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Abstract: The building sector is known to have a significant environmental impact, considering
that it is the largest contributor to global greenhouse gas emissions of around 36% and is also
responsible for about 40% of global energy consumption. Of this, about 50% takes place during the
building operational phase, while around 10–20% is consumed in materials manufacturing, transport
and building construction, maintenance, and demolition. Increasing the necessity of reducing the
environmental impact of buildings has led to enhancing not only the thermal performances of
building materials, but also the environmental sustainability of their production chains and waste
prevention. As a consequence, novel thermo-insulating building materials or products have been
developed by using both locally produced natural and waste/recycled materials that are able to
provide good thermal performances while also having a lower environmental impact. In this context,
the aim of this work is to provide a detailed analysis for the thermal characterization of recycled
materials for building insulation. To this end, the thermal behavior of different materials representing
industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw
materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural
fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated
materials were able to improve not only the energy performances but also the environmental comfort
in both new and in existing buildings. In particular, plasters and mortars with recycled materials
and with natural fibers showed, respectively, values of thermal conductivity (at 20 ◦C) lower than
0.475 and 0.272 W/(m·K), while that of building materials with natural fibers was always lower than
0.162 W/(m·K) with lower values for compounds with recycled materials (0.107 W/(m·K)). Further
developments are underway to analyze the mechanical properties of these materials.

Keywords: thermal conductivity; recycled building materials; building insulation materials; sustain-
able building materials; sustainability; circular economy

1. Introduction

In the past few years, in both developed and developing countries, there is growing
attention to the concepts of sustainability and energy-saving. This constant and increasing
awareness is due to the fact that several issues like global warming, natural resources
depletion, deforestation, and ozone layer depletion are threatening the livability and
existence of the majority of species on earth [1,2]. In light of these vulnerabilities, it is
quite clear that to preserve the global environment and the planet itself, crucial urgent
interventions are needed. To enable global pollution mitigation, decisions have to be
taken into account including several aspects such as lifestyle changes, energy consumption
patterns, resource distribution, and energy efficiency production [1,3]. It is well known that
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the building sector is the largest contributor to global greenhouse gas (GHG) emissions
(around 36% in the European Union) [4–6], of which over 80% take place during the
building operational phase [7]. Furthermore, the building sector is responsible for about
40% of global energy consumption and the major part (about 50%) is principally due
to residential and commercial buildings meeting various energy needs such as heating,
ventilation, air conditioning (HVAC), and water heating [8]. A smaller percentage, around
10–20%, of energy is consumed in other activities such as (i) the manufacturing of building
materials; (ii) transport of building materials from production plants to building sites;
(iii) construction of the building; (iv) operation of the facilities (“operational” energy); and
(v) end-life demolition activities [9,10].

In light of this, the European Union (EU) has already committed itself to strongly
reducing the energy consumption of new and existing buildings [11]. Among all possi-
ble actions, the insulation of new and existing buildings plays a key role, since it is well
known that good thermal insulation of the building could lead to saving about 65% of the
energy consumption [12–15]. As highlighted in [16,17], most of the insulating materials
are made mainly from natural and man-made synthetic (organic and inorganic) fibers and
several studies have investigated the thermo-physical properties of such materials. Their
“best” thermal conductivity was found to range from 0.015 W/(m·K) for aerogel panels
to 0.100 W/(m·K) for recycled rubbers, as also shown in [18] and [19]. On the other hand,
in recent years, increasing attention has been paid not only to energy efficiency, but also
to the ecological and environmental impacts and overall sustainability of buildings and
building materials. Indeed, recently, the EU introduced the Renovation Wave Strategy
(RWS) with the objective to improve the energy performance of buildings through higher
energy and resource efficiency, which is to be achieved by doubling the renovation rate in
the next 10 years [20]. Among the lead actions, the RWS emphasizes the need to expand the
market for sustainable construction products and services including the integration of new
materials and nature-based solutions, material reuse, and recovery targets. Thus, major
attention is being given not only to shifting from synthetic materials to natural/biological
ones [1], but also to exploiting the use of waste and recycled materials for insulation pur-
poses. Among the latter, recycled glass fiber, recycled PET, asphalt mixtures with recycled
materials [21,22], recycled rubber, and recycled textile fiber (e.g., jute fiber recovered from
old jute bags [23]) have been investigated in different studies, showing that their thermal
conductivity is quite in line with one or the other above-mentioned materials, varying from
0.031 to 0.140 W/(m·K). Considering conventional insulating materials (e.g., synthetic,
sheep wool, glass wood, cellulose, hemp, jute etc.) or uncommon ones (e.g., recycled
glass fiber, recycled PET, recycled textile etc.), these are sold in panel format or in rolls
for installation [24]. These formats can present some technical difficulties in their imple-
mentation such as encumbrance, because the insulation is applied externally as a separate
layer to the load-bearing structure, and then buffered on the outside with an additional
brick lining. Thus, there is growing interest in novel building/insulating materials made
by mixing materials of biological origin (e.g., hemp, date palm fiber, oil palm fiber, cork,
etc.) or recycled waste materials (e.g., recycled PET) with typical binding materials (e.g.,
lime, cement, clay, etc.), which would allow insulating plasters with easy applicability and
reduced encumbrance to be obtained. In this context, El Azhary et al. [25] mixed straw at
various proportions with clay and studied the thermal properties of the resulting material;
Benmansour et al. [26] investigated the mortar’s thermo-mechanical behavior (cement and
sand at various proportions) reinforced with two different sizes and mixtures of date palm
fibers. Hempcrete (lime and hemp concrete) was manufactured by Elfordy et al. [27] and
the thermo-mechanical properties of the same were evaluated. Valenza et al. [28] created a
cement matrix by using washed and un-washed Sicilian sheep wool (waste product) cut
into three different sizes and percentage and studied the samples’ thermal insulation and
mechanical properties. As mentioned in Raut and Gomez [29], in Malaysia, oil palm waste
is recognized as a problem for the local environment; therefore, the authors evaluated the
possibility of using industrial residuals like oil palm and fly ash as a binder along with



Energies 2021, 14, 3564 3 of 16

cement and oil palm fiber as a reinforcing material. The applicability of jute fiber mainly
focused on its use for reinforced concrete, as shown in Zakaria et al. [30]. The application
of jute fiber is shown in Ferrandez-García et al. [23], where the fibers were recovered from
end-life transportation jute bags to prepare thermo-mechanical panels. An interesting solu-
tion, not only from a thermophysical point of view, but also from the eco-sustainability one,
is lightweight concrete with recycled-PET aggregates (recycled polyethene terephthalate)
for which a thermal conductivity of 0.034 W/(m·K) was found in [31–34].

In this context, it is clear that both recycled and natural materials, derived from local
industrial and/or agricultural wastes, could play a major role in the construction sector,
being able not only to provide good energy performances if integrated into traditional
building materials, but also meeting the need for eco-sustainability and waste minimization.
Their impact could be even higher in isolated regions and islands, taking on an even more
significant economic value. This study falls under the regional project PLES (Local Products
for Sustainable Construction) of the region of Sardinia (Central Italy), whose main goal is
to promote the local construction market and help make it self-sufficient in terms of newer,
innovative, and sustainable building materials. The aim of this work was to provide a
detailed analysis for the thermal characterization of locally sourced (i.e., at 0-km) recycled
materials for building insulation. To this end, the thermal behavior of different materials
representing industrial residual or wastes, collected or recycled using Sardinian zero-km
locally available raw materials, was investigated, namely: (i) plaster with natural fibers; (ii)
plasters with recycled materials; and (iii) thermo-insulating building materials with natural
fibers. As a further insight, in order to estimate the possible energy savings obtainable
with the use of the above-mentioned materials replacing traditional plasters, a numerical
simulation was carried out on a case-study building in different scenarios, for different
climatic conditions and for different reference stratigraphies: a typical building built in
the 1980s and those whose elements (e.g., plaster, brickwork, thermal insulation) offer the
maximum allowed U-values, according to local regulations.

2. Materials and Methods
2.1. Sample Materials

The materials investigated within this paper were obtained by mixing typical binding
materials of the Sardinian subsoil, specifically lime putty, opus signum, and raw clay, and
insulating materials represented by natural waste products or agricultural by-products
normally destined for landfill. A total of twelve nature-based thermal insulation specimens
were realized using different binding as well as insulating materials and using sand (3 µm
diameter) as the aggregate (Table 1).

Table 1. Ingredients involved in the samples’ realization.

Binding Elements Aggregating Material Strengthening and Insulating Materials

Lime

Sand

Sheep wool fibre 3 cm (±2 mm) long
Opus signinum Thistle fibre 1 cm (±2 mm) long

Clay Hemp shives 1 cm (±2 mm) long
Jute fibre 1 cm (±2 mm) long

Referring to Table 1, the wool fibers were collected from mattress stuffing, couches,
and chairs padding. The fibers were washed, dried and sanitized to remove the impurities
and finally manually cut to obtain the desired length. The hemp shives were collected
and pealed directly from the hemp stalks, not processed or combed. They represent a
huge production of agricultural waste that, according to current legislation, should be
disposed of in landfills or incinerators. The jute fiber was collected from recycled jute bags,
traditionally used to carry and store potatoes, cereals, coffee, etc. The broken bags were
chopped into small pieces and later washed to remove the dust, treated, and combed to
make the fiber suitable for the preparation of samples. The opus signinum was obtained
from crushed tiles, no longer usable for their primary covering function, and which would
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otherwise be sent to landfill sites. The calcium hydrated lime used as the binder was class
CL 80-S according to EN 459-1:2015 [35]. The clay was collected from local extraction in
central Sardinia by removing sediments with a steel mesh sieve and water.

The twelve samples realized and consequently analyzed can be classified into three
different groups depending on whether the mixtures are intended for preparation with
natural fibers or recycled materials: (i) plaster with natural fibers; (ii) plaster with recycled
materials; and (iii) building-insulation materials; such samples are presented in Table 2.

Table 2. Details of the analysed samples.

Group
Sample Id.

Number and
Dimensions

Samples Materials Used
Sample

Composition
Dry Weight [%]

Water to
Binder Ratio

[%]

Density
[kg/m3]

Plaster with
Recycled
Materials

S13
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32% 1684.46 
(300 × 300 mm2) 

Sand 45% 

Calcium carbonate 11% 

S10 

 

Lime putty & Opus 
signinum 

44% 
32% 1793.1 

(300 × 300 mm2) 
Sand 45% 

Calcium carbonate 11% 
S12  

 

Lime putty 41.50% 

33% 1793.1 
(300 × 300 mm2) 

Opus signinum 18.50% 

Sand 40% 

S09  

 

Opus signinum 44% 

32% 1659.58 
(300 × 300 mm2) 

Sand 45% 

Calcium carbonate 11% 

Plaster with Natural 
Fibres 

S14 

 

Sheep wool fibre  3% 

39% 1390.91 
Lime putty 16% 

(300 × 300 mm2) 
Opus signinum 36% 

Sand 35% 
Calcium carbonate 9% 

S11 

 

Sheep wool fibre  4% 

39% 1114.61 
Lime putty 43% 

(300 × 300 mm2) 
Sand 42% 

Calcium carbonate 11% 

S06 

 

Sheep Wool & This-
tle fibres 

3% 

39% 1101.48 
Lime putty 16% 

Opus signinum 36% 

(100 × 100 mm2) 
Sand 35% 

Calcium carbonate 9% 

S05 

 

Sheep Wool & This-
tle fibres 

4% 

36% 1206.06 Lime putty 43% 

(100 × 100 mm2) 
Sand 42% 

Calcium Carbonate 11% 

Sheep wool
fibre 4%

39% 1114.61Lime putty 43%

(300 × 300 mm2)
Sand 42%

Calcium
carbonate 11%

S06
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Lime putty 16% 

(300 × 300 mm2) 
Opus signinum 36% 

Sand 35% 
Calcium carbonate 9% 

S11 

 

Sheep wool fibre  4% 

39% 1114.61 
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Sheep Wool & This-
tle fibres 

3% 

39% 1101.48 
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Calcium carbonate 9% 

S05 

 

Sheep Wool & This-
tle fibres 

4% 

36% 1206.06 Lime putty 43% 

(100 × 100 mm2) 
Sand 42% 

Calcium Carbonate 11% 

Sheep Wool &
Thistle fibres 3%

39% 1101.48
Lime putty 16%

Opus signinum 36%

(100 × 100 mm2)
Sand 35%

Calcium
carbonate 9%

S05
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Table 2. Cont.

Group
Sample Id.

Number and
Dimensions

Samples Materials Used
Sample

Composition
Dry Weight [%]

Water to
Binder Ratio

[%]

Density
[kg/m3]

Building
Insulation

Materials with
Natural Fibres

S08
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39% 436.6

(100 × 100 mm2) Clay 70%

C01
(100 × 100 mm2)
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Jute fibre
Clay

21%
79% 39% 807.41

In Table 2, the discarded samples are also shown. Samples S01 and S04 were sheep
wool mixed with lime putty as the binder and sand and calcium carbonate as aggregates;
moreover, S01 also used opus signinum as a binder. S02 and S03 used hemp shives mixed
with lime putty (also opus signinum in S02) as the binder, but no aggregates were used for
these last two. The water was added accordingly and based on the guidance provided by a
local artisan from his work experience.

2.2. Sample Preparation and Conditioning

The first four samples (from S01 to S04) were prepared using wood casting molds (i.e.,
samples from S01 to S04). After preparing the grout, the samples were kept to mature and
dry naturally. Following the total maturation period, the first samples (see S02 and S03
in Table 3) showed brittleness when touched; this happened because of the higher fiber
concentration than the mixture’s binder. In contrast, a high binder content to fibers (S01
and S04 in Table 3) led to big cracks on the surfaces with time. These problems are easily
dealt with the deposition of further filling mortar, but it is clear that these situations are not
acceptable for thermal conductivity tests.

Indeed, as highlighted in [26–29], the fiber size and percentage in the mixture (binder
and fiber) directly influence the strength and the thermal conductivity of any building
material, therefore, particular attention was paid while preparing the succeeding samples.
Taking into account the experience gained during the preparation of the first samples
(S01 from S04), the authors tried to improve the homogeneity of the mixture by slow
manual mixing to avoid air trapping and poured the mixture into 100 × 100 mm2 and
300 × 300 mm2 wooden molds, with various thicknesses from 5 to 100 mm.

The grout was prepared following UNI EN 1015-2 [36] and the consistency of the
mixture was verified using the shaking table tests UNI EN 1015-3 [37].

After the grout’s workability condition was proven, the wooden molds were first half
filled with the mixture and 25 strokes were applied with a stick with the aim to distribute
the mixture uniformly and to also remove any air bubbles from inside according to [37].
The molds were completely filled, and another 25 strokes were applied and then the upper
surface was levelled. Thereafter, the sample was left inside the mold and placed inside
a plastic bag for two days. After two days, the samples were taken out of the mold and
re-placed inside another plastic bag for five days, which was done to provide a quasi-stable
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condition during the sample’s maturation. After seven days from the date of casting, the
samples were put outside to dry naturally, in a dedicated room with controlled temperature
and humidity (20 ◦C, 60%). The progressive weight reduction of each sample was measured
regularly for a period of 28 days.

Table 3. Discarded samples, prepared at the first attempt.

Sample Id. Number and Dimensions Samples Materials Used

S04
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To show an example of the drying phase, Figure 1 shows the trend of the progressive
weight reduction of four samples (C01, S08, S10, S11), each representative of a given
sample category. During the sample’s maturation (i.e., from the third to the eighth day), a
controlled daily reduction of not more than 0.6% in all the samples’ mass was observed
(Figure 1). In the following period, from the eighth to the fourteenth day, during which the
samples were naturally dried, a rapid daily reduction of just under 3% was observed. For
the remaining days, the decrease in weight was on average less than 0.2% daily.
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Figure 1. Example of the progressive weight reduction trend of four samples for the different typologies of materials taken
into account (C01, S08, S10, S11) during the drying phase (28 days).

The residual moisture from the samples was removed before conducting the thermal
conductivity tests, by drying them in oven at constant temperature (i.e., at about 40 ◦C),
according to UNI EN-12667 [38]. During this period, the sample mass was measured hourly.
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The final stability conditions were considered reached when the last 5 readings remained
within ±0.1 g.

For all the samples, the thermal conductivity tests were conducted only at the end of
the drying process. For three samples, additional thermal conductivity measurements were
carried out at regular intervals during the total drying period, to observe the variation in
thermal conductivity value with respect to the moisture content.

In order to minimize the error induced by the sample surface roughness, (Figure 2)
when it was not possible to intervene mechanically by abrasion, the use of a thermal
conductive film of grease (Thermigrease TG-20014) was applied.
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Figure 2. Sample S05 (100 × 100 mm2), with sheep wool, thistle fibres and lime putty. The sample is
showed without (a) and with (b) thermally conductive grease.

2.3. Thermal Conductance Measurement

The thermal conductivity tests were conducted by using a thermal conductivity
measuring device TURUS TCA 300 (ISO 8301 [39] and DIN EN 1946-3 [40]) and the
measuring parameters (sample thickness, plates temperature difference, mean sample
temperature, etc.) were set before each test. The heat flow meter (HFM) method was used
(according to [39,40]) to determine the thermal conductivity values. The instrument was
capable of measuring the value for a different range of specimens and was equipped with
one testing chamber to measure, a control system, and an internal single board touchscreen
computer. The testing chamber was equipped with a fixed plate and a mobile top plate.
The top plate could be adjusted based on the specimen thickness from 5 to 100 mm, as
specified by the manufacturer (EN 1946-2 [41]). Either plate could be set as hot or cold
plates. Both hot and cold plates had a workable surface area equal to 300 × 300 mm,
whereas the net surface area of 100 × 100 mm of the central part of each plate was the active
sample measuring zone. The active zones were equipped with one heat flux sensor per
plate, and the HFM were arranged symmetrically and placed at the center of the surface of
the hot and cold plates, respectively (Figure 3).

Each HFM and the plates had their own protection against the heat loss due to lateral
heat flux. Four Peltier devices were used on each side to maintain the temperatures of both
plates and the dissipating heat was extracted with the help of a liquid coolant running
inside the external loop connected to a mini-chiller. Two thermal resistances (PT 1000)
of Class DIN A with a maximum error of 0.08 K (typically better) at 0 ◦C are presented
to measure the temperature at the center of each plate and the values were used for
controlling the Peltier devices and other purposes. The cool and hot plate temperature
ranges (min/max) were −20/+60 ◦C and −10/+70 ◦C, respectively, and depending on the
specimen thickness (5–100 mm), the measured thermal conductivity of the samples could
range from 0.002 to 1.0 W/(m·K).
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Figure 3. Schematic diagram and the concept of heat flow and temperatures in TAURUS TAC300.

The air temperature and humidity close to the samples were measured with the dat-
alogger Tinytag Ultra 2. The measurement range is from −40 to 85 ◦C, and from 0 to
95% UR. The measurements were acquired at 1 min intervals. The thermal conductivity
measurement was conducted in steady state conditions, based on self-adjusted temper-
atures of the plates, which depend on the desired sample mean temperature and plate
temperature difference. Based on the measured heat fluxes by the hot and cold plates, the
thermal conductivity (λ) value was calculated by the heat flow meter instrument according
to Equation (1).

λ =
.

Q
S

(tH − tC )

[
W
mK

]
. (1)

where
.

Q is the heat flux (W/m2); S is the sample thickness (m); tH and tC are, respectively,
the hot plate and cold plate temperatures (◦C).

All tests had a duration equal to 300 minutes, much longer than the time required
to achieve the steady state conditions. These were considered reached when the fluctu-
ations of the thermal flow through the sample were contained within the resolution of
the instrument, which generally occurred in an interval between 180 and 240 minutes,
depending on the moisture content of the sample. The samples were characterized at an
average temperature of 10 ◦C, 20 ◦C, and 30 ◦C, according to UNI EN 12939 [42], always
maintaining a temperature difference between the hot and cold surfaces equal to 20 ◦C. In
order to guarantee a one-dimensional flow through the samples having a surface less than
300 × 300 mm2, expanded polystyrene (EPS) protective insulation was used (Figure 4) as
an uncontrolled thermal guard, thus minimizing the heat losses at the edges.
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Figure 4. Example of the application of the expanded polystyrene (EPS) to a sample (S05)
with 100 × 100 mm2 dimensions (a), and example of a sample (S10) with a surface equal to
300 × 300 mm2 (b).

3. The Case-Study Building

In order to estimate the possible energy savings obtainable with the use of the afore-
mentioned materials and the measured conductivity and thermal capacity values when
replacing traditional elements, a numerical simulation was carried out according to the
dynamic hourly method described in the technical standard ISO 52016 [43]. In particular,
simulations were conducted using the dynamic hourly simulation model implemented in
the commercial software Thermolog®. The average hourly data (external air temperature,
specific humidity, solar radiation, wind speed, and direction) and the real conditions of
the use of the building were used as input data, specifying for each month the number of
actual days and hours of air conditioning system operation.

The case study proposed for the analysis consists of a multistorey terraced building for
residential use (Figure 5), characterized by a light envelope with opaque walls consisting
of 1.5 cm external lime and cement plaster, perforated bricks with thermal resistance
0.31 m2K/W, and internal lime and gypsum plaster. The opaque walls make up 46% of the
dispersing surface and are exposed in the E–W direction.
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The purpose of the simulation goes beyond obtaining a high energy class or in any
case, a well-defined savings rate, as it is aimed exclusively at verifying the potential energy
savings achievable and its correlation with the reference climatic conditions. For this reason,
replacement of traditional plaster in case 1, using plaster with recycled materials (case 2), or
natural fibers (cases 3–5) was simulated, as detailed in Table 4. The results of the first five
cases were also compared with the corresponding values obtained from case 6, in which
the authors simulated an application of thermal insulation panels in sintered expanded
polystyrene (EPS) on the opaque walls, in order to meet strict national regulations on the
opaque building envelope [44]. The suitable thickness of the EPS layer is the function of
the climatic reference condition: 8 cm for Cagliari (Urif = 0.33 W/m2K), 7.5 cm for Palermo
(Urif = 0.35 W/m2K), and 13 cm for Bolzano (Urif = 0.22 W/m2K).

Table 4. Description of the different cases of study object of the simulation to evaluate the possible energy savings.

Description Thickness (cm)

Case 1 Opaque building envelope dispersing towards the outside with traditional plaster (lime
and cement plaster) 1.5

Case 2 Replacement of traditional plaster, using plaster with recycled materials (Opus
signinum and lime putty), same specification as samples S9, S10, S12 and S13 (Table 2) 1.5

Case 3
Replacement of traditional plaster, using plaster made up with natural fibres (sheep’s

wool fibres, lime putty and opus signinum), same specification as samples S11 and S14
(Table 2)

1.5

Case 4
Replacement of traditional plaster, using plaster made up with natural fibres (sheep

wool and thistle fibres), lime putty and opus signum), same specification as samples S5
and S6 (Table 2)

1.5

Case 5
Replacement of traditional plaster with building materials with natural fibres (hemp
shives and clay), same specification as of samples C01 and C02 (Table 2) + 1.5 cm of

clay plaster
1.5 + 3

Case 6 Adding thermal insulation panel in sintered expanded polystyrene (EPS) in order to
meet strict national regulations on the opaque building envelope variable

Finally, in order to evaluate the extent to which plasters with lower thermal conduc-
tivity can actually affect the buildings envelope, the simulations were repeated assuming
their use on walls whose elements (e.g., plaster, brickwork, thermal insulation) offer the
maximum allowed U-values according to local regulations.

4. Results and Discussion
4.1. Thermal Characterization of the Analyzed Material

In Table 5, the thermal conductivity at three different temperatures (10, 20, and 30 ◦C)
for the different analyzed samples and the reference values available in the literature
are reported to allow for comparison. In particular, it is possible to notice how the use
of recycled material (with the tested densities) allows for plasters to be obtained with
conductivity (@20 ◦C) between 0.430–0.475 W/(m·K), much better than the average values
of traditional plasters using gypsum and/or lime (higher than 0.7 W/(m·K)). The use of
sheep wool inside lime putty allows for a decrease in thermal conductivity from 46% to
62% when thistle fibers are added.

The same fibers guarantee a reduction in the thermal conductivity of the lime putty
and opus signinum blend equal to 37% and 66%, respectively. In particular, the thermal
conductivity was between 0.146–0.272 W/(m·K). It should be noted that these reductions
were obtained with only 3–4% of sheep wool and thistle fiber in the total mixture when
compared to 13% of fibers used by Valenza et al. [25]. Additionally, the use of natural
fibers inside building materials allows for conductivity values to be obtained always
below 0.162 W/(m·K) (@20 ◦C), with lower values for compounds with recycled materials
(0.107 W/(m·K)). In any case, the measured conductivity was always lower than the ones
available in the literature (Elfordy et al. [24]; El Azhary et al. [29]) for analogous materials.
Finally, it seems that hemp fibers guarantee slightly higher performances (−14%) than
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the jute ones but, in this regard, the authors will deepen the results through a future test
campaign dedicated exclusively to the use of jute in building materials.

Table 5. Thermal conductivity of the mortar, plastering and insulation materials.

Samples Tested Reference Values in the Literature

Sample Composition Thermal Conductivity [W/(m·K)] Materials
Used

Thermal
Conductivity

[W/(m·K)]
Ref.

@10 ◦C @20 ◦C @30 ◦C @20 ◦C

Thermo-Insulating Natural Plaster with Recycled Materials Traditional Plasters

S09 Opus signinum paste 0.458 0.464 0.471 Pure gypsum
plaster 0.70 [19]

S10 Lime putty and Opus
signinum 0.463 0.469 0.476

S13 Lime putty 0.470 0.475 0.479 Lime &
gypsum
plaster

0.90 [19]
S12 Lime putty and Opus

signinum 0.425 0.430 0.436

Thermo-Insulating Retrofitting Plaster with Natural Fibres Plasters and Mortars with Natural Fibres

S05 Sheep Wool + Thistle
fibres and Lime putty 0.172 0.180 0.188 Sicilian sheep

wool
(washed and
unwashed) +

Cement

0.09–0.11 (with
46% wool
1–20 mm) [28]

S06
Sheep Wool + Thistle
fibres, Lime putty and

Opus signinum
0.139 0.146 0.153

S11 Sheep wool and Lime
putty 0.248 0.257 0.266 0.15–0.25 (with

13% wool
1–20 mm)S14 Sheep Wool, Lime putty

and Opus signinum 0.265 0.272 0.280

Building Insulation Materials with Natural Fibres Building Materials with Natural Fibres

S07 Hemp shives and Lime
putty 0.096 0.109 0.122 Lime and

hemp
concrete

(“hempcrete”)

0.179–0.485 [27]

S08 Hemp shives, Lime putty,
and Opus signinum 0.093 0.107 0.121

C01 Hemp shives and clay 0.124 0.139 0.151 Straw and
clay 0.260–0.508 [25]

The results obtained for average temperatures (10 and 30 ◦C) of the specimens different
to the traditional ones also showed the same trends. Based on these results, it is possible to
hypothesize with sufficient accuracy an almost linear dependence of thermal conductivity
with temperature, with a general slope coefficient between 0.0006–0.0014 W/(m·K).

4.2. Influence of the Moisture Content

In order to verify the influence of the moisture content on the analyzed materials,
repeated measurements of the thermal conductivity were carried out on three samples
during their entire drying period. For example, in Figure 6, the decrease in weight (in
blue) and the contextual measurement of thermal conductivity (in red) for sample S14
is reported. The measurements were started after an initial drying period of seven days
as above-mentioned, and stopped when the variations in mass of the sample were less
than the measurement uncertainty for a period of at least 48 hours. In all tests, the
conductivity decreased as the drying of the sample progressed, showing an average
conductivity decrease of 16.3% against a mass decrease on average close to 5.5%.
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Figure 6. Effect of water content on thermal conductivity.

4.3. Energy Performance Analysis Applied to the Case Study

Table 6 shows the results obtained for the case study building. In particular, the differ-
ent “transmission heat loss coefficient” (Htr) values and the corresponding useful “thermal
energy requirements” EPH,nd (for winter air conditioning) and EPC,nd (for summer air con-
ditioning) are represented. Within the table, both absolute values and relative percentage
differences with respect to case 1 are shown to allow for an immediate comparison between
the analyzed solutions for two different semi-continental (Bolzano) and Mediterranean
climatic conditions (Cagliari e Palermo).

Table 6. Transmission heat loss coefficient and useful thermal energy requirements for different
materials and reference climatic conditions.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Htr [W/K] 302.03 294.24 294.24 288.56 279.07 259.73
(%) −2.6% −2.6% −4.5% −7.6% −14.0%

Cagliari

EPH,nd [kWh/m2] 83.10 80.62 78.8 76.61 78.10 64.04
(%) −3.0% −5.2% −7.8% −6.0% −22.9%

EPC,nd [kWh/m2] 5.51 5.70 5.90 6.07 5.95 5.84
(%) 3.4% 7.1% 10.2% 8.0% 6.0%

Bolzano

EPH,nd [kWh/m2] 172.70 167.79 164.20 159.89 162.83 130.69
(%) −2.8% −4.9% −7.4% −5.7% −24.3%

EPC,nd [kWh/m2] - - - - - 0.11
(%) - - - - -

Palermo

EPH,nd [kWh/m2] 54.27 52.53 51.26 49.73 50.77 41.15
(%) −3.2% −5.5% −8.4% −6.4% −24.2%

EPC,nd [kWh/m2] 22.53 22.48 22.44 22.41 22.43 22.30
(%) −0.2% −0.4% −0.5% −0.4% −1.0%

As already mentioned, the aim was not to obtain a high energy class or a well-defined
savings rate, but to verify the potential energy savings achievable and its correlation with
the reference climatic conditions. It is possible to note how the addition of natural fibers
always led to an improvement in the performance characteristics of the building envelope.
Due to the reduced thickness of the material considered (1.5 cm), the reduction in the Htr
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coefficient could be quantified between 2.6% and 7.6%, respectively, for the use of opus
signinum (case 2) and hemp (case 5) in the mixture. With these thicknesses, their effect was
an order of magnitude lower than that obtained in case 6, where the legal requirements
were fulfilled with an EPS thermal coat of an appropriate thickness. In this last case, in
all three reference climatic conditions, there was an improvement in EPHn,d equal to or
greater than 23%, even if for Bolzano, the addition of a thermal coating involved a slight
increase in the thermal energy requirements needed for summer air conditioning. With
similar percentages, the useful thermal energy requirements for heating also decreased
in quantities ranging from 3% for Cagliari (with the use of opus signinum) and 8.4% for
Palermo (with the use of hemp and clay). On the other hand, it should be noted that the
light structure and the low thermal capacity of the analyzed materials did not entail equally
significant variations in the energy requirements for summer air conditioning. Where
appreciable (Palermo and Cagliari), this was variable in modest percentages (Palermo)
or even increased for the city of Cagliari from 3.4% to 10.2%. Finally, Table 7 shows
the comparisons in terms of EPH,nd when recycled materials (cases from 2 to 5) are used
on walls whose elements (e.g., plaster, brickwork, thermal insulation) already offer the
maximum allowed U-values according to local regulations. Case 1 is the reference one
where traditional plaster was used. As expected, the influence of plasters with recycled
materials on walls that already meet the regulatory requirements was negligible (<1%) in
both analyzed climates. However, it is important to underline that when the materials
analyzed in this paper and the traditional ones were compared, the real innovative and
rewarding aspect is not represented by the achievable energy saving (it cannot be otherwise,
given the thicknesses used), but in the possibility of using locally produced natural and
waste/recycled products with a lower environmental impact. In order to reinforce this
peculiarity, the authors integrated the study with a life cycle assessment (LCA) in order to
evaluate the environmental footprint along their entire life cycle.

Table 7. Useful thermal energy requirements EPH,nd on walls that already meet the regulatory
requirements.

Reference Case Case 2 Case 3 Case 4 Case 5

Cagliari
EPH,nd

[kWh/m2]
64.04 64 63.95 63.88 63.47

(%) −0.1% −0.1% −0.2% −0.9%

Bolzano
EPH,nd

[kWh/m2]
130.38 131.53 130.36 130.29 129.82

(%) 0.90% 0% −0.1% −0.4%

Palermo
EPH,nd

[kWh/m2]
41.21 41.19 41.15 41.09 40.93

(%) 0.00% −0.1% −0.3% −0.7%

5. Conclusions

In this paper, the authors report the results of an experimental investigation on inno-
vative materials characterized by the use of locally produced natural and waste/recycled
products that are able to provide good thermal performances while also having a lower
environmental impact.

A total of twelve samples were prepared using Sardinian zero-km locally available
raw materials: wool fibers from mattress stuffing, couches, and chair padding; hemp
shives directly from the hemp stalks; jute fiber from recycled jute bags; opus signinum
from crushed tiles, and clay from local extraction in central Sardinia. The use of recycled
materials allowed us to obtain plasters with a conductivity (@20 ◦C) about 32% lower than
traditional plasters using gypsum and/or lime. The use of natural fibers (sheep wool and
thistle fibers) inside lime putty allowed for a decrease in thermal conductivity of up to 62%.
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By means of a numerical simulation, it was possible to verify that the addition of
natural fibers always leads to an improvement in the energy performance of the building
envelope during the winter season compared to traditional plaster. The positive effect
induced by their use obviously decreases in percentage on already performing walls until it
almost disappears for walls that comply with the current stringent regulatory requirements
for new buildings. On the other hand, significant decrease in installation and in the
environmental costs associated with their production could still make their use more
suitable for new and existing buildings.

Finally, the use of jute inside building elements to realize insulating panels, even if
not with the same performances obtained with the hemp shivers, shows promising results,
with conductivity values always lower than 0.162 W/(m·K). In this regard, more accurate
values could be highlighted at the end of the experimental campaign that the authors will
carry out on specific products made with the use of jute fibers.
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