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Abstract To evaluate whether a peculiar plasma profile
of fatty acids and endocannabinoidome (eCBome)-relat-
ed mediators may be associated to longevity, we assessed
them in octogenarians (Old; n=42) living in the east-

central mountain area of Sardinia, a High-Longevity
Zone (HLZ), compared to sexagenarian (Young; n=21)
subjects from the same area, and to Olds (n=22) from the
Northern Sardinia indicated as Lower-Longevity Zone
(LLZ). We found significant increases in conjugated
linoleic acid (CLA) and heptadecanoic acid (17:0) levels
in Old-HLZ with respect to younger subjects and Old-
LLZ subjects. Young-HLZ subjects exhibited higher cir-
culating levels of pentadecanoic acid (15:0) and retinol.
Palmitoleic acid (POA) was elevated in both Young and
Old subjects from the HLZ. eCBome profile showed a
significantly increased plasma level of the two
endocannabinoids, N-arachidonoyl-ethanolamine (AEA)
and 2-arachidonoyl-glycerol (2-AG) inOld-HLZ subjects
compared to Young-HLZ and Old-LLZ respectively. In
addition, we found increased N-oleoyl-ethanolamine
(OEA), 2-linoleoyl-glycerol (2-LG) and 2-oleoyl-
glycerol (2-OG) levels in Old-HLZ group with respect
to Young-HLZ (as for OEA an d 2-LG) and both the Old-
LLZ and Young-HLZ for 2-OG. The endogenous metab-
o l i t e o f docosahexaeno ic ac id (DHA) , N -
docosahexaenoyl-ethanolamine (DHEA) was significant-
ly increased in Old-HLZ subjects. In conclusion, our
results suggest that in the HLZ area, Young and Old
subjects exhibited a favourable, albeit distinctive, fatty
acids and eCBome profile that may be indicative of a
metabolic pattern potentially protective from adverse
chronic conditions. These factors could point to a suitable
physiological metabolic pattern that may counteract the
adverse stimuli leading to age-related disorders such as
neurodegenerative and metabolic diseases.
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Introduction

Human longevity is a fascinating yet intricate trait that is
likely the result of numerous interacting factors, includ-
ing genetic, metabolic, environmental and behavioural
aspects [1, 2].

The population living in the east-central mountain
area of Sardinia, known as a High-Longevity Zone
(HLZ), possesses a strikingly high number of long-
living people, rendering this population ideal for studies
aimed at understanding the factors that may determine
longevity [3, 4].

Contrary towhat is observed in normal ageing, which
is characterised by the disruption of homeostatic pro-
cesses that might predispose individuals to diabetes,
cardiovascular disease, stroke and other complications
[5, 6], long-lived people present lower incidence or
significant delay in the onset of age-related disorders.

Tissue fatty acid (FA) profile is a critical component
in the maintenance of cell and tissue homeostasis. FAs
not only affect membrane properties, they also exert
receptor-mediated effects through their metabolites. Tis-
sue FA composition is determined by several factors.
Dietary FA intake has been shown to exert only a
limited influence [7], but affects the levels of long-
chain n–3 polyunsaturated fatty acids (LC-PUFA n-3),
eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA), which even if present in relatively low concen-
tration in the diet, are strictly correlated to their tissue
levels. Mutual metabolic pathways, physio-pathological
conditions and other factors such as gut bacteria may
also strongly influence tissue FA profile. Recently, we
have shown that taste receptor-mediated feeding behav-
iour may also affect FA metabolism and thereby circu-
lating FA [8]. Amongst FA, odd-chain saturated FA
(OCS-FA) [mainly pentadecanoic acid (15:0) and
heptadecanoic acid (17:0)], conjugated linoleic acid
(CLA) and palmitoleic acid (POA, 16:1) can derive
from the diet, from specific metabolic pathways (POA,
15:0 and 17:0), or from gut bacteria (CLA, 15:0 and
17:0) [9–13]. Even at the relatively low concentrations
at which they have been detected in humans, these FAs
have been shown to possess or to be associated with
several biological effects [14–18]. CLA is produced by

anaerobic bacteria in the rumen [16–18] and is thereby
present in dairy products and ruminant meat, or pro-
duced by human gut microbiota [13]. CLA has been
shown to exert its effects on both adipocyte and skeletal
muscle metabolism [19–21], specifically related to the
reduction of lipid storage and adipogenesis in adipo-
cytes and the enhanced fat utilization in muscle via FA
beta-oxidation [22]. 15:0 and 17:0 are associated with
reduced risk for developing multiple sclerosis; they
seem to increase the fluidity of membranes to a degree
similar to that of PUFA [23, 24]. In a recent publication,
it was shown that tissue levels of OCS-FAwere lower in
Alzheimer’s disease patients when compared to control
subjects [25]; OCS-FA have also shown an anti-
carcinogenic effect in vitro [26]. Moreover, human cir-
culating 15:0 and 17:0 exhibit a significant inverse
association with the incidence of coronary heart disease
[27] and metabolic disease risk [27, 28]. In humans,
POA mainly originates from de novo lipogenesis
(DNL); the main product is palmitic acid (PA, 16:0) that
is converted into POA by stearoyl-CoA desaturase-1
[29]. DNL occurs in the liver when a surplus of glucose
is present and in adipose tissue where POA is later
incorporated into tissue lipids. PA is the most common
saturated fatty acid (SFA) in human tissues, representing
20–30% of total FA in membrane phospholipids and
adipose triacylglycerols [30]. Under physiological con-
ditions, PA plasma concentrations are not significantly
influenced by its dietary intake [31, 32], suggesting that
the homeostatic maintenance of PA is regulated by its
production via DNL on one side and its desaturation into
POA on the other [33–35]. POA was recently identified
as a lipokine following evidence that demonstrated its
release from adipose tissue and its metabolic effects on
distant organs improving insulin sensitivity [36].

FAs are also precursors of bioactive lipid molecules
named N-acyl-ethanolamines (NAE) and 2-monoacyl-
glycerols (2-MAG), as well as other amides of long-
chain FA which, together with the two arachidonic acid-
derived endocannabinoids (ECs) N-arachidonoyl-etha-
nolamine (anandamide, AEA) and 2-arachidonoyl-
glycerol (2-AG), act as mediators within the
endocannabinoidome (eCBome). The eCBome repre-
sents an extension of the endocannabinoid system
(ECS) comprising the aforementioned mediators, sever-
al receptors other than cannabinoid receptors type-1 and
type-2 (CB-1 and CB-2 respectively) such as peroxi-
some proliferator-activated receptors (PPARs) and
some orphan G protein-coupled receptors (GPCRs)
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and a plethora of proteins acting as anabolic and cata-
bolic enzymes for the mediators [37–41]. As many
physiological processes including energy homeostasis,
metabolism, reproduction, learning and memory
[42–45] the eCBome varies markedly with age [46].
Several are the conflicting reports regarding age-
related changes of CB-1 in the brain ranging from a
reduced mRNA expression in advanced age in rodents
[47, 48] to no changes or even region-specific increases
in CB-1 [49–52]. Same discrepancies are also observed
in humans [53–55]. As for modifications in the levels of
endogenous cannabinoids in ageing, there are also un-
clear results reporting diminished or no changes in AEA
levels during ageing in different brain regions in wild
type or CB-1-deficient mice [46]. Studies investigating
peripheral modifications of eCBome-related molecules
during ageing are even more unclear and scanty. Tissue
and circulating levels of eCBome molecules are also
altered by dietary factors and by gut microbiota [56].

Based on the influence that tissue FA and eCBome-
related molecules exerts on several metabolic and
chronic diseases, this study aims to evaluate whether a
peculiar plasma profile of FA and eCBome-related me-
diators may be associated to longevity in octogenarian
of the Sardinian HLZ, compared to sexagenarian from
the same area, and to Olds from nearby villages indicat-
ed as Lower-Longevity Zone (LLZ).

These data may contribute to individualise a meta-
bolic pattern as an early marker of longevity and to
formulate customised nutritional and life-style strategies
to meet this metabolic profile.

Methods

Study population

The subjects analysed in this study were enrolled in an
ongoing survey being conducted in an HLZ on the
island of Sardinia aimed at investigating the genetic
and non-genetic determinants of exceptional longevity.
The HLZ encompasses a population aged 80 years and
older living in six mountain villages of Sardinia famous
for their longevity [3, 57].

Blood specimens were collected from 42 octogenar-
ians from the HLZ (Old-HLZ; > 80 years) and 21
subjects whose ages ranged from 65 to 70 years from
the same villages (Young-HLZ). In order to include a
broader set of samples representative of a different area

of the islandwith a distinctly lower level of longevity for
comparison with the former sample set, a population of
22 octogenarians (Old-LLZ; > 80 years) was extracted
from the database of subjects from Northern Sardinia
who attended the University Hospital of Sassari for their
annual check-ups. Old-LLZ belonging to the same geo-
graphical territory as Old-HLZ should not exhibit any
differences, while the Young-HLZ group had a higher
LDL-cholesterol level than the Old-HLZ with a border-
line statistical significance (p = 0.049), as already been
reported [58]. Table 1 shows the general characteristics
of study participants.

Procedure

Ethics statement

The local Ethics Review Board (Prot. N. 136/CE, 9/2/
2012) of the Sassari University approved the study
protocol, and all participants provided written informed

Table 1 Mean values ± SEM of general characteristics in octo-
genarians (> 80 years) from an area of Sardinia that possesses a
strikingly high number of long-living people (Old-HLZ); subjects
(65–70 years) from the same zone (Young-HLZ) and octogenar-
ians (> 80 years) from a different area with a distinctly lower level
of longevity (Old-LLZ). (*MMSE: Mini–Mental State Examina-
tion (range from 0 to 30); #Score from 1 (very bad) to 5 (very
good); HLZ High-Longevity Zone; LLZ Lower-Longevity Zone).
To assess the statistical significance amongst groupswe performed
one-way ANOVA analysis. As for the LDL cholesterol, different
letters indicate significant differences amongst groups (p≤0.05)

Anthropometric characteristics

Old-HLZ Old-LLZ Young-HLZ

Mean SEM Mean SEM Mean SEM

Age range (years) ≥ 80 ≥ 80 65–70

Body mass index
(kg/m2)

26.3 5.0 26.4 5.2 27.1 6.8

Nursing home none 13.6% None

StandardizedMMSE* 19.7 6.5 22.7 8.1 27.5 7.8

Self–reported health# 3.4 0.6 4.2 0.7 3.5 0.8

Total cholesterol,
mg/dL

201 43 215 43 220 44

Triglycerides, mg/dL 140 64 142 55 152 77

HDL cholesterol,
mg/dL

42 12 50 14 49 10

LDL cholesterol,
mg/dL

129 37a 140 40a,b 148 34c

N of subjects 42 22 21

GeroScience



consent before entering the study. Several structured
questionnaires were administered to collect demograph-
ic and functional data.

Total lipids extraction and quantification

The lipids were extracted from human plasma using a
slightly modified Folch method [59]. The total lipid
quantification was performed by the method described
by Chiang [60].

Fatty acid analysis

An aliquot of the plasma lipid extract was mildly sapon-
ified; retinol and the FA were analysed to determine the
total free FA by HPLC using an Agilent 1100 HPLC
system with a diode array detector (Agilent Technolo-
gies, Palo Alto, CA, USA) as previously described [61].

Since SFA are transparent to UV detection, after
derivatization, they were measured as FA methyl esters
using gas chromatography (GC; Agilent Model 6890,
Agilent Technologies) as previously described [62]

Measurement of endocannabinoids and related
compounds An aliquot of the plasma lipid fraction
was used for quantification of eCBome-related media-
tors and deuterated internal standards were added to the
samples before extraction: [2H]8-AEA, [2H]5-2AG,
[2H]2-OEA, [2H]4-PEA, [2H]3-SEA (Cayman
Chemicals, MI, USA). Quantification of ECs and their
related molecules was carried out by an Agilent 1100
HPLC system (Agilent, Palo Alto, CA, USA) equipped
with a mass spectrometry Agilent Technologies QQQ
triple quadrupole 6420 with ESI source, using positive
mode (ESI+). A C-18 Zorbax Eclipse Plus column
(Agilent, Palo Alto, CA, USA) with 5 μm particle size
and 50×4.6 mm was used with a mobile phase of
CH3OH/H2O/CHOOH (80/20/0.1, v/v/v) at a flow rate
of 0.5 ml/min.

N2 was used as a nebulizing gas with a pressure of
50psig, drying gas temperatures 300 °C and flow of 11
L/min and 4000 V capillary voltage. For each standard,
the precursor ion [M+H]+ was determined during a full
scan (SCAN) in MS, and subsequently, the obtained
product ion (PI) was monitored for each transition in
MRM mode in MS/MS. Parameters of source, such as
cone voltage or fragmentor (CV) and collision energy
(CE), have been optimised for each MRM transition.

Data were acquired by the MassHunter workstation
acquisition software (version B.08.02) and analysed
with the MassHunter software for qualitative analysis
(version B.08.00 SP1) and quantitative analysis (version
B.09.00).

Statistics

The data are expressed as the mean ± SEM of moles of
each FA with respect to total FAs (mol%) and as
nmoles/ml plasma for the ECs and ECs-related mole-
cules, as specified in the legends.

FA and ECs and ECs-related molecules data were not
normally distributed, so the differences between the
three groups were assessed using nonparametric
Kruskal-Wallis test (one-way ANOVA on ranks)
followed by Dunn’s correction for multiple compari-
sons. Anthropometric characteristics were analysedwith
one-way ANOVA. Correlation studies were done using
the Spearman correlation coefficient. Data were
analysed using GraphPad Prism 6.0 (GraphPad Soft-
ware Inc., La Jolla, CA, USA) with p≤0.05 as the cut-
off for statistical significance between groups. Data with
different superscript letters were significantly different
according to the statistical analysis.

Results

Fatty acid profile

Total plasma FA profiles of Old-HLZ (> 80 years),
Young-HLZ (65–70 years) and Old-LLZ (> 80 years)
subjects from a different area in Northern Sardinia are
presented in Table 2. Concentrations of linoleic acid
(LA), an essential FA, significantly differed amongst
the Old subjects and the Young-HLZ group, with the
highest plasma levels in Old-LLZ and the lowest in
Young-HLZ subjects compared to Old-HLZ. Levels of
its metabolite gamma-linolenic acid (GLA) were signif-
icantly higher in Old-LLZ compared to Old-HLZ and
Young-HLZ.

Total SFA concentrations were significantly higher
in Young-HLZ when compared to Old-LLZ and Old-
HLZ. In particular, the level of the SFA stearic acid (SA)
was significantly higher in Young-HLZ compared to
both Old-HLZ and Old-LLZ (Table 2).

On the other hand, circulating levels of PA were not
significantly different amongst the groups (Table 2).
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Concentrations of the PA metabolite POA were signif-
icantly different amongst groups, with the highest
values in Young-HLZ subjects compared to Old-LLZ
and Old-HLZ subjects, even though the latter was not
statistically significant (Fig. 1a).

Concentrations of CLA significantly differ amongst
all three groups, with the highest plasma concentration
in Old-HLZ subjects (Fig. 1b). In circulating levels of
OCS-FA, we found a different trend between 15:0 and
17:0. While 15:0 displayed significantly higher levels in
Young-HLZ compared to both old groups (Fig. 1c),
17:0 showed a distinctively higher concentration in
Old-HLZ with respect to the other two groups (Fig. 1d).

To evaluate whether the circulating levels of OCS-
FA were derived from dairy fat intake, we performed
correlation analysis of plasma concentration for both

15:0 and 17:0 with CLA, which manly derives from
dairy products (Table 3). Our analysis showed no cor-
relation between CLA and 15:0 plasma levels in any
group. However, we found a negative correlation trend
between CLA and 17:0 circulating levels in Old-HLZ
and no correlation in the other groups. Furthermore, to
understand whether the presence of plasma OCS-FA
could be attributed to a biosynthetic pathway such as
alpha-oxidation and not to a ruminant gut microbiota
contribution, we evaluated the correlations between
15:0 and 16:0 and between 17:0 and 18:0. As shown
in Table 3, we found a strong positive correlation be-
tween 15:0 and 16:0 in Young-HLZ subjects, while no
correlations were observed for the other two groups.
Young-HLZ subjects also displayed a significant posi-
tive correlation between 17:0 and 18:0, while it was

Table 2 Mean values ± SEM of main plasma FA, expressed as
mol% respect to the total FAs, in octogenarians (> 80 years) from
an area of Sardinia that possesses a strikingly high number of long-
living people (Old-HLZ), subjects (65–70 years) from the same
zone (Young-HLZ) and octogenarians (> 80 years) from a differ-
ent area with a distinctly lower level of longevity (Old-LLZ). To
assess the statistical significance amongst groups, we performed
the Kruskal-Wallis test (one-way ANOVA on ranks) followed by

Dunn’s correction for multiple comparisons. Different letters in-
dicate significant differences amongst groups (p≤0.05). (FA, fatty
acid; PA, palmitic acid; SA stearic acid; POA, palmitoleic acid;
OA, oleic acid; ALA, alpha-linolenic acid; EPA, eicosapentaenoic
acid; DHA, docosahexaenoic acid; LA, linoleic acid; GLA,
gamma-linolenic acid; ARA, arachidonic acid; CLA, conjugated
linoleic acid; SFA, saturated fatty acid; MUFA, monounsaturated
fatty acid; PUFA, polyunsaturated acid)

mol% of total plasma fatty acid

Old-HLZ Old-LLZ Young-HLZ

Mean SEM Mean SEM Mean SEM

14:0 1.36 0.07a 1.74 0.17a 1.64 0.14a

15:0 0.42 0.05a 0.29 0.02a 0.64 0.04b

16:0 (PA) 28.72 0.37a 28.87 0.71a 30.40 0.74a

17:0 2.47 0.16a 1.55 0.08b 1.55 0.10b

18:0 (SA) 7.09 0.17a 6.87 0.18a 9.22 0.27b

16:1 (POA) 4.67 0.23a,b 3.76 0.35a 5.25 0.39b

18:1 (OA) 22.56 0.55a 23.71 1.53a 21.15 0.83a

18:3n3 (ALA) 0.27 0.01a 0.34 0.02b 0.32 0.03a,b

20:5n3 (EPA) 0.71 0.09a 0.48 0.05a 0.44 0.05a

22:6n3 (DHA) 1.29 0.06a 1.46 0.11a 1.47 0.13a

18:2n6 (LA) 21.21 0.55a 24.18 0.99a 18.23 0.68b

18:3n6 (GLA) 0.49 0.02a 0.63 0.05b 0.40 0.03a

20:4n6 (ARA) 6.27 0.27a 7.16 0.67a 6.35 0.32a

22:4n6 0.11 0.01a 0.11 0.01a 0.15 0.01b

CLA 0.25 0.02a 0.18 0.02b 0.12 0.01c

Total SFA 39.06 1.05a 37.43 2.01a 43.44 0.87b

Total MUFA 27.26 0.51a 27.31 1.37a 26.49 0.84a

Total PUFA 33.70 0.79a,b 36.97 1.68a 30.07 1.11b

N of subjects 42 22 21
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observed a statistically significant negative correlation
in Old-HLZ and no correlation in Old-LLZ subjects.

Levels of plasma retinol were higher in theYoung-HLZ
group with respect to both Old-HLZ and Old-LLZ (Fig.
2a). We also found higher DHA to EPA ratios, considered
a peroxisomal beta-oxidation index, (Fig. 2b) in Old-LLZ
and Young-HLZ compared to Old-HLZ.

eCBome mediators

The NAEs (Fig. 3a), AEA, N-oleoyl-ethanolamine
(OEA) and N-docosahexaenoyl-ethanolamine (DHEA)
showed significantly higher plasma levels in Old-HLZ
and Old-LLZ subjects compared to Young-HLZ while
for the DHEA, the Old-HLZ also significantly differed
from Old-LLZ. The opposite was observed for N-
palmitoyl-ethanolamine (PEA) where the Old-HLZ
and Old-LLZ groups showed the lowest levels com-
pared to Young-HLZ subjects.

Fig. 1 Mean values ± SEM of POA (a), CLA (b), 15:0 (c) and
17:0 (d), expressed as mol% of total FAs, in 42 octogenarians (>
80 years) from an area of Sardinia that possesses a strikingly high
level of long-living people (Old-HLZ); 21 subjects (65–70 years)
from the same zone (Young-HLZ) and 22 octogenarians (> 80
years) from a different area of Sardinia with a distinctly lower level

of longevity (Old-LLZ). To assess the statistical significance be-
tween groups, we performed the Kruskal-Wallis test (one-way
ANOVA on ranks) followed by Dunn’s correction for multiple
comparisons. Different letters indicate significant differences
amongst groups (p≤0.05). (POA, palmitoleic acid; CLA, conju-
gated linoleic acid)

Table 3 Correlations of 15:0 with CLA or 16:0 and 17:0 with
CLA or 18:0 in plasma of 42 octogenarians (> 80 years) from an
area of Sardinia that possesses a high number of long-living people
(Old-HLZ); 21 subjects (65–70 years) from the same zone
(Young-HLZ) and 22 octogenarians (> 80 years) from a different
area of Sardinia with a distinctly lower level of longevity (Old-
LLZ). Correlation studies were done using the nonparametric
Spearman correlation coefficient when appropriate. Values of
p≤0.05 were considered statistically significant. (CLA, conjugated
linoleic acid)

Old-HLZ Old-LLZ Young-HLZ

r P r P r P

15:0

CLA 0.18 ns −0.10 ns −0.11 ns

16:0 0.12 ns −0.21 ns 0.68 0.0006

17:0

CLA −0.27 0.08 -0.10 ns 0.30 ns

18:0 −0.45 0.003 0.23 ns 0.57 0.007
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2-MAG are shown in Fig. 3b; specifically, Old-HLZ
subjects had significantly higher plasma levels of 2-AG
compared to Old-LLZ and Young-HLZ, and of 2-
linoleoyl-glycerol (2-LG) compared only to the
Young-HLZ group. 2-oleoyl-glycerol (2-OG) revealed
higher concentrations in Old-HLZ compared to Old-
LLZ and Young-HLZ groups.

As for the PA-derived 2-palmitoyl-glycerol (2-PG),
the trend was the opposite: there was a significantly
greater amount in Young-HLZ, similar to those of the
Old-LLZ, respect to Old-HLZ subjects.

Discussion

In this study, we investigated whether a specific plasma
FA profile and/or modification in eCBome-related me-
diators are associated with the exceptional longevity of
the HLZ population of Sardinia. Our data show a char-
acteristic plasma FA profile and modifications in ECs-
related molecules that may be consistent with the main-
tenance and increased capacity to regulate homeostatic
balance against environmental challenges in octogenar-
ians from the HLZ.

Higher levels of plasma POA may be a distinctive
feature of the HLZ and a sign of a favourable metabo-
lism since it is associated with enhanced insulin sensi-
tivity, decreased lipid accumulation in the liver, and
significant amelioration or prevention of diabetes [63,
64]. In addition, POA derived from adipose tissue DNL
protects the adipose tissue against the deleterious effects
of dietary lipid exposure, strongly stimulates muscle
insulin action and suppresses hepatosteatosis in mice
[63].Moreover, adipose tissue DNL has been associated
with caloric restriction [65], which has been shown in

numerous mammalian species to prolong life span and
delay the development of ageing-associated diseases
such as diabetes and atherosclerosis [66]. It is therefore
highly plausible that enhanced DNL in adipose tissue
improves glucose homeostasis and may mediate
favourable metabolic effects, possibly including the re-
lease of POA into the circulation [67]. On the contrary,
PA levels did not differ amongst the groups; this POA
precursor is implicated in various physio-pathological
conditions such as atherosclerosis, neurodegenerative
diseases and cancer [68, 69]. The fact that Old-HLZ
participants displayed circulating levels of POA similar
to those in Young-HLZ leads us to hypothesise that
more efficient DNL in adipose tissue leading to a gen-
eral improvement in insulin sensitivity and consequent
amelioration of muscle efficiency occurs in Old-HLZ
and not Old-LLZ. This is in agreement with the excep-
tional physical functionality in relation to an high total
energy expenditure that we observed in octogenarians
from the HLZ [57]. The increase in SA levels in Young-
HLZ may be also derived from adipose tissue DNL.

Moreover, we found significantly higher circulating
levels of CLA in Old-HLZ subjects compared to both
Old-LLZ andYoung-HLZ, whichmight reflect a greater
intake of dairy products in Old-HLZ [70] or the presence
of specific CLA-producing gut microbes [9, 12, 13]
such as Bifidobacterium spp., known to be higher in
centenarians [71]. This could be relevant because a
significant number of studies report CLA effects [19,
20, 22] including enhanced fat utilization in muscle via
FA beta-oxidation [22] and the capacity to prevent age-
associated obesity and muscle loss as demonstrated in
mice models, with the potential to prevent sarcopenia
and sarcopenic obesity [72–74]. Based on the
biohydrogenation pathway observed in the rumen, some

Fig. 2 Mean values ± SEM of retinol (a), expressed as nmoles/ml
plasma, and peroxisomal beta-oxidation index (DHA/EPA) (b) in
42 octogenarians (> 80 years) from an area of Sardinia that
possesses a strikingly high level of long-living people (Old-
HLZ); 21 subjects (65–70 years) from the same zone (Young-
HLZ) and 22 octogenarians (> 80 years) from a different area with

a distinctly lower level of longevity (Old-LLZ). To assess the
statistical significance between groups, we performed the
Kruskal-Wallis test (one-way ANOVA on ranks) followed by
Dunn’s correction for multiple comparisons. Different letters in-
dicate significant differences amongst groups (p≤0.05). (EPA,
eicosapentaenoic acid; DHA, docosahexaenoic acid)
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authors have proposed that a similar pathway can also
occur in the human gut due to the presence of an
extensive number of bacteria highlighting their metabol-
ic potential in host physiology [75–77].

The small but significant differences found in the
circulating levels of LA may be due to either slight
changes in dietary intake and/or enhancement of LA
beta-oxidation. In any case, while this increase was
mirrored by the level of its delta 6 desaturated metabo-
lite GLA, the other important metabolite arachidonic
acid did not change significantly.

OCS-FA origin has long been attributed to the diet
because they are produced by rumen microbial fermen-
tation and microbial DNL [26, 78, 79] and then incor-
porated into fat depots. OCS-FA have been shown to
have beneficial effects [27, 80] and may exhibit protec-
tive properties against several age-related ailments such
as Alzheimer’s disease [25], cancer [26], coronary heart
diseases [27] and metabolic diseases [27, 28]. The dis-
tinctively higher levels of 17:0 in Old-HLZ and 15:0 in
Young-HLZ may result from different metabolic path-
ways. In fact, the lack of correlation between 15:0 and
CLA in Old-HLZ and the trend toward negative corre-
lation found between 17:0 and CLA in Old-HLZ may
suggest that they do not derive from a common dietary
source, i.e., dairy products, as it has been previously
suggested for 15:0 [26, 81] but not for 17:0 [78, 82]. In
addition, we did not find any correlation between 17:0
and LC-PUFA n-3 (data not shown), which rules out a
possible association between 17:0 and the intake of fish
as previously demonstrated in a large cohort study that
identified a strong positive correlation [82].

An exclusive association of dietary 15:0 and 17:0 and
their tissue levels remains elusive but there have not

been investigations into the contributions from non-
ruminant gut microbiota or from biosynthesis such as
alpha-oxidation, a pathway that utilizes the elimination
of the alpha-carbon, through the conversion of 16:0 or
18:0 (end products of DNL) to a hydroxyl FA followed
by decarboxylation to produce either 15:0 or 17:0, re-
spectively [10, 83, 84]. Thus, we explored whether
alpha-oxidation could explain the presence of circulat-
ing OCS-FA, particularly 17:0. The observed strong
positive correlation between 15:0 and 16:0 and between
17:0 and 18:0 only in Young-HLZ participants and the
concomitant higher plasma accumulation of 15:0
strongly suggest that rather than originating from a
dietary source; this lipid may derive from an enhanced
16:0 alpha-oxidation. Indeed, this pathway has been
shown to be induced by the activation of the PPAR-
alpha [85]. PPAR-alpha activation is known to improve
lipid and energy metabolism [86]. However, we ob-
served a significant negative correlation between 17:0
and 18:0 in Old-HLZ. Therefore, this rules out the
putative origin induced by an alpha-oxidation pathway
but rather suggests derivation from the gut microbiota.
In fact, 17:0 could be derived by the elongation of
propionic acid (3:0), a volatile short chain FA derived
from food fermentation that could be trapped by bacteria
and used to produce OCS-FA. Indeed, due to its influ-
ence on human metabolism and immunology, the gut
microbiota has been proposed as a possible determinant
of healthy ageing [87, 88]. Thus, the apparent discrep-
ancy found in the literature on the significance of circu-
lating OCS-FA levels may be ascribed to their different
origin. In the present study, with correlation analysis, we
were able to shed some light on whether they originate
from metabolic alpha-oxidation or gut microbiota.

Furthermore, besides its impact on human health and
immunity, higher gut microbial diversity and enrich-
ment of several potentially beneficial bacterial taxa have
been linked to healthy ageing. For instance, this is the
case with well-known beneficial microbes such as
Akkermansia muciniphila and Bifidobacterium spp. that
are found to be present in higher levels in long-lived
people, possibly revealing a link between healthy ageing
and gut microbiota [89, 90]. Interestingly, recent strong
evidence obtained in humans suggests a link between
the microbiota and CLA in the human body [9, 11–13].
Druart et al. have found a positive correlation of CLA
t i s sue l eve l w i th spec i f i c f aeca l bac t e r i a
(Bifidobacterium spp., Eubacterium ventriosum and
Lactobacillus spp.) and an inverse correlation with

Fig. 3 Mean values ± SEM expressed as nmoles/ml plasma of
endocannabinoidome mediators. N-acyl-ethanolamines (a) and 2-
monoacyl-glycerol (b) in 42 octogenarians (> 80 years) from an
area of Sardinia that possesses a strikingly high level of long-living
people (Old-HLZ); 21 subjects (65–70 years) from the same zone
(Young-HLZ) and 22 octogenarians (> 80 years) from a different
area with a distinctly lower level of longevity (Old-LLZ). To
assess the statistical significance between groups, we performed
the Kruskal-Wallis test (one-way ANOVA on ranks) followed by
Dunn’s correction for multiple comparisons. Different letters in-
dicate significant differences amongst groups (p≤0.05). Ananda-
mide (AEA), palmitoyl-ethanolamide (PEA), oleoyl-ethanolamide
(OEA), docosahexaenoyl-ethanolamide (DHAEA), 2-
arachidonoyl-glycerol (2-AG), 2-palmitoyl-glycerol (2-PG), 2-
linoleoyl-glycerol (2-LG), 2-oleoyl-glycerol (2-OG)
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serum cholesterol (total, LDL, HDL). These correlations
suggest a potential beneficial effect of some of these
metabolites, but this remains to be confirmed by further
investigation [13]. Importantly, the bacteria that are
found to be linked with CLA production are also known
as beneficial microbes (e.g., Bifidobacterium spp.,
Faecalibacterium prausnitzii) [91]. A recent study
shows that alteration of the microbiota via the use of
prebiotics was associated with a reduction in low-grade
inflammation, improvement in cardiometabolic profile
and an increase in the specific taxa known to produce
CLA [92]. Therefore, we now have clear evidence that
changes in the tissue levels of specific FA, such as CLA,
may not only be derived from dietary sources, but can
also clearly be produced by the gut microbiota and
accumulate in host tissues. Therefore, we can speculate
that the microbiota of Old-HLZ, rich in CLA-producing
bacteria, can partly explain the higher overall-health
profile apparent in the Old-HLZ group.

Interestingly, in Young-HLZ, the observations that
(1) the higher circulating levels of retinol, the increase of
which has been previously shown to be linked to PPAR-
alpha induction [93] and (2) the higher DHA/EPA ratio,
previously shown to be a marker of increased peroxi-
somal beta-oxidation induced by PPAR-alpha [94], to-
gether support the hypothesis of enhanced PPAR-alpha
activity.

The balance between ageing processes and
counteracting homeostatic mechanisms is important in
the progression of ageing and there are numerous stud-
ies demonstrating that the activity of eCBome can mod-
ulate this balance [95]. However, very few data are
available concerning the eCBome modifications during
age-related processes. We therefore measured a panel of
eCBome-related mediators to investigate about a possi-
ble association with the exceptional longevity of the
HLZ of Sardinia. The significantly elevated plasma
levels of the two ECs in Old-HLZ subjects respect to
Young-HLZ could modulate several functions through
the activation of the cannabinoid receptors CB-1 and
CB-2 and non-cannabinoid receptors [96]. Studies in
experimental animals showed that the absence of CB1
receptors in specific neuronal types accelerates the ap-
pearance of brain ageing indicators, including neuronal
loss and chronic neuroinflammation [97]; at the same
time, mice lacking CB2 receptors showed a phenotype
that is also reminiscent of accelerated ageing [98, 99].
Therefore, the increase of ECs observed in our study
could positively prevent the disruption of cannabinoid

receptors activity in enhancing the age-related decline in
several tissues in which they have important physiolog-
ical functions [100]. The same ECs can, at
submicromolar concentrations, modulate other targets
and therefore either reduce or enhance their effects on
the cannabinoid receptors. For example, activation of
TRPV1 channels, whose activation can both exacerbate
and counteract some of the major symptoms in animal
models of Parkinson’s and Huntington’s diseases, is the
best-established non-CB1, non-CB2-receptor-
mediating action of AEA [101–105]. 2-AG can directly
enhance GABAA receptor activity [106], influencing
several aspects of ageing and neurodegeneration, the
development of neuroinflammation and the establish-
ment of synaptic plasticity. Finally, both AEA and 2-
AG may also activate PPAR-gamma, a player in the
control of neuronal activity and neuroinflammatory
lipids [107, 108]. Notably, the same receptors, following
their ligand-dependent activation, can exert important
physiological functions also in peripheral tissues, further
complicating the already intricate mechanism at central
l eve l . No t ewor thy , t he l eve l s o f t he two
endocannabinoids AEA and 2-AG increased both sig-
nificantly only in Old-HLZ subjects respect to Young-
HLZ and the Old groups respectively. Therefore, the
putative beneficial effects, described above, of the com-
bination of these two ECs may regard only the Old-
HLZ.

Important findings of our study are the higher OEA,
2-LG and 2-OG levels in Old-HLZ group compared to
Young-HLZ (as for OEA and 2-LG) and both the Old-
LLZ and Young-HLZ for 2-OG. These molecules,
which are congeners of the ECs, are known to be ago-
nists (OEA with higher potency than 2-LG and 2-OG)
of the GPR119 receptor [109]. This receptor, once acti-
vated, controls glucose homeostasis by enhancing insu-
lin secretion in pancreatic β-cells and by stimulating, by
boosting cAMP levels, secretion of glucose-dependent
insulinotropic polypeptide (GIP), glucagon-like pep-
tide-1(GLP-1) and peptide YY (PYY), all gut hormones
which in turn induce additional increases in insulin
secretion and improve hepatic glucose metabolism
[110–113]. All these processes are known to deteriorate
during ageing [114], thus leading us to hypothesise a
positive metabolic rearrangement in elderly subjects of
the HLZ. Conversely, PEA, which is also a potent
agonist of GPR119, exhibited lower levels in the Old-
HLZ compared with the Young-HLZ subjects, leading
us to speculate about a possible counterbalancing
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mechanism. Notably, both OEA and PEA are also li-
gands of the PPAR-alpha receptor [115].

Interestingly, previous studies fromEverard and Cani
[116] demonstrated that A. muciniphila administration
significantly increased intestinal levels of 2-OG, which
stimulates GLP1 secretion, and 2-AG which was shown
to reduce metabolic endotoxemia, peripheral and brain
inflammation and circulating inflammatory cytokines.
Furthermore, a bioinformatically based analysis on
GPCR activity identified a clear overlap in structure
and function between bacterial and human GPCR-
active ligands for the receptor GPR119. This study leads
to the isolation of the palmitoyl and oleoyl analogues of
N-acyl serinol, differing from 2-OG by the presence of
an amide instead of an ester and from OEA by the
presence of an additional methanol substituent [117].
Based on this, we speculate that the changes we ob-
served in the EC-related ligands could directly derive
from the gut microbiota. However, more studies to
define the role of microbiota-encoded small molecules
in host–microbial interactions and in the endogenous
mammalian signalling are needed.

Our study also highlighted in Old-HLZ significantly
higher levels of the endogenous metabolite of DHA,
DHEA, also known as synaptamide [118], which is
known to bind the neurotrophic orphan receptor
GPR110 (ADGRF1) recently identified as new GPCR
target for immune regulatory function by upregulating
cAMP-dependent signalling in microglia and innate
peripheral immune cells under LPS- or TNF-α-
stimulated conditions [119]. Considering the ageing
process the result of the occurrence of a low grade
chronic pro-inflammatory status called ‘inflammaging’,
a term indicating that ageing is accompanied by a mild
degree of chronic inflammation and an upregulation of
inflammatory response [120], DHEA high levels found
in the Old-HLZ group represent a sign of favourable
metabolism since it has been shown to improve synap-
togenesis, but also to possess a strong anti-inflammatory
property [121].

Conclusions

Our data collected from circulating FA and eCBome
profiles suggest that the peculiar changes found in Old-
HLZ could be influenced by several pathways compris-
ing several metabolic conditions rather than a specific
dietary pattern in this long-living population. This seems

to be confirmed for high circulating levels of POA and
17:0. Furthermore, changes in 17:0 and CLA levels
could derive from the metabolic activity of some species
of the gut microbiota. Changes in the eCBome are
indicative of an increased capacity in Old-HLZ of envi-
ronmental challenges in terms of glucose metabolic
homeostasis and brain function. If these data are con-
firmed in a larger cohort, more targeted studies should
be devoted to evaluating whether Young-HLZ subjects
in the HLZ area are protected from chronic diseases by a
metabolic pattern associated with an enhanced PPAR-
alpha activity and whether Old-HLZ subjects are simi-
larly protected by a highly favourable microbiota pro-
file. Our results provide a valuable source of information
for future studies aimed at examining how these meta-
bolic changes might forge a means of avoiding the
adverse conditions that lead to age-related disorders.

It is known that ageing increases DNA breaks and
activates DNA-dependent protein kinase (DNA-PK) in
skeletal muscle, suppressing mitochondrial function and
energy metabolism [122]; PPAR-alpha activation coun-
teracts this process, possibly resulting in a delay of
metabolic decline with age [123]. Interestingly, this
decline can be prevented with lifestyle modifications
such as caloric restriction and/or physical activity [122].

Therefore, the changes that we have detected may be
related to a peculiar lifestyle in the HLZ zone, particu-
larly in the Young-HLZ subjects who are in the age
range wherein metabolic disorders may be prodromal
for chronic diseases. Whether gut microbes are the key
components in such observations and how they can
contribute to health warrants further investigation.
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