.

Land degradation and desertification represent the most severe environmental issues and key
obstacles to meet ecological and human needs at global, regional, and local scales.3–5 The recent
Millennium Ecosystem Assessment Report indicates that desertification threatens over 41% of
the Earth’s land area; 20% to 70% of dry lands are already degraded, resulting in a decline in
agricultural productivity, loss of biodiversity, and the breakdown of ecosystems.6

Chapter 12 of Agenda 21, as approved by the United Nations Conference on Environment
and Development, defines desertification as a form of “land degradation in arid, semiarid and dry
subhumid areas resulting from various factors, including climatic variations and human activ-
ities,” triggering the losses of ecosystem services.5,6 According to FAO (2016), land degradation
is “the reduction in the capacity of the land to provide ecosystem goods and services and assure
its functions over a period of time for the beneficiaries of these,” especially due to land
mismanagement.3,7

Common indicators of desertification include a decrease in land and soil properties and qual-
ity, and their ability to undertake their normal ecosystem functions, all of which lead to an
increase in soil erosion and salinization.2,7–9 They are also strongly linked to health and
human development indicators,6 which can also be employed to indirectly assess the dynamics
of desertification (triggers, driving forces, impact, trends, and mitigation plans). The main driv-
ers of desertification include deforestation, overgrazing, overcultivation, pressure of population,
water usage, industrialization, and inappropriate land use practices.5

In the current study, we address the spatiotemporal dynamics related to land degradation and
not soil degradation. It is important that a clear net distinction should be made between these two
concepts. After a thorough literature review, Escadafal et al.10 highlight that “land” must be
approached through its multidimensionality, hence its sustainable management, including its
biophysical components and their interconnectivity, but also the anthropic interfering. On
the other hand, soils are a part of land, generally comprehended in biophysical terms through
their vertical dimension. Therefore, when it comes to land, the issue of degradation and sustain-
ability is dealt with at a landscape level (which can relate to sociology, anthropology, economics,
etc.), while dealing with soil degradation will typically infer a focused and dedicated assessment
having unique links with applied microbiology, biotechnology, optics, and even astronomy.
Consequently, land is associated more with disciplines of the domain of social sciences, whereas
“soil” has more connections with natural or physical science usually known as “hard sciences.”10

Out of the various forms of land degradation, soil salinization is the main menace for sus-
tainable agriculture worldwide.11 It is estimated that more than half of the irrigated land in arid
and semiarid regions of the world is affected to some degree by salinization and that millions of
hectares of agricultural land have been abandoned because of salinity buildup.11–14 Soil salini-
zation is a process that leads to an excessive increase of water soluble salts in soil. The salts that
accumulate include chlorides, sulfates, carbonates, and bicarbonates of sodium, potassium, mag-
nesium, and calcium.15 A distinction can be made between primary and secondary salinization
processes. Primary salinization involves accumulation of salts through natural processes such as
physical or chemical weathering of rocks and primary minerals, either formed in situ or trans-
ported by water (including groundwater) and/or wind. Secondary salinization is caused by
human interventions, such as use of salt-rich irrigation water or other inappropriate irrigation
practices, and/or poor drainage conditions.15 In arid and semiarid areas, leached salts concentrate
in slow-flowing groundwater and are brought to the soil surface through high evapotranspiration
and their accumulation can also be accelerated as a result of anthropogenic activities, mainly
through irrigation with saline water.11 This is the case of the Biskra study area. The geological
information is essential to the understanding and analysis of the salinity and salinization

Afrasinei et al.: Assessment of remote sensing-based classification methods for change. . .

Journal of Applied Remote Sensing 016025-2 Jan–Mar 2017 • Vol. 11(1)



mechanism, enhancing the prediction accuracy.12 In the Biskra study area, the geological setting
gives an a priori favorable background for the leaching and mobility of soluble salts, and their
deposition in lower topographies.16–18 Parent material, the type of soil, morphology, geographi-
cal location, and anthropic activities strongly influence the variability of soil salinity and trigger
secondary salinization.1

Remote sensing was singled out as a useful tool for the detection and multitemporal analysis
of desertification indicators for decision support, among numerous other applications.19–21

Remote sensing infers the analysis of measured electromagnetic energy emitted or reflected
by a target. A vast set of remote sensing data is available for salinity mapping and monitoring.22

Classification of satellite images is one of the most commonly applied techniques used to process
remotely sensed data, a method of creating meaningful digital thematic maps from imagery.

There are two commonly used remote sensing mapping methods. One involves visual photo-
interpretation based on professional knowledge, and the other one is represented by automated
classifications based on the use of computers. Visual interpretation focuses more on the appli-
cations and the automated method more on technological research.23

In the Biskra area, field data were difficult to achieve in the correct amount needed for such
studies, thus available ancillary data and other types of ground truth (GT) data were used as main
support throughout the study phases.

In this study, we employ both visual and automated classification methods. The method-
ology used in this study derives from the need to tackle two core types of problems: (1) the
conceptual environmental issue, hence soil salinity and secondary salinization and the chal-
lenge to correctly separate and describe each of them in terms of genesis and processes and
(2) from the technical and methodological point of view, identifying or designing the appro-
priate classification approach, required spectral confusion among very reflective desert fea-
tures, hence the limited or no access to field data or to undergo field survey oneself. We
put forward this approach to cope with limited access to GT data and minimize misclassifi-
cation issues reported in the literature regarding the correct delineation of land cover features
in desert areas. Moreover, several researchers have emphasized the importance of a polyvalent
or hybrid methodological approach for mapping and detecting changes spatially and tempo-
rally with an increased accuracy.24–30

In arid and semiarid areas, in particular, problems regarding automated image misclassifi-
cation of high-albedo desert features have been reported by the scientific community. Among
these, salt features classification issues also have been reported, either with supervised or unsu-
pervised classifications, or with spectral mixture methods, mainly regarding spectral confusion
of salt features with other land ones, especially urban fabric, bare soil, or carbonate-
rich lithology.11,12,19,31,32 To overcome the aforementioned issues, which are related not only
to spectral confusion and misclassification but also to the difficult access to field data, two differ-
ent classification schemes are approached in this study: (1) a DTC12,33–37 and (2) IsoDATA clas-
sification applied to the principal components analysis (PC/PCA) of Knepper ratios.

In some situations, where the data are expected to have a normal distribution within each
class, in a multispectral space, statistical image techniques are optimal for their classification.37,38

However, these are known to be restrictive in resolving interclass mix-up if the data employed do
not have a normal distribution.35–37,39 Sophisticated statistical and neural/connectionist algo-
rithms, rule-based classifiers, image segmentation, and support vector machines for both
fuzzy and hard classifications of data have been developed during the 40-years lifetime of
the remote sensing scientific community and are increasingly being used. Nonparametric clas-
sifiers have frequently been found to yield higher classification accuracies than parametric clas-
sifiers because of their ability to cope with nonnormal distributions and intraclass variation found
in a variety of spectral data sets.36,40,41,42 Decision tree classification (DTC) is one such tech-
nique, found to be very effective for the remote sensing community for land cover and land use
(LULC) classification and salt-affected areas mapping, among a vast gamma of environmental
applications.12,32,33,35,39,40

Consequently, in this study, we employ a customized decision tree classifier that copes with
the aforementioned issues, managing to delineate correctly 12 land cover classes and differen-
tiate between two types of salt-affected areas: highly and moderately saline. We employ new
indices in the decision tree classifier,43 which aim to cope with the issues risen by the study areas,
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in terms of well-known spectral confusion of highly reflective land features in semidesert/desert
areas. The choice of the DTC is thoroughly discussed in Sec. 4.3.

From a different point of view, soil salinity mapping through remote sensing is translated
through the spectral characterization of the contained abundant salt minerals. Within the current
study, we propose the employment of Knepper ratios composite for salt features identification,
previously employed only for geological remote sensing analysis.38,44 The reason why the latter
one was also employed was to evaluate its potential as an approach of fast automated, user-in-
dependent spectral-based classifier, as opposed to decision tree analysis that needs thorough
computation for rules choice and threshold calculation.

In this study, we have employed historical and present Landsat imagery for the diachronic
analysis of salt-affected areas. The scientific literature has shown that either multispectral or
hyperspectral imagery have yielded optimal results for the detection and mapping of salt
features.20,21,45–48 However, the various shortcomings of both imagery sets preserve “no agreed-
on best approach to this technology for monitoring and mapping soil salinity.”21 Despite
researchers being hesitant in using multispectral imagery for salinity mapping because of several
drawbacks, this type of image has been stated in the literature to be preferred for mapping and
monitoring soil salinity.49 Furthermore, several authors20,32,49 have indicated multispectral
imagery to be relevant for such studies, as well as much more accessible and affordable [freely
downloadable from US Geological Survey (USGS) platforms], e.g., considering the broad nature
of Landsat sensors and its time spread, not to mention that it is the most common type of imagery
cited in numerous publications and not limited to saline features analyses.12,50,51,52

In previous studies, likely problems of mixed pixels or limitations have been accounted for
through ancillary data inputs such as field data, in situ measurements and sampling for adjacent
analysis, or through the integration with geographic information systems (GIS), and digital
elevation models.53,54 In this work, we have used a large set of ancillary data either for training
data or for the validation of outcomes. This set of data is described in detail in Sec. 2.2.

In the following section, the study site and the materials and dataset employed are described.
Section 3 presents the methodology and description of the mapping methods applied in this
analysis.

The final objective of this paper is the engagement of remote sensing imagery in change
detection in an area presenting specific restraints, both environmentally or from the accessibility
point of view; hence, a consistent number of works have been reviewed for the current study that
discuss or use satellite imagery26,52,55,56 which reported issues regarding discrepancy of results
and the degree of the replicability of algorithms or methods applied.57 We tried to minimize these
issues through the proposed aforementioned methodology and approaches described in the fol-
lowing sections. In this study, we also consider seasonal variation (wet versus dry season) to
assess to what extent and degree this theory applies in this case study because the importance of
seasonality on salt features delineation is reported in the literature in several works.12,20,58,59

This study is part of the Water harvesting and Agricultural techniques in Dry lands: an
Integrated and Sustainable model in MAghreb Regions (WADIS-MAR) Demonstration
Project, funded by the European Commission through the Sustainable Water Integrated
Management Program.60 The project aims at the promotion of an integrated, sustainable
water harvesting and agriculture management, and at the extensive dissemination of sustainable
water management policies and practices in two watersheds in Tunisia and Algeria.61

2 Dataset

2.1 Study Site

The study site is located between the Saharan Atlas and the Saharan Plateau in Algeria, north-
northwest of the great Chotts of Melrhir and Felrhir, and covers an area of about 5000 km2

(Fig. 1). It represents mainly a piedmont area that passes from the Aures mountainous and
hilly domain in the north to the Sahara plain in the south, with fine clayey deposits and
vast alluvial fans and small mountain ranges in the middle slope area.

The area can be divided into two zones: the “Occidental Zab” and the “Oriental” one (as
shown in Fig. 1), where Wadi Biskra constitutes the limit between the two zones. Locally
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known as the “Zibans palmeraie” (palm grove) or the Occidental Zab, the irrigated area exceeds
65,000 ha and draws more than 600 million of m3 per year, whereas the Tolga area is an
international exporter of high-quality dates “Deglet Nour.” The high productivity of these palm
groves is due mostly to the presence of very productive and shallow aquifers highly exploited for
more than one century, with an average salinity from 2 to 4 g∕l; hence, the increase of surface
salinity and gypsum encrusting. The land use mainly regards date palm plantations and extended
greenhouse cultivations (vegetable cultivations), followed by open field cultivations.

The landscape of the Oriental Zab domain is characterized by vast alluvial fans and a plain
modeled by wadi courses, with their source area in the Atlas and eventually fading into the
great depression of the greater watershed of Chott Melrhir, reaching an average of −80 m
below sea level.62 Open field and industrial cultures have become an intense practice in
the last decades, as these ones, unlike “phoeniciculture” (French word for “date palm culti-
vation”), do not require a shallow aquifer,63 but the usage of deep groundwater has increased in
the last decades.

From the geological point of view, the Biskra area is located in the transition zone between
the folded Atlas domain in the northern part of the area and the desert and flat domain of Sahara
in the south. The area is characterized by the superposition of several folding events occurring
from middle Eocene to Pleistocene, which strongly influence the geometry of the main aqui-
fers.64–66 The lithological stratigraphy is composed mainly out of clay and sand alternations
(Quaternary and Mio-Pliocene), gypsum clays and evaporitic deposits (middle Eocene); lime-
stone (lower Eocene); limestone, gypsum clays, and halite (Senonian); dolomitic limestone and
dolomites (Turonian) and clay, marlstone, and gypsum belonging to Cenomanian; and Triassic
salt domes.

Gypsiferous and calcareous soils are two important groups of soils formed in arid and
semiarid environments of Algeria.18 In most cases, gypsum is associated with other salts
of calcium, sodium, and magnesium. All these minerals have an average solubility in
water, and because of this solubility, these minerals are altered easily and can be deposited
in other places and in other mineral forms. Most soils in this study area are composed of gyp-
seous soil, or gypsum (CaSO42H2O), which is common in geological materials, groundwater,
and surface area.18

The climate is hot and dry, stretching over the semiarid, arid, and predesert zones, with an
annual maximum average of about 28°C. The maximum frequency of rainfall is in November
and March, and the total annual rainfall average is about 150 mm, but the annual mean rainfall is
<20 mm. The minimum rainfall is almost null in the months of July and August.

Fig. 1 Biskra study area (modified from Google Earth, 2015). The WADIS-MAR project partners
are highlighted in orange in the upper-right image of location overview.
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2.2 Materials and Data

A large set of ancillary data was used for the visual photointerpretation phase of the LCLU
classes, comprising available spatial data, geological and topographical maps, agricultural cal-
endars, statistics, and pedological reports, mainly provided by local entities and institutions, such
as “L’Agence Nationale des Ressources Hydrauliques,” Algeria (ANRH), “Institut Technique de
Développement de l’Agronomie Saharienne,” and other local entities. Available
Google Earth high-resolution satellite images and data were also consulted and partially
used for the generation of GT data. The community-based Google Earth photographs and infor-
mation were also employed as ancillary data in order to have a general acquaintance with the
study area, an input on ground data, land use, and overall landscape (high-quality imagery of
Google Earth Pro). Nevertheless, error potential and debatable reliability were taken into
account, given that this crowd-sourcing data include nonexpert users.

The Landsat data were obtained by the courtesy of the USGS web platforms. All the images
of the years available for this area were consulted, and only the ones presenting good quality and
low cloud coverage were chosen for this study. The images from 1984 to 2015 were chosen as
presented in Table 1. They were also chosen avoiding exceptional or abnormal humid years
(abnormally higher than the average total annual precipitations of the past 40 years), which
were irrelevant for this study as it could bias the study results. The imagery at the beginning
of the dry season and at the end of it was chosen based on climate data, avoiding abnormal rainy
years, days, or rainy periods prior to the selected dates. For example, when selecting the images
acquired at the end of the dry season, it was important that prior to that date no abnormal rainy
days or periods took place: if the acquisition date was the third of September, but on the second
or first, there were 20 mm of precipitations, we considered that the data would have been com-
promised if analyzed. The choice of the scenes was mostly restricted by cloud coverage. ArcGIS
10.2 was employed for geospatial data consultation and geoprocessing and ENVI 5.2 Software
(Exelis VIS, Boulder, Colorado) was used for the satellite data preprocessing and processing and
postclassification.

As this study approaches an inter- and intraannual change analysis, two images per each one
of the 4 years were chosen: one at the beginning and one at the end of the dry season. This can be
argued by the fact that there is a maximum vegetation peak at the end of May, after the winter–
spring rainfalls and a minimum vegetation peak at the end of the dry season, in August to
September, which can restrain or aid the identification of saline areas, respectively.12,21 We
have taken into account the fact that, in these particular areas, the visibility and reflectance inten-
sity of various types of land cover types and especially salt features are influenced by seasonality,
potentially compromising their correct identification and delineation. According to studies
conducted in similar biophysical and climatic conditions and presenting analogous research

Table 1 Landsat scenes employed in the diachronic analysis.

Satellite WRS path WRS row Acquisition year
Day of acquisition—Julian

day number (JDN) Date

LT5 194 36 1984 182 June 30

LT5 194 36 1984 246 September 2

LT5 194 36 1995 148 May 28

LT5 194 36 1995 228 August 16

LT5 194 36 2007 149 May 29

LT5 194 36 2007 229 August 17

LT5 194 36 2011 160 June 9

LC8 194 36 2015 123 May 3

LC8 194 36 2015 219 August 7
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purposes, the most appropriate period for satellite data choice is the end of the dry
season.11,12,14,20,32 Therefore, in this study, we also consider this seasonal variation in order
to assess to what extent and degree this theory applies in this case study, nonetheless being
an arid, predesert environment.

The years were chosen at an interval of about 10 years, according to possibility, starting with
1984, the oldest one available (depending on sensor type, image quality, cloud coverage and
validity for analysis). These were chosen after a careful consultation of climate data (Biskra
weather station67) to avoid preceding heavy rainfall days, especially for the postdry season
dates. The 2011 scene used for visual interpretation was not inserted in the multitemporal analy-
sis, being used only for comparison purposes, through error assessment.

3 Mapping Methods

3.1 Visual Interpretation

Tackling environmental issues requires a thorough knowledge of the landscape and territory.
Land use is associated with human activities that are directly linked to the functionality of
the land, while land cover designates the natural elements as well as artificial structures covering
the land surface. Constant update of land cover information, not to mention the land use one, is
indispensable due to constantly changing geospatial phenomena over time, required particularly
by various authorities engaged with the management of territory. However, it is important to
highlight that planners and land managers need high accuracy of data to approach land
cover problems appropriately, thus a constant improvement of the methods of collection, treat-
ment, and interpretation of data is also due. Although the priority is land use mapping, as an
analogue of economic information, it cannot be easily mapped, as opposed to land cover, which
is more handy and can serve as an estimation of land use.68 Automated classifiers usually man-
age to extract land cover information based on spectral response. Other input data and expert
knowledge are usually needed to associate the land cover features to land uses. In an image
classification, the spectral components alone cannot provide information on land use, unless
they have obvious characteristics (e.g., rectangular-like pattern of cultivated parcels) that
would indicate land use.

For the current study, the LCLU map assisted as reference data for the overall acquaintance
with the study area. The visual photointerpretation method is an acknowledged one due to its
detail, quality, and expert knowledge validity,23,69 and in this study, it was constructed according
to standard and acknowledged methodology,70–73 employing a large set of ancillary data, using
1∶40;000mapping scale and 25 ha minimum mapping unit (MMU). A total of 37 LCLU classes
of fourth level of detail (according to CORINE land cover)73 was obtained. The methodological
and classification approaches were adapted from various land cover programs implemented
either in Europe, such as CORINE land cover, or in the African ones.70–72 These allowed us
to define visual interpretation keys and variables and build a land cover nomenclature and
class description tailored to the local context. In the Biskra area, the interpretation of the
Landsat TM5 of June 9, 2011, path 194, row 36 resulted in 37 LCLU classes that were defined
based on a large set of ancillary data, of both analogical and digital data, given that GT data were
difficult to obtain with the necessary detail and amount (around 50 GT points were acquired).
The generation of this map allowed us to properly plan the field survey in both areas. Thus, doubt
points were selected, and material was prepared (GT sheets, point location basemaps containing
the doubt points to be verified in the field) and sent to the local WADIS-MAR partners, which
delegated experts in the area of study to undertake the field verification of points. The field
survey allowed us to verify and correct previously interpreted polygon boundaries and verify
class nomenclature and the assignment of class names to polygons. A flowchart is provided in
Fig. 2, illustrating the main phases of the adopted methodology.

3.2 Data Preprocessing

The level L1T products were a subset to the study area extent, radiometrically calibrated to
obtain top of atmosphere reflectance, and, subsequently, dark object subtraction was applied
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for atmospheric correction, thus obtaining surface reflectance. As the product employed ground
control and relief models (as delivered by the provider, namely USGS), geometric correction was
not performed.68,74 No topographical correction was applied as it has been reported by several
authors as prone to overcorrect values in plain areas and lose valuable information, especially in
regions where spectral separability has such sensitive thresholds.75,76 All images were verified
for coregistration.

3.3 Decision Tree Analysis

In remote sensing, choosing a classification approach, method, or algorithm (image classifier)
must be made upon specific criteria that take into account the aim, type, and object of the study,
feature to classify (associate each pixel to a class) and identify (relate classes to a known land
cover/use), data dimension, computation requirements, time, costs, etc. Since the present study is
targeted at a change detection analysis, thus a multitemporal study of land features (not clouds or
aerosols), at a local–regional scale (5000 km2, around a third of the Biskra Wilaya), and given
the employment of medium resolution multispectral imagery, a decision tree type classifier was
evaluated as being the optimal one. In the following paragraphs, this choice is argued both in
technical (digital image processing techniques) and in conceptual (spatio-contextual informa-
tion) terms.

Conventionally, classification tasks are based on statistical methods and some of
the most common classification algorithms include (supervised/unsupervised) minimum

Fig. 2 Customized methodological workflow.
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distance-to-mean, maximum likelihood, Mahalanobis distance classification, nearest neighbors,
or IsoDATA.77,78 Traditional classification procedures like maximum likelihood classifiers are
generally based on statistical parameters, such as mean and standard deviation. Generally, these
classifiers are based on an explicit underlying probability model that provides a likelihood of
data belonging to a particular class rather than simply a classification, and its performance is
determined by how well the data match the predefined model. Furthermore, it has been proven
that modeling the data appropriately can become a real problem if these data are complex in
structure.35,79

To overcome these issues, more advanced classifiers like artificial neural networks, fuzzy
classifier, image segmentation, expert classification, support vector machines, rule-based clas-
sifiers, and many others are increasingly being used.35 These techniques are mainly charac-
terized by the lack of any preliminary supposition on the data distribution, especially because
they are nonparametric.39 The ability to cope with nonnormal/nonhomogeneous distributions
and intraclass variation found in a variety of spectral data sets rendered nonparametric clas-
sifiers superior in yielding higher classification accuracy when compared with the parametric
ones.41,42,80

DTC techniques, either manual or automatic, have been used successfully for a wide range of
classification problems, but only recently tested in detail by the remote sensing commu-
nity.33,36,37,39,40,81 Several studies have compared DTC methods with other classifiers. Otukei
and Blaschke40 compared an automated decision tree (using data mining approaches for calcu-
lating thresholds), maximum likelihood, and support vector machine-based techniques for land
cover change assessment using Landsat TM and ETM+ data and found decision tree-based meth-
ods performed better than others. Other studies compared decision trees, support vector
machines, and random forest methods, resulting in equal performance, whereas others employed
automated decision trees, such as C5.0-based DTC (data mining tool, an improved algorithm
following C4.5) to classify IRS-P6 AWiFS (Indian Remote Sensing ResourceSat-1 Advanced
Wide Field Sensor) data, and reported very high accuracy.39

Even if decision tree algorithms have been shown to perform less well in higher dimensional
feature spaces when compared with maximum likelihood classifiers, several studies demon-
strated that they still outperform it.40,42 For instance, Srimani and Prasad35 concluded that
DTCs are capable of automatic feature selection and complexity reduction, providing interpret-
able information regarding the predictive or generalization ability of the data. Furthermore, they
also showed that DTC is computationally time-efficient and that some of the popular machine
learning DTCs tested in their study have presented high potential in providing accurate and
efficient classification of LCLU mapping employing remote sensing data.

In the present study, the decision tree analysis was chosen because of its high flexibility of
input data range and easiness of class extraction through multistage classification but at the same
time because of its simplicity, hence its hierarchical structure of nodes, their explicit connections
and status for class separation, their significant intuitive appeal and easy interpretation.37,68 This
choice can be argued, as presented in existing literatures, through the fact that decision trees offer
high ability to handle data measured on different scales, lack of any assumptions concerning the
frequency distributions of the data in each of the classes, flexibility, and ability to handle non-
linear relationships between features and classes. The possibility of incorporating various types
of data sources under a single-classifier framework proved to be advantageous in using DTC. In
contrast to neural networks, decision trees can be trained quickly and are rapid in execution.
They can be used for feature selection/reduction as well as for classification purposes.
Because it is easily interpreted, it is not a “black box,” like the neural network, the hidden work-
ings of which are concealed from view.33,36

When the analyzed data are too complex in nature, data mining DTCs, or other algorithms
employed for training of automated DTCs, are inappropriate for determining decision thresholds,
thus manual decision trees are “safer.” Traditionally, the thresholds are obtained using the knowl-
edge provided by experts who employ their expert knowledge to assess and create the decision
boundaries. When expert knowledge required to determine the decision boundaries is lacking, it
provides challenges for image classification and it is in this case that data mining algorithms
prevail.40
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3.4 Decision Tree Classifier Construction

This manual DTC construction phase consisted of thorough spectral analysis using spectral
enhancement techniques, horizontal and vertical spectral profiles analysis, and 2-D scatter
plots investigation of salt features to understand their spectral behavior in relation to features
that can present similar spectral characteristics and confusion: carbonate-rich and clay-rich areas,
bare land, urban fabric and outcropping rocks, and a large set of ancillary data.32,82,83–85 After
reviewing several vegetation and salinity indices reported as successful in delineating salt-
affected areas,20,21,86 the results that emerged were not completely satisfactory and further analy-
sis was undertaken to choose optimal band operations for decision tree integration. For the spec-
tral analysis phase, we have taken into consideration two factors: one is the maximum
information content of the composite bands (the higher the standard deviation is, the more infor-
mation content is derived from the composite bands) and the other is the minimum affinity of the
composite bands leading to significant independence and less redundant data (high covariance
between bands).87,88 Consequently, band ratios and indices20,89,90 have been derived to discrimi-
nate as accurate as possible the features of interest and to support decision rules used for a DTC
scheme. The indices proposed for this study are constructed based on choosing optimal band
pairs/groups, which have high spectral information covariance of each land feature of interest.
Identifying optimal bands for building indices is also accounted for through methods like opti-
mum index factor (OIF) or correlation analysis between in situmeasured spectral reflectance and
satellite data.87,91 For example, in the case of “highly saline areas” class extraction, Landsat
visible bands of blue, green, and red information are usually put together, as they present
high correlation, in order to enhance the “brightness” features. They are subsequently divided
by band SWIR2, which presented the lowest reflectance values of salt features, hence high
covariance with the three aforementioned. This can be argued by the fact that the spectral behav-
ior of salt minerals (CaSO42H2O, CaCo3, NaCl, etc.) is related to molecule vibration fundamen-
tals, overtones, and combinations, which can generate vibrational or absorption bands in the
infrared region due to OH, CO3, and H2O.

92 A vibrational absorption will be seen in the infrared
spectrum only if the molecule responsible shows a dipole moment (it is said to be infrared
active). Water and OH (hydroxyl) produce particularly diagnostic absorptions in minerals. In
fact, the spectral confusion of saline gypsum-rich areas with carbonate-rich areas is rightful
since the combination and overtone bands of the CO3 fundamentals occur in the near-IR.92

The resulting indices related to highly and moderately saline areas extraction are thus
expressed as: sqrtf½ðb12Þ þ ðb22Þ þ ðb32Þ�∕b7g or ðb1þ b2þ b3Þ∕b7, salt minerals index
and salinity hue index.

Exponential or square root functions were used to force the emphasis of extreme values,
helping in delineating high or moderate saline areas. The statistics of each index/math
image were used to establish the thresholds for each decision node.

3.5 Knepper Ratios and Principal Component Analysis

Knepper (1989)93 proposed specific band ratios for the delineation of hydroxyl-bearing minerals,
hydrated sulfates and carbonates, vegetation, and iron-oxides and hydroxides using Landsat TM
bands, namely the red–green–blue (R:G:B) composite of ratios 5∕7∶3∕1∶3∕4 (where 5∕7, 3∕1,
and 3∕4 are ratios of the TM bands 5 and 7, 3 and 1, and 3 and 4, respectively), used mainly for
geological remote sensing mapping. Other ratio RGB combinations, such as Gozzard ratios
5∕7∶4∕7∶4∕2 are known to be prospective for iron, chromium, nickel, and platinum group
metal resources.44 The Abrams ratios (5∕7∶3∕2∶4∕5), Kaufmann ratios (7∕4∶4∕3∶5∕7), and
Chica–Olma ratios (5∕7∶5∕4∶3∕1) are successful in the identification of minerals containing
iron ions, hydrothermally altered iron-oxide, clay minerals (and altered), hydroxyl minerals
or vegetated zones, and ferrous oxide.89

The PCA was applied to Knepper composites of each year44 to obtain a fast spectral sep-
aration of main land cover types and especially to rapidly identify areas with different lithology
and mineralogy. It was employed to evaluate its potential as an approach of fast automated, user-
independent classifier, as opposed to decision tree analysis that needs thorough computation for
rules choice and threshold calculation. It is based only on the spectral information contained
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within the employed bands, but it does not allow other manipulation, which was considered by
us rigid, as it presents a consistent problem of mixed pixels. In fact, the obtained images pre-
sented difficulty in applying a classifier and to avoid further errors, IsoDATA unsupervised clas-
sification was chosen, as it proved to be the most suitable, with a maximum of 50 iterations, a
threshold of 2% and 12 classes requested. The PCA analysis was applied for each one of the nine
assessed years.

4 Results and Discussion

4.1 Visual Interpretation Land Cover and Land Use Map

A total of 37 LCLU classes of fourth level of detail (according to CORINE land cover73) was
obtained. The resulting map is shown in Fig. 3. The correspondent LCLU class nomenclature to
the legend codes in Fig. 3 is provided in the Appendix (only the fourth level classes are given
here, the upper levels correspond to standard CORINE nomenclature levels,73 class description is
not provided here).

4.2 Decision Tree Classification

The spectral indices and band math operations that resulted from the DTC analysis are shown in
Fig. 4 and Table 2, respectively. Finally, the decision tree map was obtained by applying veg-
etation, wetness, mineral and salinity indices, and simple band ratios (Table 2), mostly derived
not only from the analysis of bands statistics, scatter plots, and vertical and horizontal profiles of
interest features but also from literatures. It is important to mention that the hierarchical order of
the nodes (indices) is essential in the correct extraction of the land cover classes. For example,
the fact that “highly saline areas” are extracted through the fifth node (before alluvial, carbonate-
rich areas, and urban fabric) eliminates the possibility of other classes to overlay it, and thus

Fig. 3 LCLU map of Biskra area (built through visual interpretation).
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Fig. 4 Decision tree binary decision nodes and resulting classes.

Table 2 Indices analyzed for the decision tree construction in the study area. Thresholds cor-
respond to the indices applied to the Landsat image of September 2, 1984.

Parent nodes
decision Expression Band math (TM bands) Indices References

NDVI b1 GE 0.175 ðb4 − b3Þ∕ðb4þ b3Þ Normalized difference
vegetation index

14

NDWI b2 GE −0.049 ðb4 − b5Þ∕ðb4þ b5Þ Normalized difference
water index

63

NDWI USGS b3 GE −0.267 ðb3 − b4Þ∕ðb3þ b4Þ Normalized difference
water index—USGS

64, also known as
normalized difference

salinity index
(NDSI) (31)

WR b4 GE 1.01 b3∕b4 Water index Derived from Ref. 65

SMI b5 GE 0.710 sqrtf½ðb12̂Þ þ ðb22̂Þ þ
ðb32̂Þ�∕b7g

Salt minerals index Proposed for this study

MI b6 GE 0.0263 ðb1 � b2 � b3Þ∕b4 Mineral index Proposed for this study

IRI_SWIR1 b7 GE 0.85 sqrtf½ðb42̂Þ þ ðb72̂Þ�∕b5g Infrared index–short
wave infrared 1
(TM band 5)

Proposed for this study

IRI_NIR b8 GE 1.8 sqr tf½ðb52̂Þ þ
ðb72̂Þ�∕ðb42̂Þg

Infrared index–near
infrared (TM band 4)

Proposed for this study

S2 b9 LE −0.328 ðb1 − b3Þ∕ðb1þ b3Þ Salinity index 2 14

HIS b10 GE 1.89 ðb1þ b2þ b3Þ∕b7 Salinity hue index Proposed for this study

1∕5 b11 GE 0.25 b1∕b5 Ratio 1∕5 60
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generate misclassification. Through the DTC, we managed to extract a higher number of
land cover classes (12) than the average low number of classes (commonly between four
and seven classes) usually obtained through traditional classification schemes at local–regional
scales.23,24–26,94,95

The decision nodes and the resulting map are thus obtained for each of the eight dates.
According to the lithological and vegetation cover of the area, the DTC and legend were adapted
to classify the main land cover classes and classes of lithology distinguishable according to their
spectral lithological response, which are described in Table 3.

4.3 IsoDATA of Knepper Ratios Principal Components Analysis

The results showed that the third principal component mostly contained salt minerals-related infor-
mation. The first component, representing the highest covariance between the three ratio images,
mostly contained important information on the sand component, and the second one, clay minerals,
which mostly overlaid areas of alluvial fans, with loam and clayey components. The IsoData clas-
sification has presented difficulty in delineating the requested 12 main classes, some of which
present similar characteristics to other existing ones, being unable to separate the “moderately
saline areas” class. In order to allow comparison between the two sets of classification, the result-
ing DTC images to IsoDATA Knepper PCA classification images, the classes were evaluated for
correspondence and the “improper” classes were not considered for analysis. In Figs. 5 and 6, the
classes that do not correspond to the expected resulting classes are presented in white–gray–black
levels, and the class name denotes the fact that it is more likely to belong to that one. Thus, for their
comparison, only “highly saline areas” class was considered and the other ones were merged into
one class of “land” for both DTC and IsoData maps.

4.4 Validation and Methods Comparison

The 2011 LCLU map was considered as “GT map” due its “three-in-one” validation merging
multisource GT data: (1) field acquired data (50 points of various land cover types), (2) 100

Table 3 Description of the resulting class of the DTC.

Green vegetation Oasis vegetation, mainly palm groves, fruit trees plantation, types of small
trees and tall shrubs rich in biomass or chlorophyll

Herbaceous vegetation Annual crops, small natural herbaceous vegetation, small shrubs

Steppe Typical dry shrub vegetation, woody correspondent to mountainous and
piedmont areas

Water bodies Water areas of natural or artificial origin

Highly saline areas Areas rich in salt minerals components

Bare soil (alluvial deposits) Deposits correspondent to alluvial fans, recent alluvial deposits, piedmont
and glacis accumulations, with a strong clay, sand, and coarse
materials component

Nebka Typical semiarid phytogenic aeolian coppice dunes, areas of sand
plains (dunes) covered by sparse or very low vegetation

Bare soil (carbonate rich) Areas with a high carbonate component, limestone crust,
outcropping limestone

Urban fabric Artificial, build-up surfaces, usually impervious

Moderately saline areas Areas that present moderate salinity

Bare rock
(calcareous)/mountains

Mountain ranges and slopes, scree, cliffs, including active erosion flats,
outcropping bedrock

Bare soil Land with no vegetation cover and of no land use
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points extracted from a detailed pedological report (provided by ANRH, Algeria, indication
various land cover types), and (3) 50 community-based GT points of various land cover
types extracted from Google Earth. A fourth contribution to its validity is the expert knowledge
input and the amount of interpretation keys (over seven variables) used for its construction. The
GT points were used to generate GT regions of interest and to validate the LCLUmap, presenting
an overall accuracy of around 96% and a kappa coefficient of 0.88. The detail and the different
types of GT data were appropriate for the validation of the 37 LCLU classes, since these classes,
in their turn, were quite specific and detailed. However, the GT data were too heterogeneous to
be used “as is” for the DTC map validation; we have merged all the GT data and expert knowl-
edge into the LCLU map, and we used it as GT image in the confusion matrix process.

All classes were considered for qualitative and comparison visual inspection with other clas-
sifiers’ results. However, for the quantitative comparison with the 2011 DTC and Knepper PCA
results, only the saline areas classes (“highly saline” and “moderately saline” classes) were
merged and taken into consideration. For the 2011 images, the accuracy assessment of the auto-
mated methods relative to the LCLU visually interpreted map is presented in Table 4.

Confusion matrix was also applied for the comparison among classification methods. This
analysis was applied for the June 30, 1984, the June 9, 2011, and August 7, 2015, maps. The
1984 pair of DTC and IsoData Knepper PCA maps (Fig. 5) showed a rather good overall

Fig. 5 IsoDATA classification applied to Knepper ratios PCA and DTC classification of June 30,
1984, image.

Fig. 6 IsoDATA classification applied to Knepper ratios PCA and DTC classification of August 7,
2015, image.
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similarity of 98.38% and a kappa coefficient of 0.81, with good producers and user accuracies (in
this case of comparison, inferring the consistency between the two maps); the 2015 pair (Fig. 6),
on the other hand, has given an overall accuracy of 93.93% but a kappa coefficient of 0.62, as
presented in Table 4. This discrepancy may be related to the disadvantages of the IsoData clas-
sification method, its threshold set for class separation and number of iterations, and the different
quality of satellite data (Landsat 8), either in terms of noise or radiometric resolution. In fact, it
must be mentioned that the 2015 images were more responsive to the application of the DTC
possibly due to the higher radiometric resolution, instrument calibration, and product generation
(level 1 products). For example, the only land cover class that has given difficulties in classi-
fication in all images was the “urban fabric” class. However, when DTC was applied to the 2015
images, these problems decreased substantially up to nonexistent. In fact, the 1984 images were
laborious in node thresholds calculation, being very different from the rest of the images,
whereas the other seven images have maintained very close threshold values of correspondent
indices. For the 2015 DTC map, an accuracy assessment using GT data of various land cover
types extracted from Google Earth images of 2015 (mosaic varying from August to December)
was undergone. Since the DTC map was generated from the image of August 2015, we selected
only the points (a total of 30 points) related to images acquired around the month of August.

An important aspect to be emphasized is the fact that the decision tree offered more flexibility,
as a multistage classifier, thus managing to delineate classes with higher control. The amount,
complexity, and types of spectral information put together in this single classifier make it highly
controllable, as opposed to other classification flows. The comparison with the visually interpreted
land cover map was undergone through visual inspection for all classes, but for a quantitative
assessment, the DTC map of 2011 was reduced to only two classes: “land” and “highly saline
areas” and compared with the “saline areas” class of the LCLUmap. Error matrix showed a match-
ing of 72%, which can be due to the subjectivity of the user, since visual interpretation implies a
series of variables taken into consideration by the user when delineating features (contours, hue,
size, texture, and location), but cannot allow the delineation of moderately saline areas. This class
has a particular spectral response, not discriminative enough through visual interpretation, but only
through spectral information extraction, i.e., an adequate index.

4.5 Change Detection Analysis

As a result of the DTC, we obtained the salinity/land cover maps for the chosen dates, as pre-
sented in Figs. 7–10, with a successful distinction of a total of 12 classes. We applied the

Table 4 Comparison of DTC with IsoDATA of Knepper PCA map (date expressed in year_JDN).

1984_182 2011_160 2011_160 2011_160 2015_219 2015_219

Classification
methods
pairing

DTC and
IsoData
KnepperPCA

DTC and
LCLU visual
interpretation

IsoData
KnepperPCA
and LCLU
visual
interpretation

DTC and
IsoData
KnepperPCA

DTC and
IsoData
KnepperPCA

DTC and
Google Earth
points of
2015 images

Employed
classes

Highly
saline
areas

Highly
saline
areas

Highly
saline
areas

Highly
saline
areas

Highly
saline
areas

Various
land cover
types

Kappa
coefficient

0.81 0.71 0.22 0.45 0.62 0.83

Overall
accuracy

98.38% 97.06% 95.95% 95.03% 93.93% 86.88%

Producer
accuracy

79.75% 78.64% 42.92% 48.57% 57.70% 67.70%

User
accuracy

85.90% 30.28% 16.96% 45.78% 77.23% 80.21%
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postclassification approach, which is the comparative analysis of independently produced clas-
sifications for different dates.96–99 This method usually allows more complex legends to be used
and, consequently, more detailed analysis of LCLU.100 This methodology requires each of the
classifications to have high accuracy, a goal not always reached when a legend with several
agricultural categories is needed. In addition, it becomes more difficult in fragmented landscapes
like the study area.100 The drawback of this method is that it reduces the useful area of com-
parison, in the example case, substantially. However, the different classification accuracies, frag-
mentation of the landscape, planimetric accuracies, and pixel size are taken into account;
therefore, in a future study, it would be interesting to assess the performance of other change
detection methods.101

We approached change detection analysis in two ways: we have compared the images of each
of the two analyzed seasons from 1984 to 2015, but we have also looked at changes between one
season and another, within a year. The changes of each class surface for each date are illustrated
in Fig. 11, the variations between 1984 and 2015 are presented in Fig. 12, and the DTC maps for
each year, in Figs. 7–10. For the easiness of the interpretation discussion, we will refer to the
May to June images as belonging to the “wet season” and to the August to September images as
“dry season.”

Fig. 7 DTC applied to 1984 images.

Fig. 8 DTC applied to 1995 images.
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From the intraannual point of view, in all years, changes that occur between the end of the wet
season and the end of the dry season maintain a similar pattern of change. More specifically,
classes that are interchangeable remain as follows: highly saline areas have the most frequent
interchange with moderately saline areas, alluvial deposits, and herbaceous vegetation classes
(decreasing in 1995, by 1.53% and in 2015 by 1.69% and increasing in 2007 by 17.63%); mod-
erately saline areas mostly interchange with highly saline areas, urban fabric, bare land, and
herbaceous vegetation (with an increase of 60% in 1984, 100% in 1995, 93% in 2007, and
106% in 2015).

As an example of intraannual change, the results of the detection analysis of 30 June and 2
September images of the year 1984 show that the “highly saline areas” class has decreased by
26%, mainly in favor of urban fabric class by 18.7%, alluvial deposits by 4.2%, and herbaceous
vegetation by 2.1%, gaining only 1.4% and 1.9% of water bodies and herbaceous vegetation
classes, respectively. The total changes, with gains and losses, represent −19.8%.

It must be mentioned that throughout the classification process, both in DTC and in Knepper
PCA, there has been a strong spectral confusion between the classes of “highly saline areas” and
“water bodies” one (consisting of only one dam lake in the whole image in 1984 and 1995, after
which another one is visible after 2007, in the northern part of the area, which is reported to be

Fig. 9 DTC applied to 2007 images.

Fig. 10 DTC applied to 2015 images.
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due to the construction of a dam). This confusion problem has been solved only throughout the
DTC, using the ratio red/infrared, presented as Water Ratio index (WR) in Table 2. The urban
fabric presented many difficulties of classification and small insignificant-sized patches are clas-
sified under moderately saline areas as it has been noted to have similar spectral behavior to these
latter ones in all the analyzed images. However, it maintains this behavior in all analyzed images,
and consequently, it does not compromise the classification validity. This spectral confusion has
been verified and explained through field observations. Moreover, the experts in the area con-
firmed that most of the urban structures use construction material extracted from nearby exploi-
tation sites west of Biskra (west-northwest of Lassaad Kara, north of Tolga next to Djebel
Gueurn Bou Saïa). As an example of community-based data, this information was also con-
firmed by geo-tagged photography taken in 2011 and published over Panoramio of Google
Earth, entitled “Crushing Plant by UGUR MAKINA.”102 Consequently, we can conclude
that, in fact, we are not facing a spectral confusion issue but a correct spectral response of
the same type of material.

In the year 1984, the moderately saline areas have an overall increase of 53%, mainly in the
disfavor of urban fabric, water bodies, and herbaceous vegetation.

The fact that there is a constant interchange either between “highly saline areas” and
“herbaceous vegetation” classes or between “moderately saline areas” and “herbaceous vegetation,”

Fig. 12 Variations in land cover classes between September 2, 1984, and August 7, 2015, Biskra
area.

Fig. 11 Class coverage statistics for each analyzed date (percentage).
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gives way to the scenario that agricultural practices have the tendency to intensify the salinization
processes. This is argued by the fact that more that 80% of the “herbaceous vegetation” class surface
correspond to agricultural areas and parcels of cultivated land, in all images. These are mostly rec-
ognizable by their rectangular shape, that may or may not present chlorophyll response, and, in some
images, by the presence of humidity/water or reworked land hues. Throughout the years, as these
cultivated parcels expand, patches of saline soil expand and/or new ones appear in the vicinity of
these parcels. These are mainly found in: (1) the Doucen area and around the Tolga Oasis, especially
in the El Amri area (Occidental Zab), and (2) the extended agricultural area between Sidi Okba and
Ain Naga (Oriental Zab), as can be observed in Fig. 10. The human influence is mainly due to the
method of irrigation and the quality of water with high salt concentrations and the manner of field
exploitation, which is incompatible with its vocation.18 Thus, our findings are compatible with those
of Mostephaoui et al.18 who underline that gypsiferous soils are very fragile and easily eroded
because of low organic matter content, poor structure, and sparse vegetation cover. Gypsum and
gypsiferous deposits cause impervious layers to hinder the growth of plant roots and that soil
will be less productive. They emphasize the fact that gypseous soils should have a specific man-
agement practice when using gypseous lands for agriculture or urban developments (Ref. 18 and the
references within).

Concerning the interannual change analysis, the main trends observed from the change
detection statistics are that the “herbaceous vegetation” class presents a major increase (of
34%) in the disfavor of the “green vegetation” class when comparing the 1984 and 2015
images dated at the beginning of the dry season. However, a major increase of the “green
vegetation” class compared to “herbaceous vegetation” class is noted at the end of the dry
season, of the same pair of years. This comes as a natural change as the herbaceous vegetation
class tends to be more sensitive to lack of rainfall and high temperature, as opposed to the green
vegetation class which is mainly composed of aridity-resistive palm groves, fruit trees, and
shrub vegetation.

Change detection results applied to the 1984 and 2015 pair show that, in both seasons, the
main classes with which highly saline areas class has interchanged are the classes of (in ascend-
ing order) moderately saline areas, urban fabric, herbaceous vegetation, water, bare soils (alluvial
deposits), and green vegetation classes. It must be mentioned that both the highly saline areas and
moderately saline areas classes have a similar increase trend when comparing the dry seasons of
1984 to 2015 images (of 48% and 150%, respectively) with the wet seasons of 1984 to 2015
images (of 33% and 164%, respectively). In Table 5 and Fig. 12, the change detection statistics of
the dry seasons of 1984 and 2015 are presented as an example.

4.6 Saline Areas Mapping Issues

In the Biskra area, the spectral analysis showed that the main factors affecting the reflectance of
salt-affected soils are quantity and mineralogy of salts, together with soil moisture, color, impu-
rities content, and surface roughness. The mineralogy of carbonate, sulfates, and chloride salts
determines the presence or absence of absorption features in the electromagnetic spectrum, asso-
ciated with internal vibration modes due to excitation of overtones and combination tones of the
fundamental anion groups (e.g., HOH, OH−, CO2−

3 , SO2−
4 ).84,92,103 The issues encountered in the

current study were those related to spectral confusion between saline areas, alluvial clayey
material, carbonate-rich soils, and outcropping limestone. Applying solely salinization indices
reported as having high accuracy when mapping salinity in similar areas,13,14,20,90 results were
not satisfactory, since clay and salt-rich soils, urban fabric features, bare land and carbonate-rich
surfaces identified together with saline areas and other techniques can cope with these issues.104

The application of both DTC and IsoDATA of Knepper ratios PCA showed satisfactory results
but an overall accuracy of around 76.06%, which may be due to the user dependency of the two
datasets (DTC, LCLU map) of the total of three employed (the aforementioned ones and
Knepper PCA). However, the results confirm that surface features common in drylands,
such as braided stream beds, eroded terrain surfaces with truncated soils, and nonsaline salt-
rich structural crusts, can generate high levels of reflectance, similar to those of areas with
high salt concentration, as stated by Ref. 84.
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5 Conclusion

The employment of the DTC has proven to be more flexible and adequate for the extraction of
highly and moderately saline areas and major land cover types, as it allows multisource infor-
mation and higher user control. In this study, we employ both visual and automated classification
methods. This methodological approach of two mapping methods proposed in this study was
conceived because it is meant to be replicable in areas where historical data are scarce, and the
access to acquire field data is limited, either because the areas are remote/large or because of
sociopolitical restrictions.

First, the visual interpretation of one Landsat scene of June 9, 2011, was undergone and a
detailed LCLUmap was generated. This phase was supported by a large set of ancillary data, and
the output map was validated with multisource GT points (field, pedological report, Google
Earth points). In the second phase, the decision tree was built based on a previous spectral analy-
sis and existing indices assessment and nonetheless, the construction of new ones according to
the current purpose. Third, the PCAwas applied to Knepper ratios composite, as a support for the
decision tree verification. The visually interpreted LCLU map was used for the validation of the
2011 DTC map for all land cover classes. However, GT points were also employed for the val-
idation of the 2011 DTC map, but only for the “highly saline” class. A comparison between the
2011 DTC maps and the IsoDATA classified Knepper ratios’ PC images was also undergone,
taking into consideration only the “highly saline” class.

The results were compared with IsoDATA classification maps applied to Knepper ratios PCA
and were proven to have a substantial advantage over this latter method. Out of a total of 11
indices employed in the DTC construction, five new indices were proposed for the current study.
The accuracy assessment of the salinity index (SMI) proposed in this paper for the extraction of
highly saline areas was verified through comparison with two other mapping methods, being of
around 95%. Applying postclassification change detection (ENVI), the statistics for the 1984 to
2014 diachronic analysis, comprising images acquired at the end of the wet season and at the end
of the dry season, have shown an overall increase of 53% of the highly saline areas surface, but
no substantial change between the seasons. The “moderately saline areas” class was noted to
have variations from one year to another, in terms of fluctuant increase–decrease and also within
the same year, as it was observed to be slightly more sensitive to seasonal conditions than the
“highly saline areas” class. However, it presented an overall increase of over 100% from 1984 to
2015, but still no substantial change from one season to another. In fact, the results showed that
even if we are dealing with a predesert area, the seasonal variations had minimum influence on
either highly or moderately saline areas correct delineation. The results showed only a slight
interchange between the two classes (of small surfaces) but no issues of correctly identifying,
delineating, or being masked by vegetation were observed.

One of the important aspects that emerged from the diachronic series analyses is that the
expansion of open field and industrial agriculture practices in the last three decades has led
and continues to contribute to a secondary salinization of soils. In the Occidental Zab, the
increase in salinized soils correspond to the expansion of phoeniciculture and market gardening
(often greenhouse). In the Oriental Zab, the large scale industrial agriculture, which required also
a large number of deep wells (given the 200 to 300 m depth of the exploitable groundwater), has
caused sporadic local appearance of small patches of salinized surfaces all along the lower slope
of the alluvial fan area.

Appendix: Land Cover and Land Use Map Nomenclature (Fourth Level of
Detail, Upper Levels Correspond to CORINE Land Cover Nomenclature)

1.1.1.1. Areas of urban centers;
1.1.1.2. Areas of ancient cores;
1.1.2.1. Discontinuous built-up areas with areas of bare soil;
1.1.2.2. Discontinuous built-up areas with areas of Palm groves or Oasis vegetation;
1.1.3.1. Peripheral urban wasteland;
1.2.1.1. Industrial or commercial units;
1.2.4.1. Airports with artificial surfaces of runways;
1.3.1.1. Quarries and open-cast mines;
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1.3.3.1. Construction sites;
1.4.2.1. Sport facilities;
2.1.2.1. Permanently irrigated land;
2.2.2.1. Primary Oasis;
2.2.2.2. Secondary Oasis;
2.4.1.1. Annual crops associated with Palm groves;
2.4.1.2. Annual crops associated with other permanent crops;
2.4.1.3. Arable land associated with greenhouses (maraicheres) with significant areas of

Palm groves;
2.4.1.4. Discontinuous arable land associated with Palm plantations;
2.4.2.1. Complex cultivation patterns;
2.4.3.1. Agricultural areas with significant share of natural vegetation, and with prevalence of

annual crops in late stages of phenophase;
2.4.3.2. Agricultural areas with visible cultivation pattern, with significant share of natural

vegetation, with the prevalence of annual crops in early phenological stage or not yet
sprouted (ploughted land prevailingly);

3.2.1.1. Natural, open grassland prevailingly without shrubs (<20%);
3.2.1.2. Open grassland with shrubs;
3.2.1.3. Riparian vegetation;
3.2.3.1. Mixed xerophilous vegetation;
3.2.3.2. Halophile vegetation;
3.3.1.3. River banks/beds sandy, dry Wadis;
3.3.2.1. Hamada;
3.3.2.2. Bare rock/soil, usually saline/alkali;
3.3.3.1. Nebkas (phytogenic coppice dunes);
3.3.3.2. Sparse vegetation on rocks/hamada;
3.3.3.3. Sparse vegetation on saline/alkali soils;
3.3.3.4. Sparse vegetated alluvial fans;
4.1.1.4. Saline (alkali) inland marshes without reed beds (<20%) and with other water plants;
4.1.1.5. Sebkha/daia;
4.1.1.6. Temporary humid areas floodable areas with no or little vegetation;
5.1.1.1. Wadi;
5.1.2.1. Water bodies.
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