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Abstract
This paper shows that the dynamics of the Lucas (J Monet Econ, 22:3–42, 1988) 
endogenous growth model with flow externalities may give rise to a 2-torus, a com-
pact three-dimensional manifold enclosed by a two-dimensional surface. The impli-
cations of this result are relevant for many fields of economic theory. It is first of all 
clear that if we choose to initialize the dynamics in the basin of attraction of this 
trapping region, a continuum of perfect foresight solutions may be observed. A sim-
ple econometric exercise, linking the physical-to-human capital ratio (state variable) 
to the 5-years forward variance of the growth rate of an unbalanced sample of 183 
countries, seems to provide empirical backing for the phenomenon. Other important 
consequences, relevant from the point of view of endogenous cycles theory, are also 
scrutinized in the paper.

Keywords  2-tori dynamics · Global indeterminacy · Endogenous oscillations · 
Basins of attraction

JEL classification  C62 · E32 · O41

1  Introduction

A large body of literature has clearly established that the equilibrium conditions of two-
sector continuous-time endogenous growth models with market imperfections do not 
always determine a unique perfect foresight path. If the number of stable roots of the 
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linearization matrix (evaluated at a hyperbolic stationary point, which may correspond 
to a balanced growth path) exceeds the number of state (predetermined) variables, 
then a continuum of perfect foresight paths in a close neighborhood of the stationary 
point exists. If this happens, the equilibrium is said to be locally indeterminate. More 
recently, researchers have shown that the indeterminacy property is more pervasive 
than originally thought in the sense that a continuum of perfect foresight solutions of a 
dynamic problem may also be observed when the system is initialized far away from a 
steady state. This is the idea of global indeterminacy, which dates back, at least, to the 
seminal works of Krugman (1991) and Matsuyama (1991).

To discuss this literature, let us recall the dynamic problem associated with the fol-
lowing variant of the Lucas (1988) model:

which is extended to account for the presence of flow externalities, as in Chamley 
(1993), that depend on human capital interactions across individuals (cf. Mattana 
et al. 2009; Bella and Mattana 2014). The notations are as follows. C is consump-
tion, K is physical capital, H is human capital, and u is the fraction of labor allo-
cated to the production of physical capital. The feasibility requirement is 0 ≤ u ≤ 1 . 
Ha and (1 − u)a are externality factors. (A, �, �, � , �, �, �) is the set of parameters. 
(A, �) ∈ ℝ

2
++

 measure the technological level in the physical and human capital 
sectors, respectively. (� , �) ∈ ℝ

2
+
 are numerical factors that tune the effects of the 

externalities. Finally, � ∈ (0, 1) is the share of physical capital in the goods sector, 
� ∈ ℝ+ is the time preference rate, and � ∈ ℝ+ − {1} is the inverse of the intertem-
poral elasticity of substitution.

The market solution of problem P implies the following non-linear three-dimen-
sional system of first-order differential equations:

max
C(t), u(t)

∞

∫
0

C1−� − 1

1 − �
e−�tdt (P)

subject to

K̇ = AK𝛽(uH)1−𝛽H𝛾
a
− C

Ḣ = 𝛿H(1 − u)(1 − u)𝜂
a

K(0) = K0

H(0) = H0

Ẋ = AX𝛽u1−𝛽 +
𝛿(1 − 𝛽 + 𝛾)

𝛽 − 1
X(1 − u)1+𝜂 − QX

u̇ =
u(1 − u)

𝛽(1 − u) − 𝜂u

[
𝛿(1 − u)𝜂 − 𝛿(𝛽 − 𝛾)(1 − u)1+𝜂 − 𝛽Q

]
(S)

Q̇ = −
𝜌

𝜎
Q +

𝛽 − 𝜎

𝜎
AX𝛽−1u1−𝛽Q + Q2
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in the stationary variables X ≡ K
1−�+�

1−� H−1 , u and Q ≡
C

K
 (cf. Mattana et al. 2009, for 

the derivation). To prove global indeterminacy, scholars have typically searched for 
conditions in the parameter space that imply critical eigenvalues. There are in fact 
well-established theoretical results about the global properties of systems of ODEs 
that are close to linear degeneracies. A clear picture can be obtained by discuss-
ing the unfolding of the hypernormal form associated with system S.1 The underly-
ing idea behind hypernormal form theory is to use near-identity transformations to 
remove the terms that are not essential in the analytical expression of the vector field 
for a complete understanding of the local dynamic behavior. Of course, by topologi-
cal equivalence, all results referring to the hypernormal form can be carried on to 
the original system.

Let

be the hypernormal transformation of a generic 3-dimensional system of ODEs. In 
which N  and wi,i = 1, 2, 3 represent the new coordinates and

is the reduced non-linear part up to order m.2 In F3

(
w1,w2,w3

)
 , aj , bj and cj are coef-

ficients that depend on the original parameters of the model, and k denotes the poly-
nomial degree. �1 , �2 and �3 are the unfolding parameters. The origin is stable when 
𝜀2 < 0 , 𝜀3 < 0 and 0 < 𝜀1 < 𝜀2𝜀3 . Additionally, the model undergoes a pitchfork 
bifurcation at �1 = 0.3 The following properties are more relevant from the perspec-
tive of global indeterminacy. Furthermore, N  undergoes the following non-linear 
degeneracies:

•	 codimension 1 bifurcation of the Hopf type at �1 = �2�3 ; that is, � at the origin 
has one real eigenvalue equal to �3 ≠ 0 and two purely imaginary eigenvalues 
equal to ( ±i

√
−�2);

•	 codimension 2 bifurcation for �1 = �2 = 0 ; that is, � at the origin has a double-
zero eigenvalue and a third real eigenvalue equal to �3 ≠ 0;

•	 codimension 2 pitchfork–Hopf interaction for �1 = �3 = 0 and 𝜀2 < 0 ; that is, 
� at the origin has one zero eigenvalue and two complex eigenvalues given by 
±i
√
−�2 , where 𝜀2 < 0.

⎛
⎜⎜⎝

ẇ1

ẇ2

ẇ3

⎞
⎟⎟⎠
=

⎡
⎢⎢⎣

0 1 0

0 0 1

𝜀1 𝜀2 𝜀3

⎤
⎥⎥⎦

⎛
⎜⎜⎝

w1

w2

w3

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

0

0

F3

�
w1,w2,w3

�
⎞
⎟⎟⎠

(N)

F3

(
w1,w2,w3

)
=
∑
k≥2

{
m∑
j=0

(
ak
j
w
k−j−1

1
w
j+1

3
+ bk

j
w
k−2j−1

1
w
2j+1

2

)
+

m∑
j=0

ck
j
w
k−2j

1
w
2j

2

}

1  In dynamic systems theory, unfolding means the attempt to uncover all possible behaviors for systems 
close to a given original system (sometimes called the organizing center of the unfolding).
2  In Appendix A.2, we show that system S satisfies conditions for a hypernormal form transformation 
(cf. Gamero et al. 1991 for details).
3  Interestingly, Mattana et al. (2009) showed that the onset of a pitchfork bifurcation requires � ≠ 0.
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Mattana and Venturi (1999), as well as Nishimura and Shigoka (2006), exploited 
a singularity of type (i) to show the possibility of Hopf cycles for system S for the 
case of � = 0 . Then, given the initial condition X(0) , there exists a continuum of 
initial values of the jump variables located inside the Hopf orbit that gives rise to 
perfect foresight equilibria. Since a region bounded by a Hopf orbit may exceed the 
small neighborhood of the local analysis, the equilibrium can be considered globally 
indeterminate. The properties of a singularity of type (ii) have been used by Mat-
tana et al. (2009) and by Bella and Mattana (2014) to achieve global indeterminacy 
results for a variant of the model with � = 0 . In the former contribution, the Kopell 
and Howard (1975) theorem is used to show that there are regions of the param-
eter space in which there exists either a closed loop or a homoclinic orbit in a well-
located reduced manifold. Again, given X(0) , the possibility of a continuum of valid 
initial values of the jump variables located inside the closed loop of the homoclinic 
orbit implies global indeterminacy. Bella and Mattana (2014) derived similar results 
by means of the Bogdanov-Takens bifurcation theorem. Implications for global inde-
terminacy of case (iii) remain, to our knowledge, totally unexplored. However, as 
shown, for instance, in Kuznetsov (2004), Wiggins (1991), and Guckenheimer and 
Holmes (1983), the simultaneous occurrence of both linear degeneracies establishes 
the possibility of interesting three-dimensional dynamic behavior. Of particular 
interest for this paper is the possibility that system S gives rise to a 2-torus, a com-
pact three-dimensional manifold enclosed by a two-dimensional surface. Then, if 
the initial state of the economy belongs to this compact set, there exists, outside the 
small neighborhood relevant for the local analysis, a continuum of initial values of 
the jump variables, which give rise to recurrent orbits.4

The investigation of the conditions under which the uniqueness of an equilibrium 
is not warranted for the solution of problem P is of crucial importance for growth 
theory, since the Lucas model (1988) and its variants remain the standard bench-
marks for ongoing research (cf., inter al., Tsuboi 2018; Bella et al. 2019; Petrakis 
2020; Sasakura 2020; Gomez 2021; Neves-Sequeira et  al. 2021) and for devising 
policies (cf., inter al., Bretschger et al. 2017; Broitman and Czamansky 2020).

The onset of a 2-torus around a balanced growth path (BGP) also has significance 
for the theory of business cycles. Since a standard 2-torus possesses two distinct 
1-dimensional cycles (or closed loops), the mere existence of such phenomenon dem-
onstrates that business oscillations may not be efficient responses of rational agents to 
external technological shocks; instead, they may be the result of inefficient fluctuations 
in the variables of a system, caused by shocks to self-fulfilling beliefs of households 
and firms. There are many innovative aspects involved. First, orbits that wrap around a 
standard 2-torus will never come back exactly onto themselves because of the typical 
a-periodicity of their trajectories. This is a major improvement in terms of the plausi-
bility of cycles over other types of endogenous oscillating solutions (Hopf cycles in 
primis), where unperturbed orbits are bound to regularly visit the same coordinates in 

4  To our knowledge, there are only few contributions in the economic literature exploiting the conditions 
for the existence of a 2-torus in specific models (cf. Bella and Mattana 2018; Bosi and Desmarchelier 
2018).
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the phase space. In this regard, to generate a-periodicity of a cycle, recent literature 
has added some form of stochasticity to the model (cf., inter al. Beaudry et al. 2020). 
Finally, it is clear that a 2-torus is generically a fast/slow system; namely, it is sup-
posed to generate two-frequency oscillations (conventionally termed drift and gyro 
oscillations). Moreover, it is also clear that a drift motion on a standard torus may be 
much slower than a gyro motion. Our paper contributes to this new line of research 
and presents a mathematical structure that is able to identify the presence of slow and 
fast oscillating variables and, possibly, the emergence of lag-lead structures that can be 
inferred from real-world economic data.

The paper develops as follows. In the first section, we present the set of conditions 
necessary to represent system S in its hypernormal form. In Sect. 2, by exploiting the 
Gavrilov-Guckenheimer bifurcation theorem, we construct a correspondence with a 
simple topological-equivalent truncated planar system in cylindrical coordinates. The 
relevance of this result for business cycle theory is explored in Section three. The fourth 
section is devoted to the discussion regarding the implications for the indeterminacy of 
the equilibrium. A brief conclusive section reassesses the main findings of the paper. 
The Appendix provides the proofs of the main propositions.

2 � The onset of a 2‑torus

Recall system S , and set � = 0 . Let (X∗, u∗,Q∗) be the values of (X, u,Q) such that 
Ẋ = u̇ = Q̇ = 0 . Then, along the balanced growth path (BGP), the dynamics satisfy the 
following equations:

Mattana et al. (2009) used the discount rate � as a bifurcation parameter to show that 
the linearization matrix of the right-hand side of system S , evaluated at a steady state, 
has a zero eigenvalue. More specifically, if

���(�) in (A1.3) vanishes and � has at least one eigenvalue equal to zero.
Now, consider the formula for ��(�) in (A1.2). Then, if

(1.1)X∗ = u∗(�A)
1

1−�

[
�(1 − u∗)�

] 1

�−1

(1.2)0 = (1 − u∗)� − �(1 − u∗)1+� −
�

�

(1.3)Q∗ =
�(1 − u∗)�

�

[
1 − �(1 − u∗)

]

(2)𝜌 = 𝜌̃(𝛽, 𝛿, 𝜂, 𝜎) ≡ 𝛿

(
𝜂

𝜎

)𝜂
(

1

1 + 𝜂

)1+𝜂

(3)𝜂 = 𝜂̃(𝛽, 𝜎) ≡
2(𝜎 − 𝛽)

1 + 𝛽 − 2𝜎
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��(�) = 0 . Then, if � = � and � = � , � has two purely imaginary eigenvalues.
Let us now substitute � = � (�, �) and � = � (�, �, �) into the formula for �(�) in 

(A1.4). We find that Sign (�(�)) only depends on two left parameters according to 
the following formula:

In Fig. 1, we spotlight the region of the parameter space spanned by the pair 
(�, �) , where �(�) < 0 and ��(�) = ���(�) = 0 simultaneously. For notational 
convenience, we shall denote this region as � ∈ ℝ

2 . As shown in Fig. 1, � ∉ �.
The following formal result follows.

Lemma 1 (Gavrilov‑Guckenheimer bifurcation)   Let (�, �) ∈ �.; furthermore, let 
� = � (�, �) and � = � (�, �, �) = � � (�, �). Then, � has one zero eigenvalue and two 
purely imaginary eigenvalues given by ±i

√
�, where � = −�(�).

The type of linear degeneracy implied by Lemma 1 has important global impli-
cations. There exist several formal classifications of these effects. One has been 
developed in standard textbooks, such as Wiggins (1991), Kuznetsov (2004) and 
Seydel (1994), where the original system is put in cylindrical coordinates. Then, 
one of the coordinates is decoupled from the remaining two so that the classifica-
tion can be derived with phase plane techniques. In some sense, the dynamics in 

Sign(�(�)) = Sign

�
� −

1 − (3� − 1) − �3 − 5�2 +
√
(1 + �)(3� − 1)(� − 1)4

�3 − �2 + 11� − 3

�

Fig. 1   The  Ω set in the (β,σ) space
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this phase plane can be viewed as an approximation to a Poincaré map of the full 
three-dimensional normal form.

As shown in Appendix A.3, the decoupled topologically equivalent system has 
the form

where 𝜇1 =
𝜀̂3

𝜅
 and 𝜇2 =

𝜀̂1

𝜅

|||
b

a

||| are the standard unfolding parameters, given � =
a2

|b| 
(cf. Harlim and Langford, 2007; Freire et al. 2002).

Wiggins (1991) shows that the onset of a 2-torus embedded in the full origi-
nal space described in (A3.5) implies a Hopf cycle in the dimensionally reduced 
planar system C . In turn, this topological case occurs in two different parametric 
circumstances:

1.	 b = +1; a > 0 (case II a, b);
2.	 b = −1; a > 0 (case III).

We computed b and a as functions of (�, �) . We found that > 0 ∀ (�, �) ∈ � . 
In contrast, b changes signs in subregion � . Therefore, consider Fig. 2, where we 
superimpose the critical b = 0 curve onto the � subregion in Fig. 1. In the dark 
gray area, the parameters imply b = +1 and a > 0 . Conversely, b = −1 and a > 0 
in the light gray area. 

ṙ = 𝜇1r + arz

ż = 𝜇2 + kr2 − bz2 k = ±1
(C)

Fig. 2   The (β,σ) parameters such that b=+1 and b= − 1
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Now, let P ⊂ ℝ
2 be a small open neighborhood of 0 . Furthermore, let � = � − � 

and � = � − � , which are small deviations of the two control parameters from their 
respective bifurcation values. Then, recalling that a is always positive in the feasible 
space of parameters, the following statement can be proven.

Proposition 1 (Existence of a 2‑torus)   Recall Lemma 1. Furthermore, let (𝜈, 𝜏) ⊂ P

. First, it is assumed that b = +1. Then, if �1(�, �) = 0 and 𝜇2(𝜈, 𝜏) < 0, reduced 
system C has a family of periodic solutions. As a consequence, a 2-torus attractor 
emerges in (A3.5) and, by topological equivalence, in system S. The same occurs 
when b = −1, provided that �1(�, �) = 0 and 𝜇2(𝜈, 𝜏) > 0. The solution trajectories 
that evolve on the torus satisfy the TVC if (�, �) are chosen to be sufficiently small.

Proof  We have provided enough discussion to prove the main statements in the 
proposition. To show that the TVC is satisfied, consider the following arguments. 
Mattana et  al. (2009) have shown that, at a steady state, the TVC is satisfied for 
0 < u∗ < 1 . Since u∗ is smooth with regard to all its arguments, choosing small 
deviations of the bifurcation parameters from their critical values prevents u∗ from 
becoming negative or exceeding 1.

A discussion regarding the relevance for the economic literature of the range of 
parameters in Fig. 2 is presented here. Notice first that the Gavrilov-Guckenheimer 
bifurcation may only occur at the bottom-left region of the parameter space spanned 
by � and � . More specifically, bifurcation can only occur for 𝛽≲0.37 and 𝜎≲0.65.5 
Therefore, we can state the following.

Remark 1  The Gavrilov-Guckenheimer bifurcation may only occur when economic 
agents have a preference against smoothing their consumption over time (� is low 
with regard to its domain of existence) and the elasticity of skilled labor to good 
production is high (� is also low with regard to its domain of existence).

Remark 1 introduces an important departure with regard to the parameter space 
supporting other types of bifurcations in the Lucas (1988) model and its variants. 
For example, low values of � and � do not seem to be critical ingredients for the 
onset of a homoclinic bifurcation (cf. Mattana et al. 2009; Bella and Mattana 2014). 
The same applies for the onset of a Hopf bifurcation (cf. Mattana and Venturi 1999; 
Nishimura and Shigoka 2009). Low values of � and � conversely come back into 
sight in Bella, Mattana and Venturi (2019), where the focus is on a limit cycle 
appearing in the full three-dimensional ambient space after the rupture of a homo-
clinic orbit connecting the unique steady state to itself. Therefore, it seems that for 
bifurcations giving rise to cycles in well-located planar manifolds,6 the parameter 

5  Given (�, �) ∈ Ω , the admissible parameter space for the pair (𝜂̃, 𝜌̃) is, conversely, rather wide. This 
is particularly important for the externality parameter. This variant of the Lucas (1988) model does not 
require an extreme (and unrealistic) degree of increasing returns to generate deterministic fluctuations.
6  This well-located planar manifold is typically obtained via the center manifold theorem.



1 3

Existence and implications of a pitchfork-Hopf bifurcation…

space does not need to be restricted to regions where � and � are low with regard to 
their domain of existence. The contrary happens when cycles have effective three-
dimensional properties. These elements also provide useful hints regarding the eco-
nomics at work behind the Gavrilov-Guckenheimer bifurcation in a two-sector con-
tinuous time growth model with market imperfections.

3 � Implications of toroidal motion for business cycles

An obvious domain where the implications or our results are worth discussing is that 
of business cycle theory (see Farmer 2014, for a recent appraisal).7 As discussed 
in the Introduction, although the observation of endogenous cycles in a two-sector 
growth model does not come as a surprise, the specific properties of toroidal motion 
add a potentially large set of innovative elements to the theory.8

Before starting the discussion, consider the following example.9

Example 1  Set (�, �) ∈ � = (0.3, 0.4) . Additionally, set A = 1 and � = 0.05 . It fol-
lows that � = 0.4 and � ≅ 0.03122 . Then, if � = � and � = � , ��(�) = ���(�) = 0 and 
�(�) = −0.01659 . This economy has (X∗, u∗,Q∗) ≅ (4.47794, 0.28571, 0.11446) . 
Since the parameters fall in the green-shaded area of Fig. 1, by Lemma 1 , we know 
that system S undergoes the Gavrilov-Guckenheimer bifurcation. Now, consider 
(�, �) = (0.035, 0.06) , which deviates from the critical pair ( �, � ). Then, ��(�) = 0 , 
���(�) ≅ 0.0012 and �(�) ≅ −0.01496 . By Proposition 1 , this implies that a family 
of Hopf cycles emerges in the truncated C system. This corresponds to a 2-torus in 
the full-dimensional system in (A3.5) and, by topological equivalence, in system S.

Figure 3 depicts the solution trajectories, which evolve on a 2-torus, implied by 
the coordinates of system S.

In Figs. 4 and 5, we also present the time profiles of the pairs (K,C) and (H, u) 
over 350 iterations.10

7  This is an important departure from the conventional real business cycle model. The existence of 
endogenous cycles demonstrates that business oscillations may not be the efficient responses of rational 
agents to technological shocks. Instead, inefficient fluctuations in the variables of the system might be 
caused by shocks to the self-fulfilling beliefs of households and firms.
8  The discussion in the previous sections demonstrates that the possibility of endogenous cycles is cur-
rently endorsed in the two-sector endogenous growth model literature.
9  The set of parameters provided in the example is roughly coherent with other literature in the field. 
Setting � smaller than the unity value is quite common in related works (cf., inter al. Nishimura and 
Shigoka 2006; Bella and Mattana 2014; Mattana et al. 2009). The same applies for the choice of � and � . 
High values of � can also be found in Nishimura and Shigoka Mattana (2009) cited above. The values of 
� = 0.3 and A = 1 are standard.
10  Once we have the time profiles of X, u and Q , it is easy to obtain the corresponding C,K and H behav-
iors. That is, with the time profile for u , H can be obtained by solving the human capital accumulation 
formula Ḣ = 𝛿H(1 − u)1+𝜂 . Once the time profile for H is known, we can obtain K by using the transfor-
mation K = XH . Finally, C can be similarly obtained with C = QK . Notice that we have chosen a basis of 
eigenvectors so that deviations from the BGP of the variables roughly match those in the cycle of the US 
economy.
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It is quite clear that physical capital and consumption are associated with drift 
dynamics, which give rise to long, slow swings. The opposite occurs for human 
capital and working time, whose fluctuations are more rapid ( gyro dynamics) . 
It is also notable that human capital is, by no means, the least volatile variable. 
Finally, it appears that both H and u alternate between periods of expanding and 
slowing volatility around the BGP. Interestingly, the period in which the volatil-
ity of u increases corresponds to the indents in the physical capital cycle; this 

Fig. 3   The 2-torus represented in the original coordinates (X,u,Q)

Fig. 4   Simulated fluctuations of K and C around the BGP (350 iterations)
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phenomenon does not conversely have an evident influence on the smoothness of 
the cycle for the profile of intertemporal consumption.

How many of these characteristics are matched by real data? Consider the cycli-
cal behavior of K (solid line) and C (dashed line) in Fig. 6 and that of H (dashed 
line) and u (solid line) in Fig. 7, which were computed with US data over the period 

Fig. 5   Simulated fluctuations of u and H around the BGP (350 iterations)

Fig. 6   US real-world fluctuations of K and C (1950–2019)



	 G. Bella et al.

1 3

1950–2019.11 To obtain the time series presented hereafter, we removed the quad-
ratic trend present in physical capital, consumption and human capital and then 
applied an HP filter to all variables to eliminate possible noise effects.

It is interesting to observe the emerging similarities between the time profiles of 
the variables of our model (shown in Figs.  4 and 5) and the real-world observa-
tions (presented in Figs. 6 and 7). However, some crucial differences are also self-
evident. First, in both model series and real-world cases, consumption and physical 
capital give rise to aperiodic slow swings. There is also a strict correlation between 
the oscillations of consumption and physical capital and a clear disconnection with 
the oscillations of H and u . A further common characteristic is that human capital 
seems to be the least volatile variable of the group. Considering these differences, it 
is clear that real-world human capital and working time do not seem to display the 
kind of fast oscillations depicted in Fig. 5. It is noteworthy to remember that Penn 
World Tables (PWT10) only provide a very narrow index of human capital, which is 
based only on years of schooling and returns with respect to education.

Fig. 7   US real-world fluctuations of u and H (1950–2019)

11  Source: Penn World Table, version 10 (PWT10). The PWT10 dataset provides an index of human 
capital accumulation (not monetary values), which can be used to compute a proxy for u by inverting the 
formula Ḣ = 𝛿H(1 − u)1+𝜂.
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4 � A global indeterminacy result in ℝ3

Proposition 1 implies that when parameters have the right magnitude, system 
S has a three-dimensional bounded region enclosed by a two-dimensional sur-
face. Let T(𝜈,𝜏) ⊂ ℝ

3 denote this three-dimensional bounded region that arises for 
a given (𝜈, 𝜏) ⊂ P , and let Tint

(�,�)%
 and Tbd

(�,�)
 denote the set of all interior points on 

this three-dimensional bounded region and its boundary (i.e., the 2-torus itself), 
respectively. It is useful to introduce the following topological definition.

Definition 1  The set of points Tint
(�,�)

∪ T
bd
(�,�)

 forms the so-called “solid torus”, a con-
nected, compact, and orientable 3-dimensional manifold with a boundary.

Now, let

be a (family of) three-dimensional manifold containing the set of all possible paths 
starting on Tint

(�,�)
 . Then, by Definition 1, all paths starting on the (compact) set E(�,�) 

are bound to stay in E(�,�).
Finally, let

be the set of all parametric values that give rise to a 2-torus.
We are now ready to prove the main proposition of the paper.

Proposition 2 (Global indeterminacy of the equilibrium)   Recall Proposition 1 and 
let (A, �, �, �, �, �) ∈ Ψ. Assume (𝜈, 𝜏) ⊂ P. Consider the case in which the initial 
condition of the aggregate capital stock is chosen such that X(0) ∈ E(�,�). Then, sys-
tem S exhibits global indeterminacy of the equilibrium.

Proof  In Proposition 1, we have shown that there exist regions in the parameter 
space such that a 2-torus emerges in the full (X, u,Q) space. We have also discussed 
that this implies the existence of a compact, 3-dimensional manifold with a bound-
ary. Consider the case in which we choose to initialize the dynamics at 
X(0) ∈ E(�,�) =

{
(X, u,Q) ∈ ℝ

3 ∶ (X, u,Q) ∈ T
int
(�,�)

}
 . Then, there exists a continuum 

of initial values (u(0),Q(0)) of the jump variables, which give rise to recurrent 
orbits, namely, perfect-foresight equilibrium trajectories that are bound to stay in the 
three-dimensional manifold E(�,�) at all times.

Remark 2  The ability of a three-dimensional object composed of Tint
(�,�)

∪ T
bd
(�,�)

 to 
attract orbits wandering in the outside domain depends on the stability properties of 

E(�,�) =
{
(X, u,Q) ∈ ℝ

3 ∶ (X, u,Q) ∈ T
int
(�,�)

}

Ψ =
{
(A, 𝛽, 𝛿, 𝜂, 𝜌, 𝜎) ∶

(
Ẋ, u̇, Q̇

)
= S implies a 2 - Torus

}
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the Hopf cycle that arises in system C. For the sake of a simple discussion, we do not 
formally investigate the stability properties of a 2-torus.12

As is clear, Proposition 2 establishes a global indeterminacy property for a two-
sector continuous time growth model for reasons different than the mere appearance 
of closed orbits in well-behaved planar submanifolds. At this point, an interesting 
but subtle detail involves the empirical relevance of this type of global indetermi-
nacy. To highlight this issue, we construct in Fig.  8 the basin of attraction of the 
torus implied by the parameter values in Example 1 projected onto the (X, u) plane.13 
A note of caution is due here. Since there is no unambiguous definition and meas-
urement of human capital investment, this type of perspective can only be consid-
ered in relative terms.

The continuous line represents the boundary of the gray-shaded area contain-
ing the set of initial conditions that converge to the torus.14 The darker-colored 
object inside the shaded area, containing the coordinates of the steady state 
(X∗, u∗) ≅ (4.47794, 0.28571) , is the projection of the torus. Note that since the gray-
shaded area extends outside the projection of the torus, we observe a stable object, 
meaning that the 2-torus is attractive. The position of the gray-shaded area in the 

Fig. 8   The basin of attraction of a 2-torus

12  A 2-torus can be attractive or repelling. For n = 3 , trajectories approach an attractive torus from the 
inside domain and the outside domain (supercritical torus bifurcation). Trajectories projected in a two-
dimensional section resemble dynamics similar to those of a Hopf bifurcation, where a stable limit cycle 
encircles an unstable equilibrium. A repelling torus (subcritical torus bifurcation) can be visualized as a 
tube surrounding a stable periodic orbit (cf. the discussion in Rüdiger 2010).
13  The reason for the projection onto the (X, u) plane is presented at the end of this Section.
14  For details on the construction and use of basins of attractions, cf., inter al. Agliari and Vachadze 
(2011, 2014), and Antoci et al. (2016).
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phase space provides interesting hints on the characteristics of real economies in an 
indeterminacy trap. At least for the parameter configuration in Example 1, it seems 
that given the parameter configuration, only countries with a fraction of the total 
time devoted to work (u≲0.45) are prone to multiplicity; the phenomenon occurs for 
a wide range of X = K∕H ratio values that are above a threshold level of approxi-
mately X ≃ 4.15 ; however, for values of X≳4.7 the area shrinks considerably.

To put these findings in perspective, we also run a similar procedure for the case 
in which system S presents global indeterminacy due to the emergence of a homo-
clinic bifurcation. As discussed in the Introduction, the onset of the homoclinic 
bifurcation is studied in Mattana et al. (2009) and in Bella and Mattana (2014) by 
the application of the Kopell-Howard and Bogdanov-Takens theorems, respectively. 
To keep the analysis qualitatively similar, we numerically study the basin of attrac-
tion of the homoclinic loop by using the parameter same values as those in Example 
3 in Mattana et al. (2009) in the transformed (X, u) planar space given by the center 
manifold. The two steady states of system S coalesce at a unique fixed point at the 
critical values of the bifurcation parameters (𝜌̃, 𝜎̃) ≅ (0.03852, 0.24696) . Note that 
in this parametric configuration, � and A are small with regard to their domain of 
existence, whereas � is quite large. Now, setting (�, �) = (0.0385, 0.244) , which is 
slightly away from the critical values, system S presents two steady states; one of 
which is a saddle, while the other is a nonsaddle. This scenario is depicted in Fig. 9, 
where the limit homoclinic orbit and the Hopf cycle are reported.

The light gray-shaded area is the basin of attraction of the closed Hopf loop, 
whereas the dark gray-shaded area is the basin of attraction of the homoclinic limit 
cycle in the interior of the bundle of unstable orbits. Moreover, the dots reported rep-
resent the two steady states. Finally, note that we have chosen a basis of eigenvectors 
so that the oscillations of the u variable roughly match those observed in real-world 
data of the US economy (cf. Figure 5). The union of the two gray-shaded basins of 

Fig. 9   The basin of attraction of a Hopf cycle
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attraction is therefore the locus of initial conditions, which give rise to recurrent 
orbits for this specific choice of parameters. Again, countries prone to indetermi-
nacy problems are those with a relatively low fraction of total time devoted to work 
(u≲0.32) ; furthermore, the phenomenon occurs for a specific range of X = K∕H 
ratio values, which is given by 0.15≲X≲0.4.

Although it is not possible to directly compare the regions in the phase space 
at which economies find themselves in the indeterminacy trap, some interesting 
similarities are self-evident. First, the range of u for which there is indeterminacy 
roughly overlaps in the two examples. Furthermore, there is a region to the left of 
both basins of attraction in Figs. 8 and 9 for which no indeterminacy problems arise. 
It seems that countries with physical-to-human capital ratios at the left of a given 
threshold are more likely to face unique growth paths. The comparison when we 
consider the indeterminacy implications when the physical-to-human capital ratio 
tends to become higher is not as straightforward. In this case, when we look at inde-
terminacy problems arising because of the onset of a Hopf cycle, countries at the 
right of the basin of attraction are again free of indeterminacy considerations; in the 
case when indeterminacy occurs due to the existence of a 2-torus, the indeterminacy 
area extends further right.

Gathering these traits of economies that are prone to indeterminacy problems 
helps to determine the mechanics behind the onset of this phenomenon. Assume an 
economy needs to increase an otherwise low X = K∕H ratio. As discussed in Mul-
ligan and Sala-i-Martin (1993), a low value of X can be raised either through an 
increase in savings (a decrease in Q , which is the consumption to capital ratio) or 
through an increase in time allocation, u , to the production of physical output. Since 
� is low, agents have a preference against smoothing their consumption; hence, they 
prefer the second option (wage rate effect). Now, as long as the system is sufficiently 
far from the steady state (strong unbalance) or the externality factor (which, as dis-
cussed in Krugman (1991) and Matsuyama (1991), also measures the degree of 
complementarity across agents’ decisions), is sufficiently low, there is a unique per-
fect-foresight choice of u that is able to lead the economy to a long-run equilibrium. 
There is, however, a threshold level of X beyond which the complementarity effects 
dominate, and there appear multiple (inefficient) choices of u , each of which con-
verges to the steady state. This phenomenon can typically be categorized as a market 
coordination failure when individual decisions are called strategic complements. A 
complementary discussion applies when X is high.

Does this theoretically derived information have a counterpart in real world data? 
In other words, are there signs that an economy might evolve, given some regions 
in the domain of the state (fundamental) variable, under the influence of indeter-
minacy? A perfect-foresight equilibrium is determinate if it is locally unique; it is 
indeterminate if many other equilibria are arbitrarily close to the first equilibrium, 
depending on specific choices of the control variables. As widely recognized in the 
specialized literature (cf., inter al. Lubik and Schorfheide 2004; Beyer and Farmer 
2007), shocks to these nonfundamental variables may then contribute to the total 
variance of an economy.

Therefore, to find evidence of indeterminacy of the equilibrium in real econo-
mies, we again draw information from Penn World Tables (PW10) and propose the 
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following econometric exercises. The PW10 dataset provides an index of human 
capital accumulation based on years of schooling and returns with respect to educa-
tion (not monetary values) and the physical capital stock at constant 2017 national 
prices (in millions of 2017 USD) for 183 countries. The real GDP at constant 2017 
national prices (in millions of 2017 USD) is also available in the dataset. The period 
covered includes 1950–2019; however, since there appears to be clear overall erratic 
variable behavior for the period 1950–1955, we drop the pre-1955 observations in 
the construction of our sample. Then, for each country in the panel, we compute the 
following: (i) the ratio between physical capital (in monetary terms) and the index of 
human capital (variable IK∕H below),15 and (ii) a proxy for working time ( Pu) (cf. 
footnote 14, for the computation). Following the cited literature, we also need a 
proxy of the volatility of (future) growth rates. Thus, we compute the five-year for-
ward variance 

(
�5
g_y

)
 from time ti , where i = 5 . If indeterminacy occurs only for spe-

cific ranges of the domain of the X variable, we expect to observe non-linearity in 
the empirical relationship between X and the variance of (future) growth rates.

There are several possibilities for empirically modeling indeterminacy-induced 
non-linearity in the forward variance of the growth rate. We first consider the fol-
lowing quadratic specification

where we have dropped the time and unit foots for a simpler appraisal. In Eq. (4), 
iK∕H is the logarithm of IK∕H and � is a vector of control variables. �0 is the (unit-
specific) constant. �1 and �2 are the parameters of interest, whereas � is a vec-
tor of other parameters. e is a stochastic error term. The (joint) null hypothesis is 
H0 ∶ �1 = �2 = 0 , which implies that time t observations of the iK∕H (state) variable 
carry no explanatory power over the growth rate forward volatility. Conversely, the 
rejection of the null hypothesis leads to a world where uncertainty on growth pros-
pects (proxied by �5

g_y
) depends on the initial position of an economy in terms of 

the state variable (indeterminacy)). Note that we are specifically interested in the 
case where 𝛼2 < 0 , which implies the existence of a localized IK∕H ratio at which 
the internal mechanisms of the economy maximize uncertainty with regard to future 
growth. The panel is strongly unbalanced, and the resulting observations are 5.561. 
As a control vector, we use time t growth rates of the GDP, population and hours 
worked.

A robust least-squares estimation of Eq. (4) leads to strongly significant values of 
𝛼1 > 0 and 𝛼2 < 0 (p values lower than 0.01 ); the additional variance explained by 
the variables iK∕H and i2

K∕H
 is, however, quite small (only slightly above 1%).16 Sig-

nificant coefficients are also obtained when we re-estimate Eq.  (4) with Pu and P2
u
 

instead of iK∕H and i2
K∕H

 . With the estimated parameters, it is easy to verify that the 

(4)�5
g_y,ti−5

= �0 + �1iK∕H + �2i
2
K∕H

+
∑

�� + e

15  We are aware that this variable is more of as “adjusted” time series of K than a proxy of X as required 
by the model. However, from an econometric point of view, this problem results in a scale factor that is 
easily overshadowed by country-specific constants in an econometric model.
16  The results are robust to alternative computations of the forward growth rate volatility.
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values of IK∕H at which the growth uncertainty is maximized fall within the 7th 
decile of the frequency distribution of IK∕H . For the Pu variable, the same happens at 
the 5th decile. These findings provide remarkable support for the pervasiveness of 
global indeterminacy in the growth process.

Confirmation of these results is also obtained by estimating the following (dis-
crete) model with interaction terms:

where the di dummies are coded as 0 or 1 according to whether the observations 
of iK∕H are in a particular decile of their frequency distribution. The robust least 
squares estimation method provides evidence of significant �2i coefficients for obser-
vations lying in the 7th, 8th and 9th deciles of the frequency distribution of iK∕H (p 
values lower than 0.05 ). By repeating the estimation of Eq. (5) with the Pu variable 
instead, the results are less straightforward and denote weak significance (p values 
lower than 0.1 ) for the coefficients associated with the 2nd, 3rd and 4th deciles of the 
frequency distribution of Pu.

5 � Conclusions

This paper shows that the Lucas (1988) growth model with flow externalities à la 
Chamley (1993) may give rise to global indeterminacy of the equilibrium for rea-
sons different than the existence of closed loops in well-located two-dimensional 
manifolds. The mathematical underpinning of our results lies in the properties of a 
pitchfork–Hopf interaction, which is a simple linear degeneracy that can be associ-
ated with the onset of a 2-torus trapping region in ℝ3 enclosed by a two-dimensional 
surface. By studying the basin of attraction of the torus, given a specific parametri-
zation, we show that economies enmeshed in indeterminacy problems typically have 
a low fraction of the total time devoted to work. Interestingly, the same happens in 
the case of indeterminacy caused by the birth of closed loops in well-located planar 
submanifolds. Using data from PWT10, we find an empirical counterpart to these 
results. Indeed, only in specific ranges in their frequency of distribution do our prox-
ies of time devoted to work and physical-to-human capital ratios have predictive 
power with regard to future growth uncertainty. Our results also have significance 
for the field of endogenous business cycles. In particular, without introducing any 
stochasticity, a solution orbit wrapping around a torus is naturally aperiodic; namely, 
it never comes back exactly onto itself. This is an important difference with regard 
to other cases of cyclical solutions (such as Hopf cycles) where unperturbed orbits 
are bound to intersect the same coordinates in the phase space forever. Furthermore, 
we have shown that physical capital and consumption are highly correlated and give 
rise to long, slow swings, very similar to those observed in real data of the US econ-
omy (data from the PWT10). The opposite occurs for human capital and working 
time, whose fluctuations appear more rapid. In our examples, human capital appears 
to be the least volatile variable of the model.

(5)�5
g_y,ti−5

= �0 + �1iK∕H +

9∑
1

�2idiiK∕H +
∑

�� + e
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Appendix

Derivation of system S , its Jacobian and characteristic polynomial

Recall problem P in Sect. 1.

The associated current-value Hamiltonian is

First-order necessary conditions imply

Taking logs, differentiating with respect to time, we obtain

Consider now the stationarizing variables, X ≡ KH
1−�+�

�−1  and Q ≡
C

K
 , we end up 

with system S in the text

max
C(t), u(t)

∞

∫
0

C1−� − 1

1 − �
e−�tdt

subject to

K̇ = AK𝛽(uH)1−𝛽H𝛾
a
− C

Ḣ = 𝛿H(1 − u)(1 − u)𝜂
a

K(0) = K0

H(0) = H0

H =
C1−� − 1

1 − �
+ �

[
AK�(uH)1−�H�

a
− C

]
+ �

[
�H(1 − u)(1 − u)�

a

]

𝜕H∕𝜕C = C−𝜎 − 𝜆 = 0

𝜕H∕𝜕u = 𝜆(1 − 𝛽)AK𝛽u−𝛽H1−𝛽+𝛾 − 𝜇𝛿H(1 − u)𝜂 = 0

𝜆̇ = 𝜆𝜌 −
𝜕H

𝜕K
= 𝜆𝜌 − 𝜆𝛽AK𝛽−1(uH)1−𝛽+𝛾

𝜇̇ = 𝜇𝜌 −
𝜕H

𝜕H
= 𝜇𝜌 − 𝜆(1 − 𝛽)AK𝛽u1−𝛽H−𝛽+𝛾 − 𝜇𝛿(1 − u)1+𝜂

Ċ∕C = −
1

𝜎

[
𝜌 − 𝛽AK𝛽−1(uH)1−𝛽+𝛾

]

K̇∕K = AK𝛽−1u1−𝛽H1−𝛽+𝛾 −
C

K

Ḣ∕H = 𝛿(1 − u)1+𝜂

u̇ =
u(1 − u)

𝛽(1 − u) − 𝜂u

[
𝛿(1 − u)𝜂 − 𝛿(𝛽 − 𝛾)(1 − u)1+𝜂 − 𝛽

C

K

]
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Notice that, since H is concave in the state variables, Focs are also sufficient to solve 
problem P.

Let (X∗, u∗,Q∗) be values of (X, u,Q) such that Ẋ = u̇ = Q̇ = 0 . Solving system S in 
the text we obtain that, along a BGP

Let � be the Jacobian of the right-hand side of system S evaluated along the BGP. 
The single elements of � are as follows

Ẋ = AX𝛽u1−𝛽 +
𝛿(1 − 𝛽 + 𝛾)

𝛽 − 1
X(1 − u)1+𝜂 − QX

u̇ =
u(1 − u)

𝛽(1 − u) − 𝜂u

[
𝛿(1 − u)𝜂 − 𝛿(𝛽 − 𝛾)(1 − u)1+𝜂 − 𝛽Q

]

Q̇ = −
𝜌

𝜎
Q +

𝛽 − 𝜎

𝜎
AX𝛽−1u1−𝛽Q + Q2

0 = (1 − u∗)� − �(1 − u∗)1+� −
�

�

X∗ = u∗(�A)
1

1−�

[
�(1 − u∗)�

] 1

�−1

Q∗ =
�(1 − u∗)�

�

[
1 − �(1 − u∗)

]

j∗
11

=
𝜕Ẋ

𝜕X
= 𝛽AX∗𝛽−1u∗1−𝛽 − Q∗ − 𝛿(1 − u∗)1+𝜂 =

Ẋ

X
− (1 − 𝛽)AX∗𝛽−1u∗1−𝛽

j∗
12

=
𝜕Ẋ

𝜕u
= (1 − 𝛽)AX∗𝛽u∗−𝛽 + 𝛿(1 + 𝜂)X∗(1 − u∗)𝜂

j∗
13

=
𝜕Ẋ

𝜕Q
= −X∗

j∗
21

=
𝜕u̇

𝜕X
= 0

j∗
22

=
𝜕u̇

𝜕u
=

(1 − 2u∗)(𝛽(1 − u∗) − 𝜂u∗) − u∗(1 − u∗)(−𝛽 − 𝜂)

[𝛽(1 − u∗) − 𝜂u∗]2

[
𝛿(1 − u∗)𝜂 − 𝛿𝛽(1 − u∗)1+𝜂 − 𝛽Q∗

]

+
𝛿u∗(1 − u∗)𝜂

𝛽(1 − u∗) − 𝜂u∗

[
𝛽(1 + 𝜂)(1 − u∗) − 𝜂

]

j∗
23

=
𝜕u̇

𝜕Q
= −

𝛽u∗(1 − u∗)

𝛽(1 − u∗) − 𝜂u∗

j∗
31

=
𝜕Q̇

𝜕X
= −(1 − 𝛽)

𝛽 − 𝜎

𝜎
AX∗𝛽−2u∗1−𝛽Q∗
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Therefore, along the BGP, using Z∗ = AX∗�−1u∗1−� , we have

where j∗
12

=
(1−�)Z∗X∗

u∗
+ �(1 + �)X∗(1 − u∗)� and 

j∗
22

=
�u∗(1−u∗)�

�(1−u∗)−�u∗
[�(1 + �)(1 − u∗) − �].

The eigenvalues of � are the solutions of the characteristic equation

where I is the identity matrix and Tr (�) , Det (�) and B (�) are Trace, Determinant 
and Sum of Principal Minors of � , respectively. We obtain

Existence of the Hypernormal form

Translation to the origin

Substitute X ≡ X − X̂∗ , u ≡ u − û∗ , Q = Q − Q̂∗ , v = 𝜌 − 𝜌̂,𝜇 = 𝜎 − 𝜎̂, 𝜏 = 𝜂 − 𝜂̂ in 
system S . We obtain

j∗
32

=
𝜕Q̇

𝜕u
=

𝛽 − 𝜎

𝜎
(1 − 𝛽)AX∗𝛽−1u∗−𝛽Q∗

j∗
33

=
𝜕Q̇

𝜕Q
=

𝛽 − 𝜎

𝜎
AX∗𝛽−1u∗1−𝛽 −

𝜌

𝛿
+ 2Q∗

(A1.1)� =

⎡
⎢⎢⎢⎣

−(1 − �)Z∗ j∗
12

−X∗

0 j∗
22

−
�u∗(1−u∗)

�(1−u∗)−�u∗

−
�−�

�

Z∗

X∗
Q∗ �−�

�

Z∗

u∗
Q∗ Q∗

⎤
⎥⎥⎥⎦

det(�� − �) = �3 − Tr(�)�2 + B(�)� − Det(�)

(A1.2)��(�) =
�u∗(1 − u∗)�

�(1 − u∗) − �u∗

[
�(2 + �)(1 − u∗) − �(1 + u∗)

]

(A1.3)���(�) = −
�Z∗Q∗

� − (� + �)u∗
�u∗(1 − u∗)�

�

[
�(1 + �)(1 − u∗) − �

]

(A1.4)

�(�) = j∗
22

[
Q∗ − (1 − �)Z∗

]
+ Z∗Q∗ �(1 − �)�u∗ − ��(1 − �)(1 − u∗)

�[�(1 − u∗) − �u∗]
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Second‑order Taylor expansion

Consider the second-order expansion of system in (A2.1) with respect to the variables 
(X, u,Q, v,�, �)

where � is as in (A1.1) and �(�, �, �) is as follows

where N = ln(1 − û∗) and

All relevant coefficients have been calculated but not reported for the sake of a sim-
ple representation.

 (The organizing center) Calculation of the Eigenvectors in correspondence 
of �

1
= �

2
= �

3
= 0.

We need to solve

(A2.1)

⋅

X̃ = A
(
X̂∗ + X

)𝛽
(û∗ + u)1−𝛽 − 𝛿

(
X̂∗ + X

)
(1 − û∗ − u)1+𝜂̂ +𝜏 −

(
Q̂∗ + Q

)(
X̂∗ + X

)

ũ =
(û∗ + u)(1 − û∗ − u)

[
𝛿(1 − û∗ − u)𝜂̂ +𝜏 − 𝛽𝛿(1 − û∗ − u)1+𝜂̂ +𝜏 − 𝛽

(
Q̂∗ + Q

)]
𝛽(1 − û∗ − u) − (𝜂̂ + 𝜏)(û∗ + u)

⋅

Q̃ = −
𝜌̂ + v

𝜎̂ + 𝜇

(
Q̂∗ + Q

)
+

(
𝛽

𝜎̂ + 𝜇
− 1

)
A
(
X̂∗ + X

)𝛽−1
(û∗ + u)1−𝛽

(
Q̂∗ + Q

)
+
(
Q̂∗ + Q

)2

⎛
⎜⎜⎝

X̃

ũ

Q̃

⎞
⎟⎟⎠
= �

⎛
⎜⎜⎝

X
u

Q

⎞
⎟⎟⎠
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⎛
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X
u

Q

⎞
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+

⎛
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⎞
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1
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2
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2
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f
2

(X, u,Q) = B1

2
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Possible candidates are the following

We can therefore form the following transformation matrix

Hypernormal form calculation (Gamero et al. 1991)

Using the change of coordinates

we can proceed in the computation of the normal form. Considering that

where D = v2z1 − u1v2z3 + u2v1z3 , we are able to put system (A2.1) in the follow-
ing third-order normal form

where

and F̄i, i = 1, 2, 3 contain the second-order non-linear terms of the analytic expres-
sion of the vector field. All relevant coefficients involved in matrix M and in the 
non-linear parts contained in F̄i, i = 1, 2, 3 have been calculated but not reported for 
the sake of a simple representation.

� =
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22
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Hypernormal form simplification

Gamero et al. (1991) detail the procedure to be used to further simplify the non-
linear part of system (A2.2) by removing the terms which are not essential for a 
complete understanding of the local dynamic behavior. The procedure leads to 
the following second-order hypernormal form

where ā , b̄ and c̄ are intricate combinations of the original parameters. All necessary 
coefficients have been calculated but are not reported.

Versal deformation

Consider the linear part of system (A2.2)

A candidate for the versal deformation occurs at

where 𝜀̂1(𝜈,𝜇, 𝜏) ≡ ���(�) , 𝜀̂2(𝜈,𝜇, 𝜏) ≡ −�(�) and 𝜀̂3(𝜈,𝜇, 𝜏) ≡ ��(�)  are the 
unfolding parameters, and � is topologically equivalent to � (cf. Algaba et al. 2003). 
It is easy to verify that the transversality condition

holds.

Transformation into phase/amplitude equations

Algaba et al. (2003) shows how a codimension 2 pitchfork–Hopf interaction can 
be exploited in order to put system S in a form that allows to decuple the hyper-
normal form into phase/amplitude equations (cf. Wiggins 1991). Consider the 
following variable transformation

⎛
⎜⎜⎝

ẇ1

ẇ2

ẇ3

⎞
⎟⎟⎠
= �

⎛
⎜⎜⎝

w1

w2

w3

⎞
⎟⎟⎠
+�(𝜇, 𝜈, 𝜏)

⎛
⎜⎜⎝

w1

w2

w3

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

0

0

āw1w3 + b̄w1w2 + c̄w2
1

⎞
⎟⎟⎠

�(�, �, �) = � +�(�, �, �)

(A2.4)
⎛⎜⎜⎝

0 1 0

0 0 1

𝜀̂1(𝜇, 𝜈, 𝜏) 𝜀̂2(𝜇, 𝜈, 𝜏) 𝜀̂3(𝜇, 𝜈, 𝜏)

⎞⎟⎟⎠

(A2.5)
𝜕
(
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)
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=
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𝜕𝜏
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𝜕𝜇
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||||||||
≠ 0.



1 3

Existence and implications of a pitchfork-Hopf bifurcation…

where s is a scale parameter, and 𝜔 = −𝜀̂2 . That is

At the Gavrilov-Guckenheimer bifurcation ( ̂𝜀1 = 𝜀̂3 = 0 ; 𝜀̂2 < 0 ) system (A3.2) 
becomes

All parameters have been computed but are not displayed for the sake of a con-
tained presentation.

We can finally translate system (A3.3) into cylindrical coordinates (r, z, �) . 
Standard arguments (cf., inter al., Wiggins 1991) imply

where âi, i = 1, 2, 3 , b̂j , j = 1, 2, 3, 4 and ĉn , n = 1, 2, 3 are the so-called resonant 
non-linear coefficients (e.g., Guckenheimer and Holmes 1983).

Finally, given the �-independence in the ( ̇r, ż ) equations, we can use a standard 
rescaling technique and derive the decoupled topologically equivalent system

where 𝜇1 =
𝜀̂3

𝜅
 , 𝜇2 =

𝜀̂1

𝜅

|||
b

a

||| , are the standard unfolding parameters, given � =
a2

|b| (cf. 
Harlim and Langford 2007; and Freire et  al. 2002). All necessary mappings 
between the parameters of the planar system (A3.6) and the parameters of the origi-
nal system S have been computed. Results are not displayed for the sake of a con-
tained presentation but are available upon request.
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ṙ = â1rz + â2r
3 + â3rz

2
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2

(A3.5)
ṙ = 𝜇1r + ãrz

ż = 𝜇2 + kr2 − b̃z2 k = ±1
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