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Abstract. Within the framework of the six-parameter nonlinear resultant shell theory
we consider the axially symmetric deformations of a cylindrical shell linked to a circular
plate. The reinforcement in the junction of the shell and the plate is taken into account.
Within the theory the full kinematics is considered. Here we analyzed the compatibility
conditions along the junction and their influence on the deformations and stressed state.

1 INTRODUCTION

Used in the engineering real shell structures usually consist of more than one regular
shell element, therefore it is important to develop proper description of thin elements
connections. Different theoretical, numerical and experimental approaches to modelling,
analyses and design of the multi-fold shell structures with junctions is presented in [1].
Junctions between regular shell elements can be considered as rigid, simply-supported or
deformable, they can also be treated as a reinforcement. In order to model junctions with
reinforcements here we use the non-linear resultant shell theory presented by Libai and
Simmonds [2], where the general, dynamically and kinematically exact six-field theory
of regular shell was formulated with regard to a non-material surface as the shell base
surface. Within the theory the kinematics of the shell is modelled using six degrees of
freedom, so the motion of each point of the shell is described with three translations
and three rotations. Here we consider multi-fold structures reinforced along junctions.
Following [1,3,4] we present the compatibility conditions for junctions with reinforcements,
which constitute the key-point of the problem. Other approaches are also known in the
literature, see, e.g., [5–13].

As an example we consider static axial deformation of an elastic cylindrical shell con-
nected with circular plate reinforced by an elastic ring along the junction. Restricting
ourselves by small deformations we present the analytical solution of the problem. So it
can be also used as a benchmark solution for more complex cases appeared in engineering.
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2 NONLINEAR SHELL EQUILIBRIUM EQUATIONS

Following [1,3,4] we consider a shell as a three-dimensional (3D) solid thin body which
in a reference (undeformed) placement is identified with a region B of the physical space
E having the 3D vector space E as its translation space. Geometry of B is described in
the normal coordinates (θα, ξ), α = 1, 2, where ξ = 0 defines the regular shell base surface
M ⊂ B, and ξ ∈ [−h−, h+] is the distance fromM , and h = h−+h+ is the shell thickness.
In an inertial frame (o, ik), where o ∈ E and ik ∈ E, k = 1, 2, 3, are orthonormal vectors,
the position vector x of an arbitrary point x ∈ B is given by

x(θα, ξ) = x (θα) + ξη(θα), (1)

where x (θα) = x(θα, 0) is the position vector of M , η = 1√
a
x ,1 × x ,2 is the unit normal

vector of M , a = det(x ,α · x ,β), and (...),α ≡ ∂
∂θα

(...).
In the deformed placement the shell is represented by the position vector y = χ(x ) of

the deformed material base surface χ(M) with attached three directors (dα,d) such that

y = χ(x ) ≡ x + u , dα = Qx ,α, d = Qη, (2)

where χ is the deformation function, u ∈ E is the translation vector ofM , andQ ∈ SO(3)
is the proper orthogonal tensor, QT = Q−1, detQ = +1. Defined on M tensor Q repre-
sents the work-averaged gross rotation of the shell cross-sections from their undeformed
shapes.
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Figure 1: Deformation of an irregular shell: reference (on the left) and actual (on the right) configura-
tions.

The exact resultant Lagrangian equilibrium conditions for the shell are derived by
performing direct integration across the shell thickness of the 3D global equilibrium con-
ditions of continuum mechanics, see for example [3]. Let f (θα), c(θα) be the resultant
surface force and couple vector fields acting on χ(M), but measured per unit area of M ,
and let n⋆(s), m⋆(s) be the resultant 1D boundary force and couple vector fields acting
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along χ(∂Mf ), but measured per unit length of ∂Mf . Then the exact, resultant, local
Lagrangian equilibrium conditions are [3]

DivsN + f = 0, DivsM + ax(NF T − FN T ) + c = 0 inM \ Γ, (3)

n⋆ −N ν = 0, m⋆ −Mν = 0 along ∂Mf ,

where (N ,M ) ∈ E ⊗ TxM are the surface tangential stress resultant and stress couple
tensors of the first Piola-Kirchhoff type, following from the Cauchy theorem nν = Nν

and mν = Mν of the resultant contact force nν and couple mν vectors, see Fig. 1,
where M = M1∪M2, Γ is the junction between two parts of the shell. F = Gradsy is the
surface deformation gradient, F ∈ E ⊗ TxM , ax(...) is the axial vector associated with
the skew tensor (...), ν is the surface unit vector externally normal to ∂M , whereas Grads

and Divs are the surface gradient and divergence operators on M , respectively.
In the general theory of shells the strain and bending tensors E and K in the spatial

representation are defined by the formulae

E = εα ⊗ aα, K = κα ⊗ aα, εα = y ,α − dα, κ =
1

2
d i ×Q ,αQ

Td i, (4)

where (aα,η) and (d i) are the base reciprocal to (x ,α,η) and (dα,d), respectively.
The referential shell stress and couple stress tensors as well as the referential shell strain

measures are defined by the relations

N = QTN , M = QTM , E = QTE , K = QTK . (5)

For an isotropic elastic shell we consider the following form of the surface strain energy
density W

W = α1tr
2E‖ + α2trE

2
‖ + α3tr(E

T
‖ E‖) + α4η · EET

η (6)

+ β1tr
2K‖ + β2trK

2
‖ + β3tr(K

T
‖ K‖) + β4η · KKT

η,

where

E‖ = E − ET
η, K‖ = K − KT

η,

denote the projections of E and K on the tangent space TxM ⊗ TxM to M at x ∈ M ,
and αk, βk are stiffness parameters, k = 1, 2, 3, 4. The stiffness parameters are given by

α1 = Cν, α2 = 0, α3 = C(1− ν), α4 = αsC(1− ν),

β1 = Dν, β2 = 0, β3 = D(1− ν), β4 = αtD(1− ν), (7)

C =
Eh

1− ν2
, D =

Eh3

12(1− ν2)
,

where E and ν are the Young modulus and Poisson ratio of the bulk material, respectively,
αs and αt are dimensionless coefficients, which play a role of shear correction factors, and
h is the shell thickness.

W generates the following constitutive equations for N and M
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Figure 2: Geometry in the vicinity of the junction

N = α1AtrE‖ + α2E
T
‖ + α3E‖ + α4η ⊗ ET

η, (8)

M = β1AtrK‖ + β2K
T
‖ + β3K‖ + β4η ⊗ KT

η,

where A = 1 − η ⊗ η, η · Aη = 0, while 1 ∈ E ⊗ E and A ∈ TxM ⊗ TxM are metric
tensors of the 3D space and of the undeformed base surface, respectively.

Let us consider the compatibility conditions along the junctions, see two folds connected
along curve Γ in Fig. 2. We treat the junction as a elastic reinforcement with additional
linear strain energy and stress measures n and m . We model the reinforcement using the
elastic Cosserat curve, that is 1D elastic continuum with additional constitutive relations,
see, e.g., [4] and the reference therein. The compatibility conditions along Γ are given by

n ′ + [[Nν ]] = 0 , m ′ + y ′
Γ × n + [[Mν ]] = 0 . (9)

Here yΓ = χ(xΓ) is the position of Γ in the actual configuration, n and m are the stress
resultant and stress couple vectors defined on Γ, the double square brackets denote a
discontinuity jump across Γ, the and the prime stands for the derivative with respect to
the arc-length s along Γ. Eqs. (9) can be derived from the virtual work principle, see [4]
for details. Let us note that the Cosserat curve model is kinematically consistent with
the six-parameter shell theory. In particular, one can describe the stretching, bending
and torsion of the reinforcement together with the deformations of the shell. The similar
model of reinforcements was also used in [7].

For small deformations, we simplify expressions of the strain measures (4) into the
forms

εα = u ,α − ϕ× x ,α, κα = ϕ,α, (10)
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where ϕ is the infinitesimal rotation vector such that Q ≈ 1−ϕ×1 if ‖ϕ‖ ≪ 1, and 1 is
the 3D identity tensor. In such a case we approximately have N ∼= N, M ∼= M, E ∼= E,
K ∼= K.

In what follows we consider small axially symmetric deformations of a cylindrical shell
connected to a plate, see Fig.3. The typical junction and the related free body diagram
are shown in Fig. 4.
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Figure 3: Connection: cylindrical shell – circular plate

3 AXIALLY SYMMETRIC DEFORMATIONS OF A CYLINDRICAL SHELL

Let us consider a thin circular cylindrical elastic shell of length L and of radius R.
An axisymmetric loading acting on shell structure produces an axisymmetric deformation
state of the form

u = u(z)ez + w(z)er, ϕ = ϕ(z)eφ, (11)

where er = cosφi1+sinφi2, eφ = −sinφi1+cosφi2, ez = i3 are the unit base vectors of the
cylindrical system of coordinates. By applying (11) the linearized strain measures take
the form

E = Gradsu − ϕ×A = u′ez ⊗ ez + (w′ − ϕ)er ⊗ ez +
w

R
eφ ⊗ eφ, (12)

K = Gradsϕ = ϕ′eφ ⊗ ez −
ϕ

R
er ⊗ eφ,
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where (...)′ = ∂
∂z
(...).

The surface stress measures N and M of the axisymmetric stress state are given by

N = Nzzez ⊗ ez +Nφφeφ ⊗ eφ +Nrzer ⊗ ez, (13)

M = Mφzeφ ⊗ ez +Mzφez ⊗ eφ +Mrφer ⊗ eφ.

The equilibrium conditions (3) transform into the simple form

N ′
zz = 0, N ′

rz −
Nφφ

R
= 0, M ′

φz +
Mrφ

R
+Nrz = 0, (14)

From (14)1 it immediately follows that Nzz = P ≡ const. The latter equations take the
form of the following five ODEs

u′ =
P

C
− ν

w

R
, w′ =

Nrz

α4
+ ϕ, ϕ′ =

Mφz

D(1− ν)
,

N ′
rz =

Nφφ

R
, Nφφ = νP + C(1− ν2)

w

R
,

M ′
φz = −

Mrφ

R
−Nrz, Mrφ = −β4

ϕ

R
.

(15)

For brevity we omitted here the general form of the solution of (15), let us only underline
that here we have five integration constants, in general.

Figure 4: Junction and its free body diagram

4 CIRCULAR PLATE UNDER AXISYMMETRIC LOAD

Let us consider the axisymmetric deformation of elastic circular plate under the action
of tensile forces p, see Fig. 3. We again assume that strains and deformations are small.

The axisymmetric deformation of the plate is described by

E = Gradsu −ϕ× 1 = u′er ⊗ er + (w′ − ϕ)ez ⊗ er +
u

r
eφ ⊗ eφ, (16)

K = Gradsϕ = ϕ′eφ ⊗ er −
ϕ

r
er ⊗ eφ,
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where (...)′ denotes now the derivative with respect to r. The stress measures N and M

take the form

N = Nrrer ⊗ er +Nφφeφ ⊗ eφ +Nzrez ⊗ er, (17)

M = Mφreφ ⊗ er +Mrφer ⊗ eφ.

From (8) and (16) it follows that

Nrr = α1(u
′ +

u

r
) + α3u

′ , Nφφ = α1(u
′ +

u

r
) + α3

u

r
, Nzr = α4(w

′ − ϕ) , (18)

Mφr = β3ϕ
′, Mrφ = −β3

ϕ

r
.

Equilibrium equations (3) reduce here to three ordinary differential equations

N ′
rr +

1

r
(Nrr −Nφφ) = 0, N ′

zr +
1

r
Nzr = 0, (19)

M ′
φr +

1

r
(Mφr +Mrφ) = 0.

where we assumed that f = c = 0. As a result, Nzr is given by

Nzr =
c1

r
, (20)

where c1 is the integration constant.
Substituting (18) into (19) we obtain three 2nd-order relations for u, w and ϕ

w = w0 +
c1r

2

2
+ c2lnr, u = d1r +

d2

r
, ϕ = c1r +

c2

r
, (21)

where c1, c2, d1, d2 and w0are integration constant.
The boundary conditions for the plate are given by the relations

Nrr = p, Mφr = 0 (22)

at the external boundary of the plate.
In the considered case the reinforcement coincides with an elastic circle which undergoes

stretching and torsion. Combining solutions for the shell and plate one can obtain the
system of linear algebraic equations for the integration constants. Note that the torsion
plays here an important role and leads to the bending of the both plates and shells. The
detailed discussion of the solutions for various boundary conditions preserving axially
symmetric deformations will be presented during the conference.

5 CONCLUSIONS

In the paper we discuss the benchmark solution for an elastic cylindrical shell con-
nected to a circular plate considering also an reinforcement along the junction. Using the
six-parameter shell theory and the Cosserat curve model of reinforcement we obtain an
analytical solution for the problem for various boundary conditions. We discuss in brief
the peculiarities of the problem. In particular, within the considered shell theory we have
a bending due to stretching of the plate which was not not present in solution given in [7].
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