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ABSTRACT: We develop a nonparametric procedure to assess the accuracy of the normality assumption for annual rainfall

totals (ART), based on the marginal statistics of daily rainfall. The procedure is addressed to practitioners and hydrologists that

operate in data-poor regions. To do so we use 1) goodness-of-fit metrics to conclude on the approximate convergence of the

empirical distribution of annual rainfall totals to a normal shape and classify 3007 daily rainfall time series from theNOAA/NCDC

Global Historical Climatology Network database, with at least 30 years of recordings, into Gaussian (G) and non-Gaussian (NG)

groups; 2) logistic regression analysis to identify the statistics of daily rainfall that are most descriptive of the G/NG classification;

and 3) a random-search algorithm to conclude on a set of constraints that allows classification of ART samples on the basis

of the marginal statistics of daily rain rates. The analysis shows that the Anderson–Darling (AD) test statistic is the most

conservative one in determining approximateGaussianity of ART samples (followed by Cramer–VonMises and Lilliefors’s version

of Kolmogorov–Smirnov) and that daily rainfall time series with fraction of wet days fwd , 0.1 and daily skewness coefficient of

positive rain rates skwd . 5.92 deviate significantly from the normal shape. In addition, we find that continental climate (type D)

exhibits the highest fraction of Gaussian distributed ART samples (i.e., 74.45%; AD test at a 5 5% significance level), followed by

warm temperate (type C; 72.80%), equatorial (type A; 68.83%), polar (type E; 62.96%), and arid (type B; 60.29%) climates.

KEYWORDS: Rainfall; Statistical techniques; Subseasonal variability; Interannual variability; Time series; Uncertainty;

Climate classification/regimes

1. Introduction

Precipitation information is of crucial importance in un-

derstanding the complex interactions within the hydrological

cycle, to assess the availability of water resources in space and

time (see, e.g., Langousis and Kaleris 2014; Mamalakis et al.

2017), and make informed decisions for water management

purposes (see, e.g., Adler et al. 2000), design of hydraulic in-

frastructures, and water balance assessments (see, e.g., Viola

et al. 2017; Caracciolo et al. 2017).

In this context, one of the first attempts to understand the

statistical character of annual precipitation was conducted by

Markovic (1965), who used annual rainfall totals (ART) from

2506 stations in the western United States and southwestern

Canada with at least 30 years of recordings, to identify the

distribution model that best fits the observed frequencies. The

study concluded that among the normal, lognormal, and

Gamma distribution models, the lognormal probability density

function produced acceptable results, especially in the case

when the annual precipitation was positively skewed. Following

the early work of Markovic (1965), several other studies have

focused on identifying the best distribution model that fits the

observed frequencies of annual precipitation in different areas

around the globe, including India (e.g., Mooley et al. 1981;

Rodell et al. 2009), south Florida (e.g., Sculley 1986), Costa

Rica (e.g., Waylen et al. 1996), Saudi Arabia (e.g., Abdullah

andAl-Mazroui 1998), Israel (e.g., Ben-Gai et al. 1998), Jordan

(e.g., Dahamsheh and Aksoy 2007), Portugal (e.g., De Lima

et al. 2010), Nigeria (e.g., Ogungbenro and Morakinyo 2014),

and Iran (e.g., Vaheddoost and Aksoy 2017). The aforemen-

tioned studies concluded that the type of the distribution

model that best fits the empirical frequencies of ART varies

spatially, but in some cases may be well approximated by a

normal distribution; see, for example, Mooley et al. (1981),

Waylen et al. (1996), Abdullah and Al-Mazroui (1998), De

Lima et al. (2010), and Ogungbenro and Morakinyo (2014).

The theoretical basis for the normality assumption of ART

arises from central limit theorem (CLT); see, for example,

Parzen (1960), Fisz (1963), Feller (1968), Benjamin and

Cornell (1970), and Papoulis (1990). According to this theo-

rem, if Xi (i 5 1, . . . , n) are independent copies of a random

variable X with finite variance, then asymptotically as n/‘
random variable Z5�n

i51Xi converges to a normal distribu-

tion. Common relaxations to CLT include approximate con-

vergence ofZ to a normal distribution when n is large but finite

(i.e., referred to as preasymptotic conditions), and whenXi are

not independent and identically distributed, but exhibit similar

variances with some (but not all) of Xi being interdependent;

see, for example, Benjamin and Cornell (1970). Evidently, for

the case in which Xi (i 5 1, . . . , n) correspond to daily rainfall

amounts, where seasonal periodicities and short-range de-

pendencies are present, approximate convergence of the an-

nual rainfall totals Z5�n5365

i51 Xi to a normal shape depends

highly on the local climate and the marginal and joint statistics
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of daily rainfall, including: seasonal variations of the empirical

distributions, the increased daily skewness of positive rainfall

rates in arid regions exhibiting high fraction of dry days (see,

e.g., Wilks 1990; Katz 1993; Ben-Gai et al. 1998; Yoo and Ha

2007) and the (often nonnegligible) temporal dependencies in

daily rainfall series [i.e., the property of dry and wet days to

appear in groups; see, e.g., LeCam (1961),Waymire andGupta

(1981a,b,c), Foufoula-Georgiou and Lettenmaier (1986), Onof

et al. (2000), and the reviews in Veneziano and Langousis

(2010) and Koutsoyiannis and Langousis (2011)]. In all cases,

the rate of convergence of the distribution of Z to a normal

shape decreases as the aforementioned factors intensify.

Given the increased importance of the statistical modeling

of ART, this study aims at developing a nonparametric pro-

cedure to classify ART samples into two complementary

groups: approximately Gaussian distributed samples (G) and

non-Gaussian distributed samples (NG), based on the mar-

ginal statistics of daily rainfall. To do so, we combine 1)

goodness-of-fit metrics to conclude on the approximate con-

vergence of the empirical distribution of annual rainfall totals

to a normal shape, and classify ART samples into the G and

NG complementary groups; 2) logistic regression analysis to

identify the statistics of daily rainfall that are most descrip-

tive of the G/NG classification; and 3) a random-search algo-

rithm to determine a set of constraints that allows classification

of ART samples based on the marginal statistics of daily rain

rates. The analysis is conducted using 3007 time series of daily

rainfall from the NOAA/NCDC Global Historical Climatology

Network (GHCN) database, with global coverage. This latter

attribute of the data allows us to study, also, how large-scale

climatic features affect Gaussianity of annual rainfall totals,

such as those embedded in the Köppen–Geiger climatic clas-

sification (Kottek et al. 2006).

The suggested nonparametric procedure to assess the ac-

curacy of the normality assumption for annual rainfall totals,

is based on the marginal statistics of daily rainfall and it is

simple to apply, with minimal data length requirements, thus

constituting a useful tool for practitioners and hydrologists that

operate in data-poor regions.

The paper is organized as follows. In section 2 below, we

start by providing necessary information with regard to the

origin and processing of the rainfall data used. Section 3, ex-

emplifies the use of three goodness-of-fit statistical metrics to

assess the approximate validity of the normality assumption for

annual rainfall totals, study its linkage to rainfall marginal statis-

tics, and classifyART samples into two complementary groups: G

and NG. In section 4, we combine a random-search algorithm

with a proper test-based objective function, to develop and study

the performance of a nonparametric procedure to assess the ac-

curacy of the normality assumption for annual rainfall totals,

based on the marginal statistics of daily rain rates. Conclusions

and future research directions are presented in section 5.

2. Dataset and case study

In the analysis that follows we use daily rainfall data from the

NOAA/NCDCGHCNrainfall database (https://www.ncdc.noaa.gov/

ghcn-daily-description; see Menne et al. 2012). NOAA/NCDC

GHCN contains daily time series from 90 230 stations with

global coverage. To ensure the statistical significance of the

obtained results, and similar to previous studies (see, e.g.,

Easterling et al. 1997; Papalexiou et al. 2018; Papalexiou and

Montanari 2019), in the conducted analysis we use a total

number of 3007 stations with percentages of missing data be-

low 5%, yearly completeness above 98%, and more than 30

years of recordings. The density map of the analyzed stations is

shown in Fig. 1, while Fig. 2 illustrates the percentage of sta-

tions exceeding different length requirements. FromFig. 1, one

sees that Africa and South America are the less represented

regions, while North America, Europe, India, China, and west

Australia exhibit denser station networks.

3. Use of goodness-of-fit statistical metrics to classify
ART samples according to their approximate
normality

Statistical tests are based on the acceptance/rejection of a

null hypothesis H0, based on a statistical metric T, referred to

as test statistic; see, for example, Fisher (1925), Neyman and

Pearson (1933), Lindquist (1940), and more recently Benjamin

and Cornell (1970), and Papoulis (1990). Along these lines,

section 3a presents the adopted goodness-of-fit statistical

metrics and section 3b discusses their application to NOAA/

NCDC rainfall dataset.

a. Methodological aspects

In what follows, we use three test statistics, namely, the

Lilliefors’s version of Kolmogorov–Smirnov (KSL), Anderson–

Darling (AD), and Cramer–VonMises (CVM), as implemented

by Öner and Kocakoç (2017) in MATLAB for the Gaussian

case, to classify rainfall samples according to the approximate

normality of annual rainfall totals.

The first test statistic used herein is the Lilliefors’s version of

Kolmogorov–Smirnov test for the case of unknown mean and

variance (Lilliefors 1967), as modified by Dallal andWilkinson

(1986) to improve accuracy at exceedance probability levels

below 0.10. Define FZ(z) to be the empirical CDF of a time

series of annual rainfall totals of length n, and denote byGZ(z)

the fitted normal CDF. The KSL test statistic Dn is defined as

the maximum distance between the empirical FZ(z) and the-

oretical G(z) CDFs:

D
n
5max

z
jF

z
(z)2G

z
(z)j . (1)

The p value of the sample can be obtained from Table 1 in

Dallal and Wilkinson (1986) as a function of Dn and n. It fol-

lows from Eq. (1) thatDn is suited to quantify linear deviations

between the empirical and theoretical CDFs in the frequency

domain and, therefore, the test is not very accurate in detecting

deviations in the upper and lower tails of the empirical distri-

butions; see also discussion below.

Contrary to the KSL test statistic, which focuses on a single

point of the corresponding CDFs, CVM, and AD test statistics

are calculated by evaluating the integral of the weighted

squared differences between the empirical FZ(z) and the fitted

normal GZ(z) CDFs over the whole distribution range (see,
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e.g., Cramér 1928; Von Mises 1928; Anderson and Darling

1952; Farrell and Rogers-Stewart 2006):

A2 5 n

ð1‘

2‘

[F
z
(z)2G

z
(z)]2c(z) dF

z
(z) , (2)

where c(z)5 1 for CVM, and c(z)5 {Gz(z)[12Gz(z)]}
21 for

AD. It follows from Eq. (2), and the form of function c(z), that

CVM weights equally the whole empirical distribution, while

AD assigns larger weights to observations located in the dis-

tribution tails; see, for example, Laio (2004), Farrell and

Rogers-Stewart (2006), and Langousis et al. (2016). The im-

plemented versions of CVM andAD tests include the required

correction for small sample sizes and for unknown parame-

ters introduced by Stephens (1986). Hence, AD is more re-

strictive in accepting the normality hypothesis than CVM.

The sample p values corresponding to CVM and AD test

statistics, can be obtained as the exceedance probability of

the calculated value ofA2 (see, e.g., Stephens 1986). It follows

from the discussion above that KSL, AD, and CVM test

statistics exhibit different attributes and, therefore, they may

lead to contrasting results.

Existence of interannual dependencies in ART samples may

bias the estimation of the variance from finite samples and,

thus, influence goodness-of-fit testing. To avoid such issues, the

standard deviation of ART samples has been obtained using

the procedure suggested by Koutsoyiannis (2003) for simulta-

neous estimation of an unbiased standard deviation sH and

Hurst coefficient H in the presence of interannual temporal

dependencies; see, for example, Hurst (1951), Mandelbrot and

Wallis (1969), Montanari et al. (1997), and Langousis and

Koutsoyiannis (2006). The Hurst coefficient H quantifies the

magnitude of interannual dependencies (also referred to as

long-term persistence; see, e.g., Lettenmaier and Burges 1977;

Salas et al. 1979;Montanari et al. 1997; Razavi and Vogel 2018)

in the time series of annual rainfall totals, and varies between 0

and 1, with H 5 0.5 indicating linear independence, and H .
0.5 (,0.5) indicating positive (negative) correlations in the

corresponding time series.

Following the procedure by Koutsoyiannis (2003), one first

estimates the sample standard deviation s(k) for different time

scales k of aggregation, ranging from 1 to n/10 years, where n is

the total number of years in record. Under the assumption of

simple scaling:

s(k) 5 c
k
(H)kHs

(k)
H , (3)

FIG. 1. Spatial density of the 3007 NOAA/NCDC rainfall stations considered in the analysis;

see section 2 for details. The size of the grid boxes is 58 3 58.

FIG. 2. Percentage of the considered NOAA/NCDC stations

exceeding different record-length requirements.
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where sH denotes the unbiased estimate of the standard de-

viation of the annual time series,H is the corresponding Hurst

coefficient, and

c
k
(H)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n/k2 (n/k)2H21

n/k2 1/2

s
. (4)

Setting ck(H) 5 1 as first approximation, H and sH can be

estimated simultaneously by linearly regressing lns(k) versus

lnk. To improve accuracy, the regression is repeated after

calculating ck(H) using the estimates ofH and sH from the first

trial. The procedure is repeated until convergence.

b. Application to the dataset

Daily rainfall time series were aggregated at an annual

level using the calendar year convention; that is, ART samples

were obtained by summing rainfall depths from January to

December. Use of hydrological years (i.e., from October to

September), instead of calendar years, was also tested, but the

results obtained were identical to those obtained using the

calendar year convention.

Figure 3 shows the histogram of the Hurst coefficients esti-

mated from the 3007 selected time series of annual rainfall

totals. One sees that the distribution is approximately sym-

metric around 0.55, indicating (on average) small positive

correlations in annual rainfall totals.

With regard to classification of the 3007 ART samples into

G and NG groups, KSL normality test results show that 2386

out of 3007 samples can be considered as Gaussian distributed

at the 5% significance level, while CVM and AD tests show

that 2218 and 2096 samples, respectively, fall into the G group.

Evidently, AD is the strictest and most conservative of all

normality tests, as it is more sensitive to observations in the

upper and lower distribution tails.

For the three normality tests considered, Fig. 4 shows the

local fractions of stations that fall within group G (i.e., exhibit

annual rainfall totals that are approximately Gaussian dis-

tributed). Apart from KSL test, which results in fractions of

Gaussian distributed stations that are close to 80%, both CVM

FIG. 3. Histogram of Hurst coefficient estimates for the 3007

NOAA/NCDC rainfall stations used in the analysis; see the main

text for details.

FIG. 4. Global maps with spatial resolution 58 3 58, illustrating
the local fractions of stations that belong to group G, according to

the three normality tests considered [(a) KSL, (b) AD, and

(c) CVM], at the 5% significance level. Percentages denote the

fraction of ART samples belonging to group G.
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andAD tests reveal increased fractions of normally distributed

ART samples in eastern and northern China, and North

America, and reduced fractions of normally distributed ART

samples in India and eastern Australia, indicating that ap-

proximate Gaussianity of annual rainfall totals is strongly

linked to local climatic conditions.

Along these lines, and in the light of the obtained results, we

examined how the normality patterns revealed by the KSL,

CVM, and AD tests link to the five climatic types of the

Köppen–Geiger climatic classification (Kottek et al. 2006):

equatorial (A), arid (B), warm temperate (C), continental (D),

and polar (E); see Fig. 5a. Figure 5b shows the fraction of

stations with approximately Gaussian distributed ART, on the

basis of the three normality tests considered, at the 5% sig-

nificance level. One sees that KSL is the less conservative test

in assessing the normality of ART samples (see discussion

above), while CVM andAD results are comparable in terms of

percentages of Gaussian distributed samples, with AD being

slightly stricter (i.e., leading to lower percentages) due to the

increased weight imposed on observations at the upper or

lower tails of the corresponding distributions. In addition, con-

tinental climate (D) exhibits the highest fraction of Gaussian

distributed ART samples (i.e., AD 74.45% and CVM 79.28%),

followed by warm temperate (C; AD 72.80% and CVM

76.27%), equatorial (A; AD 68.83% and CVM 72.33%), and

polar (E; AD 62.96% and CVM 74.07%) climates. Arid cli-

mate (B) displays the lowest fraction of Gaussian distributed

ART samples (AD 60.29% and CVM 65.52%). This is in ac-

cordance with what is statistically expected, as daily rainfall

time series in arid regions exhibit lower fractions of wet days,

highly skewed distributions of positive rainfall rates (due to

the increased frequency of low rainfall intensities) and, con-

sequently, exhibit reduced convergence rates to the normal

shape when aggregated at an annual level; see the introduction.

FIG. 5. (a) Global map illustrating the Köppen–Geiger climate classification, featuring five

distinct climate types: equatorial (A), arid (B), warm temperate (C), continental (D), and polar

(E). Black dots denote the 3007NOAA/NCDC stations used in this study, and the total number

of stations belonging to each class is shown in the legend. (b) Bar chart illustrating, for each

climate type, the total number (horizontal text) and corresponding percentage (vertical text) of

ART samples exhibiting groupG behavior, on the basis of the three normality tests considered

(KSL, AD, and CVM) at the 5% significance level.
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4. Nonparametric procedure to assess the accuracy of the
normality assumption for annual rainfall totals, based
on the marginal statistics of daily rainfall

As noted in the introduction and discussed in the previous

section, approximate convergence of the distribution of annual

rainfall totals to a normal shape is strictly linked to the seasonal

character and marginal statistics of daily rainfall rates. In what

follows, we develop a nonparametric procedure to assess the

approximate normality of ART samples based on the marginal

statistics of daily rainfall.

a. Methodological developments

To describe basic features of daily rainfall we use the frac-

tion of wet days fwd (here days with rainfall accumulation

above 0.1 mm), the mean value mwd, standard deviation swd,

and skewness coefficient skwd (i.e., the ratio of the third central

moment to the cube of the standard deviation) of rainfall in

wet days (here, days with rainfall accumulation in excess of

0.1 mm), and the precipitation concentration index (PCI) (see,

e.g., Oliver 1980; Michiels et al. 1992; De Luis et al. 1997;

Cannarozzo et al. 2006). If the latter index is below 10, monthly

rainfall seasonality can be considered negligible, whereas

higher values indicate substantial inter seasonal variations.

To quantify the effects of local climate in determining the

approximate convergence of annual rainfall totals to a normal

distribution, we use logistic regression analysis (see, e.g., Bliss

1934; Berkson 1944; Augustin et al. 2008; Van Steenbergen and

Willems 2013) to identify the most influential daily rainfall

statistics in grouping the analyzedART samples into theG and

NG subsets. The model adopted here is the logit model, fitted

using the method of maximum likelihood (see, e.g., McCullagh

and Nelder 1990).

In what follows, we combine a random-search algorithm

with a proper test-based objective function to conclude on a set

of constraints that allows classification of ART samples based

on the marginal statistics of daily rain rates.

DefineA to be the event that a sample exhibits approximate

Gaussian behavior at a certain significance level a and denote

by T the event that a sample fulfils a certain set of constraints S

with regard to its marginal statistics. Evidently, the probabili-

ties of events A and T depend on the normality test and the

level of significance a used and on the set of adopted con-

straints S, respectively. To conclude on an optimal S, we seek to

maximize the likelihood that the identification procedure

based on the selected constraints S produces accurate out-

comes. Along these lines, we select to solve the following

maximization problem:

max
S

(P[A \ T]1P[Ac \ Tc]) . (5)

To avoid convergence issues, in this study, we determine

the optimal set of constraints through random search.

Specifically, 1) we consider 106 threshold level combinations

by uniformly sampling the corresponding regressor variables

within their observed ranges, 2) for each threshold combination,

TABLE 1. Results of the logistic regression analysis in terms of p values and VIFs for the classification of the considered NOAA/NCDC

rainfall stations into G and NG subsets, as based on the AD test statistic at 5% significance level, and for three selected sets of predictor

variables (Set I: fwd and skwd; Set II: fwd, skwd, and swd; Set III fwd, PCI, and skwd); see the main text for details.

fwd PCI skwd swd

p value Set I 1.18 3 1027 — 2.36 3 10210 —

Set II 7.68 3 1025 — 1.57 3 1029 1.11 3 1021

Set III 5.41 3 1022 6.76 3 1023 4.36 3 10210 —

VIF Set I 1.000 032 — 1.000 032 —

Set II 1.310 212 — 1.024 746 1.333 897

Set III 1.984 055 1.985 027 1.001 464 —

FIG. 6. Histograms of (a) the fraction of wet days fwd and (b) the skewness coefficient skwd for the 3007 NOAA/

NCDC daily rainfall time series analyzed.
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we use the AD classification into G and NG groups of

the previous section to estimate the empirical probabilities

P[A \ T] and P[Ac \ Tc], and 3) we select as optimal the

set of threshold combinations that maximizes the objective

function in Eq. (5).

b. Results

Table 1 summarizes the results of the logistic regression in

terms of p values (i.e., for the null hypothesis that a certain

predictor is influential), and variance inflation factors (VIFs; an

index to quantify multicollinearities between the regressors;

see, e.g., Song and Kroll 2011), for the classification based on

the Anderson–Darling test statistic (the most conservative

one) at 5% significance level, and for three selected sets of

predictor variables (Set I: fwd and skwd; Set II: fwd, skwd, and

swd; Set III fwd, PCI, and skwd). The p values of the regression

coefficients are estimated by evaluating the exceedance prob-

ability levels of the Student’s t variables associated with the

explanatory variables (see, e.g., McCullagh and Nelder 1990).

Lower p values indicate higher significance of the corre-

sponding predictors in the regression, whereas VIF values

close to unity indicate approximate linear independence of the

predictors (see, e.g., Chatterjee and Price 1991; O’Brien 2007;

Song and Kroll 2011). One sees that Set I, which consists of two

predictor variables, namely, the fraction of wet days fwd and the

skewness coefficient of rainfall in wet days skwd, is the best

performing one, with the two regressors exhibiting approxi-

mate linear independence.

Figure 6 illustrates histograms of the fraction of wet days fwd,

and the skewness coefficient skwd of rainfall in wet days for the

3007 daily rainfall series analyzed, and Fig. 7 shows how the

selected optimal thresholds of the aforementioned marginal

statistics vary with the level of significance a of the AD nor-

mality test in the range 2%–15%. As expected, when the level

of significance a increases, the optimal threshold for the frac-

tion of wet days fwd increases, whereas the opposite holds for

the daily skewness coefficient. More precisely, the threshold

for the fraction of wet days fwd is approximately constant and

equal to 0.1 up to a ’ 7% and increases to 0.12 at a 5 15%.

With regard to skwd, it is approximately constant and equal to

5.92 up to a ’ 10% and decreases to 5.7 at a 5 15%.

Figure 8 compares the conditional probabilities P[AjT] and
P[AcjTc] with the marginal probabilities P[A] and P[Ac]5 12
P[A] as a function of the level of significance a used for theAD

test. One sees that irrespective of the significance level a of the

AD test, both conditional probabilities exhibit higher values

relative to their respective marginals, indicating the significant

information value of the nonparametric procedure.

Figures 9–12 show similar plots to Figs. 7 and 8, but for the

case in which three predictor variables are used (i.e., Set II: fwd,

skwd, and swd; Set III fwd, PCI, and skwd; see Table 1). One sees

that the results obtained using three regressors are virtually

identical to those obtained using solely fwd and skwd as inde-

pendent variables, thus, verifying their significance in deter-

mining the approximate convergence of the distribution of

annual rainfall totals to a normal shape.

To validate the developed nonparametric normality test, we

implemented a jackknife approach as follows: 1) we extracted

one station out of the 3007 considered, and used the remainder

3006 to calibrate the nonparametric procedure; 2) we used the

fraction fwd of wet days and the skewness coefficient skwd of

positive rainfall rates of the extracted station to assess whether

its ART sample can be considered Gaussian distributed

FIG. 7. Dependence of the optimal thresholds of (a) fwd and

(b) skwd of rainfall on wet days on the level of significance a of the

AD test, for the 3007 NOAA/NCDC daily rainfall time series an-

alyzed. Green or red areas highlight the domains of fwd and skwd
where ART samples can respectively be considered to be Gaussian

or non-Gaussian distributed on the basis of the proposed procedure.

FIG. 8. Comparison of the conditional probabilitiesP[AjT] andP
[AcjTc], with themarginal probabilitiesP[A] andP[Ac]5 12P[A],

as a function of the level of significance a used for the AD test, for

the case in which the two most influential predictor variables (i.e.,

Set I: fwd, skwd) are used to constrain classification to the G andNG

groups; see the main text for details.

APRIL 2021 RUGG IU ET AL . 601

Unauthenticated | Downloaded 04/23/21 07:12 PM UTC



according to the calibrated nonparametric test; 3) we applied

the AD test to the ART sample of the extracted station and

evaluated the outcome of step 2; 4) we repeated steps 1–3 for

all 3007 stations of the NOAA/NCDC dataset. The power of

the test (i.e., the probability of rejection of the null hypothesis

of Gaussianity given that it is false) was found to be 80%,

75%, and 65%, for corresponding levels of significance of the

associated AD test equal to 2%, 5%, and 10%, respectively,

ensuring the effectiveness of the developed procedure in as-

sessing Gaussianity of ART samples based on the marginal

statistics of daily rain rates.

5. Conclusions and discussion

Testing the normality assumption of annual rainfall totals

requires long time series of annual data, often not available in

data-poor regions. The present study aimed to overcome this

issue, by developing a nonparametric procedure to assess the

accuracy of the normality assumption for ART based on the

marginal statistics of daily rainfall, which can be effectively

estimated from a few years of daily rainfall measurements.

This was done by combining 1) goodness-of-fit metrics to

conclude on the approximate convergence of the empirical

distribution of annual rainfall totals to a normal shape,

and classify ART samples into two complementary groups,

2) logistic regression analysis to identify the statistics of daily

rainfall that are most descriptive of ART convergence to a

normal shape, and 3) a random-search algorithm to conclude

on a set of constraints that maximizes the likelihood that the

identification procedure produces accurate outcomes. The

analysis was conducted using 3007 time series of daily rain-

fall rates obtained from the NOAA/NCDC GHCN database,

with global coverage, which also allowed us to study how ap-

proximate Gaussianity of annual rainfall totals is affected by

large-scale climatic features, as those embedded in Köppen–
Geiger climatic classification (Kottek et al. 2006). We found

that continental climate (D) exhibits the highest fraction of

Gaussian distributed ART samples [i.e., 74,45%, Anderson–

Darling (AD) test at a 5 5% significance level], followed by

warm temperate (C, 72.80%), equatorial (A, 68.83%), polar

(E, 62.96%), and arid (B, 60.29%) climates (see Fig. 5). The

analysis also showed that the AD statistical test is the most

conservative one in determining approximate Gaussianity of

ART samples [followed by Cramer–Von Mises (CVM) and

Lilliefors’s version of Kolmogorov–Smirnov (KSL) tests], and

that the fraction of wet days fwd, and skewness coefficient skwd
of rainfall in wet days suffice to determine approximate con-

vergence of ART to the normal shape.

Under this setting, Figs. 7 and 8 can serve as a powerful tool

in determining the probability that ART samples in data-poor

FIG. 10. Comparison of the conditional probabilities P[AjT] and
P[AcjTc], with the marginal probabilities P[A] and P[Ac] 5 1 2 P

[A], as a function of the level of significance a used for the AD test,

for the case in which three influential predictor variables (i.e., Set

II: fwd, swd, skwd) are used to constraint classification to the G and

NG groups; see the main text for details.

FIG. 9. Dependence of the optimal thresholds of (a) fwd, along

with (b) standard deviation swd and (c) skwd of rainfall in wet days,

on the level of significance a of the AD test for the 3007 NOAA/

NCDC daily rainfall time series analyzed. Green or red areas

highlight the domains of fwd,swd, and skwd whereART samples can

respectively be considered to be Gaussian or non-Gaussian dis-

tributed on the basis of the proposed procedure.
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regions exhibit approximately Gaussian behavior, based on the

marginal statistics of daily rainfall. The procedure can be

outlined as follows: One uses Fig. 7 to determine whether both

fwd and skwd sample estimates fall inside the domain of

Gaussian ART behavior (i.e., green areas). If this is the case,

one uses the P[AjT] curve in Fig. 8 to calculate the probability

that the sample is Gaussian distributed at the corresponding

significance level a. Otherwise, one uses the P[ACjTC]-curve in

Fig. 8 to obtain the probability that the sample deviates sig-

nificantly from the normal shape at the corresponding signifi-

cance level a. For example, according to Figs. 7 and 8, daily

rainfall time series with fraction of wet days fwd , 0.1 and daily

skewness coefficient of positive rain rates skwd . 5.92 deviate

significantly from the normal shape according to the Anderson–

Darling statistical test at the 5% significance level.

One limitation of the developed approach is that, while the

NOAA/NCDC dataset is the largest currently available, still it

does not cover homogenously all regions and climatic zones

around the globe. We tried to overcome this issue, by not im-

posing any regional or climatological constraints, and focusing

on establishing a linkage between the marginal statistics of

daily rainfall and the deviations of the empirical distribution

of ART samples from the normal shape, irrespective of re-

gional aspects. Since the marginal statistics of daily rainfall

are descriptive of the climatology of regions (see section 3b),

the developed nonparametric test should be implicitly ac-

counting for the local rainfall climatology, irrespective of

coverage issues.

An important note to be made here is that, as happens to be

the case for all statistical tests, failure to reject the null hy-

pothesis of Gaussianity does not necessarily mean that the

null hypothesis is true but, rather, that there is insufficient

evidence to reject it. In this context we tried to assess the power

of the developed testing procedure in terms of Type-II errors

using a jackknife approach.We found that the power of the test

(i.e., the probability of rejection of the null hypothesis of

Gaussianity given that it is false) is 80%, 75%, and 65%, for

corresponding levels of significance 2%, 5%, and 10%, re-

spectively, ensuring the effectiveness of the developed proce-

dure in assessing Gaussianity of ART samples from a few years

of daily rainfall measurements.

Future research may be directed toward 1) identifying rep-

resentative distribution models for annual rainfall totals in

different climatic regions; 2) exploring the time scales of av-

eraging over which rainfall totals become approximately nor-

mal at a given level of significance, as a function of the regional

rainfall climatology; and 3) extending the developedmethod to

assess the extremal behavior of rain rates at different temporal

resolutions on the basis of the marginal statistics of daily,

FIG. 11. Dependence of the optimal thresholds of (a) the fraction

of wet days fwd, along with (b) precipitation concentration index

PCI and (c) skwd of rainfall in wet days, on the level of significance

a of the AD test for the 3007 NOAA/NCDC daily rainfall time

series analyzed. Green or red areas highlight the domain of fwd,

PCI, and skwd where ART samples can respectively be considered

to be Gaussian or non-Gaussian distributed on the basis of the

proposed procedure.

FIG. 12. Comparison of the conditional probabilities P[AjT] and
P[AcjTc], with the marginal probabilities P[A] and P[Ac] 5 1 2 P

[A], as a function of the level of significance a used for the AD test,

for the case in which three influential predictor variables (i.e., Set

III: fwd, PCI, skwd) are used to constraint classification to the G and

NG groups; see the main text for details.
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monthly, and annual rainfall accumulations. Such an effort

may result in a powerful approach toward hydrologic risk es-

timation, particularly suited for engineering applications in

data-poor regions.
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