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Abstract—With the advent of the deep learning era,
Fingerprint-based Authentication Systems (FAS) equipped with
Fingerprint Presentation Attack Detection (FPAD) modules man-
aged to avoid attacks on the sensor through artificial replicas
of fingerprints. Previous works highlighted the vulnerability of
FPADs to digital adversarial attacks. However, in a realistic
scenario, the attackers may not have the possibility to directly
feed a digitally perturbed image to the deep learning based
FPAD, since the channel between the sensor and the FPAD
is usually protected. In this paper we thus investigate the
threat level associated with adversarial attacks against FPADs
in the physical domain. By materially realising fakes from the
adversarial images we were able to insert them into the system
directly from the ‘“exposed” part, the sensor. To the best of
our knowledge, this represents the first proof-of-concept of a
fingerprint adversarial presentation attack. We evaluated how
much liveness score changed by feeding the system with the
attacks using digital and printed adversarial images. To measure
what portion of this increase is due to the printing itself, we
also re-printed the original spoof images, without injecting any
perturbation. Experiments conducted on the LivDet 2015 dataset
demonstrate that the printed adversarial images achieve ~ 100%
attack success rate against an FPAD if the attacker has the ability
to make multiple attacks on the sensor (10) and a fairly good
result (~ 28%) in a one-shot scenario. Despite this work must
be considered as a proof-of-concept, it constitutes a promising
pioneering attempt confirming that an adversarial presentation
attack is feasible and dangerous.

I. INTRODUCTION

Personal authentication systems based on biometrics and,
in particular, on fingerprints are widespread in public security
systems and personal devices, thanks to their precision and
user-friendliness. Spoofing attacks, i.e. attacks to the sensor
through artificial reproductions of fingerprints, have always
represented a serious security threat to Fingerprint Authentica-
tion Systems (FAS) [1]. In recent years, numerous Fingerprint
Liveness Detection (FLD) systems, also known as Fingerprint
Presentation Attack Detection (FPAD) systems, have been
proposed to counteract these attacks.

The rapid diffusion of deep-learning-based and, in particu-
lar, of Convolutional Neural Networks (CNN) based methods
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has made it possible to reach liveness-detection rates above
95% [2]. However, in 2013 it has been demonstrated that
neural networks suffer from some new vulnerabilities [3]. This
attack (known as adversarial perturbation) not only can be
perpetrated at training time (known as poisoning) but also at
test time (known as evasion) [4].

Adversarial perturbations are thus potentially very danger-
ous since an attacker could intentionally add small perturba-
tions to an image, keeping it visually unchanged, to force the
classifier’s decision. On this line, some recent works already
demonstrated the effectiveness of a digital attack on a CNN
FPAD [5], [6]. This type of attack assumes the attackers
to be able to enter the communication channel between the
sensor and the neural network, making them able to submit
the adversarial images as input to the FPAD. This type of
attack is therefore infeasible if the system uses secure channels
protected by time-stamps, physical isolation or challenge-
response mechanisms [7].

Based on these considerations, we wondered if an attacker,
with high knowledge of the system, could exploit adversar-
ial perturbations to increase the possibility that their spoofs
deceive a CNN-based FPADs. In other words, the aim of
this work is to analyse whether the small perturbations that
modify FPAD’s decision can be “printed” and exploited in an
artificial and material replica of the fingerprint.

The rest of the paper is organised as follows. Section
2 provides a brief introduction to CNN-based anti-spoofing
and existing perturbation attacks. Section 3 describes the
proposed attack. Section 4 evaluates the threat level of the
printed adversarial images on a state-of-art fingerprint liveness
detector.Section 4 draws some conclusions.

II. CNN-BASED FPAD AND ADVERSARIAL
PERTURBATIONS

Presentation attack, namely the action of “presenting” a fake
fingerprint replica to a fingerprint scanner, is a common at-
tack against Fingerprint-based Authentication Systems (FAS).
Possible protection against such attacks includes the use of
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TABLE 1

LIVDET2015 DATASET CHARACTERISTICS. FOR EACH SCANNER, THE ACQUIRED FINGERPRINT SIZE, AND THE NUMBER OF LIVE AND FAKE
FINGERPRINTS (FOR EACH SPOOFING MATERIALS) IMAGES ARE REPORTED. THE HYPHEN IN A CELL INDICATES THAT THE CORRESPONDING MATERIAL
HAS NOT BEEN USED TO GENERATE FAKE FINGERPRINTS FOR THE CORRESPONDING SCANNER.

a Fingerprint Presentation Attack Detection (FPAD) module
to discriminate between “live” and “fake” fingerprints. The
use of an FPAD module has become more and more common
since its use causes the attacker to first bypass the FPAD, by
modifying a fake replica such that it is recognised as a real
fingerprint.

FPAD algorithms relies on the extraction of anatomical,
physiological or texture-based features from fingerprint im-
ages. Over the years, FPAD methods have been refined and
recently Convolutional Neural Networks (CNNs) have been
leveraged, using either the full image [8], [9] or patching it
[10], allowing to reach very high accuracy levels [2].

In 2013, when CNNs had not yet spread to many ap-
plications of pattern recognition, Szegedy et al. [11], [3]
demonstrated the existence of adversarial attacks against deep
learning methods (including CNN), i.e. the injection of a
suitable, hardly perceptible, perturbation which leads to a
misclassification of the input image. This severe vulnerabil-
ity has made the robustness of CNN models to adversarial
attacks a key feature in modern systems. Indeed, in the last
decade, adversarial attacks as the Fast Gradient SignMethod
(FGSM) [12], the Basic Iterative Method (BIM) [13] and many
others[3], have become more numerous, more effective and
easy to perform, thanks to the availability of free and open-
source toolboxes [14], [15].

This problem is particularly critic in security-related do-
mains leveraging CNNs in one of their stages. Focusing on
the case of fingerprints, the vulnerability of FPAD systems
to adversarial perturbations has already been demonstrated
[5], [6], describing methods designed to generate perturbed
fingerprint images able to mislead a target FPAD in the digital
domain. In both cases, the attacks assume that the attacker
can feed the perturbed digital image directly into the CNN.
Despite sufficient for a proof-of-concept, these attacks have
limited applicability since most modern systems are protected
from this possibility, with the attacker only having access to
the sensor.

Recently, the effectiveness of an adversarial physical do-
main attack against a CNN-based face authentication system
equipped with an anti-spoofing module has been demonstrated
[16]. Printed and replay facial attacks are easy to obtain, and
the authors have shown that the “fabrication” of these replicas
allows for the retention of the added adversarial information.

In this manuscript we investigate whether the more complex
creation of an artificial fingerprint replica allows an adversarial

attack on a fingerprint presentation attack detection system in
the physical domain.

III. PROPOSED APPROACH

To perform an adversarial presentation attack in the phys-
ical domain, we must identify i) a fingerprint dataset, ii) a
presentation attack detector, iii) an adversarial perturbation
procedure for fingerprints and iv) a way to physically realise
the crafted adversarial fake replica. Following section analyse
each of these points, highlighting means and choices made.

A. Fingerprints Liveness Dataset

The need for a common experimental protocol for liveness
detection tasks gave rise to the gathering of fingerprints
datasets. Among all those available, in this work we consider
the one provided with the LivDet 2015 competition [17]. This
choice is mostly driven by the availability of well-defined
training and test datasets and by the availability of open-source
top-performer liveness detectors trained on it. Table I briefly
reports the main characteristics of the LivDet 2015 dataset.

B. Adversarial Perturbations for Fingerprints

Usually, an adversarial perturbation is a noise r € R(%:"3)

(with w and & the width and height of a target image) crafted
with the aim of misleading a target image classifier. In the
context of fingerprints, an attacker not only must craft the
perturbation to be as subtle (i.e. invisible) as possible but also
must take into account the fact that fingerprints and natural
images are visually different. Accordingly, in a previous work
[5] we modified some well-known adversarial perturbation
algorithms i) to inject a grey-level (i.e., the same for all the
channels in the case of RGB acquisitions) noise r € [0,255]
and ii) to apply it only to the Region of Interest (ROI)
delimiting the actual fingerprint. These constraints result in
a perturbation that, although able to mislead an FPAD, is
still imperceptible for a human operator (Figure 1). In out
previous work [5] we modified three adversarial perturbation
algorithms. In this work we focus only on DeepFool [18] as it
showed to be the most convenient in terms of attack success
rate vs required computational effort.

C. Spoof’s Creation and Acquisition

The perturbation of the fingerprints through the previously
described method is followed by the creation of the moulds
of the adversarially perturbed images. To this aim, the fin-
gerprints are first printed (by using a normal laser printer)



Fig. 1. Example of an unconstrained (left) and of a constrained (right)
fingerprint adversarial perturbation [5].

on a transparent sheet. The fingerprints are directly printed
in their real size, without the need for any resize operation
(since the perturbation has been applied on their digitalised
version). Instead, since the final fingerprints need to be a
perfect replica of the original finger (i.e. a positive mould), the
printed fingerprint must be “inverted”. Finally, since the size
of a fingerprint is very little when compared with a standard
A4 page, we printed several fingerprints on the same sheet .

Fig. 2. Particular of the adversarial fingerprint physical spoof realisation. In
the image, the expert is depositing a later of latex over the printed adversarial
fingerprints. Please note that, on the same sheet, there are several fingerprints
(possibly from different subjects), all inverted in the colours.

Once the sheet has been created, a layer of latex is deposited
over the prints of the individual perturbed fingerprints, making
sure that there is no swelling of air and that the resulting
layer has an adequate thickness that allows correct removal and
subsequent acquisition through the sensor (Figure 2). Indeed, if
the fake is of excessively thin thickness, the removal operation
from the sheet would compromise the fingerprint, resulting in
a non-optimal acquisition. The resulting fingerprint (Figure 3
is then posed over the scanner to perform the actual adversarial
presentation attack.

Fig. 3. A physical adversarial fake fingerprint obtained using the method
described in this paper.

D. Attacking the CNN for Liveness Detection

Over the years, LivDet competitors moved from “classi-
cal” computer vision algorithms to solution leveraging Deep
Convolutional Neural Networks (CNNs). Indeed, the LivDet
2015 edition winner [8] demonstrated that also FPAD can
benefit from CNNs, being able to reach accuracy levels and
intra-materials and intra-sensors generalisation ability never
reached until that moment. In particular, the authors made use
of a VGG19 network [19], pre-trained on ImageNet and fine-
tuned to recognise live from spoof fingerprints. To improve
the network generalisation ability, the authors augmented
the dataset by extracting five patches from each fingerprint,
obtaining a final dataset 10 times bigger than the original
one. Finally, to match the VGG19 input layer expected image
dimensions, each patch is resized to 224 x 224 pixels.

In our previous work [5] we attacked the aforementioned
Vggl6-based FPAD showing how to effectively bypass it
by means of adversarial perturbations. In that case, all the
experiments were performed in the digital domain. Indeed,
although the attack was already designed to be “printed” for
real-world application, the actual fake replica crafting and its
use for a real presentation attack has never been performed.

In this paper we want to fill the gap by proposing a proof-
of-concept for an adversarial presentation attack. In particular,
we analyse whether it is possible to realise a tangible replica
of an adversarial fingerprint that is still able to bypass the
liveness detector. To this aim, we design the following attack
scenario (Figure 4):

o We sample a set of subjects and acquire their fingerprints
to be submitted to the FPAD in order to calculate the
liveness score (first row in figure 4);

« For all the enrolled subjects we also consensually acquire
a mould for each fingerprint. These will be then used to
craft fake fingerprint replicas to be submitted to the FPAD
to calculate the liveness score (second row in figure 4);

o We leverage the adversarial fingerprint generation proce-
dure [5] to determine, for each fake fingerprint crafted in



the previous stage, the noise to add needed to mislead the
FPAD. The resulting adversarial fake fingerprints are then
submitted to the FPAD in order to calculate the liveness
score (third row in figure 4);

« Finally, for each adversarial fake fingerprint, we craft a
physical replica to be submitted, present it to the scanner
and submit the acquisition to the FPAD in order to
calculate the liveness score (fourth row in figure 4).

To evaluate the attack success rate, we consider only fake
fingerprints form the official LivDet2015 test dataset (since
an attacker is usually interested only in making fake replicas
recognised as live). As this work aims to provide a proof of
concept, we tried to limit the influence of as many aspects as
possible. Therefore, among all the scanners and materials, we
only focus on Digital Persona as scanner, Latex as spoofing
material, the official LivDet2015 winner [8] as FPAD and
DeepFool [18] (modified to work with fingerprints as in [5])
as adversarial perturbation algorithm.
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Fig. 4. Adversarial presentation attack schema. In the first row, the subject
fingerprint is acquired; in the second row, a consensual fake replica is crafted;
in the third row the (digital) adversarial fingerprint is crafted; finally, in the
fourth row, the adversarial replica is printed and acquired. In all the stage,
the target FPAD is used to evaluate the liveness score of the corresponding
stage fingerprints.

Although all the stages are intended to try to minimise
the impact of any external factor, the physical fingerprint
crafting procedure might itself introduce a bias in the liveness
score. Therefore, for all the fake fingerprints (stage two of the
previous schema) we also crafted the corresponding physical
replica without any adversarial perturbation applied (Figure 5),
with the aim of measuring the effect that a simple print and
re-acquisition has on the liveness score.

IV. RESULTS

In this section, we evaluate the actual threat of the proposed
adversarial attack in the physical domain.

Digital fake

Spoof
re-fabrication

Re-printed image
Biometric
sensor

Fig. 5. Schema for the evaluation of the impact that spoof re-fabrication from
the digital image has on the FPAD score.

Re-printed
spoof

The first evaluation served to verify how much the acquisi-
tion conditions and the pre-printing pre-processing influenced
the liveness score. In this preliminary experiment, each spoof
was acquired once. The Figure 6 shows the comparison
between manual and automatic pre-processing and between
acquisitions in a warm environment ( 30° Celsius) and an
environment with average temperatures (about 20° Celsius).
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Fig. 6. Boxplot of the liveness scores of the 250 latex re-printed samples
crafted with different acquisition and pre-processing methods: the manual
method, which consists in inverting and resizing the fakes individually
using an image editor and printing the paginated fingerprints; the automatic
procedure, reversing and resizing the images via a MATLAB code. The
difference between Warm and Average depends on the temperature in the
room during printing and re-acquisition: 30° Celsius for Warm and about
20° Celsius for Average.

The boxplots show that the different acquisitions conditions
and pre-processing methods do not particularly affect liveness
results. However, it is important to note that through the sole
re-fabrication of the fingerprint from its digital spoof replica,
most of the scores (~ 80% for all the cases reported in the
boxplots) incur in an increase of the liveness score, with a
portion (~ 12%) of the re-printed fingerprint able to mislead
the FPAD.

Since, as aforementioned, the fake realisation procedure
does not really affect the liveness score, all the following
experiments were performed by printing the fingerprint using
the automatic method and average temperature. It is also worth
to note that, for a fair result analysis, only fake fingerprint



correctly classified as fake by the FPAD underwent the ad-
versarial perturbation process (242 of 250). Moreover, each
spoof was acquired 10 times (for a total of 2420 acquisitions)
with small rotations of the spoof on the sensor. This rotation
is done to verify the efficacy of the detector by providing
the same fingerprint but in slightly different conditions and
therefore focusing on different patches of the image. To
simplify the notation, we also introduce the following terms:
Digital, referring to the digital version of a clean (i.e. non
perturbed) spoof fingerprint; Re-Print, referring to the printed
and re-acquired version of a clean spoof fingerprint; Digital
Adversarial, referring to the digital version of an adversarially
perturbed fingerprint; Printed Adversarial, referring to the
printed and acquired version of an adversarially perturbed
fingerprint (i.e. the actual adversarial presentation attack).
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Fig. 7. Comparison of the liveness scores for the re-printed spoofs and for
the printed adversarial replicas.

In Figure 7 the comparison of the liveness scores for the
printed adversarial spoofs and for the re-printed spoofs is
reported in order to highlight how much the improvement in
the score is due to the addition of the perturbation. Although
the median scores (red lines in the boxplots) are smaller
than 0.5 (i.e. classified as fake), a high percentage of Printed
Adversarial spoofs (specifically 32.77% against the 27.81% of
the Re-Printed spoofs case) deceive the target FPAD. Part of
the increase in scores is given by the re-printing process but
the perturbations inserted in the images determine a further
increase.

To properly assess the danger of the attack it is necessary to
compare these scores with the original scores. Figure 8 shows
the comparison between original scores, digital adversarial
attack, re-print, and printed adversarial attack. For the last two,
we plotted the median values (upper plot) and the maximum
values (bottom plot) of the scores on the 10 acquisitions.
From the comparison between originals and digital adversarial,
we see that the images initially classified as fake, after the
perturbations are classified as live in the 99.59% of the cases.
On the other hand, the comparison between the median value
and the maximum value of the scores of the attacks printed on
the 10 acquisitions suggests some important evidence: i) the
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Fig. 8. Comparison between original scores Digital, Digital Adversarial
attack, Re-Print, and Printed Adversarial attacks. For the last two we plotted
the median values (upper plot) and the maximum values (bottom plot) of the
scores obtained by the 10 acquisitions.

scores vary considerably based on the position of the spoof on
the sensor; ii) the perturbation is not lost during the printing
process but it could be lost during the submission of the
spoof on the sensor; iii) an attacker can manage to bypass
a target FPAD in 10 presentations of the printed adversarial
spoof. What is surprising to find is the fact that even with the
sole reprint of the digital spoof image it might be possible to
mislead a CNN-based classification. In particular, focusing on
the plot of the maximum value, 77.27% of the attacks with
the re-print strategy and 80.17% with the adversarial printed
are successful. This result is achievable with unrestricted (or
limited to up to 10 trials) access to the sensor (multiple
attacks with the same spoof). If we bring ourselves to more
stringent conditions, where the attacker has only one chance
of attack (simulated with the median of the scores on the 10
acquisitions) the success rates drop significantly, going down
to 20.25% for the re-printed attack and to 28.51% for the
adversarial printed attack.

Results show that, although more effective than the sole re-
print, the adversarial perturbed images suffer from the printing
procedure, highlighting the need for a more print-resilient



adversarial procedure and/or for a more adversarial-aware
printing procedure. Nonetheless, these attacks pose a serious
threat to CNN-based FPADs that usually report accuracy
> 90% on most of the available fingerprint datasets.

V. CONCLUSIONS

In this work, we evaluated the threat of a physical adver-
sarial attack against a CNN-based Fingerprint Presentation
Attack Detector (FPAD). Crafting materially an adversarial
fingerprint (i.e. a spoof fingerprint modified by means of a
fingerprint adversarial perturbation algorithm) we have shown
that it is possible to move these attacks from the digital domain
to the physical one. This makes adversarial perturbations
more dangerous, as they can be performed by an attacker
having only access to the sensor. We compared this physical
adversarial attack with the simple re-printing of the original
digital images to assess how much the latter influenced the
liveness score.

The experimental results obtained on the LivDet 2015
dataset, using the winning CNN of the same edition as FPAD
[8] and a modification of the DeepFool [18], [5] as adversarial
attack, showed the feasibility and danger of these printed
attacks. Surprisingly, the only re-printing of the original spoofs
led to an increase in liveness scores, constituting a low effort
attack. The reduced difference (~ 3%) between the increase in
score obtained through simple re-printing and the adversarial
printed image show that although the perturbations remain
and affect the liveness score even after printing, the biggest
portion of it is destroied by the printing procedure. This is
further confimed by the fact that the full-digital attack obtains
an almost 100% success rate. Therefore, despite this work
constitutes a promising pioneering attempt confirming that an
adversarial presentation attack is feasible and dangerous, a
more in-depth study is necessary to render the procedure more
robust and effective.

A shred of important evidence is that the position of the fake
on the sensor greatly influences the result. As experimental
evidence, it turned out that with a maximum of 10 acquisitions
it is possible for the attacker to cheat the FPAD system. This
work is limited to a single FPAD and a single perturbation
method. It will be thus important to evaluate how other
CNN-based FPADs classify printed adversarial fingerprints.
Furthermore, it will be important to evaluate whether the
matching information is altered by the perturbation or by the
printing process. These aspects, as well as the use of black-
box attack scenario and of latent spoof fingerprints, will be
faces in futures works.
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