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Abstract: Urban microclimate modelling, both numerical and in the laboratory, has strong impli-

cations in many relevant health and life-style management issues e.g., in studies for assessment

and forecast of air quality (for both outdoor and, as boundary conditions, indoor investigations),

for thermometric trend analysis in urban zones, in cultural heritage preservation, etc. Moreover,

the study of urban microclimate modelling is largely promoted and encouraged by international

institutions for its implication in human health protection. In the present work, we propose and

discuss an adaptive street graph-based method aimed at automatically computing the geometrical

parameters adopted in atmospheric turbulent flow modelling. This method has been applied to

two real cases, the Italian cities of Rome and Cagliari, and its results has been compared with the

ones from traditional methods based on regular grids. Results show that the proposed method

leads to a more accurate determination of the urban canyon parameters (Canyon Aspect Ratio and

Building Aspect Ratio) and morphometric parameters (Planar Area Index and Frontal Area Index)

compared to traditional regular grid-based methods, at least for the tested cases. Further investiga-

tions on a larger number of different urban contexts are planned to thoroughly test and validate the

proposed algorithm.

Keywords: urban climate; street canyon; street-based morphometry; air quality

1. Introduction

1.1. Symbols and Acronyms

As the target of this paper is to present and test a novel street graph-based grid method
to automatically compute the geometrical parameters adopted in numerical and laboratory
modelling of atmospheric turbulence (and to compare it with previous method based on
regular grids), first of all, in this paragraph we present a list of the main parameters and
symbols employed hereafter to describe the geometrical features of the urban areas. Given
an example building, as depicted in Figure 1, its total pertinence area (AT) is shaded in
green and its planimetric area (AP) is shaded in orange. The red line denotes the width of a
typical urban canyon (WC) and the blue one indicates a building width (WB). Assuming a
wind direction (in the example NW, showed by the large blue arrow, U), it is possible to
define the building width projected on a normal-to-the-wind plane (LB), which is drawn in
yellow in the figure. The other relevant parameters are:

• H: Average buildings height;
• ARc: Canyon Aspect Ratio, i.e., ratio of canyon width WC to buildings height H;
• ARb: Building Aspect Ratio, i.e., ratio of the width WB to the height of buildings of the

canyon H;
• λp: Planar Area Index, i.e., ratio of planar area covered by buildings AP to total

extension planar area considered AT;
• λf: Frontal Area Index, i.e., ratio of building frontal area projected on the normal plane

of a certain direction (AF) to total extension planar area considered;
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• λ f : wind direction-averaged Frontal Area Index;

• λf(dir): λf calculated on the prevalent wind direction.

 λ

 𝜆�̅�
 λf(dir) λ

 

λ λ

Figure 1. Schematization of main parameters in real, urban texture; U indicates wind direction, LB

the building width projected on the plane normal to U, WB is the building width and WC the canyon

width, green area indicates the building pertinence area AT and orange areas the building planimetric

areas AP.

1.2. State of the Art and Targets

Many important challenges of our days are strongly linked to urban microclimate
modelling and, in particular, to the aerodynamic properties of urban areas: as a conse-
quence of various types of emissions, urban environment can respond in different manners
depending on its specific characteristics (Lou et al. 2016 [1]). Uncontrollable variables
(such as wind direction and speed, air temperature, and humidity) and human-related
conditions (in particular, urban characteristics, and landscape) should be taken into ac-
count to correctly plan and manage urban environment (Chiri et al. 2020 [2]). Thus, urban
morphology hallmarks acquire relevance in a general way and in a broad range of sectors
(Kent et al. 2019 [3]), being involved in a circular process: beyond their effects in urban
air quality (both outdoors, as in Peng et al. 2017 [4]; Shen et al. 2017 [5]; Chan and Liu
2018 [6]; Shi et al. 2018 [7], and indoors, as in Pelliccioni et al. 2020 [8]). Moreover, they are
also crucial for the reliability of urban aerodynamic modelling in forecast codes (e.g., to
predict pollutant dispersion and urban microclimate in the built environment). Nowadays,
air quality modelling is largely promoted and encouraged by local and international in-
stitutions (see, e.g., the Directive 2008/50/EC of the European Parliament about the air
quality in Europe [9]) and, as a consequence, urban surface parametrization is fundamental
in air quality assessing and forecasting models but still technically demanding (Liu et al.
2018 [6]). Primarily, a well-defined set of λp and λf values for an investigated urban site
is required for a better comprehension and modelling of the vertical wind profile in the
studied area. Secondly, the study of the best use of morphometric parameters for the
definition of fluid dynamic roughness length (z0) and zero-plane displacement height (zd)
is currently ongoing (Kent et al. 2018 [10]). Moreover, this parametrization is needed both
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for urban Computational Fluid Dynamics (CFD) simulations (Blocken 2015 [11]) and for
mesoscale numerical weather prediction systems (e.g., Weather Research and Forecasting
model, WRF), as described in Skamarock et al. (2008 [12]).

On the one hand, the computation of z0 is important in CFD for a realistic simulation
of the Atmospheric Boundary Layer (ABL) flow in the computational domain. The lack of
site-specific information forces to rely on land-use based z0 individuation through specific
tables, as those defined by Wieringa (1992 [13]) or by Grimmond and Oke (1999 [14]). The
characterization of the boundary zone, which encloses the computation domain, in terms
of roughness length z0 may also allow to avoid the direct implementation of building
geometries for large extension, obtaining good results in comparison with simulations
employing a detailed building description (Liu et al. 2018 [5]).

On the other hand, the importance of a detailed parametrization of urban canopies
has been demonstrated for mesoscale modelling (e.g., Martilli et al. 2002 [15]; Salamanca
et al. 2011 [16]). The urban surface characterization, as defined by Stewart and Oke
(2012 [17]), is currently widely used and it is gathered in the World Urban Database Access
Portal and Tools (WUDAPT) (Demuzere et al. 2019 [18]). According to this philosophy, a
parametrization of urban surfaces is required to sort them into homogeneous Local Climate
Zones (LCZs), each one linked to a specific range of values of the required descriptive
parameters, both in terms of building geometry and thermodynamic properties of the
materials. For a complete overview, see Stewart and Oke (2012 [17]), while for a general
discussion on the application of the mentioned classifications see Ching et al. (2018 [19]).

Regarding the urban morphometric calculation for the determination of zd and z0,
several questions still remain open since the first reviews of different authors’ experiences
(Grimmond and Oke 1999 [14]). Firstly, as described above, a general lack in knowledge
about which values of the fluid dynamic parameters to associate to specific urban texture
can be detected. In particular, the method for the determination of z0 is still an open issue
and still it is often necessary to use quali-quantitative associations between the urban zone
description and the related parameter value, or rule of thumb methods (Garuma 2018 [20]).
Otherwise, in case of Digital Elevation Models (DEMs) and/or other urban texture digital
information, it is possible to derive morphometric parameters with accurate calculation,
e.g., based on the building height data for the site. Moreover, this kind of computation
can be automatized and, therefore, extended to large urban areas. Evidences reported in
Leo et al. (2018 [21]) highlight that the main topics and the leading questions are roughly
the same as those described in Badas et al. (2019 [22]), where morphometric and zd, z0

definition for different urban areas as obtained by Ratti et al. (2002 [23]) are compared.
More specifically, investigations on Oklahoma City were conducted considering its urban
map and a hypothetical wind direction. Authors suggest the possibility of a planimetric
sub-division based on the ratio between mean building height (Hm) and maximum building
height (Hmax), evaluated along two principal directions, x and y (where x is the considered
wind direction and y the perpendicular direction). Apparently, zeros of this function
may rapidly allow to detect a certain number of sub-matrixes, which represent single
buildings or small group of buildings, and to define a grid on the urban area. Finally, it
is possible to associate a morphometric (or fluid dynamic) parametrization to every grid
cell. However, if the interest is focused along a direction not parallel to main roadways
axes, two main obstacles arise. Firstly, the described Hm/Hmax analysis becomes impossible,
just like it happens to any different, irregular urban texture, as many of European ones,
where street axis orientation, even in small areas, may be much more complex than a grid
of perpendicular or parallel roads. The second problem refers to the distortion of λf values
when applying a regular square grid subdivision to “chaotic” urban arrangements, due
to unavoidable geometric overestimation of the parameter along diagonal directions, as
shown in Badas et al. (2019 [22]).

Regarding mesoscale numerical weather prediction systems, the definitions given
in Stewart and Oke (2012 [17]) provide 17 homogeneous classes, 10 for urban texture
and 7 for natural background and rural zones. Instead of considering a built-in model
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parametrization and classification or other less specific morphological feature descriptors,
a better result in model predictions can be reached, for instance for wind velocity mod-
elling 10 m above the ground, using the information included in the WUDAPT dataset
(Pellegatti Franco et al. 2019 [24]). WUDAPT can be defined as a sort of crowdsourcing
for the definition of urban area mesoscale parameters; in fact, it involves a group of local
experts (it may be composed of professionals as architects, urban planners, or volunteers),
who can provide information on urban texture classification, construction materials, and
roadway structures of a specific urban zone; moreover, WUDAPT can manipulate image
data. Collected information is useful for the subsequent high-resolution satellite image
recognition; in fact, the workflow for urban area classification firstly consists of the choice
of Training Areas (TAs), chosen by the aforementioned groups of local experts, and then
into the detailed characterization of these areas (Bechtel et al. 2019 [25]). However, authors
suggest further possible improvements, in particular in terms of LCZs extrapolation and
transferability to different contexts from the ones where they were firstly derived (Kalous-
tian et al. 2017 [26]). Even if WUDAPT available dataset allows a good urban surface
characterization that leads to appreciable modelling results and shows adaptability (e.g.,
in terms of parameters values interpolation, see Zonato et al. 2020 [27]), a site-specific
urban characterization still may help for the urban surface classification purpose. In fact,
to obtain the so-called Level 0 data, the individuation of TAs is based on the capability of
local community to well recognize the main features of the urban environment into TAs:
the following process of classification of other site areas is strongly influenced by this first
step. It is necessary to consider that satellite image spectral signatures can differ across the
world, so the required TAs data are forced to be site-specific, and is usually acquired by
the volunteer local experts (Bechtel et al. 2019 [25]); this means that local training data and
knowledge of the local urban structures are a necessity (Bechtel et al. 2015 [28]).

The principal aim of the paper is to propose, test, and discuss a new automatic method
for the computation of the geometrical parameters needed for the description of urban
areas in numerical and laboratory modelling of atmospheric turbulent flows. The method
relies on an adaptive street graph-based morphometric characterization: starting from
largely available datasets of building height data and a street graph, we show the possibility
to derive specific morphometric values and, therefore, to potentially derive results on any
area where data on building height are available. As shown in Section 5, the street graph-
based method allows to identify the buildings without any artificial or user-based choice
of the regular grid size of and, consequently, to achieve a better accuracy than traditional
regular grids. The main idea behind the proposed procedure is, therefore, to automatically
identify the street graph and, consequently, the single building or block: in this way, the
object of the morphometric analysis is its natural basic component instead of arbitrarily
grouping and partially decomposing them into each square of a grid. In this way, it is
possible to accurately calculate morphometric (and so fluid dynamic) parameters for every
block and to classify different values depending on the zone of interest. Moreover, it is also
possible to derive canyon parameters for every street canyon and to compute site-specific
statistics. The higher accuracy in the obtained parameters can be very useful for the scien-
tific community working on the numerical and/or laboratory modelling of atmospheric
turbulence. Regarding the numerical simulations, in the mesoscale (e.g., Weather Research
and Forecasting model, WRF [12]) and microscale (e.g., ANSYS-Fluent [29]) numerical
models for meteorological and fluid dynamics characterization of urban areas, the geo-
metric parameters under consideration are key factors for the correct representation of
turbulence in complex areas. Regarding the laboratory simulations, they require detailed
information about H, λp and λf, as these parameters determine the flow regime in the
urban canyon and in the roughness sublayer, governing the ventilation and, consequently,
the exchanges of mass and momentum between the pedestrian area and the overlying
flow (e.g., Di Bernardino et al., 2018 [30], Garau et al., 2018 [31] and Badas et al., 2021 [32]).
Moreover, those parameters are peculiar of each urban area and, consequently, they have
to be properly chosen accordingly to the urban area under investigation: for instance, most
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of the old town centers of European cities are characterized by narrow street canyon, i.e.,
ARc smaller than 1 ([33]). In addition, the flow and the turbulence features over buildings
depend also on ARb: see, for instance, [34] and [35] and references therein.

2. Case Study

As stated in the previous section, the main target of the paper is to propose, test, and
discuss a new automatic method, described in detail in Section 3, for the geometrical de-
scription of urban areas needed for the numerical and laboratory simulation of atmospheric
turbulent flows. The proposed adaptive street graph-based method for the morphometric
characterization of urban areas was applied to two actual urban areas, in order to compare
the results with the ones from traditional regular grid size methods. We considered two
urban areas in Italy (Figure 2): a central portion of Rome, parted by its historical districts,
and a central portion of the city of Cagliari, parted in its central neighborhoods.

λ

 

Figure 2. Geographic framing of case studies and related wind roses.

This choice was not random: even if, globally, the bounding of the area of the city of
Rome can be dated at the Ancient Roman Age, its districts were involved, time after time,
in a controlled urban planning process and building remake, which gave to the area a large
variability in form and architectural typology. Analogue considerations can be carried out
for Cagliari: historical areas are included, even if with post-modifications as well as recent
restoration projects (e.g., immediately post World War II). This inhomogeneity allows, even
if involving only two cities, the analysis of a large number of morphometric typologies,
and the detection of some site specificities.

To compute the wind direction dependent parameter λf(dir), it is important to know
the anemometric behavior in the two areas. For the city of Rome, we considered the W
provenience, one of the prevalent wind directions in the zone, especially for spring-summer
months [36]; for the city of Cagliari we considered the NW provenience, i.e., the dominant
wind [37] (see Figure 2).

3. Methods

3.1. Data Description

As a first step, we prepare and pre-process an initial dataset: mainly, the building
heights and, if available, the local street graph. For both Rome and Cagliari, building
height data are available on open source sharing institutional sites, while street graph data
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can be obtained in the same platforms or through the OpenStreetMap service. Hereafter, a
synthetic description of the initial data for regular and irregular grids used in calculations
is given, as well as a discussion about the main differences between the two investigated
zones (in Section 3.2). For the elements of the regular grid, we have chosen 100 m × 100 m
squares, as a consequence of a previous study ([22]) whose results showed that, both for λp

and λ f , this size gives a more realistic representation in comparison with smaller element
grids. On the other hand, it has been chosen to not exceed that dimension, according to
what suggested by other case studies in literature (for a more detailed description of the
applied general method, see Badas et al. 2019 [22] and Salvadori et al. 2019 [38]). The total
grid element number for the street graph-derived grids is 334 for Cagliari and 4090 for
Rome. The total grid element number for the regular grids is 436 for Cagliari and 1678
for Rome.

3.2. Main Differences between the Two Investigated Areas

The first basic difference between the two investigated areas is the street graph-based
grid texture, as briefly described in the previous section. In fact, notwithstanding the
larger extension of the Rome portion compared to the Cagliari one and the obvious larger
number of elements both for regular and for adaptive grid, while Rome shows an increase
of elements number switching from regular to adaptive grid, for Cagliari an opposite
behavior can be detected. This can be explained keeping in mind that the street graph
derived grid elements are defined by the local closed polygons formed by street axis: this
means a link between its shape and the main street configuration but not necessarily a
relation with the effective geometric distribution of built and non-built environment. In
fact, two types of distortion have to be considered: the possible absence of street elements
for particular areas where pairwise distances between buildings are important, which can
lead to the above-described paradox, and the unavoidable errors in the initial data (e.g.,
imprecise localization of streets, improper axis classification with multiple counts for large
streets, etc.). To minimize the second type of error, we pre-processed the data, deleting
or modifying non-consistent vector elements; on the other hand, the first kind of error
underlines the importance of considering site specificities.

As a consequence of the above discussion, Cagliari and Rome show a different proba-
bility density function (pdf) of block areas, as shown in Figure 3.

𝜆𝑝 𝜆𝑓

Figure 3. Probability density function of block areas for the two case studies (areas in m2).

Rome presents a larger number of small areas, referring to block partition, and this fact
has an important impact on λp and λf calculation and statistics. For the sake of clarity, this
may depend also on the type and shape of the street graph data used to create the blocks
for the irregular grid, rather than on a real different urban texture. In fact, even if peculiar
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elements are identified (e.g., the inner-city river stretch), the effect of residuals of the second
type of distortion in street graph may play a role, and arbitrary smaller zones are often found
even after the post-processing phase. In order to overcome this discrepancy, here we do
not consider the elements with an area smaller than 500 m2 (i.e., the hypothetical minimum
realistic block area) and these values are excluded from the pdf shown in Figure 3.

3.3. Raster Data Treatment and Morphometric Computation

As a consequence of what is reported in Section 3.2, namely the uncertainties in
generalization of grid definition for morphometric analysis, we tested different methods
to define the street graph-based grids. As a first analysis, we tried to improve the typical
parameter calculation reported in Ratti et al. 2006 [39] and in Di Sabatino et al. 2010 [40],
considering a street graph derived adaptive grid.

As mentioned in Section 3.1, for a widespread computation of H, λp, and λf a dis-
cretized information about building heights is generally needed: these kinds of data are
usually achievable in Digital Elevation Models (DEMs), which are cast as simple computer-
treatable matrixes, and where every matrix value represents the height of a specific terrain
point. More specifically, often height information on urban areas is available in a twofold
nature: in fact, it is required to manage the Digital Terrain Model (DTM) of the geographic
area of interest, which reports ground heights in a topographic sense, and the Digital
Surface Model (DSM) of the city or the portion of city under investigation. The latter
contains information about heights in a more general way, meaning the inclusion of two
main kinds of the motionless objects frequently found on urban surfaces, i.e., buildings and
vegetation (even if in this study the contribution of the vegetation was neglected). Clearly,
city building heights are obtained by difference between the two mentioned datasets. It
is possible to associate to a certain DEM a reference coordinate system and, therefore,
each matrix point is uniquely identified through a reference couple in a chosen coordinate
system. Thus, it makes sense to associate to raster data even any sort of vectorized dataset,
e.g., street graph information, and it is possible to work on their combination. Figure 4
shows what was just described. An example block is indicated, too, and will be recalled
in the following description. Heights are reported on a grey scale, that assigns clearer
colors to higher values, and street graph vector data are represented by red lines. All the
non-building pixels were imposed to a value equal to zero, supposing that every object of
less than 2 m height is not a building, as highlighted by the first inflection of values in the
histogram of heights in Figure 5.

λ λ

 

Figure 4. Urban texture sample of Cagliari city. Both raster data and vector data are included, as described in the text.

Greyscale represents height values, street graph is reported in red. The example block is highlighted in orange.
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λ λ

Figure 5. Histogram of height values for Cagliari. First inflection at 2 m is considered as the partition

point between buildings and other city objects. DEMs heights in m.

A brief description of the designed procedure to derive morphometric parameters
will be now given. Even if fundamental steps of the method are exactly the same for every
shape of grid, here we refer to the street graph-derived grid, due to what discussed in
Section 3.2. Depending on street graph vector data quality and accuracy, often blocks
may include one single building or a small group of buildings. Referring to Figure 4, any
polygon formed by the street graph can be taken as a region of interest. In Figure 4, the
position of an example block (in orange) is also shown, which will be considered for the
following discussion. Figure 6 represents the workflow to calculate the parameter set for
each block. We start from the situation depicted in Figure 6a. At first it is necessary to
purge the matrix from other block contributes: as a consequence of geo-localization, this
is quite immediate, and every pixel that falls outside the polygon defined by the street
graph cycle is set to 0. So, we obtain the result shown in Figure 6b, and it is possible to
calculate H, λp, and λf in the needed direction. AT is the area within the block, i.e., within
the red polygon.

λ λ

 

Figure 6. Image processing for parameters calculation; (a) focus on an example block to be considered;

(b) isolation of block to make possible to detect its own height values, building cells, and terrain cells

(inside the red line). Green area is the excluded one; values inside the red line are the considered ones.

Once the area to be analyzed is chosen (see for example Figure 6b), recalling the
definitions given in Section 1.1, λp is immediately found as follows:

λp =
AP

AT
=

npb

npt
(1)

where npb is the number of pixels covered by buildings (i.e., in this context, the number
of non-zero values in the matrix) and npt the total number of pixels inside the polygon.
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A more precise differentiation is needed both for the mean height H and for the frontal area
index λf. There are different interpretations of the H definition and computation (Ratti et al.
2002 [23]); here we consider the planimetric one, i.e., a simple averaging of the non-zero
values included in the studied area, through the following equation:

H =
∑ hi

npb
(2)

where hi is the height value that competes to each raster cell.
Instead, λf is unequivocally a directional parameter. Thus, along a certain direction,

the first step consists to rotate the raster data to fit wind provenience direction and to obtain
a new matrix. After the conclusion of this procedure, for λf calculation it is sufficient to
project building frontal area on a plane perpendicular to the investigated direction. Having
the height representation matrix, that means to find each column maximum value, then to
sum the contributes. So, it is possible to calculate λf as:

λ f =
AF

AT
=

∑ hmj

npt dx
(3)

where hmj is the maximum value along the j-th column of the rotated matrix, and dx is
the length of each pixel side. Note that, because of symmetry properties, it is possible
to compute just a half of the chosen directions, if evenly distributed on 360◦, saving
computational resources and time.

3.4. Computation of the Aspect Ratios for Canyon Representation

As previously stated, an urban canyon characterization has been conducted as well.
This task requires a knowledge of the orientation and the geometric arrangement of
buildings and of the free space between them, i.e., the mutual distance between buildings
and the facade height. As the street graph identifies, in most cases, the dividing line
between buildings or other urban structures, it can be considered as the basic information
to detect canyon parameters. In fact, starting from the street graph, it is possible to
define the leading feature of an urban canyon (in most cases, it evenly parts the canyon
longitudinally), and the use of a combination of geographic-vectorial and raster-based
information allows the extrapolation of a statistic of the buildings’ heights (on both canyon
sides) and of the mutual building distance, along the main direction of the canyon. Figure 7
shows the basic elements of this analysis. As for morphometric parameters, DSMs provide
rasterized data of the building heights. It is immediate to calculate zonal statistics of heights,
having available buildings contour vector data, using any GIS support; otherwise, it is
possible to obtain these kinds of data starting from buildings’ DSM. Choosing an interval,
several points along each specific canyon feature can be taken to build transverse sections,
and so to collect detailed information on building heights and street width. The considered
height for canyon analyses is different from the one used for morphometric classification.
As a first step, it is possible to associate to every building polygon the average height value
of those that fall within the polygon. So, for every section along a street canyon, the height
of the intersected polygons (one on the left and one on the right) can be identified, and the
height in that section can be defined as follow:

hsec =
1

2

(

hpl + hpr

)

(4)

where hsec is the height associated to the section, hpl and hpr are the heights corresponding
to the polygon on the left and on the right with respect to the street axis.
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“section i”, it is possible to 

 

λ 𝜆�̅�
λ

–

Figure 7. An example of urban canyon features detection for aspect ratio calculations. On the left, the overlap of building

heights raster data on Google Satellite image; on the right, street graph (thin yellow lines), canyon transvers sections (thick

red lines), and building vector data (semi-transparent blue polygons) are added. Cian points (e.g., B and C) indicate nearest

intersections between canyon sections and buildings, green points (e.g., A and D) most distant intersections. Other details

in the text.

It is also possible to determine the coordinates of the intersections between the sections
and the building polygons: in fact, the building polygon nearest point can be detected, with
respect to the street axis, as well as the farthest one, defined as the one that demarcates the
building continuity interruption (i.e., the building end wall or the presence of a courtyard),
and this can be done for both sides of the street canyon. Referring to Figure 7, along the
direction shown by the yellow arrow and taking into account the highlighted “section i”, it
is possible to automatically calculate the canyon width WC as the distance between B and
C, the building width (WB) on the left as the distance between A and B and the building
width on the right as the distance between C and D; the building width is the average of
the lasts.

Combining these quantities, ARc and ARb can be calculated for each sampling section
and so for the considered canyon and, for extension, for every canyon in the studied area.
So, one of the advantages of the methodology is that it allows an automatic identification
of the street canyons and a straightforward calculation of the street canyon features. This is
particularly relevant, for instance, when the characteristics of the street canyons to simulate
in laboratory or numerical experiments have to be chosen.

4. Results and Discussion

This section is organized as follows. In Section 4.1, the spatial distribution and
probability density functions of λp and of wind direction-averaged λ f , computed via both
the adaptive street graph-based method and a regular grid one, are shown; the results
from two grids are then compared and the capability of the methods to identify the single
building blocks and their features is discussed. Section 4.2 is dedicated to the results
regarding λf as a function of the wind direction, again with a comparison between the
adaptive street graph-based grid results and the regular grid ones. In Section 4.3, the
Aspect Ratios ARc and ARb computed with the street graph-based grid are shown, with
the target to highlight some site-specific features and the need to identify accurate values
for these parameters, in particular for studies at the scale of a specific site.

In Table 1, the numbers used to identify the districts of Cagliari and Rome on
Figure 8, 10 and 12–15 are listed. On the same Figures, the yellow line indicates the
district delimitation.
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Table 1. The investigated districts of Cagliari and Rome.

Cagliari Rome

1 Bonaria 1 Trevi
2 Marina 2 Colonna
3 Villanova 3 Monti
4 Stampace 4 Pigna
5 Castello 5 Campitelli
6 San Benedetto 6 Ripa

7 Sant’Angelo
8 Sant’Eustachio
9 Parione
10 Prati
11 Ponte
12 Borgo
13 Regola
14 Trastevere
15 Campo Marzio
16 San Saba
17 Celio
18 Testaccio
19 Castro Pretorio
20 Sallustiano
21 Ludovisi
22 Esquilino

 

λ

λ

÷

÷

÷

÷

÷

÷

÷

÷

Figure 8. Spatial distribution of λp for the two areas (street graph-based grid); the numbers identify

the investigated district (see Table 1).
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4.1. λp and Wind Direction-Averaged λ f

Figure 8 shows the spatial distribution of λp, computed with the adaptive street
graph-based grid method, within the two investigated areas; values are grouped into
7 classes with equal range, plus one which collects the maximum values, corresponding
to few elements compared to the total number (10% for Cagliari and 2.5% for Rome). The
capability of this method to identify the single building blocks should be noted. The
two areas show a similar distribution of λp, with some districts (the most central ones)
characterized by a denser distribution of buildings.

Figure 9 shows the probability density function for λp, computed with the adaptive
street graph-based grid method. The two zones show a similar distribution, with a single
peak approximately at 0.4 for Cagliari and 0.5 for Rome. This highlights a similar occupa-
tion of space in the two areas, even if slightly larger for Rome. Actually, both distributions
have a strong probability peak on the zero value (not shown in Figure 9, as specified below),
especially in the case of Rome, linked to large non-built (green) areas.

λ

 

λFigure 9. Probability density function of λp for the two areas (street graph-based grid).

Figure 10 shows the spatial distribution of λ f : values are grouped into 8 classes, plus
one for maximum values (1.5% of the elements for Cagliari and 11.6% for Rome). The maps
show that values of Cagliari tend to be lower than Rome ones, properly recognizing that
buildings in the investigated areas of this town tend to be higher and wider in Rome than
in Cagliari.

Figure 11 shows the pdf of λ f for the two areas: the distribution is similar, even if the
peak is more pronounced and with a lower value (around 0.15) in Cagliari. Furthermore, in
this case, the zero values are not shown (even it should be noticed that there is a less marked
“zero peak” effect for Cagliari, in this case). Moreover, probability density functions in
Figure 11 refer to a sub-sample with maximum value of 1, because of the small number of
elements that have higher values (0% for Cagliari and 1% for Rome).
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Figure 10. Spatial distribution of λ f for the two areas (street graph-based grid); the numbers identify

the investigated district (see Table 1).𝜆𝑓
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Figure 11. Probability density function of λ f for the two areas (street graph-based grid).
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In order to compare the street graph-based grid with the regular grid, λp and λ f are
reported in Figures 12 and 13 computed on a regular 100 m side grid. Comparing the two
different methods, some differences can be noticed: while for λp maximum values are quite
similar when shifting between regular to street graph-based grid, the opposite happens
for λ f . In fact, it can be noticed how regular grid is not able to capture higher values for

λ f . This behavior can be confirmed by coming back to the pdfs in Figures 9 and 11: λp

distribution shows a similar behavior for the two areas, even if with different probability
values for same ranges (conditioned by the stronger presences of smaller blocks in Cagliari
area); otherwise, λ f distribution displays a different tendency depending on the considered
case study areas. This highlights the inability of regular grids to capture thinner and taller
buildings contributes and should be taken into account depending on the application of
morphological analysis. As before stated, because of their non-built area representation
meaning, Figures 9 and 11 display pdfs obtained neglecting zero values (percentages of
zero-value areas are, as percentage of number of elements, roughly 20% in Cagliari and
67% in Rome).

𝜆�̅�𝜆�̅� λ

𝜆�̅�

 

λ

÷

÷

÷
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÷

÷

÷
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Figure 12. Spatial distribution of λp for the two areas (regular grid); the numbers identify the

investigated district (see Table 1).
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Figure 13. Spatial distribution of λ f for the two areas (regular grid); the numbers identify the

investigated district (see Table 1).

4.2. λf as a Function of the Wind Direction

Figures 14 and 15 show the spatial distribution for λf(dir) (wind direction 320◦ for
Cagliari and 270◦ for Rome, chosen following the criteria described in Section 2), computed
with the adaptive street graph-based grid and with the regular grid, respectively: in terms
of classes and maximum values. Similar considerations to the ones referred to λ f can
be made, with the regular grid tending to smooth the highest values and, consequently,
to hide some of the morphometric features of the urban texture. This is more apparent
when comparing the two cities: the street graph-based grid (Figure 14) is able to catch
the differences between the two cities, as previously seen for λ f , while the regular grid
shadows the differences, depicting very similar morphological parameters for the two cities.
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Figure 14. Spatial distribution of λf(dir) for the two areas (street graph-based grid); the numbers

identify the investigated district (see Table 1).

Figure 16 shows λf(dir) considering the whole extension of the investigated areas for
the two grids. It can be highlighted how the use of a different grid (regular or adaptive and
street graph-based) for λf calculation leads to remarkable differences, in terms of parameter
values and distribution shape. Using a regular grid, maximum values for the parameters
are always detected in the directions related to the square diagonals. Moreover, the 100 m
regular grid tends to overestimate (in the case of Cagliari) or underestimate (in the case of
Rome) the parameter values, as a consequence of the different probability distribution of
the block areas in the two cities (as highlighted on Figures 9 and 11).

In Figure 17 (Cagliari) and Figure 18 (Rome), we analyze and compare results for
λf(dir) computed on some single districts, superimposing results from regular and adaptive
street graph-based grids. In addition, in this case, regular grids always finds maxima in the
direction of the square diagonals. Moreover, the large differences among the values on the
various districts should be kept in mind when using a single value for the morphometric
characterization of large areas.
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Figure 15. Spatial distribution of λf(dir) for the two areas (regular grid); the numbers identify the

investigated district (see Table 1).
λ

λFigure 16. Directional distribution of λf for the two areas in their whole extension; blue line indicates

adaptive street graph-based grid results, red line regular grid results, with squares of 100 m side.
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λ

λ

Figure 17. Directional distribution of λf as a function of wind direction for the six Cagliari neighbor-

hoods; blue line indicates adaptive street graph-based grid results, red line regular grid results, with

squares of 100 m side.

λ

λFigure 18. λf as a function of wind direction for six chosen Rome districts; blue line indicates adaptive

street graph-based grid results, red line regular grid results, with squares of 100 m side.
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4.3. Aspect Ratios

In Figures 19 and 20, the results concerning the Aspect Ratio evaluation, for canyons
and buildings, respectively, are reported, for the whole areas and for some peculiar districts.
In both Figures, the values have been computed with the adaptive street graph-based grid
and the upper panel refers to Cagliari and the lower to Rome. The envelope curves repre-
sent the delimitation for the minimum and the maximum values of pdfs when separately
considering the minimum and maximum values of the single district data; for the sake
of clarity and for the readability of the Figures, not every district’s pdf is reported in the
Figures, but only a few representative examples.

, not every district’s pdf is repor

 

 

Figure 19. Probability density function of the ARc, for the two areas and peculiar neighborhood or

districts, within the envelope of the total assumed values; the two envelope curves are the upper and

lower ones (street graph-based grid).

A first consideration is that, when considering the whole extensions, the two curves
(black lines) seem to be very similar, both in terms of characteristic values and of the shape
of the distribution, and that is true for ARb and even more for ARc. Differently, when
collecting only specific district data, peaks, and peculiarity are evident, maybe suggesting
a different way to represent this geometric characteristic (e.g., in case of a modal value
choice). This is a remarkable fact, because it highlights the inaccuracies that can arise from
the use of a single value to characterize a large urban area, in particular when studying
a specific district, where the adoption of a more accurate value for the parameter may be
desirable. Moreover, even when taking into account the whole areas, modal values can be
detected roughly around 0.6 for ARc, very different from the unitary value suggested in
literature in case of lack of more precise information.



Sustainability 2021, 13, 1025 20 of 22

 

 

λ
λ

λ

Figure 20. Probability density function of the ARb, for the two areas and peculiar neighborhood or

districts, within the envelope of the total assumed values; the two envelope curves are the upper and

lower ones (street graph-based grid).

5. Conclusions

The urban air quality modelling, both numerical and in laboratory, needs an urban
geometrical parametrization as accurate as possible: in this paper, we have presented
and tested a novel street graph-based method for the morphometric and urban canyons
parametrization of actual urban areas. This street graph-based method allows to automat-
ically identify the single building or block: in this way, the object of the morphometric
analysis is its natural basic component, instead of the arbitrarily grouping and partially
decomposing into the square of a grid. This method has been applied to two areas in the
center of two Italian cities, Cagliari and Rome, which, being the result of millenniums
of urban development, enclose many complex building features. The results, in terms of
capability to correctly catch those complexities and of meaningfulness of the parameter
values, have been discussed and compared with the ones from traditional regular grids.

Results show a better performance of the proposed method in comparison to the
traditional regular grid-based methods. The analysis on the Planar Area Index λp and
the Frontal Area Index λf (on every wind direction, averaged over all the wind directions
and along the prevailing wind direction), highlights how the regular grid method tends
to smooth some of the building features, in particular the ones related to building height,
while the street graph-based grid method leads to a better representation of the real, urban
texture features of the specific site, so achieving a more realistic representation. Moreover,
the regular grid method tends to locate the maxima of λf always along the wind directions
related to the grid square diagonals.

Moreover, the adaptive grid leads to more realistic urban shape descriptions for
applications that require a downscaling of the parameterization, e.g., not considering the
whole city but smaller areas (such as neighborhoods or districts): this is highlighted by the
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Aspect Ratios analysis. For smaller areas, in fact, the pdfs of the Canyon Aspect Ratio, ARb,
and of the Building Aspect Ratio, ARc, show a different behavior than for larger ones. In
particular, pdfs computed over the whole areas depict Cagliari and Rome as two towns
with similar building features, whilst the pdfs computed over the single districts are able
to highlight the existing differences.

This work therefore provides a simple and rigorous urban area classification tool,
very useful both for meso- and micro-scale numerical modeling, and for laboratory scale
atmospheric simulations.

Further works are needed and planned: in particular, at this stage, a limitation can be
related to the small number of urban areas tested, so it is necessary to test the model on a
larger number of datasets, coming from different urban contexts.

Author Contributions: Conceptualization, S.F., M.G.B., and G.Q.; methodology, S.F., L.S., M.G.B.

and G.Q.; data curation, L.S. and A.D.B.; writing—original draft preparation, L.S. and S.F. writing—

review and editing, S.F., L.S., M.G.B., A.D.B. and G.Q. All authors have read and agreed to the

published version of the manuscript.

Funding: This research was partially funded by the Fondazione di Sardegna (CUP F72F20000330007),

the University of Cagliari and the Sapienza University of Rome.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. LOU, C.; LIU, H.; LI, Y.; LI, Y. Research on the response of air particles (PM2.5/PM10) to landscape structure: A review. Acta Ecol.

Sin. 2016, 36. [CrossRef]

2. Chiri, G.M.; Achenza, M.; Canì, A.; Neves, L.; Tendas, L.; Ferrari, S. The Microclimate Design Process in Current African

Development: The UEM Campus in Maputo, Mozambique. Energies 2020, 13, 2316. [CrossRef]

3. Kent, C.W.; Grimmond, S.; Gatey, D.; Hirano, K. Urban morphology parameters from global digital elevation models: Implications

for aerodynamic roughness and for wind-speed estimation. Remote. Sens. Environ. 2019, 221, 316–339. [CrossRef]

4. Peng, F.; Wong, M.S.; Ho, H.C.; Nichol, J.E.; Chan, P.W. Reconstruction of historical datasets for analyzing spatiotemporal

influence of built environment on urban microclimates across a compact city. Build. Environ. 2017, 123, 649–660. [CrossRef]

5. Shen, J.; Gao, Z.; Ding, W.; Yu, Y. An investigation on the effect of street morphology to ambient air quality using six real-world

cases. Atmos. Environ. 2017, 164, 85–101. [CrossRef]

6. Chan, I.Y.; Liu, A.M. Effects of neighborhood building density, height, greenspace, and cleanliness on indoor environment and

health of building occupants. Build. Environ. 2018, 145, 213–222. [CrossRef]

7. Shi, Y.; Xie, X.; Fung, J.C.-H.; Ng, E. Identifying critical building morphological design factors of street-level air pollution

dispersion in high-density built environment using mobile monitoring. Build. Environ. 2018, 128, 248–259. [CrossRef]

8. Pelliccioni, A.; Monti, P.; Cattani, G.; Boccuni, F.; Cacciani, M.; Canepari, S.; Capone, P.; Catrambone, M.; Cusano, M.; D’Ovidio,

M.C.; et al. Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project. Sustainability 2020, 12, 9758. [CrossRef]

9. European Parliament, European Union Council. On Air Quality and Clean Air in Europe; European Parliament, European Union

Council: Bruxelles, Belgium, 2008.

10. Kent, C.W.; Grimmond, S.; Gatey, D.; Barlow, J.F. Assessing methods to extrapolate the vertical wind-speed profile from surface

observations in a city centre during strong winds. J. Wind. Eng. Ind. Aerodyn. 2018, 173, 100–111. [CrossRef]

11. Blocken, B.J.E. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and

tricks towards accurate and reliable simulations. Build. Environ. 2015, 91, 219–245. [CrossRef]

12. Skamarock, W.C.; Klemp, B.J.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description

of the Advanced Research WRF Version 3; UCAR/NCAR: Boulder, CO, USA, 2008. [CrossRef]

13. Wieringa, J. Updating the Davenport roughness classification. J. Wind. Eng. Ind. Aerodyn. 1992, 41, 357–368. [CrossRef]

14. Grimmond, C.S.B.; Oke, T.R. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol.

1999, 38, 1262–1292. [CrossRef]

15. Martilli, A.; Clappier, A.; Rotach, M.W. An Urban Surface Exchange Parameterisation for Mesoscale Models. Bound. Layer

Meteorol. 2002, 104, 261–304. [CrossRef]

16. Salamanca, F.; Martilli, A.; Tewari, M.; Chen, F. A Study of the Urban Boundary Layer Using Different Urban Parameterizations

and High-Resolution Urban Canopy Parameters with WRF. J. Appl. Meteorol. Clim. 2011, 50, 1107–1128. [CrossRef]

17. Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900.

[CrossRef]

18. Demuzere, M.; Bechtel, B.; Middel, A.; Mills, G. Mapping Europe into local climate zones. PLoS ONE 2019, 14, e0214474.

[CrossRef]



Sustainability 2021, 13, 1025 22 of 22

19. Ching, J.; Mills, G.; Bechtel, B.; See, L.; Feddema, J.; Wang, X.; Ren, C.; Brousse, O.; Martilli, A.; Neophytou, M.; et al. WUDAPT:

An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropocene. Bull. Am. Meteorol. Soc. 2018, 99,

1907–1924. [CrossRef]

20. Garuma, G.F. Review of urban surface parameterizations for numerical climate models. Urban Clim. 2018, 24, 830–851. [CrossRef]

21. Leo, L.S.; Buccolieri, R.; Di Sabatino, S. Scale-adaptive morphometric analysis for urban air quality and ventilation applications.

Build. Res. Inf. 2018, 46, 931–951. [CrossRef]

22. Ferrari, S.; Badas, M.G.; Salvadori, L.; Garau, M.; Querzoli, G. Urban areas parametrization for CFD simulation and cities air

quality analysis. Int. J. Environ. Pollut. 2019, in press. [CrossRef]

23. Ratti, C.; Di Sabatino, S.; Britter, R.; Brown, M.; Caton, F.; Burian, S. Analysis of 3-D Urban Databases with Respect to Pollution

Dispersion for a Number of European and American Cities. Water Air Soil Pollut. Focus 2002, 2, 459–469. [CrossRef]

24. Franco, D.M.P.; Andrade, M.F.; Ynoue, R.Y.; Ching, J. Effect of Local Climate Zone (LCZ) classification on ozone chemical

transport model simulations in Sao Paulo, Brazil. Urban Clim. 2019, 27, 293–313. [CrossRef]

25. Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.C.; Gál, T.; Hidalgo, J.; et al.

Generating WUDAPT Level 0 data—Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [CrossRef]

26. Kaloustian, N.; Tamminga, M.; Bechtel, B. Local climate zones and annual surface thermal response in a Mediterranean city. In

2017 Joint Urban Remote Sensing Event (JURSE); IEEE: Dubai, United Arab Emirates, 2017; pp. 1–4. [CrossRef]

27. Zonato, A.; Martilli, A.; Di Sabatino, S.; Zardi, D.; Giovannini, L. Evaluating the performance of a novel WUDAPT averaging

technique to define urban morphology with mesoscale models. Urban Clim. 2020, 31, 100584. [CrossRef]

28. Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate

Zones for a Worldwide Database of the Form and Function of Cities. IJGI 2015, 4, 199–219. [CrossRef]

29. Facing COVID-19 Challenges with Our Customers and Partners. Available online: https://www.ansys.com (accessed on 14

December 2020).

30. Di Bernardino, A.; Monti, P.; Leuzzi, G.; Querzoli, G. Pollutant fluxes in two-dimensional street canyons. Urban Clim. 2018, 24,

80–93. [CrossRef]

31. Garau, M.; Badas, M.G.; Ferrari, S.; Seoni, A.; Querzoli, G. Turbulence and Air Exchange in a Two-Dimensional Urban Street

Canyon Between Gable Roof Buildings. Bound. Layer Meteorol. 2017, 167, 123–143. [CrossRef]

32. Badas, M.G.; Garau, M.; Querzoli, G. How gable roofs change the mechanisms of turbulent vertical momentum transfer: A LES

study on two-dimensional urban canyons. J. Wind. Eng. Ind. Aerodyn. 2021, 104432. [CrossRef]

33. Ferrari, S.; Badas, M.G.; Garau, M.; Seoni, A.; Querzoli, G. The air quality in narrow two-dimensional urban canyons with pitched

and flat roof buildings. Int. J. Environ. Pollut. 2017, 62, 22.

34. Garau, M.; Badas, M.G.; Ferrari, S.; Seoni, A.; Querzoli, G. Air Exchange in urban canyons with variable building width: A

numerical LES approach. Int. J. Environ. Pollut. 2019, 65, 103. [CrossRef]

35. Badas, M.G.; Ferrari, S.; Garau, M.; Seoni, A.; Querzoli, G. On the Flow Past an Array of Two-Dimensional Street Canyons

Between Slender Buildings. Bound. Layer Meteorol. 2020, 174, 251–273. [CrossRef]

36. Wind Roses. Available online: https://mesonet.agron.iastate.edu/sites/windrose.phtml?station=LIRF&network=IT__ASOS

(accessed on 8 December 2020).

37. Available online: https://www.mareografico.it/?session=0S25916556316880878488656970&syslng=ita&sysmen=-1&sysind=-1

&syssub=-1&sysfnt=0&code=STAZ&idst=1Q&idreq=3@3@2&set=date (accessed on 1 December 2020).

38. Salvadori, L.; Badas, M.G.; Garau, M.; Bernardino, A.D.; Pini, A.; Querzoli, G.; Ferrari, S. Similar urbanistic typologies and

morpho-metric parametrization: Analysis of a possible date of construction based classification. In Proceedings of the 19th

International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Harmo 2019,

Bruges, Belgium, 3–6 June 2019.

39. Ratti, C.; Di Sabatino, S.; Britter, R. Urban texture analysis with image processing techniques: Winds and dispersion. Theor. Appl.

Clim. 2006, 84, 77–90. [CrossRef]

40. Di Sabatino, S.; Leo, L.S.; Cataldo, R.; Ratti, C.; Britter, R.E. Construction of Digital Elevation Models for a Southern European City

and a Comparative Morphological Analysis with Respect to Northern European and North American Cities. J. Appl. Meteorol.

Clim. 2010, 49, 1377–1396. [CrossRef]


	Introduction 
	Symbols and Acronyms 
	State of the Art and Targets 

	Case Study 
	Methods 
	Data Description 
	Main Differences between the Two Investigated Areas 
	Raster Data Treatment and Morphometric Computation 
	Computation of the Aspect Ratios for Canyon Representation 

	Results and Discussion 
	p and Wind Direction-Averaged f  
	f as a Function of the Wind Direction 
	Aspect Ratios 

	Conclusions 
	References

