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Abstract

In the present paper, we give the parabolic limit of the field equations of a recent
hyperbolic model of relativistic polyatomic gas in the framework of Rational Extended
Thermodynamics (RET) theory. We obtain in this way the corresponding constitutive
equations of the Thermodynamics of Irreversible Processes (TIP) obtained first in the
context of relativity by Eckart. The limit is reached via the Maxwellian iteration pro-
cedure to make a connection between the phenomenological coefficients (shear, bulk
viscosity, and heat conductivity) and the relaxation times. The classical and ultrarela-
tivistic limit of these coefficients are also obtained finding that, in the case of classical
limit, they coincide with the ones known in the literature. As a particular case, we
study the monatomic gas and we can plot the dimensionless coefficients associated with
bulk, shear, and heat conductivity. In contrast to a monatomic gas in which the bulk
viscosity is very small and tends to the classical regime of the order of magnitude of
O(1/c4), the bulk viscosity and the dynamical pressure for polyatomic gases, due to
the rotation and vibration of internal modes, are of the order of unit (except in the
ultrarelativistic limit), and this might open new perspectives in cosmology.
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1 Introduction

In relativistic fluid dynamics, it is mandatory to adopt hyperbolic systems to satisfy the
condition that perturbations propagate with finite velocities less than the light velocity. The
Eckart theory of relativistic dissipative fluid mechanics [1] that is the relativistic counterpart
of Navier-Stokes-Fourier theory is not appropriate due to its parabolic character. Moreover
as proved by Hiscock and Lindblom [2] there exist generic short wavelength secular instabil-
ities; and there is not a well-posed initial value problem for rotating fluids. Müller [3] and
independently Israel [4] gave the first tentative of a causal relativistic phenomenological the-
ory of gases. A successive modern approach being compatible, at the mesoscopic scale, with
the kinetic theory was done by Liu, Müller, and Ruggeri (LMR) [5, 6]. A recent theory on
this subject was given by Pennisi and Ruggeri that proposed a causal relativistic theory for a
non-equilibrium rarefied gas with an internal structure that can take into account the energy
exchange between translational modes and internal modes typical of polyatomic gas [7]. The
theory includes the LMR as a singular limit [8] and in the classical limit converges to the
model of Extended Thermodynamics for polyatomic gas [9]. This paper aims to complete the
theory giving the so-called Maxwellian Iteration [10], a sort of Chapman-Enskog expansion
[11], with respect to the relaxation times. In such a way we can obtain the parabolic limit of
the theory that corresponds in relativity to the Eckart one. In this way, we can evaluate the
expression of the phenomenological coefficients as shear, bulk viscosity, and heat conductivity
in terms of the relaxations times, the degree of freedom of molecules D, and the relativistic
parameter γ = mc2/kBT (m is the atomic mass in the rest frame, c is the light velocity, kB
is the Boltzmann constant and T is the temperature). We evaluate the classical (γ → ∞)
and the ultrarelativistic limit (γ → 0) and in the classical limit the coefficients coincide with
the ones obtained in [9]. Then we consider the monatomic limit (D → 3) obtaining the same
coefficients of monatomic gas evaluated in the LMR paper [5] but with explicit expressions of
the production terms coefficients. This permits to know in all ranges of γ the dimensionless
bulk viscosity, shear viscosity, and heat conductivity. The bulk viscosity ν is of the order of
unity in any range of γ including the classical case, except in the ultrarelativistic limit. This
is in contrast with the monatomic gas in which in relativistic regime ν is small and in the
classical limit tends to zero with the order of O(1/c4).

2 Summary of Casual Relativistic Theory of Polyatomic

gas

In [7] the following system was considered to describe a relativistic polyatomic gas:

∂αV
α = 0 , ∂αT

αβ = 0 , ∂αA
α<βγ> = I<βγ> , (1)

where the partial derivative ∂α is calculated with respect to the space-time coordinates xα

with α = 0, 1, 2, 3, and < · · · > denotes the traceless part of a tensor. V α and Tαβ can be
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written in terms of the usual physical variables:

V α = nmUα, Tαβ = t<αβ> + (p + π)hαβ +
2

c2
U (αqβ) +

e

c2
UαUβ,

so that it is clear that (1)1,2 represent the conservation laws of particle number and en-
ergy momentum, where Uα is the four-velocity, n is the number density, p is the equilib-
rium pressure, π is the dynamical pressure, hαβ = −gαβ + 1

c2
UαUβ is the projector tensor,

gαβ = gαβ = diag(1 , −1 , −1 , −1) is the metric tensor, t<αβ> = T µν
(
hαµh

β
ν − 1

3
hαβhµν

)
is the

viscous deviatoric stress, e is the energy, qα = −hαµUνT
µν is the heat flux and ρ = nm. The

field variables are n, Uα, t<αβ>, π, qα and the absolute temperature T but only 14 of them are
independent, because of the constraints Uαq

α = 0, Uαt
<αβ> = 0, gαβ t<αβ> = 0 , UαU

α = c2.
In [7] Pennisi and Ruggeri considered the generalized relativistic Boltzmann-Chernikov equa-
tion

pα∂αf = Q , (2)

where the distribution function f ≡ f(xα, pα, I) depends not only on the space-time coor-
dinates xα and on the four-momentum pβ, (pαpα = m2c2), but also on a quantity I which
takes into account the microscopic internal energy due to the rotation and vibrations of
the molecules. In the present case the system (1) is the truncated system of the following
moments associated with the Boltzmann-Chernikov equation (2):

V α = mc

∫
R3

∫ +∞

0

fpαφ(I) d I dP ,

Tαβ =
1

mc

∫
R3

∫ +∞

0

f
(
mc2 + I

)
pαpβ φ(I) d I dP ,

Aαβγ =
1

m2c

∫
R3

∫ +∞

0

f
(
mc2 + 2I

)
pαpβpγφ(I) dI dP ,

Iβγ =
c

m

∫
R3

∫ +∞

0

Qpβpγ φ(I) d I dP ,

(3)

where

dP =
dp1 dp2 dp3

p0
,

and φ(I) is the state density corresponding to I, i.e., φ(I)dI represents the number of internal
state between I and I+dI. The measure φ(I) is necessary to recover in the classical theory
the caloric equation of state of internal energy for polyatomic gases as observed first in
classical framework in [12].
As usual for the truncated moment system there is the closure problem and we need to
determine Aαβγ and Iβγ in terms of the 14 independent field variables. To reach the closure
in [7] the Principle of Maximum Entropy (MEP) was used. This principle was developed first
by Jaynes in the context of the theory of information based on the Shannon entropy [13, 14].
It states that the probability distribution that represents the current state of knowledge in the
best way is the one with the largest entropy. The MEP in nonequilibrium thermodynamics
was originally applied by Kogan in [15, 16]. The MEP procedure was applied, by Müller
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and Ruggeri in the first edition of 1993 of their book [6] to the general case of any number
of moments, where it was proved for the first time that the closed system is symmetric
hyperbolic if one chooses the Lagrange multipliers as field variables.
Following this variational procedure of MEP in [7] we obtained the generalization of the
Jüttner equilibrium distribution function fE:

fE =
nγ

A(γ)K2(γ)

1

4πm3c3
e
− 1

kBT [(1+ I
mc2

)Uβp
β], (4)

with A(γ) given by

A(γ) =
γ

K2(γ)

∫ +∞

0

K2(γ∗)
γ∗

φ(I) dI,

and

γ∗ = γ

(
1 +

I
mc2

)
.

Also Kn(γ), (n = 0, 1, 2, . . .) denote the modified second order Bessel functions. From (4),
the following equilibrium constitutive equations were obtained [7]:

p =
nmc2

γ
=

kB
m

ρT ,

e =
nmc2

A(γ)K2(γ)

∫ +∞

0

γ∗ J2,2(γ
∗)φ(I) dI,

(5)

where

Jm,n(γ) =

∫ +∞

0

e−γ cosh s(sinh s)m (cosh s)n ds . (6)

We remark that the pressure has the same expression for a monatomic and for a poly-
atomic gas, while (5)2 is the generalization of the Synge energy to the case of polyatomic
gases, provided that the measure is

φ(I) = Ia, (7)

where the constant a is defined by

a =
D − 5

2
,

and D = 3 + f i is related to the degrees of freedom of a molecule given by the sum of the
space dimension 3 for the translational motion and the contribution of the internal degrees
of freedom f i ≥ 0 related to the rotation and vibration. The closure of the non-equilibrium
14 equations (1) using MEP in principle can be done in the fully nonlinear case but as usual
in RET there are some difficulties to consider the nonlinear approach. The main problem
is to obtain the nonlinear invertibility between the Lagrange multipliers and the physical
variables. And in the classical case there is also a problem noticed first by Junk [17] that the
domain of definition of the flux is not convex, the flux has a singularity, and the equilibrium
state lies on the boarder of the domain of definition of the flux. To avoid these difficulties in
the MEP approach, we consider, as usual, the processes near equilibrium. The consequence

4



is that the system is symmetric hyperbolic only in a neighborhood of the equilibrium of the
state space.
This is, unfortunately, a limitation of RET and as was observed by one of the reviewers this
can be an obstacle to apply the present theory for instance in heavy-ion collisions problems
that maybe require the fully nonlinear equations. On the other hand, the theory is already
very complex even under this approximation, and in the knowledge of the authors there exists
no causal relativistic theory of gas that is fully nonlinear in the non-equilibrium variables. In
the classical case instead, there are new tentative to enlarge the domain of validity with high
expansion as was presented first by Brini and Ruggeri in [18]. The higher-order expansion
has the advantage of having a larger hyperbolicity domain [19, 20].
In this linear approximation with respect the non-equilibrium variables in [7] the closure was
obtained and we have the following expression for the triple tensor:

Aαβγ = A0
1U

αUβUγ + 3A0
11h

(αβUγ)

− 3

c2

Nπ
1

Dπ
1

πUαUβUγ − 3
Nπ

11

Dπ
1

πh(αβUγ) +
3

c2

N3

D3

q(αUβUγ)

+
3

5

N31

D3

h(αβqγ) + 3C5t
(<αβ>Uγ) ,

(8)

where the scalar coefficients A0
1, A0

11, Dπ
1 , Nπ

1 , Nπ
11, N3, D3, N31, C5 are expressed in terms of

integrals involving J∗m,n = Jm,n(γ
∗). The explicit expressions of the coefficients are reported

in [7] (see Eqs. (36)1, (49), (50), (57), (58), (59)).
The explicit expressions of the coefficients are reported in [7] (see Eqs. (36)1, (49), (50), (57),
(58), (59)). In this way, choosing the measure as in (7) the system was closed completely for
what concerns the main part of the operator, i.e. the explicit expression of Aα<βγ> in terms
of the physical variables.

The production term Iβγ in (1)3 in the neighborhood of equilibrium state can be repre-
sented as [5]:

Iβγ = Bπ
1 π

(
gβγ − 4

c2
UβUγ

)
+ Bt

3 t<βγ> + Bq
4

(
Uβqγ + Uγqβ

)
. (9)

The explicit expression of the coefficients depends on the collisional term Q that is not easy
to give in a relativistic context and in particular for polyatomic gas. Usual for monatomic
gas a relativistic generalization of the BGK model is adopted first by Marle [21, 22] and
successively by Anderson and Witting [23]. The Marle model is an extension of the classical
BGK model in the Eckart frame [24, 1], and the Anderson-Witting model is such an extension
using the Landau-Lifshitz frame [24, 25].

These models have been widely employed for various relativistic problems, but several
drawbacks have been also recognized in the literature. Starting from these considerations,
Pennisi and Ruggeri proposed a variant of Anderson-Witting model in the Eckart frame
both for monatomic and polyatomic gases, and proved that the conservation laws of particle
number and energy-momentum are satisfied, the H-theorem holds and in the limit γ → ∞
it reduces to the classical BGK equation [26] (see also [27]). The collisional term Q as the
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BGK relativistic variant proposed in [26] is

Q =
Uαp

α

c2τ

(
fE − f − fE pµqµ

1 + I
mc2

bmc2

)
. (10)

with

b =
ρc2

3

∫ +∞
0

J∗4,1
(
1 + I

mc2

)2
φ(I) d I∫ +∞

0
J∗2,1 φ(I) d I

,

and τ is the relaxation time. Recently in [28] was proved the unique existence and asymptotic
behavior of classical solutions to the equation (2) with (10) when the initial data is sufficiently
close to a global equilibrium.

Using the expression of Q given in (10) it is possible to evaluate all the coefficients that
are present in (9) in terms of the field variables and of the relaxation time appearing in (10)
[8]:

Bπ
1 = − 1

4 τ

3Nπ
1 + Nπ

11

Dπ
1

, Bt
3 = −1

τ
C5 Bq

4 =
1

c2τ

(
B2

B4

− N3

D3

)
, (11)

where the expressions of B2 and B4 are given in (A.6) and (A.7) of reference [7]. In this way,
the system is fully closed and we have 14 equations with 14 unknowns. Even if the theory is
not completely non-linear (linear in the non-equilibrium variables and non-linear with respect
to the equilibrium ones) and therefore the validity is only in the region of hyperbolicity close
to the equilibrium state, the Cauchy problem for the differential system is is well-posed at
least locally in time with existence, uniqueness and stability [29, 6, 27]. Therefore it does not
have the only linear stability as in the old Müller-Israel model [2]. This is due to the proof of
the convexity of entropy and as a consequence of the symmetric form of the hyperbolic system
[8]. Furthermore, it was proved (in the monatomic gas case) that the so-called K-condition is
satisfied and the system has global smooth solutions for all time for sufficiently small initial
data [30].

3 Maxwellian Iteration

To obtain the parabolic limit and to find the constitutive equations for π, t<µν> and qµ we
perform the first step of the Maxwellian iteration for equations (1), by considering their left-
hand sides at equilibrium and their right-hand sides at order 1 with respect to equilibrium1.
Taking into account that

V α
E = V α = n m Uα,

Tαβ
E = p hαβ +

e

c2
UαUβ,

Aαβγ
E = A0

1U
αUβUγ + 3A0

11h
(αβUγ) ,

1For more details about the Maxwellian iteration, introduced for the first time in [10], in particular
concerning RET see the books [6, 9].
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eqs. (1) read

∂α(nmUα) = 0 ,

∂α(ph
αβ +

e

c2
UαUβ) = 0 ,

∂α(A
0
1U

αU δU θ + 3A0
11h

(αδU θ))(gβδ g
γ
θ −

1

4
gβγgδθ) = I<βγ> .

We split the equations in the above system into their temporal and spatial components, and
use eqs. (9) and (11) obtaining

∂α(nmUα) = 0 ,

Uβ∂α(ph
αβ +

e

c2
UαUβ) = 0 ,

hβγ∂α(ph
αβ +

e

c2
UαUβ) = 0 ,

UβUγ∂α(A
0
1U

αU δU θ + 3A0
11h

(αδU θ))(gβδ g
γ
θ −

1

4
gβγgδθ) = − 3 c2Bπ

1 π(1) , (12)

Uβhγδ∂α(A
0
1U

αUµU ν + 3A0
11h

(αµU ν))(gβµg
γ
ν −

1

4
gβγgµν) = − c2 Bq

4 q
(1)
δ ,(

hβµhνγ −
1

3
hµνhβγ

)
∂α(A

0
1U

αU δU θ + 3A0
11h

(αδU θ))(gβδ g
γ
θ −

1

4
gβγgδθ) = −C5

τ
t
(1)
<µν> ,

where π(1), q
(1)
δ , t

(1)
<µν> are the first iterates of π, qδ, t<µν> respectively.

Now we use eqs. (12)1−3 to obtain Uα∂αn, Uα∂αγ,Uα∂αU
β and substitute them in (12)4−6 to

obtain the first iterates π(1), q
(1)
δ , t

(1)
<µν>. In particular:

• from eq. (12)1 it follows

∂α (nUα) = 0 → Uα∂αn = −n∂αU
α ; (13)

• from eqs. (12)2, by reminding that the independent variables are n, γ (or T) and Uα,
and that Uβ∂αUβ = 0, we have

Uα∂α e = −(p + e)∂αU
α or

(∂ne) (Uα∂αn) + (∂γe) Uα∂αγ = −(p + e)∂αU
α (14)

where we have put

∂ne =

(
∂e

∂n

)
γ

, ∂γe =

(
∂e

∂γ

)
n

.

Eq. (14), together with eq. (13) can be used to obtain the following expression for
Uα∂αγ

Uα∂αγ = −(∂ne) (Uα∂αn) + (p + e)∂αU
α

∂γe
= − p

∂γe
∂αU

α ; (15)

Uα∂αγ = −(∂ne) (Uα∂αn) + (p + e)∂αU
α

∂γe
= − p

∂γe
∂αU

α ; (16)
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• from eqs. (12)3 we have

− (∂np) · hαψ∂αn− (∂γp) · hαψ∂αγ −
p + e

c2
Uα∂αU

ψ = 0 , (17)

or, − (∂np) · hαψ
(
∂αn +

e

mc2
∂αγ
)

+ 2
p + e

γc2
hψ(αUµ) ∂α(γUµ) = 0 ,

where eq. (39)4 of the Appendix has been used. The above equation can be used to
obtain the following expression

hαψ
(
∂αn +

e

mc2
∂αγ
)

=
2p+e
γc2

hψ(αUµ) ∂α(γUµ)

∂np
. (18)

Now we substitute these results in (12)4−6.

• From eqs. (12)4 we have

3

4
c2
(
c2∂nA

0
1 + ∂nA

0
11

)
Uα∂αn +

3

4
c2
(
c2∂γA

0
1 + ∂γA

0
11

)
Uα∂αγ+

+

(
3

4
c4A0

1 +
11

4
c2A0

11

)
∂αU

α = − 3 c2 Bπ
1 π(1) ,

that, thanks to eqs. (13), (16), becomes[
−3

4

p c2

∂γe

(
c2∂γA

0
1 + ∂γA

0
11

)
+ 2c2A0

11

]
∂αUα = − 3 c2 Bπ

1 π(1) .

It is possible to express the partial derivative with respect to γ as derivative with respect
to T , obtaining that the above equation becomes[

−3

4

p c2

∂T e

(
c2∂TA0

1 + ∂TA0
11

)
+ 2c2A0

11

]
∂αU

α = − 3 c2 Bπ
1 π(1) . (19)

• From eqs. (12)5 we have

−c2∂nA
0
11 · hαψ∂αn− c2∂γA

0
11 · hαψ∂αγ − (c2A0

1 + 2A0
11)U

α∂αUψ = − c2 Bq
4 q

(1)
ψ (20)

that, thanks to eq. (39) of the Appendix, can be written also as

−c2∂nA
0
11 · hαψ

(
∂αn +

e

mc2
∂α γ

)
+

2

γ
(c2A0

1 + 2A0
11) h

(α
ψ Uµ)∂α(γUµ) = − c2 Bq

4 q
(1)
ψ .

This result can be expressed by using eq. (18) and becomes

2

γ

(
c2A0

1 + 2A0
11 −

e + p

p

)
h

(α
ψ Uµ)∂α(γUµ) = − c2 Bq

4 q
(1)
ψ .

Now we can proceed in two ways:
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1. The first one makes easier the calculation of the monatomic limit and the com-
parison with the results of [5]. It consists in substituting here
hαψ
(
∂αn + e

mc2
∂α γ

)
from eq. (18) so that it becomes

−
(

c2A0
1 + 2A0

11 − A0
11

e + p

p

)
c2 hαψ

[
1

T
∂αT − 1

c2
Uµ∂µUα

]
= − c2 Bq

4 q
(1)
ψ . (21)

2. The second one makes easier the calculation of the non relativistic limit. It consists
in substituting Uα ∂αU

ψ from eq. (17)1 into eq. (20) so that it becomes

− c2 Bq
4 q

(1)
ψ = − c2

(
A0

11

n
hαψ∂α n +

∂ A0
11

∂ T
hαψ ∂αT

)
+

+
(
A0

1c
2 + 2 A0

11

) p c2

e + p

(
1

n
hαψ∂α n +

1

T
hαψ ∂αT

)
=

=

(
1

n
hαψ∂α n

)[
− c2

(
A0

11 − p
)

+
p c2

e + p

(
A0

1c
2 − e + 2 A0

11 − p
)]

+

+

(
1

T
hαψ∂α T

)[
− c2

(
T

∂ A0
11

∂ T
− p

)
+

p c2

e + p

(
A0

1c
2 − e + 2 A0

11 − p
)]

.

(22)

• From eqs. (12)6 we have

−2A0
11 ∂<δUγ> = Bt

3 t
(1)
<δγ> . (23)

At the end, with eqs. (19), (21) and (23) we have found the following constitutive equations
(we omit the index (1))

π = − 1

Bπ
1

[
−1

4

p

∂T e

(
c2∂TA0

1 + ∂TA0
11

)
+

2

3
A0

11

]
∂αU

α

qβ =
1

Bq
4

(
c2A0

1 + 2A0
11 − A0

11

e + p

p

)
hαβ

[
1

T
∂αT − 1

c2
Uµ∂µU

α

]
t<βδ> = − 2

Bt
3

A0
11 hαβ hµδ∂<αUµ>,

(24)

that can be rewritten in the Eckart form:

π = −ν ∂αU
α

qβ = −χ hαβ

[
∂αT − T

c2
Uµ∂µU

α

]
,

t<βδ> = 2µ hαβ hµδ∂<αUµ>

(25)

where ν, χ and µ are the bulk viscosity, the heat conductivity and the shear viscosity,
respectively.
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By comparing (24) and (25) we obtain the precise explicit expression for these phenomeno-
logical coefficients for a generic polyatomic gas in all the range of γ:

ν =
1

Bπ
1

[
−1

4

p

∂T e
∂T
(
c2A0

1 + A0
11

)
+

2

3
A0

11

]
χ = − 1

Bq
4T

(
c2A0

1 + A0
11 − A0

11

e

p

)
µ = −A0

11

Bt
3

,

(26)

with Bπ
1 , Bq

4, Bt
3 explicitly given by (11) except for the relaxation time τ .

Remark 1: As we observed in Section 2, the causal relativistic theory is valid only in the
vicinity of the equilibrium states even if the local equilibrium hypothesis is abandoned. As
is known, the parabolic theories such as Eckart’s theory in relativity or the Navier-Stokes-
Fourier theory in the classical case take the hypothesis of local equilibrium as a starting
point and therefore are valid only near equilibrium. Consequently, the evaluation of the
phenomenological coefficients is not affected by the approximation made for the causal theory.
Remark 2: We observe that the Maxwellian iteration procedure starting from the truncated
moment equations has always the same result as the Chapman-Enskog procedure starting
directly from the kinetic equation. Even if we have not verified it directly with the BGK
equation we used, it should be part of the general procedure treated for example in the book
by Cercignani and Kremer [24] for what concerns the relativistic case.

4 Non relativistic limit

We perform now the non relativistic limit of eqs. (24) with (24)1 expressed as in eq. (22).
To this end we need the non relativistic limits of the coefficients

− 1

4

p

∂T e

(
c2∂TA0

1 + ∂TA0
11

)
+

2

3
A0

11 , A0
11 , and(

1

n
hαψ∂α n

)[
− c2

(
A0

11 − p
)

+
p c2

e + p

(
A0

1c
2 − e + 2 A0

11 − p
)]

+

+

(
1

T
hαψ∂α T

)[
− c2

(
T

∂ A0
11

∂ T
− p

)
+

p c2

e + p

(
A0

1c
2 − e + 2 A0

11 − p
)]

.

(27)

For the first one of these we note that

e − ρ c2 = p
D

2
+ O

(
1/c2

)
, A0

1c
2 − ρ c2 = pD + O

(
1/c2

)
, A0

11 = p + O
(
1/c2

)
∂T e =

p

T

D

2
+ O

(
1/c2

)
, ∂TA0

1c
2 =

p

T
D + O

(
1/c2

)
, ∂TA0

11 =
p

T
+ O

(
1/c2

)
.

It follows that

lim
c→+∞

[
−1

4

p

∂T e

(
c2∂TA0

1 + ∂TA0
11

)
+

2

3
A0

11

]
=

p

3

a + 1

2a + 5
.

10



The second element in eq. (27) has clearly p as limit. For the third element, we have that

A0
1c

2 − e + 2 A0
11 − p =

(
A0

1 − m n
)

c2 − (e−m n c2) + 2 A0
11 − p =

=

(
A0

1

m n
− 1

)
p γ − (e−m n c2) + 2 A0

11 − p =

= p (2a + 5) +
1

c2
(· · · ) − p

2a + 5

2
+

1

c2
(· · · ) + p +

1

c2
(· · · ) .

so that

lim
c→+∞

A0
1c

2 − e + 2 A0
11 − p = p

2a + 7

2
.

Moreover, we have

lim
c→+∞

(
A0

11 − p
)

c2 =
p2

m n

2a + 7

2
, lim
c→+∞

p c2

e + p
=

p

m n
. (28)

It follows that the coefficient of hαψ∂α n in eq. (27)3 has limit zero, while the coefficient of
1
T

hαψ∂α T has limit

− p2

m n

2a + 7

2
, because c2

(
T

∂ A0
11

∂ T
− p

)
= T

∂ (A0
11 − p) c2

∂ T
→ p2

m n
(2a + 7) ,

where (28)1 was used. So we have found that

lim
c→+∞

π(1) =
−1

limc→+∞ Bπ
1

p

3

a + 1

2a + 5
∂iv

i ,

lim
c→+∞

q
(1)
i =

1

limc→+∞ (c2 Bq
4)

p2

m n T

2a + 7

2
∂i T ,

lim
c→+∞

t
(1)
<ij> =

2 p

limc→+∞Bt
3

∂<ivj> .

(29)

Note: Taking into account the decomposition Uα ≡ (Γ c , vi), where Γ is the Lorentz factor,
we have ∂αU

α = 1
c
∂t (Γ c) + ∂k

(
Γ vk

)
whose limit is ∂iv

i because ∂t Γ = −Γ3 vi

c2
∂tv

i which
has zero limit. Similarly for ∂k Γ. We have changed sign in the right hand side of eq. (29)3

because vj was defined with the above index and, with our choice of the metric, we have
vj = − vj. Moreover, limc→+∞ hij = δij and

1

c2
Uµ∂µU

0 =
1

c2
Γ c

1

c
∂t (Γ c) +

1

c2
Γ vk ∂k (Γ c) whose limit is 0 ,

1

c2
Uµ∂µU

i =
1

c2
Γ c

1

c
∂t
(
Γ vi
)

+
1

c2
Γ vk ∂k

(
Γ vi
)

whose limit is 0 .

We can also take into account the expressions (11), and the fact that

lim
c→+∞

Nπ
1

Dπ
1

= 0 , lim
c→+∞

Nπ
11

Dπ
1

= −1 , lim
c→+∞

C5 = 1 , lim
c→+∞

N3

D3

= 2 , lim
c→+∞

B2

B4

= 1 .

11



The last one of these comes immediately from the expressions of B2 and B4 in [7], while the
others can be found in the new Ruggeri-Sugiyama book [27].
As consequence, the limit of (11) is

lim
c→+∞

Bπ
1 =

1

4 τ
, lim

c→+∞
Bt

3 = −1

τ
, lim

c→+∞

(
c2 Bq

4

)
= −1

τ
.

In this case, (29) become

lim
c→+∞

π(1) = − 4

3
τ p

a + 1

2a + 5
∂iv

i ,

lim
c→+∞

q
(1)
i = −τ

p2

m n T

2a + 7

2
∂i T ,

lim
c→+∞

t
(1)
<ij> = −2 τ p ∂<ivj> .

By comparison with the classical Navier-Stokes-Fourier equations:

π = ν ∂iv
i, σ<ij> = −t<ij> = 2µ ∂<ivj>, qi = −χ ∂i T,

(σ<ij> = −t<ij> is the traceless viscosity tensor), we obtain as limit the classical shear,
viscosity, bulk viscosity and heat conductivity:

µ = pτ, ν =
2(D − 3)

3D
pτ, χ =

D + 2

2

p2

ρT
τ, (30)

that coincide with the one obtained in [9] when the relaxation times are all equal to τ due
to the fact that we have used here a BGK approximation. In the phenomenological theory
there are three different relaxations time τπ, τσ, τq that can be very different each other. In
particular τπ is very large in several polyatomic gas [9]. We notice that the bulk viscosity is
of the order of unit provided that D > 3, while it vanishes for D = 3 corresponding to the
monatomic gas.

5 Ultrarelativistic limit

Now we want to evaluate the phenomenological coefficients (26) in the ultrarelativistic limit,
i.e. when γ → 0. According to the results in [31], in the following limit the triple tensor (8)
assumes a special form:

Aαβγ =
(
f0(a, γ)ρ + f1(a, γ)

π

c2

) (
UαUβUγ + c2h(αβUγ)

)
+

+ f2(a, γ)

(
1

c2
q(αUβUγ) +

1

5
h(αβqγ)

)
+ f3(a, γ)t(<αβ>Uγ),

(31)

where f0, f1, f2, f3 are explicit functions of a and γ that change expressions depending on the
range of a and can be found in [31].

12



Here we limit the analysis to the case in which −1 < a < 2. Comparing (31) with (8)
and taking into account (11), (26) and that e = 3p (see [32]) we have:

ν̄ =
γ

3f1

(2f0 + γ∂γf0) , µ̄ = γ
f0

f3

, χ̄ = −γ2f0

f4

where we introduce the dimensionless variables:

ν̄ =
ν

pτ
, µ̄ =

µ

pτ
, χ̄ = χ

ρT

p2τ
, (32)

and we indicate with f4(a, γ) the quantity B2

B4
− N3

D3
evaluated in the ultrarelativistic regime.

Now in [31] it was proved that in this range of a, when γ → 0, we have

f0 =
g0(a)

γ2
, f3 =

g3(a)

γ
,

and

f1 = O

(
1

γ2

)
if − 1 < a < 1, f1 = O

(
1

γ(3−a)

)
if 1 < a < 2.

In [31] it is possible to find the explicit expression of g0(a) and g3(a), while here we find with
the same methodology that:

f4 =
g4(a)

γ
. (33)

Therefore we have

lim
γ→0

ν̄ = lim
γ→0

χ̄ = 0, lim
γ→0

µ̄ =
g0(a)

g3(a)
=

5(a− 2)(a + 5)2

3(a− 3)(a + 4)(a + 11)
. (34)

In conclusion, we can summarize the results with the following

Statement: Using the Maxwellian iteration we have evaluated the bulk viscosity, shear
viscosity, and heat conductivity for a general relativistic polyatomic gas in terms of ρ, γ, a, τ
(see (26) and (11)). In the classical limit, we obtain the classical results (30), while in the
ultrarelativistic limit in the range −1 < a < 2, the bulk viscosity and the heat conductivity
tend to zero, while the shear viscosity tends to a finite value (see (34)).
The result is not so easy to interpret from the physical point of view. The authors expectation
was that in the ultrarelativistic limit also the shear viscosity would be zero as was expected
that in this regime every gas loses the dissipativeness and becomes substantially an Euler
gas. Instead we have that shear viscosity still remains in this limit and is zero only for a → 2.

6 Monatomic limit

For D → 3 i.e. a → −1 we have the singular limit of monatomic relativistic gas. The Synge
energy converges to its monatomic expression:

e = pγ
J2,2(γ)

J2,1(γ)
= p

(
γ
K3(γ)

K2(γ)
− 1

)
= p (γG− 1) ,

13



where

G =
K3(γ)

K2(γ)

First, we recall the limit values of the coefficients that were evaluated in [33]2 :

A0
1 = ρ

J2,3(γ)

J2,1(γ)
A0

11 =
ρc2

3

J4,1(γ)

J2,1(γ)

Dπ
1 =

∣∣∣∣∣∣∣∣∣∣
J2,0(γ) J2,1(γ) J2,2(γ)

J2,1(γ) J2,2(γ) J2,3(γ)

J2,2(γ) J2,3(γ) J2,4(γ)

∣∣∣∣∣∣∣∣∣∣
, Nπ

1 = Nπ
11 =

∣∣∣∣∣∣∣∣∣∣
J2,1(γ) J2,2(γ) J2,3(γ)

J2,2(γ) J2,3(γ) J2,4(γ)

J2,3(γ) J2,4(γ) J2,5(γ)

∣∣∣∣∣∣∣∣∣∣
,

D3 =

∣∣∣∣∣∣
J4,0(γ) J4,1(γ)

J4,1(γ) J4,2(γ)

∣∣∣∣∣∣ , N3 = N31 =

∣∣∣∣∣∣
J4,0(γ) J4,1(γ)

J4,2(γ) J4,3(γ)

∣∣∣∣∣∣ , (35)

C5 =
J6,1(γ)

J6,0(γ)
,

B2

B4

=
J4,2(γ)

J4,1(γ)
.

Taking into account that all the Jp,q given in (6) can be expressed in terms of the Bessel
functions Kj and using the properties of Kj they can express in terms only of two independent
Bessel functions for example K2 and K3, then after cumbersome calculations we obtain the
following expressions for the bulk viscosity, heat conductivity and shear viscosity:

ν =
p

Bπ
1

[
γ + G(6− γG)

γ2 (G2 − 1)− 5γG + 1
+

2G

3

]
,

χ =
mρkB
Bq

4

(
γ + 5G− γG2

)
,

µ = − p

Bt
3

G,

(36)

that are coincident with the one deduced in [5]. But differently from [5], we have now the
explicit expression for Bπ

1 , Bt
3, B

1
4 and therefore we can give the explicit expression for ν, χ

and µ as function of ρ, γ and the relaxation time τ . Taking into account eqs. (11) and (35)
we obtain:

2We use the same symbols to avoid heavy notation omitting the symbol of limit.
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Bπ
1 = −1

τ

−2γ3 (G2 − 1) + γ2G (19− 9G2) + 5γ (9G2 − 1)− 30G

γ {3γ + G [2γ2 (G2 − 1)− 13γG + 20]}

Bq
4 =

1

c2τ

(
−1

γ
+

G2 − 1

γ (G2 − 1)− 5G
+

1

G

)
Bt

3 = −1

τ

(
6

γ
+

1

G

)
.

(37)

Substituting (37) in (36) we have that the dimensionless variables (32) becomes now

ν̄ =
γ {3γ + G [2γ2 (G2 − 1)− 13γG + 20]}2

3 [γ2 (G2 − 1)− 5γG + 1] [2γ3 (G2 − 1) + γ2G (9G2 − 19) + 5γ (1− 9G2) + 30G]
,

(38)

µ̄ =
γ G2

γ + 6G
, χ̄ =

γ2G [γ + G(5− γG)]2

(γ2 + 5) G2 − γ(γ + 5G)
.

Taking into account (38), the dimensionless variables are explicitly function only on γ and
therefore they can be plotted. In Figure ?? we have the plot of ν̄ versus γ in the whole
range of γ from γ → 0 (ultrarelativistic case) to γ →∞ (classical limit) and according with
(30) for large γ go to zero as O(1/γ2), i.e. of order of O(1/c4). In agreement with (34) is
interesting that also in the ultrarelativistic regime for small γ the bulk viscosity tends to 0
as order of O(γ4). In the remaining range ν̄ is in any way very small with maximum value of
ν̄max ' 0.00302 for γ ' 4.57. In Figure ??a) we plot the normalized heat conductivity that
according with (30) tend in the classical case to 5/2 and tend to zero when γ → 0. In Figure
??b) we plot the normalized shear viscosity that according with (30) tend in the classical
case to 1 and tend to 2/3 in the ultrarelativistic limit.

Unfortunately, it is very difficult to plot the figures of ν̄, µ̄ and χ̄ in the polyatomic gas
due to the improper integrals appearing in the coefficients but we expect similar behavior of
monatomic gas taking into account the classical (30) and ultrarelativistic (32) limits. We aim
to study in another paper the case of diatomic gas in which, at least for the energy, we have
that the integrals have an analytic expression like in the Synge case as was recently proved in
[34]. It would be extremely interesting as suggested by one of the reviewers to compare the
trend of the bulk and shear viscosity with the recent paper of Bernhard, Moreland and Bass
[35] concerning the Bayesian estimation of the specific shear and bulk viscosity of quark-gluon
plasma. According to the reviewer’s suggestion, it may be that the peak of the bulk viscosity
due to the appearance of other degrees of freedom, resembles what is expected to occur in
QCD and also in the transition from quarks and gluons to hadrons.

7 Conclusions

In this paper, by using the Maxwellian iteration and the production terms that are compati-
ble with a BGK model for the collisional term of Boltzmann-Chernikov equation, we deduce
the parabolic limit of the causal hyperbolic theory of polyatomic relativistic gas, and this
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permits us to give an explicit relation between the bulk viscosity, shear viscosity, and heat
conductivity in terms of the relaxation time. We have also evaluated the ultrarelativistic
limit and the classical limit. In particular, in the classical limit, the bulk viscosity is not zero
as for monatomic gas, and therefore we expect a finite bulk viscosity in all ranges of γ except
for γ → 0. As we said before, at the end of Section 4, we used a BGK model and therefore
we have only one relaxation time, but as usual in RET we can assume by comparison with
the phenomenological approach that instead of only one τ , we have 3 different relaxation
times. Therefore if the corresponding relaxation time τπ is large, with respect to τσ and τq
as it is for several gases at least in the classical regime, we can have large bulk viscosity that
can be very useful to explain some cosmological problems of universe expansion. We recall
in fact that the bulk viscosity plays a fundamental role to calculate the rate of damping of
protogalactic fluctuations in the period immediately before the recombination of hydrogen as
was firstly observed by Weinberg [36] that was able to evaluate the cosmological entropy pro-
duction associated with a non-vanishing mean free time of photons, neutrinos, or gravitons.
More recently the importance of bulk viscosity was the object of several studies. We quote
in particular, the paper of Li and Barrow [37] that investigate the possibility that a single
imperfect fluid with bulk viscosity can replace the need for separate dark matter and dark
energy in cosmological models. Now we believe that the model of relativistic fluid that takes
into account the internal structure of gas and, as a consequence, with a relevant bulk viscosity
can be more natural to improve the previous models. This will be the object of a future paper.

A Some useful properties

Let’s remind that n, γ or T , and Uα are independent variables so we expect to express ∂α as
a composite derivative with respect to the independent variables. It will be useful to consider
the following derivatives

• ∂ne =
e

n
, ∂nA

0
1 =

A0
1

n
, ∂nA

0
11 =

A0
11

n
,

e

mc2
∂np = ∂γp +

p + e

γ
,

where the last equation is simply a consequence of the definition (5)1 and the others are
consequences of the fact that e, A0

1, A0
11 are linear in the variable n.

• γ∂γA
0
11 = −c2A0

1 − 2A0
11 + γA0

11

e

nmc2
, (40)

or
e

mc2
∂nA

0
11 = ∂γA

0
11 +

1

γ
(c2A0

1 + 2A0
11) .

To prove this property, we start from eq. (7.6)2,3 of [5]

γJm+2,n(γ) = −nJm,n−1(γ) + (n + m + 1)Jm,n+1(γ)

∂γJm,n(γ) = −Jm,n+1(γ)
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from which it follows

γ

(
1 +

I
mc2

)
Jm+2,n(γ

∗) = −nJm,n−1(γ
∗) + (n + m + 1)Jm,n+1(γ

∗) ,

∂γJm,n(γ
∗) = −

(
1 +

I
mc2

)
Jm,n+1(γ

∗) .

(41)

By using this result and (49), (50), (42) of [7] we have

γ∂γA
0
11 =

1

3
γnmc2

∫ +∞
0

−J4,2(γ∗)
(
1 + 2I

mc2

) (
1 + I

mc2

)
φ(I)dI∫ +∞

0
J2,1(γ∗)φ(I)dI

+

+
1

3
γnmc2

[∫ +∞
0

J4,1(γ∗)
(
1 + 2I

mc2

)
φ(I)dI

] [∫ +∞
0

J2,3(γ∗)
(
1 + I

mc2

) (
1 + I

mc2

)
φ(I)dI

]
[∫ +∞

0
J2,1(γ∗)φ(I)dI

]2 .

By using eq. (41)1 this expression becomes

γ∂γA
0
11 =

1

3
nmc2

∫ +∞
0

[2J2,1(γ∗)− 5J2,3(γ∗)]
(
1 + 2I

mc2

)
φ(I)dI∫ +∞

0
J2,1(γ∗)φ(I)dI

+ γA0
11

e

nmc2
.

By using (7.6)1 from [5] it becomes

γ∂γA
0
11 =

1

3
nmc2

∫ +∞
0

[−3J2,3(γ∗)− 2J4,1(γ∗)]
(
1 + 2I

mc2

)
φ(I)dI∫ +∞

0
J2,1(γ∗)φ(I)dI

+ A0
11

γe

nmc2
=

= −A0
1c

2 − 2A0
11 + A0

11

γe

nmc2
,

which concludes the proof of eq. (40).
• Moreover we have

c2∂γA
0
1 + ∂γA

0
11 =

e

nmc2
(A0

1c
2 + A0

11)−mc2B3 −
1

3
mB2 . (42)

In fact:

c2∂γA
0
1 + ∂γA

0
11 = c2∂γ

mn
∫ +∞

0
J2,3(γ∗)

(
1 + 2I

mc2

)
φ(I)dI∫ +∞

0
J2,1(γ∗)φ(I)dI

+

1

3
∂γ

nmc2
∫ +∞

0
J4,1(γ∗)

(
1 + 2I

mc2

)
φ(I)dI∫ +∞

0
J2,1(γ∗)φ(I)dI

.
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This expression, by using eq. (41) becomes

= nmc2

[∫ +∞

0

J2,1(γ∗)φ(I)dI
]−2

·{[
−
∫ +∞

0

J2,4(γ∗)
(

1 +
I

mc2

)(
1 +

2I
mc2

)
φ(I)dI

] [∫ +∞

0

J2,1(γ∗)φ(I)dI
]

+

[∫ +∞

0

J2,3(γ∗)
(

1 +
2I
mc2

)
φ(I)dI

] [∫ +∞

0

J2,2(γ∗)
(

1 +
I

mc2

)
φ(I)dI

]
−1

3

[∫ +∞

0

J4,2(γ∗)
(

1 +
I

mc2

)(
1 +

2I
mc2

)
φ(I)dI

] [∫ +∞

0

J2,1(γ∗)φ(I)dI
]

+
1

3

[∫ +∞

0

J4,1(γ∗)
(

1 +
2I
mc2

)
φ(I)dI

] [∫ +∞

0

J2,2(γ∗)
(

1 +
I

mc2

)
φ(I)dI

]}
.

This result, jointly with (42), (49), (50) and (A.6)1,2 of [7] concludes the proof of eq. (42).
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