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Abstract 

In a recent article an infinite set of balance equations has been proposed to modelize polyatomic gases with rotational 

and vibrational modes in the non-relativistic context. To obtain particular cases, it has been truncated to obtain a model 

with 7 or 15 moments. Here the following objectives are pursued: 1) to obtain the relativistic counterpart of this model 

which, at the non-relativistic limit, gives the same balance equations as in the known classical case; 2) to obtain the 

previous result for the model with an arbitrary but fixed number of moments, 3) to obtain the closure of the resulting 

relativistic model so that all the functions appearing in the balance equations are expressed in terms of the independent 

variables. To achieve these goals, the following methods are used: 1) The Entropy Principle is imposed. As a result is 

obtained that the closure is determined up to a single 4-vectorial function usually called 4-potential. 2) To determine this 

last function, a more restrictive principle is imposed, namely the Maximum Entropy Principle (MEP). 3) Since all the 

functions involved must be expressed in the covariant form, so as not to depend on the observer, the Representation 

Theorems are used. Findings of this article are exactly the goals outlined earlier. They are clearly novelty because they 

had never been achieved before. They can be considered also improvements because, if the aforementioned arbitrary 

number of moments is restricted to 16, the present work coincide with that already known in literature. 
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1. Introduction 

Based on Arima et al. (2018) [1] study (recently improved to describe also dense polyatomic gases in Arima et al. 

(2020) [2]), the following balance equations have been introduced:  

𝜕𝑡𝐹
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐹

𝑘𝑖1⋯𝑖𝑟 = 𝑃𝑖1⋯𝑖𝑟  ,

𝜕𝑡𝐹𝑉
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐹𝑉

𝑘𝑖1⋯𝑖𝑟 = 𝑃𝑉
𝑖1⋯𝑖𝑟  ,

𝜕𝑡𝐹𝑅
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐹𝑅

𝑘𝑖1⋯𝑖𝑟 = 𝑃𝑅
𝑖1⋯𝑖𝑟  ,

 (1) 

Where 𝑟 goes from 0 to +∞,  

𝐹𝑖1⋯𝑖𝑟 = 𝑚∫
ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓 𝜉𝑖1⋯𝜉𝑖𝑟𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 𝜉 ,

𝐹𝑉
𝑖1⋯𝑖𝑟 = 𝑚∫

ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓 𝜉𝑖1⋯𝜉𝑖𝑟  

2 ℐ𝑉

𝑚
𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 𝜉 ,

𝐹𝑅
𝑖1⋯𝑖𝑟 = 𝑚∫

ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓 𝜉𝑖1⋯𝜉𝑖𝑟  

2 ℐ𝑅

𝑚
𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 𝜉 .

 (2) 
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 The definitions of 𝐹𝑘𝑖1⋯𝑖𝑟 , 𝐹𝑉
𝑘𝑖1⋯𝑖𝑟 , 𝐹𝑅

𝑘𝑖1⋯𝑖𝑟  are similar, with an extra factor 𝜉𝑘 inside the integrals. Moreover, they 

have 𝑃 = 0, 𝑃𝑖 = 0, 𝑃𝑉 + 𝑃𝑅 + 𝑃
𝑙𝑙 = 0 in order to ensure the conservation laws of mass, momentum and total energy. 

After that, the truncated systems with 7 and 15 moments have been considered and fully investigated. The Equations 

(1) 1 have been called the mass block, while (1) 2,3 constitute the vibrational and rotational blocks respectively. In the 

previous models for monoatomic gases, only the mass block (1) 1 was considered (see for example Liu and Müller 

(1983) [3], Müller, T. Ruggeri (1998) [4]). Its extension to the polyatomic gases began with Arima et al. (2012) [5] and 

gave inspiration, as the previous one, to many other articles part of which are cited in Ruggeri and Sugiyama (2015) 

[6]. In these articles, the two blocks of Equations (1) 1,2 were considered. The subsequent generalization [1], considers 

all the three blocks of Equations (1) 1−3 by distinguishing the contribute of rotational and vibrational modes. The sum 

of (1) 2, (1) 3 and of the trace of (1) 1 can substitute (1) 3 and reads: 

𝜕𝑡𝐻0
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐻0

𝑘𝑖1⋯𝑖𝑟 = 𝐽0
𝑖1⋯𝑖𝑟  , (3) 

With:  

𝐻0
𝑖1⋯𝑖𝑟 = 𝐹𝑉

𝑖1⋯𝑖𝑟 + 𝐹𝑅
𝑖1⋯𝑖𝑟 + 𝐹𝑖1⋯𝑖𝑟+2𝛿𝑖𝑟+1𝑖𝑟+2 ,

𝐻0
𝑘𝑖1⋯𝑖𝑟 = 𝐹𝑉

𝑘𝑖1⋯𝑖𝑟 + 𝐹𝑅
𝑘𝑖1⋯𝑖𝑟 + 𝐹𝑘𝑖1⋯𝑖𝑟+2𝛿𝑖𝑟+1𝑖𝑟+2  ,

𝐽0
𝑖1⋯𝑖𝑟 = 𝑃𝑉

𝑖1⋯𝑖𝑟 + 𝑃𝑅
𝑖1⋯𝑖𝑟 + 𝑃𝑖1⋯𝑖𝑟+2𝛿𝑖𝑟+1𝑖𝑟+2 .

 

 In the sequel we will use also the quantities;  

𝐻𝑞
𝑖1⋯𝑖𝑟 = 𝐻0

𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑞−1𝑙𝑞−1 ,    𝐻𝑞
𝑘𝑖1⋯𝑖𝑟 = 𝐻0

𝑘𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑞−1𝑙𝑞−1

𝐻𝑞
𝑖1⋯𝑖𝑟 = 𝐹𝑉

𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑞−1𝑙𝑞−1 + 𝐹𝑅
𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑞−1𝑙𝑞−1  ,

𝐻𝑞
𝑘𝑖1⋯𝑖𝑟 = 𝐹𝑉

𝑘𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑞−1𝑙𝑞−1 + 𝐹𝑅
𝑘𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑞−1𝑙𝑞−1  .

 (4) 

Obviously, from Equations (3) and (1) 2,3 it follows: 

𝜕𝑡𝐻𝑞
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐻𝑞

𝑘𝑖1⋯𝑖𝑟 = 𝑃
𝑖1⋯𝑖𝑟

 ,    𝜕𝑡�̃�𝑞
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐻𝑞

𝑘𝑖1⋯𝑖𝑟 = �̃�𝑖1⋯𝑖𝑟  , (5) 

 With obvious meaning of 𝑃
𝑖1⋯𝑖𝑟

 and �̃�𝑖1⋯𝑖𝑟 .  

Here we propose to find the relativistic counterpart of (1); since this non relativistic approach started from the 

classical Boltzman-Chernikov equation, we do the same starting from the generalized relativistic Boltzman-Chernikov 

equation; 

𝑝𝛼 𝜕𝛼𝛼 𝑓 = 𝑄 , 

 where 𝑓 is the distribution function. By multipying it by polynomials 𝑝 in the 4-momentum 𝑝𝛼, by a function 𝑓1 of 

the rotational energy ℐ𝑅, by a function 𝑓2 of the vibrational energy ℐ𝑣, by the product of their measures 𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 
and integrating in 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗�, one obtains a field equations. So the problem is now how to determine these 

quantities 𝑝, 𝑓1 and 𝑓2 such that the resulting relativistic field equations have (1) as non reltivistic limit. We have found 

the result expressed by the following set of balance equations as relativistic counterpart of (1) truncated in a convenient 

way in terms of an arbitrary but fixed integer non negative number 𝑆:  

𝜕𝛼𝐴
𝛼𝛼1⋯𝛼𝑟 = 𝐼𝛼1⋯𝛼𝑟  ,    𝜕𝛼𝐴𝑉

𝛼𝛼1⋯𝛼𝑠 = 𝐼𝑉
𝛼1⋯𝛼𝑠  ,  (6) 

 With 𝑟 = 0 ,⋯ , 𝑆 + 2, 𝑠 = 0 ,⋯ , 𝑆 and where; 

𝐴𝛼𝛼1⋯𝛼𝑟 =
𝑐

𝑚𝑟−1
∫
ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓 𝑝𝛼𝑝𝛼1⋯𝑝𝛼𝑟 (1 +

𝑟 ℐ

𝑚 𝑐2
)𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� ,

𝐴𝑉
𝛼𝛼1⋯𝛼𝑠 =

𝑐

𝑚𝑠−1
∫
ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓 𝑝𝛼𝑝𝛼1⋯𝑝𝛼𝑠

2 ℐ𝑉

𝑚 𝑐2
 𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� ,

 (7) 

 and ℐ = ℐ𝑅 + ℐ𝑉.  

Despite the appearances, in the system (6) there is a complete symmetry between the rotational and vibrational 

modes. In fact, for 𝑟 = 0 ,⋯ , 𝑆 we can add to each equation of (6) 1 the trace of that with 𝑟 + 2 instead of 𝑟 multiplied 

by − 𝑐−2; after that, we sum the corresponding equation in (6) 2 so obtaining; 

𝜕𝛼𝐴𝑅
𝛼𝛼1⋯𝛼𝑟 = 𝐼𝑅

𝛼1⋯𝛼𝑟  ,     𝑤𝑖𝑡ℎ     𝐼𝑅
𝛼1⋯𝛼𝑟 = −𝐼𝛼1⋯𝛼𝑟 + 𝑐−2𝐼𝑅

𝛼1⋯𝛼𝑟+2𝑔𝛼𝑟+1𝛼𝑟+2 − 𝐼𝑉
𝛼1⋯𝛼𝑟  , 

And 𝐴𝑅
𝛼𝛼1⋯𝛼𝑟 defined as (7) 2 with 𝑅 instead of 𝑉 except that in 𝜙(ℐ𝑅) 𝜓(ℐ𝑉). This is a consequence of the property 

𝑝𝛼𝑝𝛼 = 𝑚
2𝑐2. It follows that the system (6) can be written also as; 

𝜕𝛼𝐴𝑅
𝛼𝛼1⋯𝛼𝑟 = 𝐼𝑅

𝛼1⋯𝛼𝑟  ,    𝜕𝛼𝐴𝑉
𝛼𝛼1⋯𝛼𝑟 = 𝐼𝑉

𝛼1⋯𝛼𝑟  ,     𝑤𝑖𝑡ℎ     𝑟 = 0 ,⋯ , 𝑆 ,

𝜕𝛼𝐴
𝛼𝛼1⋯𝛼𝑆+1 = 𝐼𝛼1⋯𝛼𝑆+1  ,    𝜕𝛼𝐴

𝛼𝛼1⋯𝛼𝑆+2 = 𝐼𝛼1⋯𝛼𝑆+2  .
 (8) 
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 We note that, from the definition (7) 2 it follows that the trace conditions hold;  

𝐴𝑅
𝛼𝛼1⋯𝛼𝑟𝑔𝛼𝑟−1𝛼𝑟 = 𝑐

2𝐴𝑅
𝛼𝛼1⋯𝛼𝑟−2  ,    𝐴𝑉

𝛼𝛼1⋯𝛼𝑟𝑔𝛼𝑟−1𝛼𝑟 = 𝑐
2𝐴𝑉

𝛼𝛼1⋯𝛼𝑟−2  . (9) 

 In the next section we will find the non relativistic limit of Equations (6) and the resulting field equations are 

reported in the subsequent Equations (10). By comparing them with the above Equations (1), the following facts 

become evident:   

• The mass block (1) 1 has to be considered for 0 ≤ 𝑟 ≤ 𝑆 + 2.  

• The vibrational and rotational blocks appear for 0 ≤ 𝑟 ≤ 𝑆; also the subsequent orders 𝑆 + 1, 𝑆 + 2, ⋯, 2𝑆 have to be 

considered (here "order" of a tensor is the number of its indexes) but only by means of their traces and this is 

according to the law: "If 𝑟 is the number of its free indexes, then 𝑆 − 𝑟 traces have to be taken, for 0 ≤ 𝑟 ≤ 𝑆 − 1".  

• A number of traces, less than 𝑆 − 𝑟, have also to be considered but only by means of the sum of the tensors in the 

rotational and that in the vibrational mode. In fact, from (10) 7 we see that 𝑞 ≤ 𝑆 − 𝑟 and consequently, from (13) 

we see that the number of traces there occurring is 𝑞 − 1 ≤ 𝑆 − 𝑟 − 1.  

• Equations involving terms of the mass block (1) 1 of order 𝑆 + 3, 𝑆 + 4, ⋯, 2𝑆 + 4 have to be considered but only 

by means of the sum of them and that belonging to the rotational and vibrational blocks. In fact, from (4)  1 and 

(3) 3 we see that 𝐻𝑞
𝑖1⋯𝑖𝑟  involves the tensor of the mass block of order 2𝑞 + 𝑟; from (10) 6 we see that 𝐻𝑞

𝑖1⋯𝑖𝑆−𝑞+2
 

involves a tensor of order 𝑆 + 𝑞 + 2 and we see also that 𝑆 + 3 ≤ 𝑆 + 𝑞 + 2 ≤ 2𝑆 + 4. However, this tensor 

appears only after having taken its trace 𝑞 times.  

 We note that the model introduced in Pennisi and Ruggeri (2020) [7] is a particular case of the present one; in fact, 

with the theory of subsystems developed in Boillat and Ruggeri (1997) [8], by dropping out (6) 2, what remains gives 

the model of Pennisi and Ruggeri (2020) [7] were there was considered no distinction between the rotational and 

vibrational modes. Moreover, the present model has been tested in the simpler case 𝑆 = 0 and the results have been 

published in [9]; this correspondence will be verified in Sect. 3. So also the model in Carrisi and Pennisi (2019) [9] is a 

subsystem of the present one when 𝑆 = 0.  

In section 5 we will find the closure of the new field Equations (6). It is expressed by the Equations (33) jointly 

with (23) reported below in that section. In this way the first parts of the following flowchart have been described. In 

particular, in this introduction its first step was obtained, i.e., the field Equations (6) as relativistic counterpart of the 

classical model (1) proposed in Pennisi and Ruggeri (2017) [11]. Flowchart of the research methodology is presented 

by Figure 1. 

 

Figure 1. Flowchart of the research methodology 
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2. The Non-relativistic Limit 

 We prove now that the non relativistic limit of Equations (6) leads to the following hierarchy of balance equations for 

the classical case:  

 𝜕𝑡𝐹
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐹

𝑘𝑖1⋯𝑖𝑟 = 𝑃𝑖1⋯𝑖𝑟  ,     𝑓𝑜𝑟     0 ≤ 𝑟 ≤ 𝑆 + 2 , (10) 

𝜕𝑡𝐹𝑉
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐹𝑉

𝑘𝑖1⋯𝑖𝑟 = 𝑃𝑉
𝑖1⋯𝑖𝑟  ,

𝜕𝑡𝐹𝑅
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐹𝑅

𝑘𝑖1⋯𝑖𝑟 = 𝑃𝑅
𝑖1⋯𝑖𝑟

 ,     𝑓𝑜𝑟     0 ≤ 𝑟 ≤ 𝑆 , 

𝜕𝑡𝐹𝑉
𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆−𝑟𝑙𝑆−𝑟 + 𝜕𝑘𝐹𝑉

𝑘𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆−𝑟𝑙𝑆−𝑟 = 𝑄𝑉
𝑖1⋯𝑖𝑟  ,

𝜕𝑡𝐹𝑅
𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆−𝑟𝑙𝑆−𝑟 + 𝜕𝑘𝐹𝑅

𝑘𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆−𝑟𝑙𝑆−𝑟 = 𝑄𝑅
𝑖1⋯𝑖𝑟  ,

     𝑓𝑜𝑟     0 ≤ 𝑟 ≤ 𝑆 − 1 , 

𝜕𝑡𝐻𝑞
𝑖1⋯𝑖𝑆−𝑞+2

+ 𝜕𝑘𝐻𝑞
𝑘𝑖1⋯𝑖𝑆−𝑞+2

= 𝐽𝑞
𝑖1⋯𝑖𝑆−𝑞+2

 ,     𝑓𝑜𝑟     1 ≤ 𝑞 ≤ 𝑆 + 2 , 

𝜕𝑡𝐻𝑞
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐻𝑞

𝑘𝑖1⋯𝑖𝑟 = 𝐽𝑞
𝑖1⋯𝑖𝑟  ,     𝑓𝑜𝑟     {

2 ≤ 𝑞 ≤ 𝑆 ,    

0 ≤ 𝑟 ≤ 𝑆 − 𝑞 ,
 

 With 𝐻𝑞
𝑖1⋯𝑖𝑟 and 𝐻𝑞

𝑖1⋯𝑖𝑟  defined below in Equations (12) and (13).  

This result have already been described at the end of the previous section. So there remains here to prove it. Thanks 

to the trace condition (9) 2 and to (6) 2, we see that we can applicate the results of Borghero et al. (2005) [10]. We have 

only to observe that in this article there are 2 arbitrary numbers 𝑀 < 𝑁. We observe also that the free indexes 

appearing in Equation (1) of Borghero et al. (2005) [10] starts from 𝛼2 instead of 𝛼1 as in the present article. So by 

comparing these equations with the present (6) 2, we see that 𝑁 = 𝑆 + 1, 𝑀 = 𝑆. After that, we can use Equation (2) of 

Borghero et al. (2005) [10] and see that the non relativistic limit of the present Equation (6) 2 gives the above reported 

Equations (10) 2,4. Let us consider now the present Equation (6) 1; there isn’t a trace condition on it, so that we cannot 

apply the results of Borghero et al. (2005) [10]. But we can apply those in Equation (11) of Pennisi and Ruggeri (2020) 

[7] and have that its non relativistic limit is: 

𝜕𝑡𝐻𝑞
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐻𝑞

𝑘𝑖1⋯𝑖𝑟 = 𝐽𝑞
𝑖1⋯𝑖𝑟  ,     𝑓𝑜𝑟     {

0 ≤ 𝑞 ≤ 𝑆 + 2 ,    

0 ≤ 𝑟 ≤ 𝑆 − 𝑞 + 2 ,
 (11) 

 
𝐻𝑞
𝑖1⋯𝑖𝑟 = 𝑚 ∫

ℝ3
∫
+∞

0
∫
+∞

0
𝑓𝐶  𝜉𝑖1⋯𝜉𝑖𝑟  𝜉2(𝑞−1) (𝜉2  +  2𝑞

ℐ

𝑚
 )  𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 𝜉 ,

𝐻𝑞
𝑘𝑖1⋯𝑖𝑟 = 𝑚 ∫

ℝ3
∫
+∞

0
∫
+∞

0
𝑓𝐶  𝜉𝑘𝜉𝑖1⋯𝜉𝑖𝑟  𝜉2(𝑞−1) (𝜉2  +  2𝑞

ℐ

𝑚
 )  𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 𝜉 .

 (12) 

 We now further elaborate these last Equations (11) and (12).  

First Step: For {

1 ≤ 𝑞 ≤ 𝑆 + 2 ,    

0 ≤ 𝑟 ≤ 𝑆 − 𝑞 + 1 ,
 we substitute 𝐻𝑞

𝑖1⋯𝑖𝑟 with; 

𝐻𝑞
𝑖1⋯𝑖𝑟 = 𝐻𝑞

𝑖1⋯𝑖𝑟 − 𝐻𝑞−1
𝑖1⋯𝑖𝑟+2𝛿𝑖𝑟+1𝑖𝑟+2 = (13) 

= 𝑚 ∫
ℝ3
∫
+∞

0

∫
+∞

0

𝑓𝐶  𝜉𝑖1⋯𝜉𝑖𝑟  𝜉2(𝑞−1)  
2 ℐ

𝑚
 𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 𝜉 . 

We can do this because both (𝑟 , 𝑞) and (𝑟 + 2 , 𝑞 − 1) satisfy the condition (11) 2. Of course, we do this starting 

from the highest value of 𝑞 (i.e. 𝑆 + 2) to go down to 𝑞 = 1.  

So, now the equations are (10) 2,4, (11) for 𝑞 = 0, 0 ≤ 𝑟 ≤ 𝑆 + 2, (11) for {

1 ≤ 𝑞 ≤ 𝑆 + 2 ,    

𝑟 = 𝑆 − 𝑞 + 2 ,
 and:  

𝜕𝑡𝐻𝑞
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐻𝑞

𝑘𝑖1⋯𝑖𝑟 = 𝐽𝑞
𝑖1⋯𝑖𝑟  ,     𝑓𝑜𝑟     {

1 ≤ 𝑞 ≤ 𝑆 + 2 ,    

0 ≤ 𝑟 ≤ 𝑆 − 𝑞 + 1 ,
 (14) 

We note that (11) for 𝑞 = 0, 0 ≤ 𝑟 ≤ 𝑆 + 2 are exactly the Equations (10) 1 of the mass block. 

Second Step: Let us explicitate the subset of Equation (14) with 𝑞 = 1, i.e.,  
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𝜕𝑡�̃�1
𝑖1⋯𝑖𝑟 + 𝜕𝑘𝐻1

𝑘𝑖1⋯𝑖𝑟 = 𝐽1
𝑖1⋯𝑖𝑟  ,     𝑓𝑜𝑟     0 ≤ 𝑟 ≤ 𝑆 . 

 It is easy to recognize that these equations are equivalent to (10) 3 because from Equation (13) we desume that 

𝐻1
𝑖1⋯𝑖𝑟 = 𝐹𝑅

𝑖1⋯𝑖𝑟 + 𝐹𝑉
𝑖1⋯𝑖𝑟 .  

After that, the first condition in (14) 2 must be replaced by 2 ≤ 𝑞 ≤ 𝑆 + 2. But when 𝑞 = 𝑆 + 2, the second condition 

in (14) 2 becomes 0 ≤ 𝑟 ≤ −1. It follows that the first condition in (14) 2 must be replaced by 2 ≤ 𝑞 ≤ 𝑆 + 1.  

Let us explicitate now the subset of Equation (14) with 𝑞 = 𝑆 − 𝑟 + 1; from the condition (14) 2 we see that this 

can be done only when {
2 ≤ 𝑆 − 𝑟 + 1 ≤ 𝑆 + 1 ,    

0 ≤ 𝑟 ≤ 𝑟 ,
, i.e., 0 ≤ 𝑟 ≤ 𝑆 − 1.  

But, for 0 ≤ 𝑟 ≤ 𝑆 − 1 we have also; 

𝐻𝑆−𝑟+1
𝑖1⋯𝑖𝑟 = 𝐹𝑉

𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆−𝑟𝑙𝑆−𝑟 + 𝐹𝑅
𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆−𝑟𝑙𝑆−𝑟  . 

 It follows that, from each equation of the subset of Equation (14) with 𝑞 = 𝑆 − 𝑟 + 1 we can subtract Equations 

(10) 4 and obtain (10) 5.  

So, now the equations are (10) 1−5, (11) for 𝑟 = 𝑆 − 𝑞 + 2, 1 ≤ 𝑞 ≤ 𝑆 + 2, (14) for {

2 ≤ 𝑞 ≤ 𝑆 + 1 ,    

0 ≤ 𝑟 ≤ 𝑆 − 𝑞 ,
. But, for 

𝑞 = 𝑆 + 1 the second of these conditions becomes 0 ≤ 𝑟 ≤ −1; so the first condition must be replaced by 2 ≤ 𝑞 ≤ 𝑆. 

The corresponding equations are the above reported (10) 7, while (11) for 𝑟 = 𝑆 − 𝑞 + 2, 1 ≤ 𝑞 ≤ 𝑆 + 2 is the above 

reported (10) 6. This completes the proof.  

We conclude this section noting that, by changing index in (10) 6 according to the law 𝑞 = 𝑆 + 2 − 𝑟 and by taking 

into account (4) 1, it becomes; 

𝜕𝑡𝐻0
𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆+1−𝑟𝑙𝑆+1−𝑟 + 𝜕𝑘𝐻0

𝑘𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆+1−𝑟𝑙𝑆+1−𝑟 = 𝐽𝑆+2−𝑟
𝑖1⋯𝑖𝑟  , (15) 

 for 0 ≤ 𝑟 ≤ 𝑆 + 1.  

From (3) 2 we see that 𝐻0
𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆+1−𝑟𝑙𝑆+1−𝑟, 𝐻0

𝑘𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆+1−𝑟𝑙𝑆+1−𝑟 are respectively equal to 

𝐹𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆+2−𝑟𝑙𝑆+2−𝑟 , 𝐹𝑘𝑖1⋯𝑖𝑟𝑙1𝑙1⋯𝑙𝑆+2−𝑟𝑙𝑆+2−𝑟 plus terms of the rotational and vibrational modes. So, in the subcase 

without these rotational and vibrational modes, Equation (15) is the counterpart of (10) 4,5 for the mass block, 

obviously with 𝑆 + 2 instead of 𝑆.  

In this way the second step of the above flowchart has been obtained, i.e., that the non relativistic limit of the field 

Equations (6) gives exactly those of the classical model (1) proposed in Pennisi and Ruggeri (2017) [11]; moreover, a 

further information has been achieved, i.e., how the classical Equations (1) must be interrupted to obtain a model with 

a finite set of equations. 

3. The Particular Case S=0 

 In this case the Equations (6) and (7) become:  

𝜕𝛼𝐴
𝛼 = 0 ,    𝜕𝛼𝐴

𝛼𝛼1 = 0 ,    𝜕𝛼𝐴
𝛼𝛼1𝛼2 = 𝐼𝛼1𝛼2  ,    𝜕𝛼𝐴𝑉

𝛼 = 𝐼𝑉  , (16) 

 

𝐴𝛼 = 𝑚 𝑐 ∫
ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓 𝑝𝛼𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� ,

𝐴𝛼𝛼1 = 𝑐 ∫
ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓 𝑝𝛼𝑝𝛼1 (1 +

ℐ

𝑚 𝑐2
)𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� ,

𝐴𝛼𝛼1𝛼2 =
𝑐

𝑚
∫
ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓 𝑝𝛼𝑝𝛼1𝑝𝛼2 (1 +

2 ℐ

𝑚 𝑐2
)𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� ,

𝐴𝑉
𝛼 = 𝑚 𝑐 ∫

ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓 𝑝𝛼

2 ℐ𝑉

𝑚 𝑐2
 𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� .

 (17) 

 This is the 16 moments model which is present in Carrisi and Pennisi (2019) [9]. If we take off the trace of the 

third equation, as it was done in Pennisi and Ruggeri (2017) [11], we obtain a 15 moments model which is the 

relativistic counterpart of Equations (12) in Arima et al. (2018) [1]. Its non relativistic limit can be desumed from the 

above Equations (10).   

• In particular, (10) 1 gives 10 equations of the mass block, i.e., (12) 1−3 of Arima et al. (2018) [1].  

• Equations (10) 2,3 are to be considered only for 𝑟 = 0 and give Equations (12) 4−5 of Arima et al. (2018) [1], i.e., 
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the balance equations of the vibrational and rotational energies respectively.  

• Equations (10) 4,5 aren’t to be considered because they hold only for the empty set 0 ≤ 𝑟 ≤ −1.  

• Equations (10) 6 have to be considered only for 𝑞 = 1 and 𝑞 = 2. With the first of these values we obtain (12) 6 of 

Arima et al. (2018) [1]; with 𝑞 = 2 we obtain the hybrid equation which is present in Equations (3) 6 of Carrisi 

and Pennisi (2019) [9].  

• Equation (10) 7 must not to be considered because it holds only for the empty set 2 ≤ 𝑞 ≤ 0, 0 ≤ 𝑟 ≤ −𝑞.  

 So the third step of the above flowchart has been obtained, i.e., the subsystem with 16 moments and it is exactly 

the model considered in Carrisi and Pennisi (2019) [9]; moreover, if we take off the trace of the third equation, as it 

was done in Pennisi and Ruggeri (2017) [11], we obtain a further subsytem, i.e., the 15 moments model which is the 

relativistic counterpart of Equations (12) in Arima et al. (2018) [1], one of the two model with a finite number of 

equations proposed there. 

4. The 7 Moments Model 

 This case is presented in subsection 3.5 of Arima et al. (2018) [1] and is described by the balance equations;  

𝜕𝑡𝐹 + 𝜕𝑘𝐹
𝑘 = 0 , 𝜕𝑡𝐹

𝑖1 + 𝜕𝑘𝐹
𝑘𝑖1 = 0 , 𝜕𝑡𝐹

𝑙𝑙 + 𝜕𝑘𝐹
𝑘𝑙𝑙 = −𝑃𝑉

𝑙𝑙 − 𝑃𝑅
𝑙𝑙  ,

𝜕𝑡𝐹𝑉 + 𝜕𝑘𝐹𝑉
𝑘 = 𝑃𝑉

𝑙𝑙  ,             

𝜕𝑡𝐹𝑅 + 𝜕𝑘𝐹𝑅
𝑘 = 𝑃𝑅

𝑙𝑙  .

 (18) 

 Its relativistic counterpart cannot be written as (6) but as;  

𝜕𝛼𝐴
𝛼 = 0 ,    𝜕𝛼𝐴

𝛼𝛼1 = 0 ,    𝜕𝛼𝐴
𝛼𝛼1𝛼2𝑔𝛼1𝛼2 = 𝐼

𝛼1𝛼2𝑔𝛼1𝛼2  ,    𝜕𝛼𝐴𝑉
𝛼 = 𝐼𝑉  . (19) 

In fact, 
1

𝑐2
 𝐴𝛼𝛼1𝛼2𝑔𝛼1𝛼2 = 𝐴

𝛼 + 𝐴𝑅
𝛼 + 𝐴𝑉

𝛼 so that the third equation can be substituted by;  

𝜕𝛼𝐴𝑅
𝛼 = 𝐼𝑅 =

𝑑𝑒𝑓 1

𝑐2
 𝐼𝛼1𝛼2𝑔𝛼1𝛼2 − 𝐼𝑉  ,  (20) 

which is the counterpart of Equation (19) 4 with the rotational mode instead of the vibrational one.  

The non relativistic limit of Equations (19) 1,2 has been calculated in Equation (17) of Pennisi and Ruggeri (2017) 

[11] and is;  

𝜕𝑡𝐹 + 𝜕𝑘𝐹
𝑘 = 0 ,    𝜕𝑡𝐹

𝑖1 + 𝜕𝑘𝐹
𝑘𝑖1 = 0 ,    𝜕𝑡𝐺

𝑙𝑙 + 𝜕𝑘𝐺
𝑘𝑙𝑙 = 0 , (21) 

with 𝐺𝑙𝑙 = 𝐹𝑙𝑙 + 𝐹𝑉
𝑙𝑙 + 𝐹𝑅

𝑙𝑙 , 𝐺𝑘𝑙𝑙 = 𝐹𝑘𝑙𝑙 + 𝐹𝑉
𝑘𝑙𝑙 + 𝐹𝑅

𝑘𝑙𝑙 . Now, the non relativistic limits of (19) 3 and (20) are 

respectively (18) 4,5. By subtracting them from (21) 3, we see that (21) become (18) 1−3. This completes our proof. So 

the last step of the above flowchart has been obtained, i.e., the subsystem with 7 moments (19) which is the relativistic 

counterpart of Equations (18) which describe the second and last example with a finite number of equations proposed 

in Arima et al. (2018) [1]. 

5. The Closure of the New Relativistic Field Equations 

 By using the Maximum Entropy Pinciple, as in Pennisi and Ruggeri (2017) [11] and recently in Mentrelli and 

Ruggeri (2021) [12], we find that the distribution funcion 𝑓 has the form;  

𝑓 = 𝑒
−1−

1
𝑘𝐵
 𝜒
     𝑤𝑖𝑡ℎ 

𝜒 =
1

𝑚𝑟−1
 (1 + 

𝑟 ℐ

𝑚 𝑐2
) 𝑝𝛼1⋯𝑝𝛼𝑟  𝜆𝛼1⋯𝛼𝑟 +

1

𝑚𝑠−1
 (
2 ℐ𝒱

𝑚 𝑐2
) 𝑝𝛼1⋯𝑝𝛼𝑠 𝜇𝛼1⋯𝛼𝑠

 , 

 Where summation over the indexes 𝑟 and 𝑠 is implied and 𝑘𝐵 is the Boltzmann constant. So, if we define the 4-

potential; 

ℎ′𝛼 = − 𝑘𝐵𝑐 ∫
ℜ3
∫
+ ∞

0

∫
+ ∞

0

𝑓 𝑝𝛼𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� , 

 We have;  

𝐴𝛼𝛼1⋯𝛼𝑟 =
𝜕 ℎ′𝛼

𝜕 𝜆𝛼1⋯𝛼𝑟
    ,    𝐴𝑉

𝛼𝛼1⋯𝛼𝑠 =
𝜕 ℎ′𝛼

𝜕 𝜇𝛼1⋯𝛼𝑠
 . 

 Since ℎ′𝛼  𝜉𝛼  is a convex function of the Lagrange multipliers for whatever time-like 4-vector 𝜉𝛼, it follows that 
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the field Equations (6) are symmetric hyperbolic. This result is guaranteed also if 𝑓 is substituted by its Taylor 

expansion up to whatever fixed order greater than 2 but with the Lagrange multipliers as independent variables. 

Moreover, as usual in Rational Extended Thermodynamics, the closure is determined except for the 4-potentials ℎ′𝛼 .  

Now people doesn’t like these variables and requires that the cloure is expressed in terms of variables with a clear 

physical meaning. In reality this is not reasonable: It is like saying, in the geometric framework that the parametric 

equation of a curve or a surface are not significant. Another objection is made that, not knowing these variables, we 

cannot know their boundary values necessary to solve the field equations. This objection is also unfounded because, 

knowing the law that binds the physical variables to the Lagrange multipliers, from the boundary conditions for the 

phyisical variables we can deduce those for the Lagrange multipliers and then solve the field equations. However, in 

order to meet the commonly accepted taste, we will make the change of variables in the next subsections, from the 

Lagrange multipliers to the phyisical variables.  

Obviouly, hyperbolicity is not compromised by an invertible change of independent variables. Unfortunately, up to 

now nobody was able to do this exactly and we too will be content to do it in an approximate way, at first order with 

respect to equilibrium. Due to this approximation, the hyperbolicity requirement will be satisfied only in a 

neighborhood of equilibrium called "the hyperbolicity zone" (See [13-16]). But this cannot be adduced as proof of the 

weakness of the model; it is only a proof of our mathematical inability to perform this transformation without 

introducing approximations. We certainly cannot expect Nature to bow to our mathematical weakness. 

5.1. The Variables at Equilibrium 

Equilibrium is defined as the state governed only by (6) 1 with 𝑟 = 0,1, i.e., the conservation laws of mass and of 

momentum-energy (Euler Equations), i.e., the subsystem of (6) with 𝑆 = −1 in the sense of Boillat and Ruggeri 

(1997) [8]. It follows that 𝜆𝛼1⋯𝛼𝑟
𝐸 = 0, 𝜇𝛼1⋯𝛼𝑠

𝐸 = 0 for 𝑟 = 2,⋯  𝑆 + 2, 𝑠 = 0,⋯  𝑆. Moreover, from the 

Representation Theorems we have  

𝐴𝛼 = 𝑚 𝑛 𝑈𝛼  , 𝐴𝛼𝛽 =
𝑒

𝑐2
 𝑈𝛼𝑈𝛽 + 𝑝 ℎ𝛼𝛽 , 𝑈𝛼𝑈𝛼 = 𝑐

2 , ℎ𝛼𝛽 = −𝑔𝛼𝛽 +
1

𝑐2
 𝑈𝛼𝑈𝛽 , 

 whose phyisical meaning is obvious: 𝑛 is the number density, 𝑝 is the pressure and 𝑒 the energy.  

From (6) 1 with 𝑟 = 0 it follows that 𝜆𝛼
𝐸  is parallel to 𝑈𝛼; so, by calling 

1

𝑇
 the coefficient, we have that; 

𝜆𝛼
𝐸 =

𝑈𝛼
𝑇
 . 

 The physical meaning of 𝑇 is evident; it is the absolute temperature.  

Of (6) 1 with 𝑟 = 0,1 there remain;  

𝑚 𝑛 𝑈𝛼 = 𝑚 𝑐 𝑒
−1− 

𝑚
𝑘𝐵
 𝜆𝐸

∫
ℜ3
∫
+ ∞

0

∫
+ ∞

0

𝑒
− 
𝑝𝜇𝑈𝜇
𝑚 𝑐2

 (1+
ℐ

𝑚 𝑐2
)
 𝑝𝛼𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗�

𝑒

𝑐2
 𝑈𝛼𝑈𝛽 + 𝑝 ℎ𝛼𝛽 = 𝑐 𝑒

−1− 
𝑚
𝑘𝐵
 𝜆𝐸

∫
ℜ3
∫
+ ∞

0

∫
+ ∞

0

𝑒
− 
𝑝𝜇𝑈𝜇
𝑚 𝑐2

 (1+
ℐ

𝑚 𝑐2
)
 𝑝𝛼𝑝𝛽 (1 +

ℐ

𝑚 𝑐2
) ⋅

⋅ 𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� .

 

 The first one of these equations must be imposed only through its contraction with 𝑈𝛼 and the second one through 

its contractions with 𝑈𝛼𝑈𝛽 and ℎ𝛼𝛽. So we obtain;  

𝑛 = 4 𝜋𝑚3 𝑒
−1− 

𝑚

𝑘𝐵
 𝜆𝐸

 𝐽2,1
∗     ,    𝑝 =

𝑛 𝑚 𝑐2

𝛾
= 𝑛 𝑘𝐵  𝑇 ,

𝑒 = 𝑛 𝑚 𝑐2  
𝐽2,2
∗ (1+

ℐ

𝑚 𝑐2
)

𝐽2,1
∗  ,

 (22) 

Where the integration in 𝑑 �⃗⃗� has been performed and overlined terms denote that they are multiplied by 𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 

and then integrated in 𝑑 ℐ𝑅  𝑑 ℐ𝑉. Moreover, in (22) 2,3 the term 𝜆𝐸  has been eliminated by use of (22) 1, 𝛾 =
𝑚 𝑐2

𝑘𝐵𝑇
. 

𝐽𝑚,𝑛(𝛾) = ∫
+ ∞

0

𝑒− 𝛾 cosh 𝑠sinh𝑚  𝑠 cosh𝑛 𝑠 𝑑 𝑠

𝛾∗ = 𝛾 (1 +
ℐ

𝑚 𝑐2
)    ,    𝐽𝑚,𝑛

∗ = 𝐽𝑚,𝑛(𝛾
∗) .

 

The Equation (22) 3 is the generalization of the Synge energy to the case of polyatomic gases with rotational and 

vibrational modes; in the case with only one mode it is the same of Equation (42) of Pennisi and Ruggeri (2017) [11]. 

The other functions in Equation (7) don’t play a role at equilibrium but nothing prevent us from calculating them and 
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they will be useful in the sequel. They are: 

𝐴𝐸
𝛼1⋯𝛼𝑟+1 = ∑

[
𝑟+1

2
]

𝑞=0  𝑎𝑞,𝑟(𝛾)ℎ
(𝛼1𝛼2⋯ℎ𝛼2𝑞−1𝛼2𝑞𝑈𝛼2𝑞+1⋯𝑈𝛼𝑟+1) ,

𝐴𝑉𝐸
𝛼1⋯𝛼𝑠+1 = ∑

[
𝑠+1

2
]

𝑞=0  𝑎𝑞,𝑠
𝑉 (𝛾)ℎ(𝛼1𝛼2⋯ℎ𝛼2𝑞−1𝛼2𝑞𝑈𝛼2𝑞+1⋯𝑈𝛼𝑠+1) ,

 (23) 

Where; 

𝑎𝑞,𝑟 = (
𝑟 + 1
2𝑞

) 
𝑛 𝑚

2𝑞 + 1

𝑐2𝑞

𝐽2,1
∗
    𝐽2𝑞+2 ,𝑟+1−2𝑞

∗ (1 +
𝑟 ℐ

𝑚 𝑐2
) ,

𝑎𝑞,𝑠
𝑉 = (

𝑠 + 1
2𝑞

) 
𝑛 𝑚

2𝑞 + 1

𝑐2𝑞

𝐽2,1
∗
    𝐽2𝑞+2 ,𝑠+1−2𝑞

∗ (
2 ℐ𝒱

𝑚 𝑐2
) .

 

These expressions have been found by using the techniques exposed in Carrisi and Pennisi (2013) [17]. We note 

that (23) 1 for 𝑟 = 0,1 gives the above reported 𝐴𝐸
𝛼1 = 𝑉𝛼1, 𝐴𝐸

𝛼1𝛼2 = 𝑇𝐸
𝛼1𝛼2 because:: 

𝑎0,0 = 𝑛 𝑚 ,    𝑎0,1 =
𝑒

𝑐2
 ,    𝑎1,1 =

𝑛 𝑚 𝑐2

3
 
𝐽4,0
∗ (1 +

ℐ
𝑚 𝑐2

)

𝐽2,1
∗

= 𝑝 , 

Where for the last one we have used the property 𝛾𝐽4,0(𝛾) = 3 𝐽2,1(𝛾) from which it follows 𝛾 (1 +
ℐ

𝑚 𝑐2
) 𝐽4,0

∗ = 3 𝐽2,1
∗ . 

Moreover, (23) 1 for 𝑟 = 2 and (23) 2 for 𝑠 = 0 give: 

𝐴𝐸
𝛼1𝛼2𝛼3 = 𝑎0,2𝑈

𝛼1𝑈𝛼2𝑈𝛼3 + 𝑎1,2ℎ
(𝛼1𝛼2𝑈𝛼3⋯𝑈𝛼3) , 𝐴𝑉𝐸

𝛼1 = 𝑎0,0
𝑉 (𝛾)𝑈𝛼1 . 

These expressions are the same found in Equation (13) of Carrisi and Pennisi (2019) [9] and the first one of these, 

in the particular case with only one mode, is the same of Equation (48) in Pennisi and Ruggeri (2017) [11] because;  

𝑎0,2 = 𝐴1
0 ,    𝑎1,2 = 3 𝐴11

0  ,    𝑎0,0
𝑉 = 𝑛 𝑚 

𝐽2,1
∗ (1 +

2 ℐ𝒱

𝑚 𝑐2
)

𝐽2,1
∗

=
𝑐3

𝑚 𝑛
 𝐻𝑉 =

𝛾

𝑚 𝑛 𝑐
 𝐵10 . 

5.2. The Linear Deviation from Equilibrium 

At a first step we will consider as first order deviations from equilibrium the variables 𝜋 (dynamic pressure), 𝑞𝛼 

(heat flux), 𝑡<𝛼𝛽>3  (viscous deviatoric stress), 𝜆𝛼1⋯𝛼𝑟 for 𝑟 = 2 ,⋯ , 𝑆 + 2, and 𝜇𝛼1⋯𝛼𝑠 for 𝑠 = 0 ,⋯ , 𝑆. These 

variables are constrained by 𝑈𝛼𝑞
𝛼 = 0, 𝑈𝛼𝑡

<𝛼𝛽>3 = 0, 𝑔𝛼𝛽𝑡
<𝛼𝛽>3 = 0. Also the remaining Lagrange multipliers can 

be found in terms of a corresponding set of components of 𝐴𝛼𝛼1⋯𝛼𝑟 and 𝐴𝑉
𝛼𝛼1⋯𝛼𝑠  (for example, those components 

whose non relativistic limit gives the variables that, in the classical model, are derivated with respect to time; or, more 

precisely, their deviations from equilibrium); but this further change can be done in a second step, if it will be 

considered necessary. Since this amounts only in some complicated systems, we will refrain to report them here.  

The change of variables is performed in the following way:  

We will use;  

𝑉𝛼 − 𝑉𝐸
𝛼 = 0    ,    𝑇𝛼𝛽 − 𝑇𝐸

𝛼𝛽
= 𝜋 ℎ𝛼𝛽 + 

2

𝑐2
 𝑞(𝛼𝑈𝛽)  +  𝑡<𝛼𝛽>3  (24) 

to determine 𝜆 − 𝜆𝐸 , 𝜆𝛽 − 𝜆𝛽
𝐸 , 𝜆<𝛽𝛾> in terms of 𝑛, 𝛾, 𝑈𝛼 , 𝜋, 𝑞𝛼, 𝑡<𝛼𝛽>3 , 𝜇 =

1

4
 𝑔𝛼𝛽𝜆𝛼𝛽, 𝜆𝛼1⋯𝛼𝑟 for 𝑟 = 3 ,⋯ , 𝑆 + 2 

and 𝜇𝛼1⋯𝛼𝑠 for 𝑠 = 0 ,⋯ , 𝑆. After that, we will substitute these values in 𝐴𝛼𝛼1⋯𝛼𝑟 − 𝐴𝐸
𝛼𝛼1⋯𝛼𝑟 and 𝐴𝑉

𝛼𝛼1⋯𝛼𝑠 −

 𝐴𝐸𝑉
𝛼𝛼1⋯𝛼𝑠 so determining the closure, as a consequence, the mass and energy-momentum conservation laws (6) 1 with 

𝑟 = 0,1 will be the usual equations with; 

𝑉𝛼 = 𝑚 𝑛 𝑈𝛼     ,    𝐴𝛼𝛽 =
𝑒

𝑐2
 𝑈𝛼𝑈𝛽 + (𝑝 + 𝜋) ℎ𝛼𝛽 + 

2

𝑐2
 𝑞(𝛼𝑈𝛽)  +  𝑡<𝛼𝛽>3 . 

Now Equations (24) become;  

𝐴𝐸
𝛼 (𝜆 − 𝜆𝐸) + 𝐴𝐸

𝛼𝜈 (𝜆𝜈 − 𝜆𝜈
𝐸) + 𝐴𝐸

𝛼𝛾𝛿
 𝜆<𝛾𝛿> + (𝐴𝐸

𝛼𝛾𝛿
 𝑔𝛾𝛿) 𝜇 +

 +∑𝑆+2𝑟′=3 𝐴𝐸
𝛼𝛽1⋯𝛽𝑟′  𝜆𝛽1⋯𝛽𝑟′  + ∑

𝑆
𝑠′=0 𝐴𝑉𝐸

𝛼𝛽1⋯𝛽𝑠′  𝜇𝛽1⋯𝛽𝑠′ = 0 ,

𝐴𝐸
𝛼𝛽
 (𝜆 − 𝜆𝐸) +

𝐴11
𝛼𝛽𝜈

𝑚
 (𝜆𝜈 − 𝜆𝜈

𝐸) +
𝐴12
𝛼𝛽𝛾𝛿

𝑚
 𝜆<𝛾𝛿> + (

𝐴12
𝛼𝛽𝛾𝛿

𝑚
 𝑔𝛾𝛿)  𝜇 +

 +∑𝑆+2𝑟′=3
𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  + ∑

𝑆
𝑠′=0

𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′ =

 = − 
𝑘𝐵

𝑚
 (𝜋 ℎ𝛼𝛽 + 

2

𝑐2
 𝑞(𝛼𝑈𝛽)  +  𝑡<𝛼𝛽>3) .

 (25) 
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 Similarly, Equations (7) give; 

 

𝐴𝐸
𝛼𝛼1⋯𝛼𝑟  (𝜆 − 𝜆𝐸) +

1

𝑚
 𝐴𝑟1
𝛼𝛼1⋯𝛼𝑟𝜈  (𝜆𝜈 − 𝜆𝜈

𝐸) +
1

𝑚
 𝐴𝑟2
𝛼𝛼1⋯𝛼𝑟𝛾𝛿  𝜆<𝛾𝛿> +

1

𝑚
 (𝐴𝑟2

𝛼𝛼1⋯𝛼𝑟𝛾𝛿  𝑔𝛾𝛿) 𝜇 +

+
1

𝑚
 ∑𝑆+2𝑟′=3 𝐴𝑟𝑟′

𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑟′  𝜆𝛽1⋯𝛽𝑟′  +
1

𝑚
 ∑𝑆𝑠′=0 𝐵𝑟𝑠′

𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑠′  𝜇𝛽1⋯𝛽𝑠′ = − 
𝑘𝐵

𝑚
(𝐴𝛼𝛼1⋯𝛼𝑟 − 𝐴𝐸

𝛼𝛼1⋯𝛼𝑟) ,

𝐴𝑉𝐸
𝛼𝛼1⋯𝛼𝑠  (𝜆 − 𝜆𝐸) +

1

𝑚
 𝐵𝑠1
𝛼𝛼1⋯𝛼𝑠𝜈 (𝜆𝜈 − 𝜆𝜈

𝐸) +
1

𝑚
 𝐵𝑠2
𝛼𝛼1⋯𝛼𝑠𝛾𝛿  𝜆<𝛾𝛿> +

1

𝑚
 (𝐵𝑠2

𝛼𝛼1⋯𝛼𝑠𝛾𝛿  𝑔𝛾𝛿) 𝜇 +

+
1

𝑚
 ∑𝑆+2𝑟′=3 𝐵𝑠𝑟′

𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑟′  𝜆𝛽1⋯𝛽𝑟′  +
1

𝑚
 ∑𝑆𝑠′=0 𝐶𝑠𝑠′

𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑠′  𝜇𝛽1⋯𝛽𝑠′ = − 
𝑘𝐵

𝑚
(𝐴𝑉

𝛼𝛼1⋯𝛼𝑠 − 𝐴𝑉𝐸
𝛼𝛼1⋯𝛼𝑠) .

 (26) 

 In Equations (25) and (26) the new tensors appear:  

𝐴𝑟𝑟′
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑟′ =

𝑐

𝑚𝑟+𝑟′−2
∫
ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓𝐸  𝑝

𝛼𝑝𝛼1⋯𝑝𝛼𝑟𝑝𝛽1⋯𝑝𝛽𝑟′ ⋅

⋅ (1 +
𝑟 ℐ

𝑚 𝑐2
) (1 +

𝑟′ ℐ

𝑚 𝑐2
)𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� ,

𝐵𝑟𝑠
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑠 =

𝑐

𝑚𝑟+𝑠−2
∫
ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓𝐸  𝑝

𝛼𝑝𝛼1⋯𝑝𝛼𝑟𝑝𝛽1⋯𝑝𝛽𝑠 (1 +
𝑟 ℐ

𝑚 𝑐2
) 
2 ℐ𝑉

𝑚 𝑐2
 ⋅

⋅ 𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� ,

𝐶𝑠𝑠′
𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑠′ =

𝑐

𝑚𝑠+𝑠′−2
∫
ℜ3
∫
+ ∞

0
∫
+ ∞

0
𝑓𝐸  𝑝

𝛼𝑝𝛼1⋯𝑝𝛼𝑠𝑝𝛽1⋯𝑝𝛽𝑠′  (
2 ℐ𝑉

𝑚 𝑐2
)
2

 ⋅

⋅ 𝜙(ℐ𝑅) 𝜓(ℐ𝑉) 𝑑 ℐ𝑅 𝑑 ℐ𝑉 𝑑 �⃗⃗� ,

 (27) 

 Their expressions can be found with the procedure used above or, simply by comparing the definitons of 

𝐴𝑟𝑟′
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑟′ and 𝐴𝐸

𝛼𝛼1⋯𝛼𝑟 and noting that the former can somehow be obtained from the latter by replacing 𝑟 with 

𝑟 + 𝑟′ and multiplying by 𝑚 (1 +
𝑟′ ℐ

𝑚 𝑐2
). So we obtain the first one of the following relations, with coefficients given 

by Equation (29) 1:  

𝐴𝑟𝑟′
𝛼1⋯𝛼𝑟+𝑟′+1 = ∑

[
𝑟+𝑟′+1

2
]

𝑞=0  𝑎𝑞,𝑟,𝑟′(𝛾)ℎ
(𝛼1𝛼2⋯ℎ𝛼2𝑞−1𝛼2𝑞𝑈𝛼2𝑞+1⋯𝑈𝛼𝑟+𝑟′+1) ,

𝐵𝑟𝑠′
𝛼1⋯𝛼𝑟+𝑠′+1 = ∑

[
𝑟+𝑠′+1

2
]

𝑞=0  𝑏𝑞,𝑟,𝑠′(𝛾)ℎ
(𝛼1𝛼2⋯ℎ𝛼2𝑞−1𝛼2𝑞𝑈𝛼2𝑞+1⋯𝑈𝛼𝑟+𝑠′+1)

𝐶𝑠𝑠′
𝛼1⋯𝛼𝑠+𝑠′+1 = ∑

[
𝑠+𝑠′+1

2
]

𝑞=0  𝑐𝑞,𝑠,𝑠′(𝛾)ℎ
(𝛼1𝛼2⋯ℎ𝛼2𝑞−1𝛼2𝑞𝑈𝛼2𝑞+1⋯𝑈𝛼𝑠+𝑠′+1) .

 (28) 

  

 

𝑎𝑞,𝑟,𝑟′ = (
𝑟 + 𝑟′ + 1
2𝑞

) 
𝑚2𝑛

2𝑞+1

𝑐2𝑞

𝐽2,1
∗     𝐽2𝑞+2 ,𝑟+𝑟′+1−2𝑞

∗ (1 +
𝑟 ℐ

𝑚 𝑐2
) (1 +

𝑟′ ℐ

𝑚 𝑐2
) ,

𝑏𝑞,𝑟,𝑠′ = (
𝑟 + 𝑠′ + 1
2𝑞

) 
𝑚2𝑛

2𝑞+1

𝑐2𝑞

𝐽2,1
∗     𝐽2𝑞+2 ,𝑟+𝑠′+1−2𝑞

∗ (1 +
𝑟 ℐ

𝑚 𝑐2
)
2 ℐ𝒱

𝑚 𝑐2
 ,

𝑐𝑞,𝑠,𝑠′ = (
𝑠 + 𝑠′ + 1
2𝑞

) 
𝑚2𝑛

2𝑞+1

𝑐2𝑞

𝐽2,1
∗     𝐽2𝑞+2 ,𝑠+𝑠′+1−2𝑞

∗ (
2 ℐ𝒱

𝑚 𝑐2
)
2

 .

 (29) 

 Similarly, by comparing the definitons of 𝐵𝑟𝑠
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑠  and 𝐴𝐸

𝛼𝛼1⋯𝛼𝑟, we note that the former can somehow be 

obtained from the latter by replacing 𝑟 with 𝑟 + 𝑠 and multiplying by 
2 ℐ𝒱

𝑚 𝑐2
. So we obtain (28) 2 with coefficients given 

by Equation (29) 2.  

Finaly, by comparing the definitons of 𝐶𝑠𝑠′
𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑠′  and 𝐴𝐸

𝛼𝛼1⋯𝛼𝑠, we note that the former can somehow be 

obtained from the latter by replacing 𝑠 with 𝑠 + 𝑠′ and multiplying by 
1

𝑚
 
2 ℐ𝒱

𝑚 𝑐2
. So we obtain (28) 3 with coefficients 

given by (29) 3. We note that (27) 1 with 𝑟 = 1, 𝑟′ = 1 gives the expression (15) 1 of Carrisi and Pennisi (2019) [9] 

multiplied by 𝑚2; (27) 1 with 𝑟 = 1, 𝑟′ = 2 gives the expression (15) 2 of Carrisi and Pennisi (2019) [9] multiplied by 

𝑚2; (27) 1 with 𝑟 = 2, 𝑟′ = 2 gives the expression (15) 3 of Carrisi and Pennisi (2019) [9] multiplied by 𝑚2. 

Similarly, (27) 2 with 𝑟 = 1, 𝑠 = 0 gives 𝐵10
𝛼𝛼1 = 𝑚 𝑐 𝑇𝑉

𝛼𝛼1 , where 𝑇𝑉
𝛼𝛼1 is the expression (15) 4 of Carrisi and Pennisi 

(2019) [9]; (27) 2 with 𝑟 = 2, 𝑠 = 0 gives 𝐵20
𝛼𝛼1𝛼2 = 𝑚 𝑐 𝐴𝑉

𝛼𝛼1𝛼2, where 𝐴𝑉
𝛼𝛼1𝛼2 is the expression (15) 5 of Carrisi and 

Pennisi (2019) [9]. Finally, (27) 3 with 𝑠 = 0, 𝑠′ = 0 gives 𝐶00
𝛼 = 𝑚 𝑐 𝑉𝑉𝑉

𝛼  with 𝑉𝑉𝑉
𝛼  defined in (15) 6 of Carrisi and 

Pennisi (2019) [9].  

By comparing the correspondent decompositions (28) with (16) of Carrisi and Pennisi (2019) [9], we see that we 

must have: 
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𝑎0,1,1 = 𝑚
2𝐵5 ;     𝑎1,1,1 = 𝑚

2𝐵4 ;     𝑎0,1,2 = 𝑚
2𝐵3 ;

𝑎1,1,2 = 2 𝑚
2𝐵2 ;     𝑎2,1,2 =

1

5
𝑚2𝐵1 ;     𝑎0,2,2 = 𝑚

2𝐵8 ;

𝑎1,2,2 =
10

3
 𝑚2𝐵7 ;     𝑎2,2,2 = 𝑚

2𝐵6 ;     𝑏0,1,0 =
𝑚

𝑐
𝐵9 ;

𝑏1,1,0 = 𝑚 𝑐 𝐵10 ;     𝑏0,2,0 = 𝑚 𝑐 𝐴1𝑉
0  ;     𝑏1,2,0 = 3 𝑚 𝑐 𝐴11𝑉

0  ; 𝑐0,0,0 = 𝑚 𝑐 𝐵11 ,

 

 with 𝐵1-𝐵11, 𝐴1𝑉
0 , 𝐴11𝑉

0  given by (17) of Carrisi and Pennisi (2019) [9]. This is confirmed by the present Equation 

(29). We are now ready to determine 𝜆 − 𝜆𝐸 , 𝜆𝛽 − 𝜆𝛽
𝐸 , 𝜆<𝛽𝛾> from (26) in terms of 𝑛. 𝛾, 𝑈𝛼 , 𝜋, 𝑞𝛼, 𝑡<𝛼𝛽>3 , 𝜇 =

1

4
 𝑔𝛼𝛽𝜆𝛼𝛽, 𝜆𝛼1⋯𝛼𝑟 for 𝑟 = 3 ,⋯ , 𝑆 + 2 and 𝜇𝛼1⋯𝛼𝑠 for 𝑠 = 0 ,⋯ , 𝑆. After that, we will substitute them in (27) and 

obtain the requested closure. To this end, let us contract Equation (25) 1 with 𝑈𝛼 and Equation (25) 2 a first time with 

𝑈𝛼𝑈𝛽 and a second time with ℎ𝛼𝛽; so we obtain  

𝑛𝑐2(𝜆 − 𝜆𝐸) +
𝑒

𝑚
 𝑈𝜇 (𝜆𝜇 −

𝑈𝜇

𝑇
) +

1

𝑚
 (𝐴1

0𝑐2 + 𝐴11
0 ) 𝑈𝜇𝑈𝜈𝜆<𝜇𝜈< =

= − 
𝑐2

𝑚
 (𝐴1

0𝑐2 − 3𝐴11
0 ) 𝜇 −   ∑𝑆+2𝑟′=3 𝑈𝛼

𝐴𝐸
𝛼𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  ∑

𝑆
𝑠′=0 𝑈𝛼

𝐴𝑉𝐸
𝛼𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′  ,

𝑒

𝑚
 𝑐2(𝜆 − 𝜆𝐸) + 𝑐

4𝐵5 𝑈
𝜇 (𝜆𝜇 −

𝑈𝜇

𝑇
) + (

1

3
𝐵2𝑐

2 + 𝐵3𝑐
4)𝑈𝜇𝑈𝜈𝜆<𝜇𝜈> =

 = (𝐵2 − 𝐵3𝑐
2)𝑐4𝜇 − ∑𝑆+2𝑟′=3 𝑈𝛼𝑈𝛽

𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  ∑

𝑆
𝑠′=0 𝑈𝛼𝑈𝛽

𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′  ,

 (30) 

𝑝

𝑚
 (𝜆 − 𝜆𝐸) +

1

3
𝐵4𝑈

𝜇 (𝜆𝜇 −
𝑈𝜇

𝑇
) + (

1

3
𝐵2 +

1

9

𝐵1
𝑐2
)𝑈𝜇𝑈𝜈𝜆<𝜇𝜈> =

 = − 
𝑘𝐵
𝑚2
 𝜋 + 

1

3
 (𝐵1 − 𝐵2𝑐

2) 𝜇 − 
1

3
 ∑

𝑆+2

𝑟′=3

ℎ𝛼𝛽
𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  

1

3
 ∑

𝑆

𝑠′=0

ℎ𝛼𝛽
𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′  .

 

 If we calculate this system in 𝜇 = 0, 𝜆𝛽1⋯𝛽𝑟′ = 0, 𝜇𝛽1⋯𝛽𝑠′ = 0 we obtain exactly the system (A.10) 1−3 of Pennisi and 

Ruggeri (2017) [11]. Obviously, the matrix of coefficients is the same of that reported in (A.11) 1 of Pennisi and 

Ruggeri (2017) [11], i.e.,  

�̃�𝜋 =

(

 
 
 
 

𝑛𝑐2    
𝑒

𝑚
    

1

𝑚
 (𝐴1

0𝑐2 + 𝐴11
0 )

𝑒

𝑚
 𝑐2    𝑐4 𝐵5    

1

3
𝐵2𝑐

2 + 𝐵3𝑐
4

𝑝

𝑚
    

1

3
𝐵4    

1

3
𝐵2 +

1

9

𝐵1

𝑐2 )

 
 
 
 

 . (31) 

 So, we can define �̃�𝑖𝑗
𝜋  the algebraic complement of its element in the line 𝑖, coulumn 𝑗 and, by using the Kramer’ s 

theorem, we find; 

𝜆 − 𝜆𝐸 =
�̃�31
𝜋

|�̃�𝜋|
(− 

𝑘𝐵

𝑚2
 𝜋 +  

1

3
 (𝐵1 − 𝐵2𝑐

2) 𝜇 −  (32) 

1

3
 ∑

𝑆+2

𝑟′=3

ℎ𝛼𝛽
𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  

1

3
 ∑

𝑆

𝑠′=0

ℎ𝛼𝛽
𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) + 

+
�̃�21
𝜋

|�̃�𝜋|
((𝐵2 − 𝐵3𝑐

2)𝑐4𝜇 − ∑

𝑆+2

𝑟′=3

𝑈𝛼𝑈𝛽
𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  − ∑

𝑆

𝑠′=0

𝑈𝛼𝑈𝛽
𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) + 

+
�̃�11
𝜋

|�̃�𝜋|
(− 

𝑐2

𝑚
 (𝐴1

0𝑐2 − 3𝐴11
0 ) 𝜇 −   ∑

𝑆+2

𝑟′=3

𝑈𝛼
𝐴𝐸
𝛼𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  ∑

𝑆

𝑠′=0

𝑈𝛼
𝐴𝑉𝐸
𝛼𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) , 

  

𝑈𝜇(𝜆𝜇 − 𝜆𝐸𝜇) =
�̃�32
𝜋

|�̃�𝜋|
(− 

𝑘𝐵
𝑚2
 𝜋 + 

1

3
 (𝐵1 − 𝐵2𝑐

2) 𝜇 − 

 
1

3
 ∑

𝑆+2

𝑟′=3

ℎ𝛼𝛽
𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  

1

3
 ∑

𝑆

𝑠′=0

ℎ𝛼𝛽
𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) + 
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+
�̃�22
𝜋

|�̃�𝜋|
((𝐵2 − 𝐵3𝑐

2)𝑐4𝜇 −  ∑

𝑆+2

𝑟′=3

𝑈𝛼𝑈𝛽
𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  ∑

𝑆

𝑠′=0

𝑈𝛼𝑈𝛽
𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) + 

+
�̃�21
𝜋

|�̃�𝜋|
(− 

𝑐2

𝑚
 (𝐴1

0𝑐2 − 3𝐴11
0 ) 𝜇 −   ∑

𝑆+2

𝑟′=3

𝑈𝛼
𝐴𝐸
𝛼𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  ∑

𝑆

𝑠′=0

𝑈𝛼
𝐴𝑉𝐸
𝛼𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) , 

 𝑈𝜇𝑈𝜈𝜆<𝜇𝜈> =
�̃�33
𝜋

|�̃�𝜋|
(− 

𝑘𝐵

𝑚2
 𝜋 +  

1

3
 (𝐵1 − 𝐵2𝑐

2) 𝜇 − 

1

3
 ∑

𝑆+2

𝑟′=3

ℎ𝛼𝛽
𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  

1

3
 ∑

𝑆

𝑠′=0

ℎ𝛼𝛽
𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) + 

+
�̃�23
𝜋

|�̃�𝜋|
((𝐵2 − 𝐵3𝑐

2)𝑐4𝜇 −  ∑

𝑆+2

𝑟′=3

𝑈𝛼𝑈𝛽
𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  ∑

𝑆

𝑠′=0

𝑈𝛼𝑈𝛽
𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) + 

+
�̃�13
𝜋

|�̃�𝜋|
(− 

𝑐2

𝑚
 (𝐴1

0𝑐2 − 3𝐴11
0 ) 𝜇 −   ∑

𝑆+2

𝑟′=3

𝑈𝛼𝐴𝐸
𝛼𝛽1⋯𝛽𝑟′  𝜆𝛽1⋯𝛽𝑟′  −  ∑

𝑆

𝑠′=0

𝑈𝛼𝐴𝑉𝐸
𝛼𝛽1⋯𝛽𝑠′  𝜇𝛽1⋯𝛽𝑠′) , 

 If we calculate these expressions in 𝜇 = 0, 𝜆𝛽1⋯𝛽𝑟′ = 0, 𝜇𝛽1⋯𝛽𝑠′ = 0, we obtain exactly those reported in the 

equations subsequent to (61) of Pennisi and Ruggeri (2017) [11]. We consider now Equation (25) 1 contracted by ℎ𝛼
𝛿  

and Equation (25) 2 contracted ℎ𝛼
𝛿  𝑈𝛽. So we obtain the system:  

(

 
 

𝑝

𝑚
    2 

𝐴11
0

𝑚

1

3
𝐵4𝑐

2    
2

3
𝐵2 𝑐

2

)

 
 

(

 
ℎ𝛿𝜇 (𝜆𝜇 −

𝑈𝜇

𝑇
)

ℎ𝛿𝜇𝑈𝜈𝜆<𝜇𝜈> )

 = 

  

 =

(

 
 
− ℎ𝛼

𝛿  ∑𝑆+2𝑟′=3
𝐴𝐸
𝛼𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  ℎ𝛼

𝛿  ∑𝑆𝑠′=0
𝐴𝑉𝐸
𝛼𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′

− 
𝑘𝐵

𝑚2
 𝑞𝛿  −  ∑𝑆+2𝑟′=3 ℎ𝛼

𝛿  𝑈𝛽  
𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  − ∑

𝑆
𝑠′=0 ℎ𝛼

𝛿  𝑈𝛽  
𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′  . )

 
 

 

 By calling �̃�𝑞 the determinant of the coefficients we can use the Kramer’ s theorem and find;  

ℎ𝛿𝜇 (𝜆𝜇 −
𝑈𝜇

𝑇
) = 

= − 
2  𝐴11

0

𝑚 �̃�𝑞
(− 

𝑘𝐵
𝑚2
 𝑞𝛿  −  ∑

𝑆+2

𝑟′=3

ℎ𝛼
𝛿  𝑈𝛽  

𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  − ∑

𝑆

𝑠′=0

ℎ𝛼
𝛿  𝑈𝛽  

𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) + 

  

+
2

3 �̃�𝑞
 𝐵2 𝑐

2 (− ℎ𝛼
𝛿  ∑

𝑆+2

𝑟′=3

𝐴𝐸
𝛼𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  ℎ𝛼

𝛿  ∑

𝑆

𝑠′=0

𝐴𝑉𝐸
𝛼𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) , 

  

ℎ𝛿𝜇𝑈𝜈𝜆<𝜇𝜈> =
𝑝

𝑚 �̃�𝑞
(− 

𝑘𝐵
𝑚2
 𝑞𝛿  − ∑

𝑆+2

𝑟′=3

ℎ𝛼
𝛿𝑈𝛽  

𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  − ∑

𝑆

𝑠′=0

ℎ𝛼
𝛿𝑈𝛽  

𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) , 

+
1

3 �̃�𝑞
 𝐵4 𝑐

2 (− ℎ𝛼
𝛿  ∑

𝑆+2

𝑟′=3

𝐴𝐸
𝛼𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  −  ℎ𝛼

𝛿  ∑

𝑆

𝑠′=0

𝐴𝑉𝐸
𝛼𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) . 

 If we calculate these expressions in 𝜇 = 0, 𝜆𝛽1⋯𝛽𝑟′ = 0, 𝜇𝛽1⋯𝛽𝑠′ = 0, we obtain exactly Equation (A.14) 1,2 of Pennisi 

and Ruggeri (2017) [11]. Finally, Equation (25) 2 contracted ℎ𝛼
<𝛿  ℎ𝛽

𝜃>3  gives  

ℎ𝜇
<𝛿 ℎ𝜈

𝜃>3 𝜆<𝜇𝜈> = 
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=
15

2 𝐵1
 (− 

𝑘𝐵
𝑚2
 𝑡<𝛿𝜃>3  −  ∑

𝑆+2

𝑟′=3

ℎ𝛼
<𝛿 ℎ𝛽

𝜃>3  
𝐴1𝑟′
𝛼𝛽𝛽1⋯𝛽𝑟′

𝑚
 𝜆𝛽1⋯𝛽𝑟′  − ∑

𝑆

𝑠′=0

ℎ𝛼
<𝛿 ℎ𝛽

𝜃>3  
𝐵1𝑠′
𝛼𝛽𝛽1⋯𝛽𝑠′

𝑚
 𝜇𝛽1⋯𝛽𝑠′) . 

 If we calculate these expressions in 𝜇 = 0, 𝜆𝛽1⋯𝛽𝑟′ = 0, 𝜇𝛽1⋯𝛽𝑠′ = 0, we obtain exactly Equation (A.15) 1 of Pennisi 

and Ruggeri (2017) [11]. Now we have to substitute all these results in (26) and, to thi end, we will use the identies:  

𝜆𝜈 − 𝜆𝜈
𝐸 = − (𝜆𝜇 − 𝜆𝜇

𝐸)ℎ𝜈
𝜇
+ [(𝜆𝜇 − 𝜆𝜇

𝐸)𝑈𝜇]
𝑈𝜈
𝑐2
 , 

𝜆<𝜇𝜈> = 𝜆<𝛼𝛽> ℎ<𝜇
𝛼  ℎ𝜈>3

𝛽
 −  

2

𝑐2
 𝜆<𝛼𝛽> 𝑈

𝛼  ℎ(𝜇
𝛽
 𝑈𝜈)  +  

𝜆<𝛼𝛽>𝑈
𝛼𝑈𝛽

𝑐2
(𝑈𝜇𝑈𝜈 + 

1

3
 ℎ𝜇𝜈) . 

So we obtain: 

𝐴𝛼𝛼1⋯𝛼𝑟 − 𝐴𝐸
𝛼𝛼1⋯𝛼𝑟 = 𝒜𝜋

𝛼𝛼1⋯𝛼𝑟  𝜋 + 𝒜𝜇
𝛼𝛼1⋯𝛼𝑟  𝜇 +  𝒜𝑞

𝛼𝛼1⋯𝛼𝑟𝛿 𝑞𝛿  +  𝒜𝑡
𝛼𝛼1⋯𝛼𝑟𝛾𝛿   𝑡<𝛾𝛿>3  + (33) 

+∑

𝑆+2

𝑟′=3

𝒜𝜆
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑟′  𝜆𝛽1⋯𝛽𝑟′  + ∑

𝑆

𝑠′=0

𝒜𝜇
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑠′  𝜇𝛽1⋯𝛽𝑠′  , 

𝐴𝑉
𝛼𝛼1⋯𝛼𝑠 − 𝐴𝑉𝐸

𝛼𝛼1⋯𝛼𝑠 = 𝒜𝑉𝜋
𝛼𝛼1⋯𝛼𝑠  𝜋 +  𝒜𝑉𝜇

𝛼𝛼1⋯𝛼𝑠  𝜇 + 𝒜𝑉𝑞
𝛼𝛼1⋯𝛼𝑠𝛿  𝑞𝛿  +  𝒜𝑉𝑡

𝛼𝛼1⋯𝛼𝑠𝛾𝛿  𝑡<𝛾𝛿>3  + 

+∑

𝑆+2

𝑟′=3

𝒜𝑉𝜆
𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑟′  𝜆𝛽1⋯𝛽𝑟′  + ∑

𝑆

𝑠′=0

𝒜𝑉𝜇
𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑠′  𝜇𝛽1⋯𝛽𝑠′  , 

Where; 

𝒜𝜋
𝛼𝛼1⋯𝛼𝑟 = 𝐴𝐸

𝛼𝛼1⋯𝛼𝑟  
�̃�31
𝜋

𝑚 |�̃�𝜋|
 +  𝐴𝑟1

𝛼𝛼1⋯𝛼𝑟𝜈  
𝑈𝜈
𝑐2
 
�̃�32
𝜋

𝑚2 |�̃�𝜋|
+ 𝐴𝑟2

𝛼𝛼1⋯𝛼𝑟𝛾𝛿  (𝑈𝛾𝑈𝛿 +
1

3
ℎ𝛾𝛿) 

�̃�33
𝜋

𝑚2 𝑐2|�̃�𝜋|
 , 

𝒜𝜇
𝛼𝛼1⋯𝛼𝑟 = 

= − 
𝑚

𝑘𝐵
 𝐴𝐸
𝛼𝛼1⋯𝛼𝑟 [

�̃�31
𝜋

3 |�̃�𝜋|
(𝐵1 − 𝐵2𝑐

2) +
�̃�21
𝜋

|�̃�𝜋|
(𝐵2 − 𝐵3𝑐

2)𝑐4  −  
�̃�11
𝜋

𝑚 |�̃�𝜋|
(𝐴1
0𝑐2 − 3𝐴11

0 )𝑐2] − 

1

𝑘𝐵
 𝐴𝑟1
𝛼𝛼1⋯𝛼𝑟𝜈  

𝑈𝜈
𝑐2
 [
�̃�32
𝜋

3 |�̃�𝜋|
(𝐵1 − 𝐵2𝑐

2) +
�̃�22
𝜋

|�̃�𝜋|
(𝐵2 − 𝐵3𝑐

2)𝑐4  −  
�̃�21
𝜋

𝑚 |�̃�𝜋|
(𝐴1
0𝑐2 − 3𝐴11

0 )𝑐2] − 

1

𝑘𝐵
 𝐴𝑟2
𝛼𝛼1⋯𝛼𝑟𝛾𝛿  (𝑈𝛾𝑈𝛿 +

1

3
ℎ𝛾𝛿) [

�̃�33
𝜋

3 𝑐2|�̃�𝜋|
(𝐵1 − 𝐵2𝑐

2) +
�̃�23
𝜋

|�̃�𝜋|
(𝐵2 − 𝐵3𝑐

2)𝑐2  − 

�̃�13
𝜋

𝑚 |�̃�𝜋|
(𝐴1
0𝑐2 − 3𝐴11

0 )]  − 
1

𝑘𝐵
 𝐴𝑟2
𝛼𝛼1⋯𝛼𝑟𝛾𝛿  𝑔𝛾𝛿  , 𝒜𝑞

𝛼𝛼1⋯𝛼𝑟𝛿 = 𝐴𝑟1
𝛼𝛼1⋯𝛼𝑟𝛿  

2 𝐴11
0

𝑚3 �̃�𝑞
− 

2 𝑝

𝑚3𝑐2�̃�𝑞
𝐴𝑟2
𝛼𝛼1⋯𝛼𝑟𝛾𝛿  𝑈𝛾  , 

𝒜𝑡
𝛼𝛼1⋯𝛼𝑟𝛾𝛿 = 𝐴𝑟2

𝛼𝛼1⋯𝛼𝑟𝛾𝛿  
15

2 𝑚2 𝐵1
 , 𝒜𝜆

𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑟′ = − 
1

𝑘𝐵
 𝐴𝑟𝑟′
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑟′ + 

+
𝐴𝐸
𝛼𝛼1⋯𝛼𝑟

𝑚
[
�̃�31
𝜋

3 |�̃�𝜋|
 ℎ𝜇𝜈  𝐴1𝑟′

𝜇𝜈𝛽1⋯𝛽𝑟′ +
�̃�21
𝜋

|�̃�𝜋|
 𝑈𝜇𝑈𝜈  𝐴1𝑟′

𝜇𝜈𝛽1⋯𝛽𝑟′ + 
�̃�11
𝜋

|�̃�𝜋|
 𝑈𝜇  𝐴𝐸

𝜇𝛽1⋯𝛽𝑟′] + 

+
𝐴𝑟1
𝛼𝛼1⋯𝛼𝑟𝜈

𝑚 𝑘𝐵
 
𝑈𝜈
𝑐2
 [
�̃�32
𝜋

3 |�̃�𝜋|
ℎ𝜇𝜗 𝐴1𝑟′

𝜇𝜗𝛽1⋯𝛽𝑟′ +
�̃�22
𝜋

|�̃�𝜋|
 𝑈𝜇𝑈𝜗 𝐴1𝑟′

𝜇𝜗𝛽1⋯𝛽𝑟′  +  
�̃�21
𝜋

|�̃�𝜋|
 𝑈𝜇  𝐴𝐸

𝜇𝛽1⋯𝛽𝑟′] + 

+
2

𝑘𝐵
 𝐴𝑟1
𝛼𝛼1⋯𝛼𝑟𝜈  [

𝐴11
0

𝑚2 �̃�𝑞
 ℎ𝜈𝜇  𝑈𝜗 𝐴1𝑟′

𝜈𝜗𝛽1⋯𝛽𝑟′  −  
𝐵2 𝑐

2

3 𝑚 �̃�𝑞
 ℎ𝜈𝜇  𝐴𝐸

𝜇𝛽1⋯𝛽𝑟′]  + 
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+ 
1

𝑘𝐵
 𝐴𝑟2
𝛼𝛼1⋯𝛼𝑟𝛾𝛿  𝐴1𝑟′

𝜗𝛽𝛽1⋯𝛽𝑟′ [
15

2 𝑚 𝐵1
 ℎ𝜗<𝛾ℎ𝛿>3𝛽  −  

2 𝑝

𝑚 𝑐2�̃�𝑞
 𝑈𝛿  ℎ𝛾𝜗  𝑈𝛽  − 

�̃�33
𝜋

3 𝑚 𝑐2|�̃�𝜋|
(𝑈𝛾𝑈𝛿 + 

1

3
 ℎ𝛾𝛿) ℎ𝜗𝛽  +  

�̃�23
𝜋

𝑚 𝑐2|�̃�𝜋|
 (𝑈𝛾𝑈𝛿 + 

1

3
 ℎ𝛾𝛿)𝑈𝜗𝑈𝛽]  + 

+ 
1

𝑘𝐵
 𝐴𝑟2
𝛼𝛼1⋯𝛼𝑟𝛾𝛿  𝐴𝐸

𝜗𝛽1⋯𝛽𝑟′ [− 
2 𝐵4

3 𝑚 �̃�𝑞
 𝑈𝛿  ℎ𝛾𝜗  +  

�̃�13
𝜋

𝑐2|�̃�𝜋|
(𝑈𝛾𝑈𝛿 + 

1

3
 ℎ𝛾𝛿)𝑈𝜗] , 

𝒜𝜇
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑠′ = − 

1

𝑘𝐵
 𝐵𝑟𝑠′
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑠′ + 

+ 
1

𝑘𝐵
 𝐴𝐸
𝛼𝛼1⋯𝛼𝑟 [

�̃�31
𝜋

3 |�̃�𝜋|
 ℎ𝜗𝛽 𝐵1𝑠′

𝜗𝛽𝛽1⋯𝛽𝑠′ +
�̃�21
𝜋

|�̃�𝜋|
 𝑈𝜗𝑈𝛽  𝐵1𝑠′

𝜗𝛽𝛽1⋯𝛽𝑠′ − 
�̃�11
𝜋

|�̃�𝜋|
 𝑈𝜗  𝐴𝐸

𝜗𝛽1⋯𝛽𝑠′] + 

+
𝐴𝑟1
𝛼𝛼1⋯𝛼𝑟𝜈

𝑘𝐵
 
𝑈𝜈
𝑐2
[
�̃�33
𝜋

3 |�̃�𝜋|
ℎ𝜗𝛽  

𝐵1𝑠′
𝜗𝛽𝛽1⋯𝛽𝑠′

𝑚
+
�̃�23
𝜋

|�̃�𝜋|
 𝑈𝛽𝑈𝜗  

𝐵1𝑠′
𝜗𝛽𝛽1⋯𝛽𝑠′

𝑚
 + 

�̃�13
𝜋

|�̃�𝜋|
 𝑈𝜗 𝐴𝑉𝐸

𝜗𝛽1⋯𝛽𝑠′] + 

+
2

𝑘𝐵
 
𝐴𝑟1
𝛼𝛼1⋯𝛼𝑟𝜈

𝑚
 [
𝐴11
0

𝑚 �̃�𝑞
 ℎ𝜈𝜗  𝑈𝛽  𝐵1𝑠′

𝜗𝛽𝛽1⋯𝛽𝑠′  −  
𝐵2 𝑐

2

3 �̃�𝑞
 ℎ𝜈𝜗  𝐴𝑉𝐸

𝜗𝛽1⋯𝛽𝑠′]  + 

+ 
1

𝑘𝐵
 
15

2 𝑚 𝐵1
 𝐴𝑟2
𝛼𝛼1⋯𝛼𝑟𝛾𝛿  𝐵1𝑠′

𝜗𝛽𝛽1⋯𝛽𝑠′  ℎ𝛾<𝜗ℎ𝛽>3𝛿  + 

+
1

𝑘𝐵  𝑐
2
 𝐴𝑟2
𝛼𝛼1⋯𝛼𝑟𝛾𝛿 (𝑈𝛾𝑈𝛿 + 

1

3
 ℎ𝛾𝛿) [

�̃�33
𝜋

3 𝑚 |�̃�𝜋|
 ℎ𝜗𝛽  𝐵1𝑠′

𝜗𝛽𝛽1⋯𝛽𝑠′ +
�̃�23
𝜋

𝑚 |�̃�𝜋|
 𝐵1𝑠′
𝜗𝛽𝛽1⋯𝛽𝑠′  𝑈𝜗𝑈𝛽 + 

+
�̃�13
𝜋

|�̃�𝜋|
 𝑈𝜗  𝐴𝑉𝐸

𝜗𝛽1⋯𝛽𝑠′]  +  
4

𝑘𝐵  𝑐
2
 𝐴𝑟2
𝛼𝛼1⋯𝛼𝑟𝛾𝛿  𝑈𝛾  [

𝐴11
0

𝑚2 �̃�𝑞
 𝑈𝛽  ℎ𝛿𝜗 𝐵1𝑠′

𝜗𝛽𝛽1⋯𝛽𝑠′  −  
𝐵2 𝑐

2

3 𝑚 �̃�𝑞
 ℎ𝛿𝜗 𝐴𝑉𝐸

𝜗𝛽1⋯𝛽𝑠′] . 

The expressions of 𝒜𝑉𝜋
𝛼𝛼1⋯𝛼𝑠 , 𝒜𝑉𝜇

𝛼𝛼1⋯𝛼𝑠 , 𝒜𝑉𝑞
𝛼𝛼1⋯𝛼𝑠𝛿 , 𝒜𝑉𝑡

𝛼𝛼1⋯𝛼𝑠𝛾𝛿 , 𝒜𝑉𝜆
𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑟′ 𝒜𝑉𝜇

𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑠′  can be obtained 

from the above ones by substituting 𝐴𝐸
𝛼𝛼1⋯𝛼𝑟  with 𝐴𝑉𝐸

𝛼𝛼1⋯𝛼𝑠, 𝐴𝑟1
𝛼𝛼1⋯𝛼𝑟𝜈 with 𝐵𝑠1

𝛼𝛼1⋯𝛼𝑠𝜈, 𝐴𝑟2
𝛼𝛼1⋯𝛼𝑟𝛾𝛿  with 𝐵𝑠2

𝛼𝛼1⋯𝛼𝑠𝛾𝛿 , 

𝐴𝑟𝑟′
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑟′ with 𝐵𝑠𝑟′

𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑟′ , 𝐵𝑟𝑠′
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑠′  with 𝐶𝑠𝑠′

𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑠′.  

In fact, this is what comes out from the comparison between (26) 1 and (26) 2; obviously, the contribute of the 

Lagrange multipliers is the same so that nothing else must be changed. So we avoid to report such expressions for the 

sake of brevity.  

The Equations (33) jointly with (23) give the requested closure. Obviously, in Equations (33) the Lagrange 

multipliers 𝜇, 𝜆𝛽1⋯𝛽𝑟′ , 𝜇𝛽1⋯𝛽𝑠′ still appear between the independent variables. If we want to express them too in terms 

of physical variables, we have firstly to clarify what these physical variables are besides those already introduced. In 

my opinion they are those whose non relativistic limit gives the variables which are derivated respect to time, or still 

better, the deviations from their equilibrium value. In other words, we have to consider the equations:  

Δ =
1

𝑐4
 𝑈𝛼𝑈𝛼1𝑈𝛼2 (𝐴

𝛼𝛼1𝛼2 − 𝐴𝐸
𝛼𝛼1𝛼2) , (34) 

Δ𝛼1⋯𝛼𝑟 = 𝑈𝛼(𝐴
𝛼𝛼1⋯𝛼𝑟 − 𝐴𝐸

𝛼𝛼1⋯𝛼𝑟) = 𝑈𝛼  𝒜𝜋
𝛼𝛼1⋯𝛼𝑟  𝜋 + 𝑈𝛼 𝒜𝜇

𝛼𝛼1⋯𝛼𝑟  𝜇 +  𝑈𝛼  𝒜𝑞
𝛼𝛼1⋯𝛼𝑟𝛿 𝑞𝛿  + (35) 

+𝑈𝛼  𝒜𝑡
𝛼𝛼1⋯𝛼𝑟𝛾𝛿   𝑡<𝛾𝛿>3  +  ∑

𝑆+2

𝑟′=3

𝑈𝛼 𝒜𝜆
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑟′  𝜆𝛽1⋯𝛽𝑟′  + ∑

𝑆

𝑠′=0

𝑈𝛼  𝒜𝜇
𝛼𝛼1⋯𝛼𝑟𝛽1⋯𝛽𝑠′  𝜇𝛽1⋯𝛽𝑠′  , 

Δ𝑉
𝛼1⋯𝛼𝑠 = 𝑈𝛼(𝐴𝑉

𝛼𝛼1⋯𝛼𝑠 − 𝐴𝑉𝐸
𝛼𝛼1⋯𝛼𝑠) = 𝑈𝛼 𝒜𝑉𝜋

𝛼𝛼1⋯𝛼𝑠 𝜋 + 𝑈𝛼 𝒜𝑉𝜇
𝛼𝛼1⋯𝛼𝑠 𝜇 +  𝑈𝛼  𝒜𝑉𝑞

𝛼𝛼1⋯𝛼𝑠𝛿  𝑞𝛿  + 

+𝑈𝛼  𝒜𝑉𝑡
𝛼𝛼1⋯𝛼𝑟𝛾𝛿   𝑡<𝛾𝛿>3  +  ∑

𝑆+2

𝑟′=3

𝑈𝛼 𝒜𝑉𝜆
𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑟′  𝜆𝛽1⋯𝛽𝑟′  + ∑

𝑆

𝑠′=0

𝑈𝛼 𝒜𝑉𝜇
𝛼𝛼1⋯𝛼𝑠𝛽1⋯𝛽𝑠′  𝜇𝛽1⋯𝛽𝑠′  . 
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 The left hand sides of these equations are the additional physical variables; Equations (34) for 𝑟 = 3,⋯  𝑆 + 2 and 

𝑠 = 0,⋯  𝑆 have to be used to determine 𝜇, 𝜆𝛽1⋯𝛽𝑟′, 𝜇𝛽1⋯𝛽𝑠′ in terms of the physical variables. The result has to be 

substituted in (33) so obtaining the closure all in terms of physical variables. Can we do this? Yes, we can. But the 

equations present in this article are complicated enough to want to burden them further. Therefore we refrain from 

doing it. In any case, when we want to make a practical application of the model, we must first choose in harmony 

with the experimental results the number 𝑆 to stop at. In this case, since 𝑆 is a given number, these further steps can be 

carried out easily. So the last step in the first part of the flowchart present in the Introduction has been obtained, i.e., 

the closure of the present general relativistic model (6).   

6. Conclusions 

In this article it was found the relativistic counterpart of the classical model for polyatomic gases that take into 

account both the vibrational and the rotational modes. As common in Extended Thermodynamics, in the balance 

equations not only independent variables appear but also other additional tensors; the closure is obtained when the 

expressions of these tensors are found as functions of the independent variables. This end is here reached by imposing 

universal principles such as the Entropy Principle, the Maximum Entropy Principle and, obviously, the covariance of 

all the equations and the variables involved. As a bonus, the field equations assume the symmetric form and are 

hyperbolic; this is important because assures the respect of the cause and effect principle and the fact that the wave 

velocities don’t exceed the speed of light. Another nice mathematical property in this way achieved is the continuos 

dependence on the initial data.  

The validity of the present model has already been tested because in the simplest case of 16 moments it coincides 

with that already known in literature. Certainly the field equations have become somewhat complicated, due to the fact 

that independent variables more appealing to the common reader have been chosen. If we use the Lagrange’s 

multipliers as independent variables, everything becomes simpler.  

The results here obtained give also indications on how to structure the non relativistic model. In fact, the classical 

model with an arbitrary number of moments known in literature proposes only 3 hierarchies with infinite equations. It 

is not shown how to interrupt these 3 blocks in order to obtain a finite system, except for 2 simplest cases. This aspect 

is clarified here and, in particular, in section 2. The optimal choice of moments here presented, in the subsystem with 

only one mode becomes the same of that already known in literature. 
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