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ABSTRACT
A Fast Statistical Homogenization Procedure (FSHP) based on Virtual Element Method (VEM) – previously

developed by the authors [1] – has been successfully adopted for the homogenization of particulate random com-
posites, via the definition of the Representative Volume Element (RVE), and of the related equivalent elastic moduli.
In particular, the adoption of virtual elements of degree one for modelling the inclusions provided reliable results
for materials with low contrast, defined as the ratio between mechanical properties of inclusions and matrix. Porous
media are then here described as bi-material systems in which soft circular inclusions, with a very low value of ma-
terial contrast, are randomly distributed in a continuous stiffer matrix. Several simulations have been performed by
varying the level of porosity, highlighting the effectiveness of FSHP in conjunction with virtual elements of degree
one.

1 Introduction
In recent times, the scientific community paid great attention to the influence of inherent uncertainties on behaviour of

systems and recognized the importance of stochastic approaches to engineering problems [2]. Engineering experience has
shown that uncertainties are involved not only in the assessment of loading but also in the material and geometric properties
of engineering systems [3, 4]. An example may be the mechanical characterization of complex realistic materials, such as
heterogeneous media exhibiting non-periodic internal micro-structure. In this framework, statistical computational methods
may be useful to evaluate their overall mechanical properties [5–9].

To this material typology belong porous solids: natural or artificial materials optimally designed for the load they carry
and the environment in which they exist, such as porous rocks, cork, bones, sponges, aerogel, porous silicon and many others,
that have great diffusion in engineering applications. They are, by their very nature, heterogeneous materials characterized
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by a random distribution of pores in a dense solid. However, it is possible to treat them as continuous materials taking into
account the effective properties depending on the dense solid and the porosity [10]. Their micro-structure may be idealized
as two phases: the matrix, that is the solid phase, and soft inclusions (pores), randomly distributed, representing the second
phase [11]. The elastic properties of two-phase (solid - pores) porous materials depend on the geometrical nature of the pores
– shape and size – as well as on the value of porosity [12, 13]. The determination of the deformation under stress of porous
materials is a long-standing problem of great interest, involving multifield [14–18] and/or multiscale descriptions [19–21].

In this paper, we use a statistical homogenization approach [22, 23] to derive mechanical properties - here the bulk
modulus and Poisson ratio - of porous materials and to evaluate how they changes in relation to porosity. In the case of
materials with random microstructure, the lack of periodicity in the inclusions disposition makes it difficult to perform the
homogenization process, with particular reference to the possibility of identifying a Representative Volume Element (RVE)
and proper boundary conditions to apply at the RVE boundary. Several approaches have been proposed [24–35], also referred
to nonclassical continua [23,36,37]. Among these models, we focus our attention on the possibility of approaching the RVE
using finitesize scaling of intermediate control volume elements, named Statistical Volume Elements (SVEs), and proceed
to homogenization (e.g. [5]).

In this work we refer to [23], where a homogenization procedure consistent with the Hill–Mandel condition [38] has been
coupled with a statistical approach, by which scale–dependent bounds on classical moduli are obtained using Dirichlet and
Neumann boundary conditions (BCs) for solving boundary value problems (BVPs). This statistically based homogenization
procedure has provided significant results [36, 39, 40], with particular reference to the debated problem of the convergence
in the presence of materials with very low (or very high) contrast [37], defined as the ratio between the elastic moduli of
inclusions and matrix [5, 29, 41].

In particular, we use the development of the above mentioned procedure, the Fast Statistical Homogenization Procedure
(FSHP) based on Virtual Element Method (VEM) provided in [1]. In FSHP the statistical procedure is automatized and
integrated in a completely in house specifically developed code, that makes it possible to quickly and efficiently perform a
high number of parametric analyses. VEM [42, 43] is an innovative computational method that find many applications in
problems of structural mechanics: from linear [44] to non-linear elasticity [45] and damage [46], as well as in homogenization
of heterogeneous materials [47]. Here, the adoption of VEM allows improving the computational efficiency: virtual elements
are polygons of any shape with n–nodes, so it is possible to use a single element for each inclusion, providing a significant
reduction of the computational burden. In this work we fix the minimum length of the inclusion’s edges as a percentage of
the inclusions’ radius. The minimum length is chosen for generate a sufficiently fine mesh in the matrix part. The mesh
plays a relevant role in materials with very high or very low contrast, such as porous materials, for which large windows are
needed to determine the RVE size. Other advantages are: capabilities of using hanging nodes, that permit local refinements
and coupling different degree elements; robustness to distortion of the elements; perfectly coupling with FEM elements;
accuracy because the stiffness matrix is computed in precision machine; easy to implement.

In this paper, low order virtual elements are used: the adoption of virtual elements of order one is particularly suitable
for low contrast materials, as porous materials, as shown in [1], because the stresses are concentrated in the stiffer matrix and
constant stress/strain over the elements do not affect homogenization results.

Thanks to the opportunity provided by FSHP with VEM, several parametric analyses have be performed to characterize
overall mechanical parameters of porous materials and to investigate their sensitivity to porosity [48–50]. Attention is paid
both at the identification of the RVE size and at the evaluation of the overall mechanical properties, that vary in relation with
porosity. For several values of porosity RVE size is then identified and bulk modulus and Poisson ratio are estimated.

The outline of the paper is as follows. In Section 2 the FSHP is detailed and the basic assumption of VEM are reported,
in particular for the case of virtual elements of order 1. Section 3 provides the results of parametric analyses on random
porous materials, modelled as two-phase material with soft inclusions. Attention is paid to the definition of the RVE size
and to the sensitivity to porosity: how RVE size and mechanical properties change at varying of porosity. In Section 4 some
final remarks are presented.

2 Fast Statistical Homogenization Procedure with VEM
In this Section, the steps of the automated so–called Fast Statistical Homogenization Procedure (FSHP) [1], based on

the statistical homogenization procedure previously developed in [23] and briefly described in Section 1, are detailed. FSHP
allows to compute overall homogenized mechanical parameters, in particular the anisotropic elasticity tensor. Boundary
Values Problems (BVPs) are solved at microscopic level, where each material phase is characterized by linear elastic isotropic
behaviour, applying both Dirichlet and Neumann boundary conditions. At the macroscopic level, a general anisotropic 2D
stress–strain relation is derived applying the Hills macrohomogeneity condition. Afterwards, the virtual element of degree
one adopted in this work is described.



2.1 Constitutive model
We consider a two–dimensional framework and describe, at the microscopic scale, the heterogeneous porous material as

a bi–phase system. In two-phase materials it is useful to define the material contrast as the ratio between the elastic moduli
of inclusions, Ei, and matrix, Em, c = Ei/Em. When 0 < c < 1 (c = 1 being the case of a homogeneous material) inclusions
are softer than the matrix and we refer to low contrast materials, that are suitable to properly represent porous media [11].
The pores are modelled as circular inclusions of diameter d dispersed into continuous matrix (Fig. 1(a)). Furthermore a
scale parameter δ = L/d is introduced, that is the ratio between the side of a square test window L, and the diameter d of the
inclusions. The analysis are developed within a kinematic linearised framework.

In order to perform homogenization, we consider two levels of the description, the microscopic and the macroscopic
level, with governing equations that are formally the same except than for the constitutive law that is not ‘a priori’ defined at
the macroscopic level, but directly descends from the lower level as result of the homogenization procedure. In the following,
lower case letters always refer to the microscale, while upper case letters to the macroscale. We assume that at the lower
level each material phase is characterized by linear elastic isotropic behaviour with the stress–strain relations:

σi j = λεkk δi j +2µεi j , (1)

where εi j and σi j (i, j,k = 1,2) are the components of the microstrain and microstress tensors, λ and µ are the Lamé constants,
and δi j (i, j = 1,2) the Kronecker symbol. At the macroscopic level, the general anisotropic 2D stress–strain relations, read:

Σi j =Ci jhkEhk , (2)

where Ei j, Σi j (i, j = 1,2) are the components of the macrostrain and macrostress tensors and Ci jhk (i, j,h,k = 1,2) the com-
ponents of the macroscopic elastic tensor, corresponding to the equivalent moduli obtained via a homogenization procedure
based on the Hill’s macrohomogeneity condition [38]:

Σi jEi j =
1

Aδ

∫
Bδ

σi jεi j dA , (3)

which states the equivalence between the stress density power in the macroscopic model and the mean power evaluated at
the microscopic level within a domain (test window), Bδ, occupying a region of area Aδ.

The set of Dirichlet and Neumann boundary conditions (BCs) to apply, at the microscale, on the boundary ∂Bδ, for the
solution of the BVPs, directly derive from the fulfilment of the macrohomogeneity condition (3). The Dirichlet BCs are:

ui = Ei jx j, on ∂Bδ , (4)

ui being the components of the displacement vector and x j (i, j = 1,2) the j-th coordinate of the generic point on the boundary,
∂Bδ, with respect to a reference system with origin in the geometric center of the test window Bδ; while the Neumann BCs
are:

ti = Σi jn j, on ∂Bδ , (5)

where ti are the components of the traction vector and n j the component of the outward normal to ∂Bδ (i, j = 1,2).

2.2 Statistical Homogenization
The homogenization procedure for defining the constitutive response of random heterogeneous material requires the def-

inition of the size of a Representative Volume Element (RVE) larger than the microscale characteristic length, corresponding
to the diameter of inclusions, d.

According to the approach presented in [23], based on the approach proposed in [22, 25], the presented procedure
requires the statistical definition of a number of realizations, called Statistical Volume Elements (SVEs), of the possible
microstructure, sampled in a Monte Carlo sense, which allows determining series of scale–dependent upper and lower
bounds for the overall elastic moduli and to approach the RVE size, δRV E , using a statistical criterion to stop the procedure
when the results in terms of average elastic moduli do not change within the selected tolerance interval.

All the steps of the homogenization procedure are completely integrated in the FSHP. The entire computational stochas-
tic homogenization procedure is structured as follows and resumed in the Flow chart in Fig. 2.



(a) (b)

Fig. 1. Random realization of the microstructure (a) and related mesh (b)

Fig. 2. Flow chart of Fast Statistical Homogenization Procedure (FSHP).

Step 1 Input: set the nominal volume fraction of the medium (ρ ≤ 40%) as the ratio between the total area of the inclusions
and the area of a test window. The particles are disk–shaped inclusions, with diameter d, randomly distributed on the
base of a Poisson point field process with ‘hard-core’ distance, s, between the particles, fixed in order to avoid very
narrow necks between inclusions. Define the dimensionless scale factor δ = L/d. Fix the mechanical parameters of



each phase: Young modulus of inclusions and matrix, Ei and Em; Poisson coefficient, νi and νm. Set the minimum
number of simulations for convergence, Nlim, and a tolerance parameter, Tol, based on data dispersion, as defined in
above.

Step 2 Input: initialize the window size, L = L0, and number of simulations, N = N0.
Step 3 Realizations: for each window size determine the number of inclusions (Poisson random variable) via simulations by

means of Knuth’s algorithm, where the Poisson’s distribution is characterized by the parameter pδ = (ρL2)/[π(d/2+
s/2)2]. Then simulate random dispositions of disks’ centres, according to the uniform distribution, that are the realiza-
tions (SVEs) of portions of the random medium. Each realization is supposed to be independent from any previous one.
An example of realization of the miscrostructure and the related generated mesh is shown in Fig. 1(a).

Step 4 Generate/Solve: for each SVE, generate the relative mesh (Fig. 1(b)) and solve both the Dirichlet (Equation 4) and
Neumann (Equations 5) BVP, and compute the homogenized constitutive parameters.

Step 5 Compute: compute the average bulk modulus, Kδ, the relative standard deviation σ(Kδ) and variation coefficient CV (Kδ).
Then compute Ni = (1.96σ(Kδ)/(Kδ Tol)2, which ensures that the confidence interval of the average homogenized
constitutive parameter set at 95%, evaluated over the normal standard distribution, is within the tolerance allowed, Tol.
Repeat Steps 3-4 until Ni < Nlim.

Step 6 Checking: if the number of realizations necessary for ensuring the requirement at Step 5 is small enough, stop the
procedure. We choose as the number of realizations necessary the most unfavourable number between those obtained
by solving BVPs of Neumann or Dirichlet. Otherwise choose an increased value of δ and go to Step 3.

The fulfilment of the requirement at Step 6 means that the values of the homogenized constitutive coefficients are distributed
around their averages with a vanishing variation coefficient, and that the RVE size is achieved. The effective constitutive
moduli are finally estimated as the mean values between the Dirichlet (upper) and Neumann (lower) bounds at the conver-
gence window (RVE).

The statistical convergence criterion adopted is based on the 95% over the Normal Standard distribution, which provides
the number N at which is possible to stop the simulations for a given window size δ. When this number is small enough,
the average values of the effective moduli converge and the RVE size is achieved. This circumstance also corresponds to
reaching the minimum window size δRV E for which the estimated homogenized moduli remain constant, within a tolerance
interval less than 0.5% for both the Dirichlet and Neumann solutions. The minimum number of simulations, Nlim, and the
tolerance parameter, Tol, are chosen in order to define a narrow confidence interval for the average and to obtain a reliable
convergence criterion. The choice is discretionary, values are assumed depending on the data dispersion. All these details
are specified in [23].

The FSHP permits the automatic cutting of the inclusions over the limit of the windows’ edges, accounting for the
presence of inclusions that randomly cross the windows’ edges as required by the randomness of the medium. It is worth
noting that to neglect the presence of inclusions that intersect the windows’ edges, a less realistic hypothesis widely used in
literature, provides results significantly different from the results obtained taking into account cut inclusions at the windows’
edges [36]. Furhermore, the mesh corresponding to each realization of the microstructure has been optimized using VEM
methodology, that permits to adopt single virtual element for the inclusions (reduction of degrees of freedom) and triangular
virtual elements for the matrix (Fig. 1(b)). In order to take into account the stress gradients in the so–called ’hard core
regions’, the mesh is fine near the inclusions and coarse away from the inclusions. The FSHP allow us to very efficiently
solve the series (hundred) of BVPs and to rapidly converge to the RVE solution.

2.3 Virtual Element Method
In this section we recall the weak formulation of the classical linear elastic problem and describe the related virtual

element space of degree 1 [42, 43] as well as the construction of the bilinear form resulting from the weak form.

In the following we use the Voigt notation, suited to the proposed formulation.

2.3.1 The linear elastic problem
Let Ω be a two–dimensional domain, and let Γ be its boundary. We consider the deformation problem of a linearly

elastic body subjected to the volume force, represented by the vector fff ∈
(
L2(Ω)

)
2, fff = { f1, f2}T (within the standard

Lebesgue space), and given boundary conditions, under the hypothesis of small deformations. We use homogeneous Dirichlet
boundary conditions and consider the Sobolev space, VVV :=

(
H1

0 (Ω)
)2, of the admissible displacement fields, represented by

the vector vvv. Furthermore we represent the strain as the vector εεε = {ε11, ε22, ε12}T associated to the displacement field vector
uuu = {u1, u2}T :



εεε(uuu) = SSS uuu with SSS =

 ∂x 0
0 ∂y
∂y ∂x

 , (6)

where ∂(·) denotes the partial derivative with respect to the (·)-coordinate.
The weak form of the linear elastostatic problem, provided by the virtual work principle, reads:

{
Find uuu ∈VVV such that :
a(uuu,vvv) =< fff ,vvv > ∀vvv ∈VVV (7)

where:

a(uuu,vvv) =
∫

Ω
εεε(vvv)TCCC εεε(uuu)dΩ =

∫
Ω
(SSSvvv)T CCC SSSuuu dΩ ,

< fff ,vvv >=
∫

Ω
fff T vvv dΩ .

(8)

where CCC is the 3×3 elastic tensor.

2.3.2 Virtual element formulation
In this subsection we introduce the virtual element discretization used in the following simulations. In order to ap-

proximate the solution of the problem (7) we consider a decomposition Th of the domain Ω into non overlapping polygonal
elements E. In the following, we denote by e the straight edges of the mesh Th and, for all e ∈ ∂E, nnni denotes the outward
unit normal vector to ei (Fig. 3(a)). The symbol ne represents the number of the edges of the polygon E.

(a) (b)

Fig. 3. Example of virtual element, E , with the relative nodes and edges numeration (a) and degrees of freedom of the virtual element of
degree 1 (b).

Let k be an integer ≥ 1. Let us denote by Pk(Ω) the space of polynomials, living on the set Ω⊆ R2, of degree less than
or equal to k.

By the discretization introduced, it is possible to write the bilinear form (7), as in the finite element methodology, in the
following way:

a(uuu,vvv) = ∑
E∈Th

aE(uuu,vvv) ∀vvv ∈VVV . (9)

The discrete virtual element space, VVV h, is:

VVV h :=
{

vvv ∈VVV : vvv |E∈VVV h|E ∀E ∈ Th
}
, (10)



where the local space, VVV h|E :=
[
Vh|E

]2. For the virtual element of degree k = 1 Vh|E is defined as:

Vh|E :=
{

vvvh ∈ H1(E)∩C0(E) : 4vvvh ∈ {0} , vvvh |e∈ P1(e)∀e ∈ ∂E
}
. (11)

The dimension of the space VVV h|E then is:

m = dim(VVV h|E) = 2ne . (12)

We can observe that, in contrast to the standard finite element approach, the local space VVV h|E is not fully explicit. Moreover
vvvh is a polynomial of degree 1 on each edge e of E and globally continuous on ∂E.

The problem (7) restricted to the discrete space VVV h becomes:

{
Find uuuh ∈VVV h such that
ah(uuuh,vvvh) =< fff ,vvvh > ∀vvvh ∈VVV h ,

(13)

where ah(·, ·) : VVV h×VVV h→ R is the discrete bilinear form approximating the continuous form a(·, ·) and, < fff ,vvvh > is the term
approximating the virtual work of external load. In this work the body force is null and then we do not report any detail for
the implementation. The discrete bilinear form is constructed element by element as

ah(uuuh,vvvh) = ∑
E∈Th

aE
h (uuuh,vvvh) ∀uuuh, vvvh ∈VVV h , (14)

By the above definition of the local space (11) the following important observations can be made:

- the functions vvvh ∈VVV h|E are explicitly known on ∂E (linear functions);
- the functions vvvh ∈VVV h|E are not explicitly known inside the element E;
- (P1(E))

2 ⊆VVV h|E .

The related degrees of freedom for the space VVV h|E are 2ne point–wise values vvvh(υi) i = 1,2, . . . ,ne, where υi is the i-th corner
of E.

2.3.3 Projection operator and construction of the stiffness matrix
In accordance to [51] we define the projector operator of the strain as:

Π : VVV h|E → P0(E)2×2
sym

vvvh→Π(vvvh)
(15)

In particular the projector operator respects the following property of orthogonality:

∫
E

Π(vvvh)
T

ε̂εε dE =
∫

E
εεε(vvvh)

T
ε̂εε dE ∀ε̂εε ∈ P0(E)2×2

sym . (16)

As in the finite element method, we define the vectors vvvh ∈VVV h|E and ε̂εε ∈ P0(E)2×2
sym using the degrees of freedom vvvh ∈ R2ne ,

ε̂εε ∈ R3:

{
vvvh = NNNV vvvh ,
ε̂εε = NNNu

εεε .
(17)

The matrices NNNu and NNNV are

NNNu =

1 0 0
0 1 0
0 0 1

 , NNNV =

[
φ1 0 · · · φne 0
0 φ1 · · · 0 φne

]
, (18)



where φi is the standard i−th shape function. The projection operator in matrix is:

Π(vvvh) = NNNu
Π vvvh , (19)

with Π ∈ R3×m.
By putting Equations (17-19) into the Equation (16) we obtain:

∫
E

(
NNNu

Π vvvh
)T NNNu

εεε dE =
∫

E

[
εεε
(
NNNV vvvh

)]T
NNNu

εεε dE ∀εεε ∈ R3 . (20)

Integrating by part the right hand side we obtain:

∫
E

(
NNNu

Π vvvh
)T NNNu

εεε dE =
∫

∂E

(
NNNV vvvh

)T
(NNNENNNu

εεε) d∂E ∀εεε ∈ R3 , (21)

where NNNE contains the components of the outward normal nnn = {n1, n2}T

NNNE =

[
n1 0 n2
0 n2 n1

]
. (22)

After some algebra:

εεε
T
{∫

E
(NNNu)T NNNu dE

}
Π vvvh = εεε

T
{∫

∂E
(NNNENNNu)T NNNV d∂E

}
vvvh ∀εεε ∈ R3 , (23)

Finally the local projector operator Π is:

Π = GGG−1BBB , (24)

where:

GGG =
∫

E
(NNNu)T NNNu dE , BBB =

∫
∂E

(NNNENNNu)T NNNV d∂E , (25)

We can observe that the matrix GGG ∈ R3×3 is computed by knowing the area of the elements | E |:

GGG =

 | E | 0 0
0 | E | 0
0 0 | E |

 , (26)

and the matrix BBB ∈ R3×m using the degrees of freedom of the element:

BBB=

 (n1
1 | e1 |+nne

1 | ene |)/2 0 · · · (nne
1 | ene |+n(ne−1)

1 | e(ne−1) |)/2 0
0 (n1

2 | e1 |+nne
2 | ene |)/2 · · · 0 (nne

2 | ene |+n(ne−1)
2 | e(ne−1) |)/2

(n1
2 | e1 |+nne

2 | ene |)/2 (n1
1 | e1 |+nne

1 | ene |)/2 · · · (nne
2 | ene |+n(ne−1)

2 | e(ne−1) |)/2 (nne
1 | ene |+n(ne−1)

1 | e(ne−1) |)/2

 ,

(27)
where | ei | is the length of the i−th edge of the element E and ni

j (i = 1, · · · ,ne; j = 1,2) is the i-th outward normal of
components j.

In the virtual element strategy we approximate the bilinear form of Equation (14) as follow

aE
h (uuuh,vvvh) =

∫
E
[Π(vvvh)]

T CCC Π(uuuh)dE +SE(uuuh,vvvh) = vvvT
h MMM uuuh + vvvT

h KKKsuuuh , (28)



where the first term of the right hand side is the consistent term and the second term is the stabilization term.
For computing the consistent term MMM we use Equation (19) and Equation (8)

∫
E
[Π(vvvh)]

T CCC Π(uuuh)dE = vvvT
h Π

T
[∫

E
(NNNu)T CCCNNNu dE

]
Π uuuh , (29)

where

MMM = Π
T
[∫

E
(NNNu)T CCCNNNu dE

]
Π . (30)

If the elastic tensor is constant, it is possible to rearrange Equation (30) and obtain:

MMM = Π
TCCCGGGΠ . (31)

Regarding the stabilization term, we adopt the choice introduced in [42, 43]. First of all, we introduce the scaled
coordinates (ξ,η) as:

ξ =
x− xE

hE
, η =

y− yE

hE
, (32)

where (xE ,yE) are the coordinates of the centre of E and hE its diameter.
The stabilization term are define as follow

KKKs = α tr(MMM)
[
III−DDD

(
DDDT DDD

)−1
DDDT
]
, (33)

where α ∈ R and in this work is set equal to 1/2. The matrix DDD contains the scaled coordinates at the nodes of the element:

DDD =


1 0 ξ1 0 η1 0
0 1 0 ξ1 0 η1
...

...
...

...
...

...
1 0 ξne 0 ηne 0
0 1 0 ξne 0 ηne

 . (34)

3 Numerical analyses
In this section, the Fast Statistical Homogenization Procedure (FSHP) based on the low order virtual elements is applied

to the analysis of porous materials, modelled as a two-dimensional two-phase material in which circular soft inclusions are
randomly embedded in a stiffer continuous matrix.

FSHP with virtual element of k = 1 is particularly suitable for analysing low contrast materials [1], and in this paper
a very low value of contrast (c→ 0) is adopted, with the purpose of simulating a material with randomly distributed voids.
Referring to the properties adopted in [11], an high value of Poisson coefficient has been adopted for the inclusions. All the
mechanical properties are reported in Table 1, where Em and νm are Young and Poisson modulus for the matrix, and Ei and
νi are Young and Poisson modulus for the inclusions, respectively.

Em Ei c νm νi

10000 1 10−4 0.30 0.49

Table 1. Mechanical properties adopted

The procedure is applied to the definition of the RVE size in case of random porous materials and to the evaluation of
their mechanical properties. Initially the procedure is used keeping constant the porosity, defined as the volume fraction of



pores, at a value ρ = 40%, for describing how the RVE size, δRV E , is identified. Subsequently, exploiting the opportunities
provided by FSHP, several parametric analyses are performed by varying the porosity, ρ, in the range 0%÷ 40%. The
purpose is twofold: on one hand for identifying δRV E and its changes in relation of porosity; on the other hand, to evaluate
the sensitivity to porosity of the mechanical properties of homogeneous equivalent continuum materials.

3.1 RVE definition
Homogenization of random porous materials, modelled as a very low contrast material, requires an high number of

realizations and the adoption of large windows to detect the RVE size, δRV E , and determine the overall elastic moduli [37].
FSHP consists in solving the Boundary Value Problem (BVP) on a huge number – hundreds of analyses – of test windows
of increasing size, δ. BVPs are solved by applying both Dirichlet and Neumann BCs, providing upper and lower bounds for
the equivalent elastic moduli respectively. As the windows size increases, the number of simulations needed to obtain the
convergence of the results decreases. By referring to Section 2.2 we recall that convergence of the results is reached when the
average value of an estimated mechanical parameter does not significantly changes after N simulations. The homogenized
elasticity tensor is anisotropic by definition, however, the pores being of circular shape and randomly distributed, after several
simulations the homogenized elastic tensor moduli has been found to be substantially isotropic. Then in the following we
select the bulk modulus, K = 2C1122 +C1212 as representative material parameter to identify.

In Fig. 4, the average value of the bulk modulus obtained after N simulations Kn is normalized versus the value obtained
after N− 1 simulations, both for Dirichlet BCs (Fig. 4(a)) and for Neumann BCs (Fig. 4(b)). Two different windows of
increasing size δ are considered as example: δ = 20, in blue solid line, and δ = 30, in red solid line. It is possible to notice
that the value of the ratio Kn/Kn−1 undergoes less variations as the number of simulations N increases, and that, as expected,
the number of simulations needed to obtain the convergence decreases as the windows size δ increases. In the reported
example, the convergence is reached for N ' 55 for δ = 20 and N ' 25 for δ = 30 in Dirichlet BVP, while N ' 125 for
δ = 20 and N ' 45 for δ = 30 are necessary in the case of Neumann BVP. After reaching the convergence for a given δ,
FSHP goes on and larger windows’ size, δ, are analysed until the number of simulations needed to obtain convergence, N, is
small enough (Step 6 in 2.2)

(a) Dirichlet (b) Neumann

Fig. 4. Normalized average bulk modulus Kn/Kn−1 vs the number of simulations

Based on the criterion of the minimum number of simulations needed, the RVE can be reached also for material with
very low contrast, such as the porous materials here considered. Note that δRV E is then identified as the smallest window
size needed to reach the convergence for the BVPs, considering the most unfavourable case between Dirichlet and Neumann
BCs. The results obtained by applying Dirichlet and Neumann BCs provide the same trend, however it is possible to notice
that the number of simulations needed is smaller in Dirichlet BVP solution. The difference in term of convergence between
the two BVPs has been highlighted in [5, 22]. In particular, it has been showed that in the case of material with high
contrast, where inclusions are stiffer than matrix, Neumann BVP reaches the convergence faster than Dirichlet BVP, while
the opposite occurs for low contrast materials [1, 37]. In the case of porous media, the most unfavourable case is Neumann
BVP, meaning that larger windows are needed to reach the convergence value with respect to Dirichlet BVP. In Fig. 5, the
number of simulations needed to obtain the convergence for increasing value of windows size δ is reported. Red solid lines



are referred to the solution of Dirichlet BVP, while blue solid lines to the solution of Neuman BVP; the same colors are
used for Dirichlet and Neumann in the following figures. Dirichlet BCs provides convergence results with a low number
of simulations, starting from windows of size δ ≥ 25, while larger windows, δ > 35, are needed when adopting Neumann
BCs. The identification of δRV E always requires the solution of the Neumann BVP, resulting, as mentioned above, the most
unfavourable case.

Fig. 5. Number of simulations for reaching the convergence vs window size δ

Fig. 6 reports the average value of the bulk modulus, K, normalized with respect to the value estimated at the RVE, KRV E ,
versus the number of simulations performed for different window sizes, δ, providing a picture of the statistical convergence
criterion adopted. KRV E is evaluated as the mean value between the two values obtained by solving Dirichlet and Neumann
BVPs at the convergence window δRV E . δRV E is identified for a window size δ' 37, obtained after about N ' 20 simulations
(Fig. 5). As expected, widening the windows size provides decreasing K in Dirichlet BVP solution (Fig. 6(a)) and raising K
in Neumann BVP solution (Fig. 6(b)).

(a) Dirichlet (b) Neumann

Fig. 6. Normalized average bulk modulus K/KRV E vs window sizes δ

Concerning the convergence trend, as δ increases the results of Dirichlet and Neuman BVPs tend to get closer to each
other, as shown in Fig. 7(a), where the average value of the homogenized bulk modulus normalized with respect to the value



at δRV E , K/KRV E , is plotted versus the scale parameter δ. Even if there is a mismatch between the two solutions, for values
of δ≥ 37 they become parallel and δRV E is identified.

The differences in terms of convergence trend between Dirichlet and Neumann BVPs solutions also depend on the
different dispersion of the results, as shown in Fig. 7(b), where the Coefficient of Variation, CV , is plotted versus δ. Note
that the convergence is obtained for values of CV ≤ 0.05 and this occurs for δ ≥ 25 in Dirichlet BVP and for δ ≥ 37 in
Neumann BVP.

(a) K/KRV E vs window sizes δ (b) CV vs window sizes δ

Fig. 7. Normalized average bulk modulus K/KRV E (a) and Coefficient of Variation CV (b) for different window sizes δ

3.2 Sensitivity to porosity
Thanks to the opportunities provided by FSHP, several parametric numerical analyses have been performed, with the

purpose of evaluating sensitivity to porosity in random porous media. Different values of porosity 0÷ρ÷ 40% have been
considered. In Fig. 8 examples of microstructures for different values of ρ are provided. The performed analyses allowed us
to identify RVE size, δRV E , and the corresponding mechanical properties. Here the attention is focused on the bulk modulus,
K, defined in Subsection 3.1, and on Poisson ratio, ν = (C1122/C1111)/(1+(C1122/C1111)).

Fig. 8. Realizations of micro-structure for different levels of porosity

The results of the parametric analyses performed are reported in the following figures. As above, red color always refers
to the solution of Dirichlet BVP, while the blue one to the solution of Neumann BVP. The graphs in Fig. 9 provide a synthetic
response of the mechanical parameters variation for different values of porosity.

Fig. 9(a) summarizes the results of the parametric analyses in term of bulk modulus K versus the porosity ρ. As
previously obtained, for increasing δ, the two bounds tend to become closer to each other. The value of K decreases in
Dirichlet solutions while raises in Neumann solutions, as shown in the zoom area of Fig. 9(a) for ρ = 25, where the values
of k for increasing δ are plotted both for Dirichlet (circles) and Neumann (squares) BVPs. As underlined in Section 3.1,
Dirichlet BVP reaches convergence for δ smaller while Neumann BVP requires larger δ and results are more dispersed.



For each value of ρ, the lowest value of K provided by Dirichlet BVPs and the higher value obtained by Neumann BVPs
are achieved at δRV E . The area included between Dirichlet and Neumann BVPs, marked by grey lines pattern, represents
the envelope between the two bounds: KRV E for increasing ρ is obtained as the mean value between the two bounds. As
expected, the value of K decreases as the porosity increases [48]. Apparently the two bounds tend to become closer as ρ

increases, however the percentage difference between the bounds and the mean value remains almost constant.
Fig. 9(b) provides the results of the parametric analyses in term of Poisson ratio ν̄ versus porosity ρ. Also in this case,

ν̄ decreases as the porosity increases, as reported in scientific literature [49,50]. It is interesting to point out that in this case,
differently from what generally occurs, Neumann BVP solutions provide higher values of ν with respect to Dirichlet BVP,
becoming the upper bound of the solution. This is probably due to the fact that Neumann BCs are weaker then Dirichlet
ones, where transversal contraction is avoided, so that transversal strain is bigger and consequently Poisson’s coefficient too.

(a) Bulk modulus K for different density ρ (b) Poisson modulus ν for different density ρ

Fig. 9. Normalized average elastic moduli for different levels of porosity

It is interesting to look out at the RVE size obtained for different values of porosity, (Fig. 10). In the case of ρ = 0
the material is homogeneous, starting from ρ≥ 0 it is necessary to determine a RVE and, as expected, as porosity increases
bigger δRV E are needed. However, it has been found that the δRV E rapidly increases in the range of porosity 1÷ ρ÷ 20,
while slowly decreases up to ρ = 25 and then remain almost constant in the range 25÷ρ÷40. The results in terms of RVE
size, δRV E , are synthesized and reported in Fig. 10, where the values of δ = δRV E are plotted versus the different values of
porosity ρ considered. As previously noticed, Dirichlet BVP need smaller windows with respect to Neumann BVP, that has
to be considered to define δRV E for porous material.

The differences in terms of convergence trend between the two BCs depend on the different dispersion of results, as
shown in Fig. 11, where the Coefficient of Variation CV is plotted versus several values of porosity ρ for Dirichlet (Fig.
11(a)) and Neumann BVP (Fig. 11(b)).

4 Conclusions
In this work, a fast statistical homogenization procedure (FSHP) has been adopted for the homogenization of random

porous materials. Porous material has been modelled as bi-phase material with very low contrasts: disk shaped soft inclusions
randomly distributed within a base stiffer matrix. FSHP based on virtual elements of degree 1 allow us to perfectly model
porous material [1] and permits to solve high number of simulations as required in homogenization techniques applied to
random materials [23, 36, 37, 40]. Furthermore, FSHP permits to analyse a series of materials with different porosity and to
rapidly identify the relative RVE size and the overall effective moduli of the equivalent homogeneous material.

Some final remarks may be drawn:

- FSHP provides reliable results for the homogenization of porous materials.
- VEM of degree 1 perfectly fits the behaviour of porous materials: stress and strain are constant in low order virtual

elements, however this does not have influence on homogenization results in case low contrast materials, as shown
in [1].

- The Representative Volume Element (RVE) as a function of the porosity has strongly non–linear behaviour.



Fig. 10. δRV E for different levels of porosity ρ

(a) Dirichlet (b) Neumann

Fig. 11. Coefficient of Variation CV for differet levels of porosity ρ

- The largest RVE size corresponds to a value of porosity ρ ' 20%: δRV E increases as porosity increases up this value.
For higher level of porosity δRV E slightly decreases and then remains constant up to the value ρ = 40%, which is the
maximum value of porosity.

- Both the homogenized values of the elastic moduli (bulk modulus and Poisson coefficient) decrease as the porosity
increases.

- We obtain an inversion between upper and lower bounds for the Poisson coefficient with respect to the material porosity.

Next step of this research is to improve the accuracy of the results by adopting virtual elements higher degree for
studying material with hard inclusions dispersed in softer matrix. Moreover, the proposed method will be implemented in
order to better describe the behaviour of micro–structured material made of particles of different shape and orientation by
adopting enriched non–classical continua descriptions, such as Couple-Stress and Cosserat, [40].
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