
UNIVERSITÀ DEGLI STUDI DI CAGLIARI

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

PH.D. COURSE IN MATHEMATICS AND COMPUTER SCIENCE

CYCLE XXXIII

PH.D. THESIS

Path Planning for Robot and Pedestrian Simulations

S.S.D. INF/01

CANDIDATE

Raza Saeed

SUPERVISORS PHD COORDINATOR

Prof. Diego Reforgiato Recupero Prof. Michele Marchesi
Prof. Paolo Remagnino

Final examination academic year 2019/2020
April 2021

Abstract

The thesis is divided into two parts. The first part presents a new proposed method
for solving the path planning problem to find an optimal collision-free path between
the starting and the goal points in a static environment. Initially, the grid model of the
robot’s working environment is constructed. Next, each grid cell’s potential value in
the working environment is calculated based on the proposed potential function. This
function guides the robot to move toward the desired goal location, it has the lowest
value at the goal location, and the value increase as the robot moves further away. Next,
a new method, called Boundary Node Method (BNM), is proposed to find the initial
feasible path. In this method, the robot is simulated by a nine-node quadrilateral element,
where the centroid node represents the robot’s position. The robot moves in the working
environment toward the goal point with eight-boundary nodes based on the boundary
nodes’ characteristics. In the BNM method, the initial feasible path is generated from
the sequence of the waypoints that the robot has to traverse as it moves toward the goal
point without colliding with obstacles. The BNM method can generate the path safely
and efficiently. However, the path is not optimal in terms of the total path length. An
additional method, called Path Enhancement Method (PEM), is proposed to construct
an optimal or near-optimal collision-free path. The generated path obtained by BNM
and PEM may contain sharp turns. Therefore, the cubic spline interpolation is used to
create a continuous smooth path that connects the starting point to the goal point. The
performance of the proposed method is compared with the other path planning methods
in terms of path length and computational time. The obtained results revealed that the
proposed method achieved better performance than other path planning methods.

Moreover, the multi-goal path planning problem is investigated to find the shortest
collision-free path connecting a given set of goal points in the robot working environ-
ment. This problem combines two sub-problems: first, optimize the sequence of the
goal points located in the free working space; second, compute the shortest collision-free
path between the goal points. In this study, the genetic algorithm (GA) is implemented
to optimize the sequence of the goal points. Once the goal points sequence is available,
the BNM method is used to generate an initial collision-free path between every pair of
the sequenced goal points. Afterwards, the PEM method is used to find an optimal or
near-optimal path by reducing the waypoints and overall path length.

ii

Furthermore, to verify the performance of the proposed method, several experimental
tests have been performed on the e − puck robot with different obstacle configurations
and various positions of goal points. The experimental results showed that the proposed
method could construct the shortest collision-free path and direct the real physical robot
to the final destination point.

At the end of the first part of the thesis, we investigate the multi-goal path planning
problem for the multi-robot system such that several robots reach each goal. The simula-
tion results showed that the proposed method computes the shortest path effectively for
multiple robots without colliding with obstacles and other robots in a static environment.
However, in interactive virtual environments, the requirements for solving the path
planning problem are different. In addition to being collision-free, the shortest paths for a
large number of virtual pedestrians (robots, agents, etc.) through complex environments
need to be planned simultaneously in real-time.

In the second part of this thesis, we proposed a new method for simulating pedestrian
crowd movement in a virtual environment. The first part of this thesis concerning the
generation of the shortest collision-free path is used. In this method, we assumed that
the crowd consists of multiple groups with a different number and various types of
pedestrians. In this scenario, each group’s intention is different for visiting several goal
points with varying sequences of the visit. The proposed method uses the multi-group
microscopic model to generate a real-time trajectory for each pedestrian navigating in
the pedestrianized area of the virtual environment. Additionally, an agent− based model
is introduced to simulate pedestrian’ behaviours. Based on the proposed method, every
single pedestrian in each group can continuously adjust their attributes, such as position,
velocity, etc. Moreover, pedestrians optimize their path independently toward the desired
goal points while avoiding obstacles and other pedestrians in the scene. At the end of
this part of the thesis, a statistical analysis is carried out to evaluate the performance of
the proposed method for simulating the crowd movement in the virtual environment.
The proposed method implemented for several simulation scenarios under a variety of
conditions for a wide range of different parameters. The results showed that the proposed
method is capable of describing pedestrian’ behaviours in the virtual environment.

Acknowledgements

I would like to convey my heartfelt gratitude and sincere appreciation to all people who
have helped and inspired me during my doctoral study. Especially, I would like to express
my deepest gratitude to my supervisor Prof. Diego Reforgiato Recupero, for his advice
and guidance. I also would like to thank my co-supervisor, Prof. Paolo Remagnino, for
his support and help during my period as a visiting researcher at Kingston University and
for giving me the opportunity to collaborate with the other researchers in the Robot Vision
Team (RoViT). I would like to express my gratitude to the Erasmus Placedoc program for
giving me the chance to spend a 6-month research period at Kingston University to gain
experience and new skills abroad. Last but not least, I would like to extend my thanks to
my family, especially my wife and my daughter, for their support and patience throughout
my study.

iv

Publications

The research reported in this thesis has contributed to the following publications:

• R. A. Saeed, Diego Reforgiato Recupero, and Paolo Remagnino, 2021. Simulating
Crowd Behaviour Combining Both Microscopic and Macroscopic Rules. Informa-
tion Sciences, submitted.

• R. A. Saeed, Diego Reforgiato Recupero, and Paolo Remagnino, 2021. Simulat-
ing People Dynamics. 17th International Conference on Intelligent Environments
(IE2021), Dubai, United Arab Emirates, accepted.

• R. A. Saeed, Diego Reforgiato Recupero, and Paolo Remagnino, 2021. The Bound-
ary Node Method for Multi-Robot Multi-Goal Path Planning Problems. Expert
Systems, accepted.

• R. A. Saeed, Diego Reforgiato Recupero, and Paolo Remagnino, 2020. A Bound-
ary Node Method for path planning of mobile robots. Robotics and Autonomous
Systems 123: 103320.

• R. A. Saeed, and Diego Reforgiato Recupero, 2019. Path Planning of a Mobile
Robot in Grid Space Using Boundary Node Method. 16th International Conference
on Informatics in Control, Automation and Robotics (ICINCO), Prague, Czech Re-
public.

vi

Contents

Abstract i

Acknowledgements iii

Publications v

List of Figures 3

List of Tables 9

1 Introduction 13
1.1 Overview and Motivation of the Thesis 13

1.1.1 Path Planning . 13
1.1.2 Multi-Goal Path Planning . 14
1.1.3 Multi-Robot Path Planning . 15
1.1.4 Crowd Simulation and Path Planning 15

1.2 Research Gaps and Limitations . 17
1.3 Objectives of the Thesis . 18
1.4 Contributions of the Thesis . 20
1.5 Structure of the Thesis . 21

2 Related Work 23
2.1 Path Planning . 23

2.1.1 Multi-Goal Path Planning . 25
2.1.2 Multi-Robot Multi-Goal Path Planning 26

2.2 Crowd Simulation and Path Planning . 27

3 Proposed Method for Path Planning 31
3.1 Problem Formulation . 31
3.2 Proposed Method for Path Planning . 32

3.2.1 Modelling of the Workspace . 35
3.2.2 Boundary Node Method (BNM) 37
3.2.3 Path Enhancement Method (PEM) 46
3.2.4 Smooth Path Planning . 47

0.0. CONTENTS 1

3.2.5 Multi-Goal Path Planning . 49
3.2.6 Multi-Robot Multi-Goal Path Planning 51

4 Proposed Method for Crowd Simulation 53
4.1 Problem Formulation . 53
4.2 Proposed Method for Crowd Simulation 54

4.2.1 Environment Setting . 57
4.2.2 Motion Computation and Steering Behaviours 66
4.2.3 Locomotion . 75

5 Path Planning Results 77
5.1 Path Planning Simulation Results . 77

5.1.1 Boundary Node Method (BNM) 77
5.1.2 Path Enhancement Method (PEM) 79
5.1.3 Path Smoothing Using Interpolation Technique 80
5.1.4 Irregular-Obstacle Environment 81
5.1.5 Three-Dimensional Environment 82
5.1.6 Multiple Robot System . 83
5.1.7 Performance Evaluation . 83
5.1.8 Multi-Goal Path Planning . 88

5.2 Path Planning with Physical Robots . 97
5.2.1 Experimental Results of Path Planning 97
5.2.2 Experimental Results for Multi-Goal Path Planning 99

6 Crowd Simulation Results 103
6.1 Crowd Simulation . 103

6.1.1 Simulation of Simple Scenario 104
6.1.2 Simulation of Real-Life Crowd Movements 110
6.1.3 Comparison with Different Methods 119
6.1.4 Statistical Analysis . 120

7 Conclusions and Future Work 123
7.1 Conclusions . 123
7.2 Future Works . 125

Bibliography 127

2 CHAPTER 0. CONTENTS

List of Figures

3.1 A simple example of a multi-goal path planning problem in a 2D
workspace. (a) shows the sequence of the goal points, the path marked
in red dashed line, and the goals are shown in grey square objects. (b)
presents the optimal or near-optimal collision-free path for a mobile robot
between the goal points, plotted in the solid blue line. 32

3.2 (a) a nine-node quadrilateral element along, (b) the robot motion direc-
tions, (c) the simulated robot in the exploration area. 33

3.3 Flow diagram of the proposed method for the path planning problem. . . 34
3.4 The potential value of the grid cells in the workspace in 3D view with

contour plot. The size of the workspace is 50× 50, and the the goal point
Cg is located at a) (40, 45) and b) (25, 25). 36

3.5 2D models of the robot working environment with obstacles. 37
3.6 Illustrates the collision avoidance in the static environment by using the

BNM method, (a) the initial positions of the robot and boundary nodes,
(b) the new updated positions, (c) obstacles avoidance and change the
motion direction. 40

3.7 Demonstrate the mobile robot exploration in a 2D working environment
by using BNM . 41

3.8 The workspace contains long horizontal obstacles that block the path of
the robot. 43

3.9 An illustrative simulation example of the local minima problem in a 2D
environment with U -shape obstacle. 43

3.10 An example of the path planning for the robot navigation in the C -space.
(a) The shortest path is found using PEM , where the solid red line repre-
sents the shortest path. (b) The obtained solution of IFP by usingBNM ,
where the sequence of the red circle objects represents the IFP 47

3.11 Create the shortest path from "14" waypoints in the 2D workspace, where
the red circle objects sign the waypoints. (a) construct the shortest path
by using the PEM method. (b) generate the IFP by using the BNM
method. (c) determine the shortest path using PEM and the smooth path
by applying the spline method. 48

4 LIST OF FIGURES

3.12 There are three different working environments with varying layouts of
obstacles, the size of the workspace is 67×109, and the position of g1 and
g2 located randomly in the free space Cfree. The contour lines represent
the potential value, and the pink circle objects represent the goal points,
g1 and g2. 50

3.13 Collision avoidance between two robots, (a) the initial positions of the
robots before the collision, (b) robot-robot collision avoidance and change
motion direction, (c) the robots in their new updated positions. 52

4.1 Graphical representation of the given simple scenario. 55
4.2 Flowchart illustrating the steps of the new proposed method for crowd

simulation. 56
4.3 The layout of the virtual environment with obstacles. 58
4.4 A nine-node quadrilateral element with a safety zone (a) along with its

motion directions (b) and simulated pedestrian in a virtual environment (c). 70
4.5 Personal space requirements. 71
4.6 Sketch of the simulated pedestrian, as the current pedestrian move for-

ward, it may interfere with the neighboring pedestrian: (a) the distance
between the current pedestrian and the neighboring pedestrian is higher
than a certain distance (2r), (b) pedestrian collision avoidance is used
to prevent collision between pedestrians. 72

4.7 The three different types of steering behaviors (a) Separation, (b) Cohe-
sion, and (c) Alignment. A similar figure is described by [1] 73

5.1 Simulation results of the generated initial feasible path (IFP) for all three
workspace scenarios using BNM . 78

5.2 Simulation results of the generated path for all three workspace scenarios
by using PEM . 79

5.3 Simulation results of the generated smooth path for all three workspace
scenarios by using the cubic spline method. 80

5.4 Simulation results of the generated smooth path for all three workspace
scenarios by using PCHIP . 81

5.5 Examples of different workspace with different obstacle shapes (a and
e), and the simulation results of the generated path for two workspace
scenarios by using BNM (b and f), PEM (c and g), and cubic spline
method (d and h). 82

5.6 Simulation results for constructing a collision-free path by using BNM
(a) and PEM (b) to solve the path planning problem in a three-
dimensional (3D) workspace. 83

5.7 Simulation results for solving the multi-robot path planning problem. . . . 84
5.8 Simulation results for solving the path planning problem in a 2D

workspace by using BNM (a), PSO (b), A-Star (c), and APF (d). . . . 85

LIST OF FIGURES 5

5.9 Simulation results from the implementation of the PEM method for op-
timizing the generated paths by using BNM (a), PSO (b), A-Star (c),
and APF (d). 85

5.10 Simulation results from the implementation of the cubic spline method
for smoothing the generated paths by using BNM (a), PSO (b), A-Star
(c), and APF (d). 86

5.11 Simulation results for generating the path by using BNM (a), PEM (b),
and cubic spline (c) in the workspace that previously has been used in [2–5]. 86

5.12 Performance evaluation of BNM , PSO, GA, and A-Star to find the
collision-free path for "1000" independent runs, (a) presents the obtained
results of the path length, and (b) presents the computational time results. 88

5.13 An illustrated example of the multi-goal path planning problem for three
randomly-selected goal points. (a) the path is determined by using GA,
plotted in a red dashed line. (b) the IFP is generated by using BNM ,
plotted in the blue line. (c) optimize the generated path by using PEM ,
plotted in the blue line. 89

5.14 Illustrates the steps of solving a multi-goal path planning problem. The
BNM is applied to generate the IFP for the robot to move from g1 to g2
(a), from g2 to g3 (b), and from g3 to g1 (c). The PEM is implemented to
generate the shortest path from g1 to g2 (d), from g2 to g3 (e), and from g3
to g1 (f). 90

5.15 The influence of the number of goal points on the total computational time
required to solve MTP for each simulated working environment. 92

5.16 The first scenario of the multi-goal path planning problem with "20"
randomly-selected goal points. (a) the path is formulated by connect-
ing the sequenced goal points, plotted in a red dashed line. (b) the IFP is
generated by using BNM , plotted in the blue line. (c) optimize the IFP
by using PEM , plotted in the blue line. 93

5.17 The second scenario of the multi-goal path planning problem with "20"
randomly-selected goal points. (a) the path is formulated by connecting
the sequenced goal points, plotted in a red dashed line. (b) the IFP is
generated by using BNM , plotted in the blue line. (c) optimize the IFP
by using PEM , plotted in the blue line. 93

5.18 The third scenario of the multi-goal path planning problem with "20"
randomly-selected goal points. (a) the path is formulated by connect-
ing the sequenced goal points, plotted in a red dashed line. (b) the IFP is
generated by using BNM , plotted in the blue line. (c) optimize the IFP
by using PEM , plotted in the blue line. 94

5.19 The influence of the number of robots on the total computational time to
solve MTP using the proposed method for each simulated scenario. . . . 95

6 LIST OF FIGURES

5.20 Simulation results for solving the MTP : (a) the sequence of the goal
points obtained from the implementation of GA, the red square objects
represent the goal points. (b → f) multiple robots (5 robots) move to
visit multiple-goal points (4 goals) in a simulated working environment
with obstacles. 96

5.21 Simulation results for solving the MTP : the number of goal points is
fixed (4 goals), and the number of robots is varied (1→ 6). 96

5.22 The e-puck mobile robot was used for the experimental test (a). The
experimental set-up (b) for testing the performance of BNM&PEM to
solve the path planning problem in a static environment. 97

5.23 Simulation and experimental results: (a) simulation result to generate a
shortest collision-free path by using BNM&PEM , and (b) → (f) e-
puck robot positions at different locations in the robot’s working environ-
ment. 98

5.24 The experimental set-up for testing the performance of BNM&PEM to
solve multi-goals path planning problem in a static environment. 99

5.25 Simulation results of the proposed method for solving the MTP : (a) the
sequence of the goal points obtained from the implementation of GA, (b)
the initial feasible path (IFP) generated from the BNM method, (c) the
shortest collision-free path is generated by using PEM 100

5.26 Experimental results: (a) shows the initial locations of the e-puck robot
and the goal points in the working environment. The movement of the
robot is shown in (b) from g1 to g2, (c) from g2 to g3, (d& e) from g3 to
g4, and (f) from g4 to g1. The shortest path that the robot has to follow to
reach the destination point is represented by blue and yellow dashed-line,
and the starting and destination goal points are represented by the yellow
and red dashed circles, respectively. 101

6.1 Goal points for each group of pedestrians: each goal point represents by
two-points, the first point is the entrance of the goal, and the second point
represents the inside of the goal area. 105

6.2 keyframes for activating groups to move in the simulated environment. . . 106

6.3 Pedestrian’ trajectory: showing the pedestrians’ movement towards their
goal points in a simulated environment. 107

6.4 Pedestrian’ velocity: change the walking velocity of all pedestrians. . . . 107

6.5 The minimum distance between pedestrians. 108

6.6 Pedestrian’ energy level: change of the pedestrians’ energy level at each
keyframe. 109

LIST OF FIGURES 7

6.7 Pedestrian’s trajectory: the graph shows pedestrians’ movement in dif-
ferent directions in the simulated walking area at different keyframes:
65, 100, 145, 165, 200, 230, 240, 270, 287, and 310. The red circle ob-
jects represent the pedestrians’ trace in the virtual environment at each
keyframe. The left graph shows the generated planned pedestrian’s tra-
jectory, and the right graph shows the simulation result of the pedestrian’s
trajectory in the virtual environment after the simulation runs for 500
keyframe. 109

6.8 A large-scale 3D model of the commercial mall populated by virtual
groups of pedestrians [6]. 111

6.9 Screen-shot of the shopping mall with obstacles: shows the walking area
on the ground floor of the shopping mall with the 3D obstacles. 111

6.10 Shows different 3D characters animation obtained from Mixamo [7] . . 112
6.11 Screen-shot of pedestrian flow: a) shows the initial configuration of the

simulation, and b) the pedestrians’ trajectories in the final stage of the
simulation. 114

6.12 Screen-shot of crowd simulation: groups of pedestrians move in differ-
ent directions to reach their desired goal points while avoiding the static
obstacles and pedestrians in the scene. 115

6.13 Keyframes for activating groups of pedestrians to move in the virtual en-
vironment. 116

6.14 Screen-shot of the simulation: showing the pedestrian’s movement to-
wards the goal points in a scene. 116

6.15 Pedestrian’ velocity: change the walking velocity of all pedestrians. . . . 116
6.16 Screen-shot of the simulation: shows a single pedestrian trying to move

through the walking area toward the goal point, and he starts to change
his motion direction near the safety area around the stairs at keyframes
a)118, b)122, and c) 124. 117

6.17 Screen-shot of the simulation: shows a group of pedestrians, consists
of two pedestrians (pedestrian A and pedestrian B), that using the ob-
stacle avoidance method to pass the obstacle. Afterwards, pedestrians
keep moving toward their desired goal points: a) collision avoidance be-
tween pedestrians and obstacle at keyfram = 94, b) collision avoidance
between pedestrian A and obstacle at keyfram = 95, and c) collision
avoidance between pedestrian B and obstacle at keyfram = 96. 118

6.18 Screen-shot of the simulation: shows a group of pedestrians, consists
of two pedestrians (pedestrian A and B), passing each other using the
pedestrian avoidance method. a) collision avoidance takes place between
pedestriansA andB at keyframe 97. b) pedestrianB changes the motion
direction to avoid pedestrianAwithout any collision at keyframe 98, and
then they keep moving to reach their goal point. 119

8 LIST OF FIGURES

6.19 Simulation and performance evaluation: (a) the number of pedestrians,
and (b) the computational time required to generate the pedestrians’ tra-
jectories in each group using the proposed method. 121

7.1 Different types of elements to simulate a mobile robot, such as a) nine-
node circular element, b) seventeen-node quadrilateral element, and c)
thirteen-node octagonal element. 126

List of Tables

3.1 Characteristics of three different workspace scenarios. 37

4.1 Simple scenario for formulating groups of pedestrians in the virtual envi-
ronment. 54

5.1 The total computational time and path length of the initial feasible path
(IFP) and the shortest path by using BNM and PEM 78

5.2 Summary of the obtained results from the implementation of BNM ,
PSO, A-Star, and APF for solving the path planning problem. 84

5.3 Total computational time required to find the shortest path by using
BNM and improved GA. 87

5.4 Mean and standard deviation (Std) of the computational time and the path
length for "1000" independent runs to find the collision-free path using
BNM , PSO, GA, and A-Star, . 87

5.5 Performance evaluation results: The mean and standard deviation of the
computational time (in seconds) required to find the feasible path for a
single mobile robot in three different working environment. 91

5.6 Characteristics of three different example scenarios with different number
of goal points. 94

5.7 Performance evaluation results: the mean and standard deviation of the
computational time (CT) in seconds to find a collision-free path for each
instance in different simulated scenario. 95

6.1 Pedestrians’ distribution with different group size: presents the number
of groups in the simulation (nGroups ="4"), number of pedestrians of
each type in the same group (nPedestriansTypes), number of pedestrians
in each group (nPedestriansgroup = [4, 4, 5, 3]), and the total number of
pedestrians in the crowd (nPedestrianstotal ="16") 104

6.2 Maximum and minimum energy level for each type of pedestrian 110
6.3 Pedestrians’ group size distributions in the crowd, where pedestrian is

denoted by p. 113
6.4 Pedestrians type contribution in the crowd. 113

10 LIST OF TABLES

6.5 Ability of simulating group dynamics with the proposed method for the
crowd simulation (GA: Group Avoidance, GI: Group–pedestrian Inter-
action, InterE: Inter-group Emotion Contagion. LF: Leader–Follower,
GF: Group Formation, GS: Group Structure, GC: Group Cohesion, GCo:
Group Cooperation, PB: Peer Behavior, IntraE: Intra-group Emotion Con-
tagion). 120

6.6 The mean and the standard deviation Std of the pedestrians’ number
(NOP), and the computational time (CT) (in seconds, [S]) required to
find the trajectories for the pedestrians in each group. 120

List of Algorithms

1 Calculate the potential value of the grid cells in the workspace. 35
2 Calculate the values of ∆x and ∆y. 39
3 Illustrates the steps to bring the robot out of the local minima area. 42
4 Boundary Node Method (BNM) . 45
5 Path Enhancement Method (PEM) . 49
6 Generate workspace and obstacles . 60
7 Generate pedestrians with their attributes. 61
8 Generate goal points . 63
9 Setting the initial state of the pedestrians in the crowd Pedestriansgroup. 65
10 Create a list of random keyframe for activating groups in the scene. 66
11 Motion computation and steering behaviors 69
12 Pedestrian collision avoidance . 73
13 Goal-directed behavior . 74

Abbreviations

Notation Description
BNM Boundary Node Method
PEM Path Enhancement Method
IFP Initial Feasible Path
Cobs Space occupied by obstacles
Cfree Free Space, Cfree = C–Cobs

nGroups number of groups of people in the crowd
nPedestriansgroup number of pedestrians in each group
nPedestriansTypes number of the each type of pedestrian in the same group
Pedestrianscrowd all pedestrians in the crowd
Pedestriansgroup pedestrians in each group
nPedestrianscrowd number of pedestrians of all groups in the crowd
nPedestrianstotal total number of pedestrians in the crowd
n3DObstacles number of 3D obstacles in the scene
nObstacles total number of the grid cells occupied by obstacles
nGoals number of goal points on the ground floor
GoalPointslist list of all existing goal points
Goalsgroup goal points for each group
Goalscrowd all goal points of all groups in the crowd
nGoalsgroup number of goal points for each group
nGoalscrowd number of goal points of all groups in the crowd
nRandomgoals random number of goal points for each group
Goalsindex goal index
nRandomgoalsIndex random number for goal index
nRandomTypes random number of pedestrians of each type
nFrames number of frames
Positionscrowd all pedestrian’s position in the crowd
Positionpe pedestrian’s position
V elocitype pedestrian’s velocity
Energype pedestrian’s energy
kFrameactivate list of random number for key-frame to activate groups
r, R Radius of the safety zone around pedestrian and obstacles, unit

Chapter 1

Introduction

1.1 Overview and Motivation of the Thesis

1.1.1 Path Planning
In robotics, path planning aims to find a collision-free path for a mobile robot to move
from a starting point to a goal point in a given working environment based on certain
optimization criteria such as walking distance, walking time, energy consumption,
etc [8–10]. It is expected that the robot reaches the final destination point safely through
the shortest walking path within the minimum computational time. Path planning has
been widely applied in many robotic applications to perform various tasks in many do-
mains such as nuclear facilities [11], space exploration [12], rescue missions, landmines,
and enemies in the war field [13]. Moreover, the path planning approaches are useful
for repeatable tasks in static environments where optimality is essential (e.g., industrial
applications) [14]. These factors make path-planning an interesting and challenging
subject for researchers [13].

The path planning problem started around the sixties. However, the interest in the
path planning problem for mobile robots grew after the authors’ work in [15], and then
many methods have been proposed [9, 16]. The existing methods are mainly categorized
into classical and heuristic path planning [9, 13]. The classical methods include cell
decomposition, potential field method, subgoal network, and road map [17]. These
methods involve finding a set of defined steps to search for a path starting from an
initial position to a goal position. In classical methods, only deterministic actions are
considered [17, 18]. However, it has been found that the classical methods have some
disadvantages such as the high computational cost, trapping into local minima, and high
time complexity [8, 13, 16]. As classical search methods fail to find the exact solutions,
many heuristic methods have been proposed, i.e., Genetic Algorithm (GA) [14, 19],
Particle Swarm Optimization (PSO) [13], Artificial Neural Networks (ANNs), Ant
Colony Optimization (ACO) [16, 20], and Fuzzy Logic (FL) [16]. Surveys work
in [8, 20] showed that the heuristic path planning methods are computationally more

14 CHAPTER 1. INTRODUCTION

efficient in terms of path length, obstacle avoidance, and elapsed time [16]. Heuristic
methods attempt to find a good solution to the path planning problem in a short amount of
time. However, these methods are not guaranteed to provide an optimal solution [17, 18].
The combinatorial path planning methods can solve many path planning problems and
construct optimal solutions efficiently [17, 21–24].

Many of the existing methods for robot path planning can find a path for the robot.
However, in most cases, the quality of the generated path is not accurate enough, or their
efficiency is not sufficient [4]. Researchers have always been seeking a better solution
to improve the performance of the existing path planning methods. A list of the goals
that researchers of several earlier works have pursued is the following: improve the ac-
curacy [12, 25, 26], improve the efficiency [4, 27], increase safety [11, 12, 28], increase
the capability [29], reduce the processing time [30, 31], overcome the non-reachable goal
problem [32], pass through narrow passages [33], overcoming the local-trap problems,
and improve the quality of planned paths [4].

1.1.2 Multi-Goal Path Planning
In robotic planning, the problem of finding the shortest collision-free path connecting a
given set of goal points located in the robot working environment is called a multi-goal
path planning problem (MTP) [34–36]. The MTP can be modelled by Traveling
Salesman Problem (TSP), in which the paths between goal points have to be traversable
by the robot. The requirement for collision-free path connecting goal points is the
main reason why the problem is called the MTP rather than the TSP to emphasize
its difficulty [37]. In the TSP , a salesman has to visit several cities (locations) with
the constraint that the salesman should visit each city once. A salesman is interested in
travelling on the shortest route linking a set of cities based on the given distance between
them [38]. The shortest tour starts from a given city, passing through all the other cities
and returning to the home city [35]. There are many methods to solve TSP , such as
heuristic algorithms, genetic algorithms, simulated annealing algorithm, and ant colony
optimization [39]. Furthermore, the TSP has been well studied, and efficient algorithms
are available to solve the TSP problem [40].

In a simple case, optimizing the sequence of the goal points and the path between
the goal points can be modelled by TSP [41, 42]. In the basic TSP , the probability
of colliding obstacles along the path between goal points is not considered [43]. As the
effects of obstacles are taken into account, the path planning problem can be solved in
two steps. First, optimize the goal points sequence, then an optimal collision-free path
between goals needs to be planned. The literature shows that GA is widely applied to
perform a random search to solve optimization problems. By taking advantage of its
strong optimization capability [35, 44, 45], GA has been used to solve the TSP problem
(e.g., [35, 38, 46]). Once the sequence of the goal points is determined, the path planning
method is used to construct a collision-free path between every pair of the sequenced

1.1. OVERVIEW AND MOTIVATION OF THE THESIS 15

goal points [42]. The path that starts from the initial goal point, passing through all
intermediate goal points, and returning to the initial goal point is called a multi-goal path.
A multi-goal path is assembled by simply connecting goal-to-goal points, extract the path
between goal points iteratively until the path (tour) is completed. The length of the multi-
goal path is the sum of the length of the goal-to-goal path.

1.1.3 Multi-Robot Path Planning
Recently, using multiple mobile robots rather than a single mobile robot has attracted
many researchers’ attention [47], and it has been widely used in industrial plants
and warehouses [48]. The multi-robot path planning problem has been studied since
the 1980s [49–53], and several methods have been proposed during this period [51].
Multi-robot path planning methods have been used to determine the collision-free path
for multiple robots from their given start positions to their goal positions. Two types
of collisions have to consider to plan collision-free paths for multiple mobile robots:
robot–obstacle and robot–robot. In general, the multi-robot path planning problem is
considered as an optimization problem, the solution to the optimization problem provides
the optimal path [51, 54].

In robotics, the path planning problem for multiple robots focuses on generating the
shortest paths for multiple robots to move from their starting point to their final destina-
tion point. However, in a virtual environment with a crowd of pedestrians (robots, agents,
etc.), the requirements for solving the path planning problem are different. In addition
to being collision-free, paths for a large number of virtual pedestrians through complex
environments need to be planned simultaneously in real-time. In both problems, multiple
units navigate in a working environment without colliding with each other or static ob-
stacles. The existing methods for solving the path planning problem for multiple robots
can handle only a few robots, and these methods are not suited for real-time applications.
In contrast, in a virtual environment, the concentrate is on simulating the movement of a
large number of virtual pedestrians independently in real-time. In a computer program,
simulating the movement of pedestrians is called crowd simulation. Pedestrians are re-
ferred to as "agents", there are other terms that can be used, such as robots, entities, etc.,
depending on the application. In this thesis, we will use the term "pedestrians" to avoid
confusion.

1.1.4 Crowd Simulation and Path Planning
Simulation of crowd movement has attracted the interest of many scientists from different
research fields. Over the last several years, many techniques have been studied on crowd
movement behaviours, path planning, and navigation in various disciplines, including
computer graphics, virtual reality, social science, statistical physics, robotics, pedestrian
and evacuation dynamics, etc. These techniques can be grouped into two main categories:
macroscopic and microscopic. The macroscopic techniques focus on the aggregate

16 CHAPTER 1. INTRODUCTION

behaviours of crowds. These techniques predict the motion of agents (pedestrians) and
other characteristics such as densities, speeds, and emerging behaviours. However,
microscopic techniques have been used to find each agent’s path that avoids the static or
dynamic obstacles and other agents in the environment [55].

An important issue for crowd simulation concerning the agents’ movement is whether
the crowds being simulated is homogeneous or heterogeneous [55, 56]. Homogeneous
crowds correspond to instances where each agent has very similar behaviour or goal.
Many models have been proposed for homogeneous crowd simulation. For example,
continuum crowd model [57], allow a small, fixed number of goals, and aggregate dy-
namics for dense crowd simulation [55, 58]. The continuum models involve treating the
crowd as a whole, and their application in large crowds composed of hundred thousand
agents [59]. Other examples include models based on flow − based models [60, 61]
which are governed by differential equations, and this model uniformly dictates the flow
of crowds across space. In heterogeneous crowds, each agent in the crowd maintains
a distinct, observable identity (see [62]). This identity is observed in the agent’s goals,
desired speeds, cooperation, and many other factors that affect the motion of each
agent [55, 56]. In the crowd simulation literature, many heterogeneous techniques have
been proposed for simulating heterogeneous crowds [63, 64], the most widely used is
the agent − based models [65]. In agent − based model, the motion of each agent in
the crowd is computed separately, and it is possible to simulate crowds with a different
motion for different agents [55, 56]. For large-scale analysis and prediction of crowd
behaviour, continuum models are more efficient than agent − based models [59],
where the computational time does not increase significantly with the number of agents.
However, continuum models suffer from different drawbacks, such as a reduced validity
range [65]. In agent − based models, agents follow some predetermined rules of
behaviour, which allow agents in the model to behave naturally and autonomously. This
unique characteristic makes agent − based modelling particularly suitable for the study
of agents’ behaviour in complex environments [66].

In agent− based models, agents (pedestrians) continuously adjust their behaviour in
the simulated environment [67], and different simulation parameters can be defined for
each crowd member [57]. These models often result in more realistic crowd movement
behaviours and detailed simulations with each agent making independent decisions.
However, the agent − based models also have drawbacks, i.e., global path planning
for each agent becomes computationally expensive, particularly in real-time contexts.
Therefore, to simulate the agents’ movement using agent− based models, most existing
path planners fail [68]. As a result, most agent− based models address only local motion
planners for collision avoidance. Furthermore, interactions of an agent with other agents
or with the environment are often performed at a local level, and sometimes it can result
in undesirable macroscopic behaviours [69]. The boids algorithm is considered one of
the most popular agent − based models [70]. The boids algorithm generates steering
behaviours that resemble flocking, herding, and school behaviours commonly observed

1.2. RESEARCH GAPS AND LIMITATIONS 17

in animal motion [56]. This algorithm has been used for modelling and simulating
crowds in a virtual environment [62]. Furthermore, it has been widely used in games and
generating special effects in movies [55]. The flocking behaviours are simulated through
the boids algorithm, as it is well known for expressing the motion of the groups [62].

An agent’s motion computation is split into two distinct tasks: global and local
navigation [55, 56]. Global navigation aims to compute a long-term collision-free
path towards a goal position that only the static obstacles consider. In contrast, local
navigation techniques take into account the motion of dynamic obstacles and other agents
in the environment and steer each agent towards its goal position [55].

In real-world applications, crowd movement simulation provides valuable tools to
planners and designers for improving efficiency and safety in public places such as air-
port terminals [66], shopping malls, train stations [71], theatres, etc [72]. While planning
the architecture of buildings interested in simulation of people moving around their in-
tended design so that shops, entrances, corridors, emergency exits, and seating can be
placed in suitable locations [72]. In new architectural or urban domains, the crowd sim-
ulation is used to predict crowd flows, crowd analysis, and architectural analysis benefits
from exploring the environment as quickly as possible and as many options as possi-
ble [56]. Additionally, crowd movement simulations have been proposed and successfully
applied to various scenarios and case studies [73], i.e., crowds associated with transport
systems, sporting and general spectator occasions, holy sites, political demonstrations, fire
escape [59], emergency evacuation [56, 66, 72, 74, 75], and trading port [62]. Moreover,
crowd movement simulations have been used to develop a level-of-service concept, design
elements of pedestrian facilities, planning guidelines [74], safety planning [56] and sup-
port transportation planners or managers to design timetables [72]. Furthermore, crowd
modelling and simulations allow the safer and more efficient design of civil structures like
big buildings, markets, and stadiums [76]. Realistic pedestrian behaviour simulation in
crowded places has diverse applications in architecture design, emergency evacuation, ur-
ban planning, personnel training, education, and entertainment [67]. Additionally, realis-
tic simulations based on pedestrian behaviour such as obstacle avoidance, stress response,
and avoid other pedestrians have many applications such as computer game designers,
movies, and virtual environments [56]. Considerable effort has been made on locomo-
tion, realistic pedestrian movement behaviours, path planning, and navigation in large
virtual environments [77]. The experimental studies of pedestrian movement behaviours,
observations, and data recording by the most sophisticated techniques are nowadays ex-
tensively available, and also many human walking attitudes have been pointed out [78].

1.2 Research Gaps and Limitations
Despite remarkable contributions that have been made, there are several essential gaps
and limitations that still need to be addressed, as outlined in the following points:

18 CHAPTER 1. INTRODUCTION

1. Solving the path planning problem in a complex environment with a good qual-
ity solution is still a challenging issue [79, 80]. Moreover, it becomes much more
difficult to find an optimal path within a reasonable amount of time [9]. In com-
putational complexity theory, the path planning problem is classified as a non - de-
terministic polynomial time problem (NP-complete). The required computational
time grows exponentially as the size of the path-planning problem increases [16].
The computational time is still too high in several works, and the search for an
optimal path might not succeed [9].

2. The computational time required for solving the multi-goal path planning problem
for a single and multiple mobile robot systems is high [34, 37, 81]. Moreover, de-
pending on the problem complexity, finding the shortest collision-free path between
goal points and optimizing the sequence of goal points will be very difficult [35] and
computationally challenging problems [82]. Furthermore, sequencing goal points
before searching for the collision-free path may generate a near-optimal path be-
cause goal points are arranged according to a distance function that ignores the
obstacles. Additionally, path planning between two sequenced goals may be chal-
lenging [40]. While significant progress has been made in this area, there is still no
effective approaches [83].

3. Developing a new crowd simulation method by using an agent − based model is
challenging. In a large-scale agent − based crowd simulation, using global path
planning for each agent (pedestrian) becomes computationally expensive, particu-
larly in real-time contexts [57, 67]. Therefore, the crowd simulation methods with
a strong computational performance for predicting the crowd movement are desir-
able [56]. Apart from the pedestrian motion, a crowd model needs to address the
dynamic interactions between pedestrians [57], and interaction between groups can
significantly influence the crowd behaviour. In the past, limited research has been
done previously in considering group dynamics [55, 66, 72].

1.3 Objectives of the Thesis
The main objectives of this thesis are stated below:

1. Develop a new path planning method to find an optimal collision-free path between
starting and goal points for a mobile robot in a relatively short computational time.

2. Solve a multi-goal path planning problem for single and multiple mobile robots
by generating a shortest collision-free path connecting a given set of goal points
located in the robot working environment.

3. Perform an experimental study on a real robot to verify the performance and effec-
tiveness of the proposed method for generating a collision-free path, and illustrate
how the robot can navigate along the path.

1.3. OBJECTIVES OF THE THESIS 19

4. Develop a new method for simulating the heterogeneous crowds’ movement in a
virtual environment. The crowd consists of multiple groups and different sizes with
various types of pedestrians, where each type of pedestrian has its own characteris-
tics, and each group’s intention is different.

5. Investigates real-time path planning for each pedestrian in each group while avoid-
ing obstacles and other pedestrians in the crowd.

This study proposes a novel path planning method for a mobile robot in a two-
dimensional (2D) static environment. In the proposed method, called Boundary Node
Method (BNM), the robot is simulated by a nine-node quadrilateral element, where the
centroid node represents the robot’s location. The robot is exploring the environment
with the help of the node’s potential value at each location, where the potential value is
calculated based on the proposed potential function. The initial feasible path is generated
from the sequence of the waypoints that the robot has to traverse as it moves toward the
goal point without colliding with obstacles. The proposed method can efficiently and
efficiently generate the path, but the path is not optimal in terms of the total path length.
Therefore, an additional method, called Path Enhancement Method (PEM), is proposed
to construct an optimal or near-optimal collision-free path. Moreover, a new version of
the proposed method is introduced to handle the multi-goal path planning problem. This
method is implemented to find an optimal goal-to-goal path between a set of goal points
in the obstacle-filled environment. Additionally, the BNM method extended further to
solve the multi-goal path planning problem for multi-robot systems by generating the
shortest collision-free path connecting every pair of the sequenced goal points among
obstacles. Finally, an experimental study has been carried out on the real robot to verify
the performance of the proposed method for generating a collision-free path for single
and multiple goal points.

In order to evaluate the contribution of the proposed method, the performance of
the proposed method is compared with four well-recognized path planning methods,
namely, PSO, GA, A−Star, and Artificial Potential Field (APF). The PSO algorithm
is widely used in path planning problems [25, 29, 80] as it is fast and simple [80],
easy to implement [84], and a powerful method [21] to solve mobile robot navigation
problems [29]. Moreover, the A−Star algorithm is an effective method to search for the
short path [28], which is implemented for many path planning applications [85], and it is
mainly employed on an environmental grid [26]. In addition, GA is a robust optimization
method among the existing approaches for robot motion planning problem [4]. By
taking advantage of its strong optimization ability, the GA has been widely used in a
previous study to generate an optimal path [2]. The APF method is fast [20, 80, 85],
simple [32, 85], easy to implement [85], and it has good results for solving path planning
problems [20]. The disadvantage of the APF method is related to the local minima
problem whereby the robot can get stuck [32, 80, 85].

20 CHAPTER 1. INTRODUCTION

Furthermore, in this study, a new method for simulating crowd movement in a com-
plex virtual environment is proposed. In this method, many groups of different sizes and
various types of pedestrians (agents, entities, etc.) are considered. Pedestrians in many
groups moving through the walking area inside a virtual environment with different direc-
tions to reach their goal points. The proposed method uses themulti−groupmicroscopic
model for generating a real-time trajectory for each pedestrian navigating in the virtual
environment. Moreover, an agent− based model is introduced into the proposed method
for modelling each pedestrians’ behaviours, where each type of pedestrian has its own
attributes. In this method, several steering behaviours are introduced such as separation,
cohesion, alignment, obstacle avoidance, pedestrian collision avoidance, flocking,
goal − directed steering behavior, etc. In addition, several techniques have been used
for combining steering behaviours to a single steering force that allows pedestrians to
walk toward their destination points. Based on the proposed method, pedestrians con-
stantly adjust their position, optimize their path toward the desired goal points, and avoid
obstacles and pedestrians when they move closer.

1.4 Contributions of the Thesis
The main contributions of this thesis can be summarized in the following points:

1. The developed method, BNM , can generate the initial feasible path (IFP) for a
mobile robot from the sequence of the waypoints that the robot has to traverse as
it moves from a starting point to a goal point without colliding with obstacles. An
additional method, PEM , was developed to find an optimal or near-optimal path
from IFP by reducing the number of waypoints and the overall path length.

2. The BNM method uses an optimization technique to generate a collision-free path
in a relatively short computational time. Moreover, the computational time required
to solve the path planning problem does not significantly increase with increasing
the environment’s complexity. Additionally, this method does not work through
random operations, and there is no uncertainty in generating points, which leads to
finding the final solution for the problem without variation in the solution.

3. The comparison of the statistical performance between the developed method and
other path planning methods revealed that the developed method solved the path
planning efficiently in terms of computational time and path length.

4. The BNM method extended further to solve multi-goal path planning problem for
single and multiple mobile robots by generating the shortest path connecting every
pair of the goal points sequentially without colliding with any obstacle or other
robots in the system.

5. The experimental tests on the real robot (e−puck) show the efficiency of the devel-
oped method for solving the path planning problem. The test results demonstrate

1.5. STRUCTURE OF THE THESIS 21

how the robot navigates in the working environment toward the goal point(s) safely
and quickly in a reasonable time.

6. The proposed method for crowd simulation has been well applied to simulate the
crowd movement, where the crowd consists of multiple groups with a different
number and various types of pedestrians. In this method, pedestrians in each group
continuously adjusted their paths and updated their attributes independently in real-
time.

7. The proposed method introduced various attributes and different steering be-
haviours for each pedestrian in the crowd. Implementing this method is very ef-
ficient for simulating the crowd movement in a complex domain scattered with
obstacles. The proposed method can be expanded to include other pedestrians’ at-
tributes in the crowd for more rich and complex simulations.

1.5 Structure of the Thesis
The thesis is organized as follows:

• Chapter 2 provides a literature review on the path planning problem. Moreover,
an overview of the previous works related to the multi-goal path planning problem
MTP for single and multiple mobile robots are introduced. This chapter presents
the related studies on crowd simulation, group dynamics, modelling approaches,
and navigation algorithms.

• Chapter 3 introduces the problem formulation for robot path planning, and the
details of the developed method for generating the shortest collision-free path is
described with several illustrative examples. This chapter also presents the extended
method to solve the multi-goal path planning problemMTP for single and multiple
mobile robot systems.

• Chapter 4 provides the problem formulation for simulating crowd movement in a
virtual environment. Additionally, this chapter presents the description and configu-
ration of the proposed crowd simulation method for simulating the crowd movement
in a virtual environment.

• Chapter 5 presents the implementation of the proposed method for solving the
path planning problem and discuss the simulation results for several working en-
vironments with different obstacle layouts. Additionally, the performance of the
proposed method in comparison with the other path planning methods is presented
in terms of path length and computational time. This chapter also presents the
implementation of the proposed method for solving the multi-goal path planning
problems for single and multiple mobile robot systems. Moreover, the validation
of the developed method for solving the path planning problem and multi-goal path

22 CHAPTER 1. INTRODUCTION

planning problem has been examined by performing experimental tests on the real
robot. Moreover, this chapter presents and discusses the experimental results ob-
tained from implementing the developed method introduced in Chapter 3 on the
e− puck robot.

• Chapter 6 presents the implementation of the proposed crowd simulation method
for investigating the crowd movement. Different scenarios are examined, and the
results of the simulation study related to crowd behaviour and movement are pre-
sented and discussed.

• Finally, the main conclusions and directions for future research are provided in
Chapter 7.

Chapter 2

Related Work

2.1 Path Planning

The path planning problem has attracted many researchers’ attention due to its uncertain-
ties, complexities, and real-time nature [79]. The path planning problem for mobile robots
has been widely discussed in the literature, and various approaches have been proposed
for solving the problem. For example, the authors in [9] proposed a new methodology to
solve the path planning problem in two steps. First, they generate the initial path based on
the surrounding point-set (SPS), which refers to a set of points surrounding the obstacles.
Then, they applied the path improvement algorithm to get the optimal path by using the
outcome of the first step. As stated in [9], this method has a low-level of randomness
that reduces the variation of solutions, and also, this method can generate points in
narrow or small spaces in the map. Another technique is the Bacterial Potential Field
(BPF) developed by [22] to compute an optimal path for a mobile robot in a real-world
scenario with static and dynamic obstacles. As reported in [22], the path planning with
theBPF allows a robot to navigate autonomously without being trapped in local minima.

Several researchers combined algorithms to improve path planning performance. For
example, the authors in [21] presented a hybrid meta-heuristic GA − PSO algorithm
for mobile robot navigation to find an optimal path between starting and ending points
in a grid environment. The authors stated that the proposed algorithm avoids time
complexity and premature convergence in conventional GA and PSO algorithms. The
hybrid GA − PSO is used to generate the initial feasible path. Afterwards, a cubic
B-spline technique is applied to construct a near-optimal collision-free path. To reduce
the complexity of robot path planning, authors in [86] proposed a hierarchical path
planning method by integrating fuzzy theory and genetic algorithm. Researchers in [87]
suggested another method named SACOdm based on Simple Ant Colony Optimization
Meta-Heuristic (SACO − MH) to solve the path planning problem. One of the main
contributions of SACOdm is the inclusion of memory capabilities to artificial ants to
prevent stagnation. An additional methodology has been proposed in [23] by integrating

24 CHAPTER 2. RELATED WORK

Artificial Bee Colony (ABC) algorithm with an evolutionary programming algorithm. In
this method, the ABC algorithm is applied to generate a feasible path. Then the feasible
path is enhanced by using an evolutionary programming algorithm.

Many researchers built on top of the existing methods to improve their performance
and to overcome their limitations. Authors in [28] proposed an improved version of the
A − Star algorithm to overcome the inherent drawbacks of the original A − Star. The
main improvement of the proposed method is that the local path is planned before the
next search in the current node’s neighbourhood. The A − Star algorithm calculates
the heuristic function’s value at each node on the working area. Then it checks adjacent
nodes to find the optimal solution with zero probability of collision, but the time
complexity is too high. To overcome this problem, the authors in [30, 31] introduced
several improvements to A − Star for reducing the computational time and increase
overall performance. Another improvement is the minimization of the path length by
reducing the number of local paths. Several researchers investigated the capabilities
of GA for solving the path planning problem for mobile robots in static and dynamic
environments. For example, [19] proposed a new fitness function for GAs [27] proposed
the Knowledge-based GA, [4] proposed an adaptive GA, and [88] suggested a new
variant of GA using binary codes through the matrix. The authors in [32] presented
a new repulsive potential function to solve non-reachable goals with obstacles nearby
(GNRON) in the potential field method. Calculation of artificial potential values is
another solution to obtain a collision-free path. The potential field method was first used
by [89] for solving the robot motion planning problem. This method works based on
attraction and repulsive values, these two fields are produced by target and obstacles, and
the robot is considered a moving object in these fields. The robot moves toward the target
based on the negative slope of the potential function. The problem with this approach
is that the robot can get stuck in local minima [4]. Consequently, various techniques
have been proposed to avoid the local minima, i.e., authors in [90] tried to solve the
problem using harmonic potential functions around obstacles. In order to overcome the
local minima and heavy computational time, the rapidly-exploring random tree (RRT)
and the probabilistic roadmap (PRM) algorithm are introduced due to their remarkable
practical performance and strong theoretical properties [91, 92]. These algorithms work
by computing multiple distributed random points in the free workspace and connect
them to construct a tree or graph; after that, a search method is used to find a path [28].
In RRT , the most important factor that affects the overall efficiency of path planning
is how to select a tree to extend or connect. The RRT algorithm has been widely
used in the literature, i.e., authors in [93] proposed a novel learning-based multi-RRTs
(LM -RRT) approach for robot path planning in complex environments with narrow
passages. As stated in [93], this approach can guarantee global path planning efficiency
and enhance each tree’s local space exploration ability. Investigation of the shortest
path in a minimum computational time for the global path planning carried out in [29]
by using modified PSO. Authors in [94] have compared PSO and Q-learning for
multi-robot obstacle avoidance. The single robot case showed that the final performance

2.1. PATH PLANNING 25

obtained with the Q-learning approach is very similar to the one obtained with PSO. The
authors in [33] presented several path planning algorithms for navigating mobile robots
among obstacles and weighted regions. These algorithms can search for an optimal
path and intelligently rotate the robot to pass through the narrow passages. To reduce
the chances of collisions between robots and obstacles, researchers in [26] presented a
new path planning technique. They assumed that the virtual obstacle’s size increased
approximately (2n+ 1) times the cell size in the workspace.

Researchers provided great effort to solve the path planning problem for mobile robots
in practical application, and they proposed many new methods. For example, the au-
thors in [14] presented preliminary results of applying a two-Kinect cameras system on
a two-wheeled indoor mobile robot for off-line optimal path planning. To solve the path
planning problem for rovers, authors in [12] presented a new algorithmic improvement.
This study proposed OUM -BD over the Ordered Upwind Method (OUM) to include
a bi-directional search. They stated that the proposed method OUM -BD is faster than
the existing OUM . Authors in [13] proposed a multi-objective path planning algorithm
based on improved PSO for robot navigation. For emergency evacuation simulation,
authors in [25] proposed a new path planning approach. In this approach, the Extended
Social Force Model (ESFM) is combined with the improved ABC algorithm to im-
prove crowd evacuation efficiency. Another approach called Grid-Based Random Tree
Star (GB-RRT) was developed by [11] to provide a minimum dose path for occupa-
tional workers in nuclear facilities in complex environments. The probabilistic roadmap
(PRM) method has been applied by [95] to optimize the walking path and reduce the
staff’s radiation exposure in a radioactive environment of nuclear facilities. They showed
that the proposed method has a good effect on path-planning, and it can generate a path
in a short computational time.

2.1.1 Multi-Goal Path Planning
Multi-goal path planning has been widely used in many robotics applications, such
as surveillance, manufacturing, autonomous inspection, and assembly. The existing
methods solve the MTP in a two-step process [81]: first, constructing a path by
optimizing the sequence of the goal points in a robot working environment without
considering obstacles; then, constructing a path (tour) when obstacles are introduced
into the environment, in which the robot must reach all sequenced goal points, and it
visits each goal once. The MTP in the presence of obstacles has been discussed in the
literature. Many solutions have been found in this area. For example, self-organizing
map (SOM) [37, 96], branch-detected algorithm and heuristic algorithm [39], boundary
iterative-deepening depth-first search (BIDDFS) algorithm [97], Lin-Kernighan
Heuristics (LKH) algorithm [98], generalized travelling salesman problem with neigh-
bourhoods [41], probabilistic roadmap (PRM) planner [40], ant colony optimization
(ACO) combined with a sampling-based point-to-point planning algorithmhm [81],
branch-detected algorithm, and heuristic algorithm [39], adaptive neural network [99],

26 CHAPTER 2. RELATED WORK

Partially Observable Markov Decision Process (POMDP) framework [43], hierarchical
distance computation based on the A∗ search algorithm [100].

The MTP has been previously investigated for many practical problems, and several
approaches have been proposed. For example, planning for a robotic arm [34, 40], hexa-
pod walking robot [96], industrial manipulators [101], spot welding task [82,100], inspec-
tion planning [102], search and rescue mission [103], planetary exploration [39], inspec-
tion and surveillance applications [81], coordinate measuring machines (CMMs) [40],
finding cracks in large structures [104], office-like environments to perform common tasks
of picking up and delivering things such as mail, goods, trash recycled paper, etc [98]. The
author in [34] considered the practical application of the robot motion planning problem,
e.g., in spot-welding, car-painting, inspection, and measurement tasks [34] to compute a
near-optimal path of a mobile robot.

2.1.2 Multi-Robot Multi-Goal Path Planning

In previous research work, different methods were used to solve the multi-robot multi-
goal path planning problem, i.e., the authors in [47] considered the cooperative path plan-
ning problem of multiple mobile robots in an unknown indoor environment. They pro-
posed a novel obstacle avoidance and real-time navigation algorithm. This algorithm con-
sists of global path planning and local path planning via a hybrid artificial fish swarm al-
gorithm (HAFSA) and an expansion logic strategy. The application of adaptive Charged
System Search (CSS) algorithms has been used [105] to find an optimal path for mul-
tiple mobile robots . They examined these algorithms on holonomic wheeled platforms
in static environments. A new planning algorithm for multi-goal path planning, called
Space-Filling Forest (SFF), is proposed by [42]. The single robot ceiling vision SLAM
has been extended by [53] to multi-robot formations to address global localization prob-
lems in unknown environments. The author in [106] proposed improved classical Q-
learning and improved (PSO) with perturbed velocity (QIPSO-DV) algorithm to con-
struct an optimal collision-free path multi-robots path planning from predefined starting
and goal positions for each robot in the robot working environment. The authors in [107]
addressed the multi-robot multi-goal motion planning to solve the vehicle routing prob-
lem for mobile robots by using Monte-Carlo search. Additionally, new path planning and
collision-avoidance methods were introduced by [49] to solve multi-robot multi-goal path
planning problems. The motion planning problem for multi-robot spot-welding cells in
the construction of car doors studied by [50]. The authors in [52] present a solution to
an overall mission wherein a team of robots visit several mission sights and carry some
operation. The multiple mobile robot solutions are extremely useful in spacecraft, rescue,
transportation, etc [53].

2.2. CROWD SIMULATION AND PATH PLANNING 27

2.2 Crowd Simulation and Path Planning
Simulation of crowd movement and the interaction between pedestrians (agents, entities,
etc.) have been discussed in the literature. Many techniques have been studied for crowd
simulation and modelling behaviours [78]. These techniques considered the microscopic
model to simulate the path for every single agent in the working environment while
avoiding the obstacles and other agents [55]. The authors in [74] provided a microscopic
model for simulating crowd flow based on the generalized force model. In the crowd
simulation literature, many methods are proposed to avoid obstacles and navigate
through the environment, where the motion of dynamic obstacles and other agents
in the environment is taken into account [55]. Examples of these methods including
potential-based methods [108], boid-like methods [1, 70, 70], geometric and velocity
methods [109–111], field-based methods [69, 112–114], Data-driven methods [113],
Least effort crowds [76, 115–118].

For simulating large dense crowds, several techniques have been introduced in the
literature. For example, [58] presents an approach for simulating the crowds using
discrete agents as a single continuous system. Also, a crowd model based on continuum
dynamics provided by [57]; in this model, the dynamic potential field is integrated
with global navigation. The crowd flows numerically investigated by [119] using the
particle methods and continuous pedestrian model based on a generalized force model
reported in [74]. The authors in [59] derived the governing equations of motion for
simulating different types of pedestrians in the 2D environment. In literature, many
techniques are studied for modelling agents’ behaviours. For example, the authors
in [66, 75, 108] introduced a social force model, and also [75, 76] provided a cellular
automaton model to simulate pedestrian behaviour in a different environment. There are
many other approaches to simulate crowd behaviour based on cognitive modelling and
behavior [71], psychological or sociological factors [77], personality models [64], and
stress modelling [55, 120].

Moreover, the multi − agent systems (MASs) has been used for studying human
and social behaviours [69]. A MASs is a system composed of a set of autonomous and
heterogeneous agents distributed in an environment. The authors in [73] refer to the
MAS for studying the crowd behaviour based on individuals’ local behaviour and the
interactions with their surrounding environment. Most of the multi − agent systems
perform local collision avoidance, where the global path planning techniques are needed
to provide goal-directed capability [67].

The effect of groups on crowd movement was investigated in [76] using the least
effort cellular automata algorithm. They show that the formation of the groups has an
essential effect on the crowd movement, in which groups move slower than the individual
pedestrians, and they act as a barrier that slows down the crowd. To evaluate the impact
of group dynamics on the crowd movement, an agent − based model is proposed

28 CHAPTER 2. RELATED WORK

by [66, 73]. The authors in [72] suggested a multi-group microscopic model based on
the interacting particle system coupled with the eikonal equation for describing groups’
behaviour. Crowd simulation of different groups with heterogeneous behaviours in
digital cultural heritage investigated by [62]. In order to generate heterogeneous crowd
behaviours, the pedestrians’ characteristics and interactions among pedestrians need to
be simulated [64]. The problem of generating heterogeneous crowd behaviours by
adjusting the stimulation parameters is investigated in [64]. Furthermore, [72] discussed a
multi-behaviours microscopic model combining with the social force model and optimal
path computation. Moreover, simulating a crowd with a wide variety of pedestrians’
type is essential, where the characteristics of pedestrian and surrounding environment are
governor the crowd behaviours.

The authors in [121] provided a literature review from traditional models to recent
models to introduce the researchers’ crowd simulation models (e.g., group simulation,
emotion contagion). Traditional models can simulate general crowd dynamics of both
microscopic and macroscopic models, and the traditional models can simulate most of
the usual crowds. However, the results are not as realistic as real-world human behaviour.
The recent crowd simulation studies from group simulation to social psychology crowds
are possible to simulate realistic crowds. Future research directions suggested aiming
to develop new applications focused on more realistic, natural, and efficient crowd
simulation [121].

In a real crowd simulation application, the authors in [111] proposed an algorithm to
reconstruct and visualize continuous traffic flows. First, at two locations on a highway,
they record each car’s positions and the corresponding time instances. Then they pro-
posed an algorithm to reconstruct the traffic flows. Another crowd simulation method is
presented by [56] for generating the human-like trajectories in the simulated environment
based on geometric techniques. They analyzed the macroscopic flows for simulating the
crowd movement, and they compared the results with the pedestrian flows seen in real
human crowds. In animation and games, the authors in [1] combined steering behaviours
to make the character have the ability to navigate their world in a life-like manner. Lack
of data-sets of the crowd behaviours (i.e., individual tracks, personal characteristics
such as gender, height, etc.) makes it difficult to verify and validate crowd modelling
techniques [55].

In crowd animation, the authors in [1] combined steering behaviours to make the
virtual characters have the ability to navigate their environment. Moreover, the problem
of directing and controlling virtual crowds addressed by [69], they presented a method to
guide virtual agents toward a desired goal position. To perform multiple virtual agents’
path planning, the authors in [67] presents a Multi − agent navigation graph for each
agent in real-time. Having a keyframe-based interface is the right solution for tracking the
movement of virtual agents (characters, pedestrians, entities, etc.) in a virtual environment
in real-time. In literature, several techniques are proposed to animate crowds. Most of

2.2. CROWD SIMULATION AND PATH PLANNING 29

these techniques use a simple representation for each agent, i.e., circular shape in 2D
plane or cylindrical object in 3D space [55, 71].

30 CHAPTER 2. RELATED WORK

Chapter 3

Proposed Method for Path Planning

3.1 Problem Formulation

The path planning problem formulation involves searching the two-dimensional envi-
ronment for an optimal collision-free path for a mobile robot that connects the starting
position to the goal position. Let us consider a two-dimensional (2D workspace C = R2

for a mobile robot, the region of space occupied by obstacles is denoted by Cobs, and
the obstacle-free region is represented by Cfree = C – Cobs. The continuous workspace
is divided into square grid cells. The grid cells have integer coordinates in the form
C(x,y) ∈ C, where 1 ≤ x ≤ n and 1 ≤ y ≤ m. A given cell can either correspond to the
navigable area C(x,y) ∈ Cfree or to the space occupied by obstacles C(x,y) ∈ Cobs. Each
grid cell C(x,y) in Cfree has potential value E(x,y) ∈ E, which is calculated according
to the proposed potential function. The workspace’s boundary grid cells are considered
obstacles, and these grid cells are represented by CBGC ⊂ Cobs. The robot position
in the workspace is denoted by Cr(xr,yr). The starting and the goal points are denoted
by Cs(xs,ys) and Cg(xg ,yg), respectively. We assume that all information related to the
workspace known in advance, and the obstacles are assumed fixed, meaning that they do
not change their position during the simulation.

In this study, the problem formulation extended further to solve the multi-goal path
planning problem MTP for single and multiple mobile robots. A set of goal points
gi, (i = 1...n) are created randomly inside the free space Cfree, where the sequence of
the goal points is unknown. Each robot is requested to visit all goal points and find the
shortest path starting from the first goal g1 and tracking it through all intermediate goal
points gi, (i = 1...n), then return to the first goal g1. The robot needs to optimize the path
between goal points, and the robot is required to avoid obstacles. In this study, obstacles
are assumed to be static, and the robot is treated as a dynamic obstacle for other robots.
It desired to solve the path planning problem and find an optimal or near-optimal path for
each robot, in which each robot reaches all goal points.

32 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

Figure 3.1 illustrates a simple example of MTP in a 2D working environment with
obstacles. As illustrated in Figure 3.1a, the space occupied by obstacles is presented in
black, and the navigable area is presented in white. The obstacles are assumed to be fixed
in their positions. The goal points (4 goal) are located randomly in the robot working envi-
ronment, where a single point represents each goal. The robot has to reach all goal points
to fulfil a given task. However, the sequence of the goal points in which they should reach
is not defined. In this scenario, we can determine an optimal or near-optimal collision-
free path between each pair of the goal point in two steps. First, determine the optimal
sequence of the goal points over the free working space (see Figure 3.1a) to minimize
the path’s length. As shown in the figure, the arrows indicate the optimal sequence of the
goal points. The path starts from the 1st goal, passing through the 2nd goal, 3rd goal, and
4th goal and then return to the 1st goal. Once the sequence of the goal points is available,
the path planning method used to construct a collision-free path between every pair of the
sequenced goal points, as illustrated in Figure 3.1b. The path that starts from the initial
goal point, and passing through all intermediate goal points, then returning to the initial
goal point is called a multi-goal path. A multi-goal path is assembled by simply connect-
ing goal-to-goal points. The length of the multi-goal path is the sum of the length of all
goal-to-goal paths.

Figure 3.1: A simple example of a multi-goal path planning problem in a 2D workspace.
(a) shows the sequence of the goal points, the path marked in red dashed line, and the
goals are shown in grey square objects. (b) presents the optimal or near-optimal collision-
free path for a mobile robot between the goal points, plotted in the solid blue line.

3.2 Proposed Method for Path Planning
This section describes the proposed path planning method to find an optimal or near-

optimal collision-free path for a mobile robot in a 2D robot working environment. In the

3.2. PROPOSED METHOD FOR PATH PLANNING 33

Figure 3.2: (a) a nine-node quadrilateral element along, (b) the robot motion directions,
(c) the simulated robot in the exploration area.

proposed method, called Boundary Node Method (BNM), the robot is simulated by a
nine-node quadrilateral element p(q), (q = 1...9). The centroid node p(5) is considered the
robot’s position, and it moves with eight-boundary nodes in the working environment.
The boundary nodes p(1→4) and p(6→9) are distributed uniformly around the robot’s
position, as shown in Figure 3.2a. The robot moves forward and changes its motion
direction (see Figure 3.2b) based on the potential value and features of the boundary
nodes. Potential valueE(q), (q = 1...9) for the robot and boundary nodes are equivalent to
the potential value of the corresponding generated points in the workspace. The potential
value is calculated based on the proposed potential function. We considered only
eight-generated grid points overlapping with the eight-boundary nodes (see Figure 3.2c)
rather than considering all of the generated points, which is leads to less computational
time. All the visited waypoints w that the robot visits represent the obtained initial
feasible path (IFP) that connects the starting point Cs to the goal point Cg.

The proposed method consists of four main steps (see Figure 3.3):

1. Construct the 2D grid model for the robot working environment, and then calculate
the potential value of the grid cells based on the new proposed potential function.

2. Generate the initial feasible path (IFP) for the mobile robot by using Boundary
Node Method (BNM).

3. Construct an optimal or near-optimal path from the IFP by using Path Enhance-
ment Method (PEM).

4. Generate a continuous smooth path by using the cubic spline method.

Figure 3.3 shows an overview of the four steps mentioned above. The detail of each
step explained in the following subsections.

34 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

Used as input

Calculate the potential
value E of each cell

in the grid model
(using Algorithm 1)

Construct
the grid
model

C (using
Equation

3.1)

Goal
Position Cg

Potential
value E

Matrix (n,m)
Grid model

Step 1: Working Environment & Potential Function

Generate the initial
feasible path IFP

from the start point Cs
to the goal point Cg
(using Algorithm 4)

Obstacles
Cobs

Start
Position Cs

Goal
Position Cg

Grid
Model C

IFP &
waypoints
w List

Step 2: Boundary Node Method BNM

Construct an optimal
or near-optimal

collision-free path Popt
(Using Algorithm 5)

Obstacles
Cobs

Popt
& New

waypoints
w List

Used as input

Step 3: Path Enhancement Method PEM

Construct contin-
uous smooth path

from the start point
to the goal point

(Using cubic spline)

Continuous
smooth

path

Used as input

Step 4: Cubic Spline Method

Figure 3.3: Flow diagram of the proposed method for the path planning problem.

3.2. PROPOSED METHOD FOR PATH PLANNING 35

3.2.1 Modelling of the Workspace
In the proposed method, all the grid cells of the given workspace meet the following

equation:

C =
n∑

x=1

m∑
y=1

C(x,y) (3.1)

n and m represent the workspace’s width and height, respectively, and C(x,y) rep-
resents the grid cells in the workspace. After constructing the workspace model, each
grid cell’s potential value is calculated based on the new proposed potential function, as
explained in the next subsection.

Potential Function PF

This section presents a new proposed potential function to calculate the potential value
E(k), (1 ≤ k ≤ N) for N grid cells in the workspace C. The procedure for calculating the
potential value E(k) based on the proposed potential function illustrated in Algorithm 1.
Figure 3.4 shows two examples of the proposed function. In this figure, the cell’s colour
represents the potential value. For example, the blue cell corresponds to the cell with the
lowest potential value. The yellow cell corresponds to the cell with the highest potential
value. As shown in the figure, the shape of the potential function is conic. This function
has the lowest potential value at the goal point. The potential value increases as the robot
move further away. Because the goal point has the lowest potential value, it attracts the
robot to move toward that point.

Algorithm 1 Calculate the potential value of the grid cells in the workspace.
1: Inputs:

Cg and C(h, k), (h = 1...2), and (k = 1...N)
2: Initialize:

E(k)← 0, (k = 1...N)
3: D = sqrt((xs − xg)2 + (ys − yg)2)
4: m = ((ys − yg)/(xs − xg))
5: c = (ys −m ∗ xs)
6: ll = sqrt(m2 + b2), (b = −1)
7: for k = 1 to N do
8: dp(1, k) = sqrt((C(1, k)− xg)2 + (C(2, k)− yg)2)
9: L(1, k) = m× C(1, k) + b× C(2, k) + c

10: dl(1, k) = |L(1, k)|/ll
11: E(k) = sqrt(dl(1, k)2 − dp(1, k)2)
12: end for

In Algorithm 1, the computed E(k) represents the potential value of each grid cell
C(h,k), (h = 1...2) and (k = 1...N) in the workspace C. The minimum potential value

36 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

Figure 3.4: The potential value of the grid cells in the workspace in 3D view with
contour plot. The size of the workspace is 50× 50, and the the goal point Cg is located at
a) (40, 45) and b) (25, 25).

is located at the goal point Cg(xg ,yg). The distance between the starting point Cs(xs,ys) and
the goal point Cg(xg ,yg) is represented by D, and the slope of a straight line D is denoted
by m. The distance between the goal point Cg(xg ,yg) and surrounding point C(h,k) in the
workspace is represent by dp(1,k).

Obstacles Representation

After constructing the workspace and calculating the potential value for each grid cells,
several static obstacles are distributed at different locations in the workspace C. To
reduce the proposed method’s complexity, we assume that the obstacles form a set of
square cells (1 × 1 unit). The centre of the obstacle’s cells are defined by a matrix
Cobs(h,l), (h = 1, 2) and (l = 1...O), where O represents the number of obstacles. The
distance d between the centre and the edge of the obstacle is constant, d = 0.5 unit. As
the robot moves close to the obstacle, they should keep a certain margin for safety. In this
study, to avoid the possibility of overlapping the paths traced by the robot and obstacle
boundary, a safety zone around the obstacles is created.

An example of three different workspace scenarios with varying layouts of obsta-
cles shown in Figure 3.5. The characteristics of these three workspace scenarios are
illustrated in Table 3.1. The workspaces are shown in Figure 3.5 divided into square
grid cells, where each cell is considered either an obstacle Cobs or non-obstacle Cfree.
The potential value of the grid cells in the Cfree is calculated based on the proposed
potential function, as illustrated in Algorithm 1. The workspace’s grid cells use dif-
ferent colours to differentiate between Cfree and Cobs. The black cells represent Cobs,
and the coloured cells represent the potential value in the Cfree. The safety zone de-
fined by several grey square grid cells of the size (1×1 square unit) around the obstacles.

3.2. PROPOSED METHOD FOR PATH PLANNING 37

Figure 3.5: 2D models of the robot working environment with obstacles.

Table 3.1: Characteristics of three different workspace scenarios.

Workspace No. Cs(x,y) Cg(x,y) Workspace [cells] Obstacles [cells]
1 (5,5) (38,45) 2226 770
2 (5,5) (38,45) 2226 345
3 (5,5) (65,105) 7303 904

For the first (see Figure 3.5a) and second (see Figure 3.5b) designed scenarios, obsta-
cles represent about 34.6% and 15.5% of the workspace, respectively. In the third scenario
(see Figure 3.5c), a more complex environment with a high number of obstacles is con-
sidered, and obstacles represent about 12.4% of the workspace. After constructing the
workspaces with obstacles and calculating the potential value of the grid cells, the BNM
method is used to determine the collision-free path, the detail of the developed method is
described in the following subsection.

3.2.2 Boundary Node Method (BNM)

The BNM method consists of three steps:

1. Simulate the robot,

2. Movement of the robot in the workspace, and

3. Obstacle avoidance

38 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

Simulate the robot

In the simulated model, the nodes are denoted by p(q), (q = 1...9) and their locations are
formulated by Equation 3.2. At any iteration t, the current location of nodes denoted by
p1(t). The x and y− coordinates of the nodes’ location represented by two vectors x1(t) =
(x11, x12, ..., x19) and y1(t) = (y11, y12, ..., y19), respectively. The current location of
nodes p1(t) is formed by vertically concatenating x1(t) and y1(t), p1(t) = [x1(t); y1(t)].

p(q) =

x, y q=5
(x+ vx, y), (x, y + vy), (x− vx, y), (x, y − vy) q = 2, 4, 6, and 8
(x+ vx, y + vy), (x− vx, y + vy), (x− vx, y − vy), (x+ vx, y − vy)

q = 1, 3, 7, and 9

(3.2)

where x and y represent the coordinate of the robot location pr, and vx and vy repre-
sent the horizontal and vertical distances between pr and boundary nodes, vx = vy = 1
unit. The nodes p1(t) can move only in eight-possible directions e(u), (u = 1...8) (see
Figure 3.2b), as explained in the next subsection.

Movement of the robot in the workspace

At each iteration t, the current location of the robot and boundary nodes p1(t) move in
one particular direction. The new updated nodes’ locations p2(t) are calculated according
to the following equations:

x2(t) = x1(t) + ∆x (3.3)
y2(t) = y1(t) + ∆y (3.4)

p2(t) = [x2(t); y2(t)] (3.5)

where x2(t) and y2(t) represent the coordinates of the new updated nodes’ locations.

The values of the new updated nodes’ locations p2(t) depend on the current nodes’
locations p1(t) and the values of ∆x and ∆y, where ∆x and ∆y are computed by using
Algorithm 2. In this method, the values of gx and gy represent the distance between
the current location of the robot pr(xr,yr) and the goal point Cg in x and y directions,
respectively. The variables sx and sy represent the variation of the potential value between
p(2)&p(8) and between p(4)&p(6), respectively. The values of sx and sy are calculated
by using Equation 3.6 and 3.7.

sx(t) = E(p1(1, 8), p1(2, 8))− E(p1(1, 2), p1(2, 2)) (3.6)
sy(t) = E(p1(1, 6), p1(2, 6))− E(p1(1, 4), p1(2, 4)) (3.7)

The values of ∆x and ∆y have the same sign as the variation of the potential value
(both positive or both negative). The coefficients α and β influence the convergence

3.2. PROPOSED METHOD FOR PATH PLANNING 39

Algorithm 2 Calculate the values of ∆x and ∆y.
1: Inputs:

Cg, pr(t)
2: E(q), (q = 1...9)← E
3: sx, sy ← Equation 3.6 and 3.7
4: gx = xr(t)− xg
5: gy = yr(t)− yg
6: if sx < 0 then
7: compute gx = −1 ∗ gx
8: end if
9: if sy < 0 then

10: compute gy = −1 ∗ gy
11: end if
12: if gx = 0 then
13: compute ∆x = 0 and ∆y = β ∗ gy
14: else if gy = 0 then
15: compute ∆x = α ∗ gx and ∆y = 0
16: else
17: compute ∆x = α ∗ gx and ∆y = β ∗ gy
18: end if

behaviour. The distance between pr(t) and Cg is decreasing step by step until the robot
reaches the global minimum at the goal location.

TheBNM method uses an optimization technique based on the lowest potential value
to accelerate the robot to find the path and yield to fast convergence. Among all boundary
nodes, the node with the lowest potential value is chosen as the best position and denoted
by pbest. At each iteration t, the robot update its position to the best position pbest. The
boundary nodes help the robot move toward the goal location and guide the robot to avoid
obstacles, which we will discuss in the next subsection.

Obstacle Avoidance

In the workspace with no obstacles, the robot will reach the goal point along a straight
line from any starting point. As obstacles exist, the robot interferes with obstacles when
the distance between the robot and the obstacles is less than the distance d. Therefore,
the robot and boundary nodes must avoid obstacles and change their moving direction by
selecting a new position in the Cfree.

To explain the obstacle avoidance, consider a simple example shown in Figure 3.6.
Initially the boundary nodes p(1 → 4) and p(6 → 9) are generated around the robot
position p(5) by using Equation 3.2. As shown in Figure 3.6a, the red object represents

40 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

Figure 3.6: Illustrates the collision avoidance in the static environment by using the
BNM method, (a) the initial positions of the robot and boundary nodes, (b) the new
updated positions, (c) obstacles avoidance and change the motion direction.

the robot’s position, and the blue objects represent the boundary nodes. At iteration t,
the robot and boundary nodes are changing their positions from the current position (see
Figure 3.6a) to the newly updated position (see Figure 3.6b) by using Equations 3.3, 3.4,
and 3.5. As a result, the nodes p(7), p(8), and p(9) interfere with the obstacles (see
Figure 3.6b). Therefore, the robot needs to investigate the workspace to find the next
position without colliding obstacles. In this case, the robot will move in the y-direction
either to the upward or to the downward direction. The motion direction depends on the
value of sy (see Figure 3.6c), the robot moves backwards if sy(t) is negative, and the
robot moves forward if sy(t) is positive.

To demonstrate how the robot avoids the obstacles and changes its motion direction
with the help of boundary nodes, let us consider an illustrative example shown in
Figure 3.7. As demonstrated in Figure 3.7a and 3.7b, in iterations t = 1 → 4, the robot
starts to move from p1(t) to p2(t) toward the goal point by using Equations 3.3, 3.4,
and 3.5. At each iteration, all obstacles in the working environment are examined for
possible collision with the direct path from p1(t) to p2(t). As the robot moves toward
the goal point Cg in the iteration t = 5 → 6, nodes p(1), p(2), and p(3) interfere
with obstacles (see Figure 3.7c). This problem implies that the robot can only move in
y-direction, either upward (if sy is positive) or downward (if sy is negative). The next
position of the robot must be in an upward direction because the value of sy is positive
(E(6) > E(4)). The same procedure is repeated for iterations t = 7 → 10 by shifting
the robot upward until the robot passes the block of obstacles, as shown in Figures 3.7d
and 3.7e. For the iterations, t = 11 → 16, the BNM method directs the robot to move
forward (see Figures 3.7f and 3.7g) until the robot reaches the final destination point at
Cg (see Figure 3.7h).

3.2. PROPOSED METHOD FOR PATH PLANNING 41

Figure 3.7: Demonstrate the mobile robot exploration in a 2D working environment by
using BNM .

Suppose that the long horizontal set of obstacles block the robot path as illustrated
in Figure 3.8a. While the robot moves toward the goal point, nodes p(1), p(4), and p(7)
interfere with obstacles. Therefore, the robot needs to change its motion direction along
x-direction to avoid the obstacles. The motion direction depends on the value of sx. If
sx(t) is positive, the robot moves to the right, and if sx(t) is negative, the robot moves to
the left. In this case, the nodes at p(8) and p(2) have the same level of the potential value
E(8) = E(2). This implies that the variation of the potential value between p(2) and p(8)
is equal to zero (sx = 0). Therefore, the robot moves in both directions (see Figure 3.8b).
As shown in the figure, nodes p(7), p(8), and p(9) move one step to the left and nodes
p(1), p(2), and p(3) move one step to the right at each iteration. Two temporary sets,
described as a "waiting list", of visited grid cells on the left and right-side are stored. As
the robot reaches the end of obstacles on the left-side earlier (see Figure 3.8c), the BNM
method chooses the stored data-set on the left-side and disregards the stored data on the
right-side.

The BNM method introduces a new technique to solve the local minima problem,
as illustrated in Algorithm 3. This algorithm executes a sequence of steps that pulls
the robot out of the local minima area. For instance, consider the workspace with a
U -shaped obstacle shown in Figure 3.9, the robot starts to move at position (3, 15)
(see Figure 3.9a) toward the goal point at (23, 3). Similarly, in Figure 3.9b, the robot
moves from (23, 15) to (3, 3). The robot uses two different modes while moving in the

42 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

Algorithm 3 Illustrates the steps to bring the robot out of the local minima area.
1: Inputs: Cobs, sx, sy, p1(t), p2(t)
2: Check line segments between p1(q),(q=1...9)(t) and p2(q),(q=1...9)(t) for feasibility
3: If line between p1(q)(t) and p2(q)(t) interferedCobs then chk(q) = 1 otherwise chk(q) =

0
4: Construct matrix chk(q),(q=1...9)

5: while sum(chk) > 0 do
6: if chk(1), chk(2), and chk(3) = 1 then
7: p2x(t)=p2x(t)-c1, c1 is constant
8: if sy > 0 then p2y(t)=p2y(t)+c2 otherwise p2y(t)=p2y(t)-c2
9: repeat steps 2, 3, and 4

10: update p1y(t)← p2y(t)
11: store p5 in a waypoints w list
12: end if
13: if chk(1), chk(4), and chk(7) = 1 then
14: p2y(t)=p2y(t)-c2, c2 is constant
15: if sx > 0 then p2x(t)=p2x(t)+c1 otherwise p2x(t)=p2x(t)-c1
16: repeat steps 2, 3, and 4
17: update p1x(t)← p2x(t)
18: store p5 in a waypoints w list
19: end if
20: if chk(7), chk(8), and chk(9) = 1 then
21: p2x(t)=p2x(t)+c1
22: if sy > 0 then p2y(t)=p2y(t)+c2 otherwise p2y(t)=p2y(t)-c2
23: repeat steps 2, 3, and 4
24: update p1y(t)← p2y(t)
25: store p5 in a waypoints w list
26: end if
27: if chk(3), chk(6), and chk(9) = 1 then
28: p2y(t)=p2y(t)+c2
29: if sx > 0 then p2x(t)=p2x(t)+c1 otherwise p2x(t)=p2x(t)-c1
30: repeat steps 2, 3, and 4
31: update p1x(t)← p2x(t)
32: store p5 in a waypoints w list
33: end if
34: end while
35: return p1(t), p2(t), w

3.2. PROPOSED METHOD FOR PATH PLANNING 43

Figure 3.8: The workspace contains long horizontal obstacles that block the path of the
robot.

Figure 3.9: An illustrative simulation example of the local minima problem in a 2D
environment with U -shape obstacle.

simulated environment, namely the "normal mode" and the "local minimum recovery
mode". In the normal mode, for iteration (t)t=1,..,6, as the robot moves from the point
p1(t) toward the point p2(t), the line between p1(t) and p2(t) does not intersect with
the obstacles (see step (1) Figure 3.9). In order to check the feasibility of the path
represented by each line segment between corresponding points in p1(t) and p2(t), we
create a new row matrix chk(q), (q = 1...9). The value of each element of the row matrix
is equal to "0" or "1". At iteration t, for the 1st element (q = 1), if the line between
the first node of the simulated model in p1(t) and p2(t) intersects with the obstacles,
then the value chk(q) = 1, otherwise chk(q) = 0. The same procedure is repeated for
the 2nd element (q = 2), 3rd element (q = 3) until the last element (q = 9). In the
normal mode, all the values of chk(q), (q = 1...9) are equal to "0", and the robot travels
with the help of Algorithm 4. In the recovery mode, the robot switches to Algorithm 3,
as shown in steps (2 → 9) in Figure 3.9. In t = 7, as the robot moves forward
from p1(t) to p2(t), the line segment connecting corresponding nodes (3, 6, and 9)
intersects the obstacles (see Figure 3.9). In this case the values of chk(3),chk(6), and
chk(9) are equal to "1", then the robot moves to the right (see Figure 3.9a) or to
the left (see Figure 3.9b) with the help of the Algorithm 3. Once the robot has suc-
cessfully come out of the local minima, it can move smoothly again by using Algorithm 4.

The proposed potential function is similar to the attractive potential field in the sense

44 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

that both guide the robot to move toward the desired goal location, but the process for
calculating the potential value E is different (see Algorithm 1). In this study, the potential
value E(1,k) calculated using Equation 3.8.

E(1,k) = f(Cg, C(h,k)) (3.8)

As illustrated in Figure 3.9, the robot starts to move in step (1) toward the goal until it
collides with obstacles. When the simulated robot detects a collision, the BNM method
defines the interfered points’ position in the boundary nodes by using Equation 3.9.

p(t,h) = [x2(t); y2(t)], p(t,h) ∈ R2 : p(t,h) = (pr ∩ Cobs) (3.9)

To avoid obstacles, the new updated location of nodes p2(t) is calculated according to
the Equations 3.10 and 3.11, as follow:

x2(t) = x1(t) + f(E(1,k), p(t,h), p1, p2, Cobs) (3.10)
y2(t) = y1(t) + f(E(1,k), p(t,h), p1, p2, Cobs) (3.11)

For the step (2) to step (9) (see Figure 3.9), the BNM method gives the highest
priority to the obstacle avoidance processes and the lowest priority to the potential
value. Afterwards, in the step(10), the proposed method gives the highest priority to the
potential value until the robot reaches the goal point. As shown in Figure 3.9, the robot
did not block the U - shape obstacles; it always finds the path (if it exists) to reach the
final destination point.

In this study, the BNM method is used to generate the IFP for the mobile robot to
move from the starting Cs to the goal Cg points without colliding with any obstacles. The
IFP is generated from a set of waypoints w that the robot visits before reaching the final
destination point at Cg. For better clarity, the waypoints are connected into a continuous
path. The line segment connects two waypoints in sequence represented by Pl,l+1.
The length of all line segments that connect all waypoints sequentially represents the
length of IFP . A complete path IFP is formed by concatenation of all inter-line seg-
ments Pl,l+1, 1 ≤ l ≤ w − 1 as follows: IFP = [P1,2, P2,3 . . . , Pw−1,w]. The main steps
to find IFP for the mobile robot using theBNM method are summarised in Algorithm 4.

According to Algorithm 4, the robot starts to move at the point Cs(xs,ys) toward the
goal point Cg(xg ,yg). The current nodes’ location p1(t) of all nodes p(q), (q = 1...9) at
iteration t is formulated by Equation 3.2, where the x and y− coordinates of the robot
location pr at the first iteration coincide with the xs and ys of the start point Cs(xs,ys).
The node with the lowest potential value among all boundary nodes is chosen as the
best position and it is denoted by pbest, where the potential values E(q), (q = 1...9) of

3.2. PROPOSED METHOD FOR PATH PLANNING 45

nodes computed by using Algorithm 1. For iteration t, the new updated location of nodes
p2(t) = [x2(t); y2(t)] calculated by Equations 3.3, 3.4 and 3.5. The variation of the
potential value sx and sy calculated by using the Equations 3.6 and 3.7. Afterwards the
line segments between p1(t) and p2(t) check for feasibility. If the collision is not found,
then a new set of E(q), (q = 1...9) and pbest need to be calculated, as previously explained.
Subsequently, the current location p1(t) updates to the newly calculated location p2(t),
and the robot pr(t) updates its position to the best position at pbest. The BNM method
stores the robot’s location pr(t) in a waypoints w list. On the other hand, if the line
segments between p1(t) and p2(t) collides with obstacles, another updated location for
p2(t) needs to be found, as explained in subsection above. This procedure will continue
until the mobile robot reaches the final destination point at Cg(xg ,yg) or the maximum
number of iterations is reached.

Algorithm 4 Boundary Node Method (BNM)
1: Inputs:

Cs, Cg, Cobs, and C(x, y), (x = 1...n, y = 1...m), maximum
iteration number M

2: Initialize:
p1 ← Equation 3.2, x = xs, y = ys

3: E(k), (k = 1...N)← Algorithm 1
4: E(q), (q = 1...9)← E
5: pbest← minimum E(q)
6: sx, sy ← Equation 3.6 and 3.7
7: while (xr 6= xg or yr 6= yg within a M) do
8: p2(t)← Equation 3.3, 3.4, and 3.5
9: sx, sy ← Equation 3.6 and 3.7

10: Check the line segment between p1(t) and p2(t) for feasibility
11: if p(t) interfered withCobs then
12: p2(t)← ObsticleAvoidance
13: end if
14: E(q), (q = 1...9)← E
15: pbest← minimum E(q)
16: p1(t)← p2(t)
17: pr(t)← pbest
18: pr(t) in a waypoints w list
19: end while
20: IFP ← waypoints w list
21: Popt ← Algorithm 5
22: U ← Equation 3.12
23: End

Time complexity is the computational complexity that estimates the run-time of an
algorithm. In the developed method, the computational time required for generating the

46 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

waypoints w of the IFP is calculated based on the computational time needs for the line
"2" to "18" in Algorithm 4. To analyze the time complexity of the developed method,
we assumed that the size of the simulated model is defined by q (q = 9), the number
of iterations is defined by M , the problem size is denoted by N (N = n × m), and the
number of iterations needed by the robot to pass the block of obstacles is denoted by M1.

1. In step 2, the time complexity of computing p1(q), (q = 1...9) is T1 = O(q).

2. In step 3, the time complexity of computing E(k), (k = 1...N) is T2 = O(N).

3. In steps 4-6, the time complexity of calculatingE(q), pbest, sx, and sy, is T3 = O(q).

4. In steps 4-6, 8-9, the time complexity of calculating p2(t) is T4 = O(M ∗ q).

5. In step 10, the time complexity of collision test between a line segment (between
p1(t) and p2(t)) and obstacles is T5 = O(M ∗N ∗ q).

6. In steps 11-13, in case the line segment between p1(t) and p2(t) collides with ob-
stacles, the time complexity of these steps is T6 = O(M ∗N ∗M1 ∗ q).

7. In steps 14-18, the time complexity of determining the new set of E(q), (q = 1...9)
and pbest, together with updating p1 and pr, and store pr in a waypoints w list is
T7 = O(q).

The total time complexity of the developed method is: T = T1 +T2 +T3 = T4 +T5 +
T6+T7 T = O(q)+O(N)+O(q)+O(M ∗q)+O(M ∗q∗N)+O(M ∗N ∗M1∗q)+O(q)
= O(N ∗M ∗M1)

The obtained IFP is a safe path for a mobile robot between Cs and Cg; however,
it is not the shortest path. A new method, called Path Enhancement Method PEM , is
developed to reduce the overall path length, as explained in the next subsection.

3.2.3 Path Enhancement Method (PEM)
This section introduces the PEM method to generate the shortest path (see Fig-

ure 3.10a) from IFP (see Figure 3.10b). The PEM method is used to reduce the
number of waypoints of the IFP to obtain an optimal or close-to-optimal path. As
shown in Figure 3.10, the waypoints of the IFP are represented by red circle objects,
and the thick red line represents the obtained shortest path. To explain the basic idea of
PEM , consider an illustrative example shown in Figure 3.11.

As illustrated in Figure 3.11a, the IFP consists of "14" waypoints w, and they are
connected by line-segments. In this example, the robot starts to move from the starting
point and passes through all the intermediate waypoints until it reaches to the goal point.
As shown in the Figure 3.11b, the line segment U has two end points (let’s say u1 and

3.2. PROPOSED METHOD FOR PATH PLANNING 47

Figure 3.10: An example of the path planning for the robot navigation in the C -space.
(a) The shortest path is found using PEM , where the solid red line represents the shortest
path. (b) The obtained solution of IFP by using BNM , where the sequence of the red
circle objects represents the IFP .

u2). For the first line segments U1, the starting position of u1 coincides at the Cs. In order
to determine the position of u2, the PEM method connects u1 with w(j), (j = 1...J),
J = 14, iteratively. First, u1 is connected with the first waypoint w(1), then the line
between these two points is checked for feasibility. If a collision is not found, then u1 is
connected to w(2). Afterward the line between u1 and w(2) is checked for feasibility. If the
line does not collide with any obstacles, then u1 is connected to w(3), and this procedure
continues in the same way until j = 12. When j = 12, u1 is connected to w(12); in this
case the line between these two points collides with obstacles, as shown in Figure 3.11a.
Therefore, u2 of the first line segment is placed in w(11). For the second line segment
U2, the left-hand end u1 is coincides at u2 of the first line segment. In order to find u2
of the second line segment, the PEM connect u1 with w(j), (j = 12...14), iteratively.
Therefore, u1 is connected with w(12), w(13), and w(14) one after another, and the lines
between u1 and these points are check for feasibility. As shown in Figure 3.11a, these
line segments did not collide with obstacles. Therefore, u2 of the second line segment is
placed in Cg. The total length of the shortest path U is calculated by summing the length
of all the line segments U(i) in the path between Cs and Cg, as follows:

U =
I∑

i=1

(sqrt(u1x(i)− u2x(i))2 + (u1y(i)− u2y(i))2) (3.12)

where I represents the number of the line segments, which is equal to "2" in this
example. u1x(i), u2x(i), u1y(i), u2y(i) represent the coordinates of the endpoints of the
line segment U(i). The general procedure of PEM is illustrated in Algorithm 5.

3.2.4 Smooth Path Planning
The generated path obtained by BNM and PEM may contain sharp turns; this goes

against many real-world applications where smooth paths are preferred [122]. Moreover,

48 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

Figure 3.11: Create the shortest path from "14" waypoints in the 2D workspace, where
the red circle objects sign the waypoints. (a) construct the shortest path by using the
PEM method. (b) generate the IFP by using the BNM method. (c) determine the
shortest path using PEM and the smooth path by applying the spline method.

3.2. PROPOSED METHOD FOR PATH PLANNING 49

Algorithm 5 Path Enhancement Method (PEM)
1: Inputs:

Cobs, and w(j), (j = 1...J)
2: j ← 1
3: while j ≤ J do
4: u2 = w(j)
5: check the line Ui for feasibility between u1 and u2
6: if U(i) collide with Cobs then
7: store u1, u2 = w(j − 1)
8: u1 ← w(j − 1)
9: end if

10: j ← j + 1
11: end while
12: inserts Cs and Cg to the beginning and the end of the new waypoints list.

the robot may not be able to make a sharp turn due to its momentum [17, 21]. Therefore,
the cubic spline interpolation is adopted to generate a continuous smooth path that
connects the starting point to the goal point. The spline method is one of the most
efficient curve interpolating methods, which has many applications in robotics, signal
processing, and computer graphics [4, 21].

Consider the generated path by using PEM as shown in Figure 3.11c, the path con-
sists of two line segments U1 and U2 between Cs and Cg in the form of X and Y vectors,
where X=[x1 x2 x3] and Y =[y1 y2 y3]. The cubic spline interpolation is used to
calculate the spline for three waypoints (w = 3). Therefore, a new vector h is generated
for "200" points between the starting point (x1, y1) and the goal point (x3, y3). The vectors
of interpolated values xsp and ysp calculated based on the equations xsp=Spline(hn, x, h)
and ysp=Spline(hn, y, h), where hn = [1 2 3]. Then, we draw the line that passes
through these points. The constructed path passes smoothly through the waypoints thus
eliminating the sharp turn, as illustrated in the Figure 3.11c.

3.2.5 Multi-Goal Path Planning
This section describes using the proposed method to construct the shortest path between
several goals points gi, (i = 1...n). As explained in subsection 3.2, the first step of the
developed method is constructing a 2D grid model for the robot working environment.
The potential value of each grid cell is calculated based on the new proposed potential
function. In the second step, the initial feasible path (IFP) between each pair of goal
points is determined by using BNM . The IFP is generated from the waypoints w
that the robot has to traverse as it moves toward the destination point without colliding
obstacles. In the third step, the PEM method is used to construct an optimal or
near-optimal path by reducing the waypoints w and the overall path length. The detail of

50 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

Figure 3.12: There are three different working environments with varying layouts of ob-
stacles, the size of the workspace is 67 × 109, and the position of g1 and g2 located
randomly in the free space Cfree. The contour lines represent the potential value, and the
pink circle objects represent the goal points, g1 and g2.

these steps explained in the previous section. An example of three different workspace
scenarios with varying layouts of obstacles shown in Figure 3.12. In these scenarios, the
workspace consists of (67×109) grid cells. As shown in Figure 3.12, the number of static
obstacles (1 × 1 unit2) are distributed at different locations in the workspace, where
the number of grid cells occupied by obstacles in these workspaces equal to "1682",
"1060", and "956" grid cells. The white region represents the Cfree, and the black objects
represent the Cobs. The goal points are positioned randomly in the free workspace Cfree.

After constructing the workspaces’ models, the potential value E is calculated for
each grid cell in the workspace C based on the proposed potential function. This function
is used to direct the robot from the starting goal point g1(xg1, yg1) toward the destination
goal point g2(xg2, yg2). The potential function has the lowest potential value at g2, and
the potential value increases as the robot move further away. As shown in Figure 3.12,
the line’s colour represents the potential value, i.e., the blue line corresponds to the
lowest potential value, and the yellow line corresponds to the highest potential value.
Subsequently, the BNM method is used to generate the IFP for the robot to move
between goal points in the working space without colliding obstacles. As the robot moves
close to the obstacle, the robot and the boundary nodes must avoid obstacles and change
their moving direction by selecting a new position in the Cfree.

As the robot moves from gi to gi+1, (i = 1...n), where n is the number of the goal
points, it generates the path from the sets of waypoints w(j), (j = 1...J) that the robot
visits sequentially. For better clarity, the waypoints are connected into a continuous path.
The path between each pair of goals consists of a finite number of straight-line segments
joining the waypoints. The extracted path between each pair of goals is assembled se-
quentially until the path is completed into a single connected component. The path length

3.2. PROPOSED METHOD FOR PATH PLANNING 51

formed by concatenation of all line segments that connect all goal points is representing
the length of the IFP , as follows: IFP = [P1,2, P2,3 . . . , Pn−1,n]. The complete path
starts in g1, and passes through all the goal points gi, (i = 2, ..., n), and then returns to
g1 is called the obtained multi-goal path. The obtained path between goal points is safe;
however, it is not the shortest path. Therefore, the PEM is used to generate the shortest
path from IFP by reducing waypoints w.

3.2.6 Multi-Robot Multi-Goal Path Planning
This section presents the implementation of the proposed method for solving the
multi-robot multi-goal path planning problem by generating the shortest collision-free
path connecting goal points sequentially among obstacles. This study considered several
mobile robots that visiting several goals points gi, (i = 1...n). Each robot finds its path
independently to visit all goal points without collision with static obstacles or other
robots. The robot working environment and the obstacles defined in advance, and the
goal points are scattered randomly in the free workspace.

The problem formulation for multi-robot path planning determines each robot’s next
position from their existing positions in the workspace by avoiding collision with other
robots and obstacles. To illustrate the multi-robot path-planning problem, we consider a
group of mobile robots that plan their path in the same simulated working environment
(48 × 44 square grid cells). At any instant, a groups of robots (m robots) at positions
R(t) = r1, r2, ..., rm start to move to visit a set of goal points G(t) = g1, g2, ..., gn scattered
randomly in the 2D workspace with static obstacles. Each robot moves from the starting
position, through all of the intermediate goal points, then return to the starting position.
Such that all the robots reach each goal g, and each goal g ∈ G(t) visited by each robot
r ∈ R(t) once. In this study, each robot uses theBNM method to find IFP from any goal
point to the next goal point in the workspace without colliding with any obstacle or other
robot. The IFP for each robot is generated from a set of waypointsw that the robot visits.

To demonstrate the collision avoidance between two robots and changes in their
motion direction, we consider two simple cases shown in Figure 3.13. As illustrated
in Figure 3.13a, both robots start to move with boundary nodes in different directions.
While the robot moves forward in the first case, nodes p(2) and p(3) of the first simulated
robot interfere with the second robot. Nodes p(7) and p(8) of the second simulated robot
interfere with the first robot. In the same way, in the second case, node p(3) of the first
simulated robot interfere with the second robot. Node p(7) of the second simulated robot
interfere with the first robot (see Figure 3.13b). The robot needs to change its motion
direction to solve this situation along the y-axis. The motion direction depends on the
characteristics of the boundary nodes. Based on the position of the boundary nodes
and their potential values, the robot moves forward. It changes its motion direction by
shifting one step backwards and then one step in the downward direction. This process
continues until the robot passes the other robot, as shown in Figure 3.13c.

52 CHAPTER 3. PROPOSED METHOD FOR PATH PLANNING

Figure 3.13: Collision avoidance between two robots, (a) the initial positions of the robots
before the collision, (b) robot-robot collision avoidance and change motion direction, (c)
the robots in their new updated positions.

Chapter 4

Proposed Method for Crowd Simulation

4.1 Problem Formulation

This section presents the problem formulation for predicting the crowd movement in
the virtual environment. In this study, a crowd of pedestrians with different group sizes
and various types of pedestrians moving through the virtual environment for a limited
time. Each group of pedestrians visiting several goal points with varying sequences of
the visit. Moreover, the number of each type of pedestrian in each group is different, and
each type of pedestrian has its own attributes, such as position, velocity, energy, etc.
In the virtual environment, there are several obstacles at different locations that prevent
pedestrians from moving through, and pedestrians need to keep a certain distance for
safety reasons. For simulating the crowd movement, it is required to formulate groups of
pedestrians with a wide variety of characteristics in the front of the virtual environment
around the starting point. Based on the different schedule models, groups of pedestrians
are appropriately introducing into the virtual environment. After that, they will navigate
inside the virtual environment to visit several goal points, and then they will leave the
virtual environment. Sometimes, pedestrians may consider undertaking other activities;
it can happen between two sequential visits. In this study, pedestrians have to adjust their
attributes and optimize their paths continuously in the virtual environment. Moreover,
pedestrians need to avoid stationary obstacles and other pedestrians when they move
closer.

To demonstrate the groups’ formulation in the crowd, let us consider a very simple
scenario, as shown in Figure 4.1 and Table 4.1. For simplicity, we consider only two
groups for simulating pedestrians’ movement. The first group consists of "3" pedestrians,
and the second group consists of "5" pedestrians. We assumed only "2" types of pedes-
trians, namely agent1 and agent2, in each group. The first group has "3" pedestrians of
agent1 and "0" pedestrians of agent2, and in the second group, "2" pedestrians of agent1
and "3" pedestrians of agent2 are considered. We assume that the first group (Group−1)
visit goal2, goal6, goal4, and goal7, and the intention of the second group (Group− 2) is

54 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Table 4.1: Simple scenario for formulating groups of pedestrians in the virtual environ-
ment.

Variables Values
Number of groups nGroups=2 (Group− 1, Group− 2)
Number of pedestrians in Group− 1 3 pedestrians
Number of pedestrians in Group− 2 5 pedestrians
Number of pedestrian’s type nTypes = 2 (agent11, agent12)
nTypes in Group− 1 nPedestriansTypes[1]=[3, 0]
nTypes in Group− 2 nPedestriansTypes[2]=[2, 3]
Pedestriansgroup[1] [agent11, agent12, agent13]
Pedestriansgroup[2] [agent11, agent12, agent21, agent22, agent23]
Number of the goal points for Goalsgroup[1]=
Group− 1 [Start−point, Entrance, Goal2,

Goal6, Goal4, Goal7, Exit, End− point]
Number of the goal points for Goalsgroup [2]=
Group− 2 [Start−point, Entrance, Goal8,

Goal5, Goal1, Exit, End− point]

different, in which they visit goal8, goal5, and goal1(see Table 4.1). Initially, pedestrians
(Group− 1 and Group− 2) are distributed randomly in front of the virtual environment
around the starting point (see Figure 4.1). After that, all created groups in the virtual en-
vironment need to be appropriately introduced into the working environment based on the
specific schedule. In this example, groups (Group−1 and Group−2) start to move from
their starting points. Then, the groups of pedestrians enter the virtual environment through
theEntrance, and they navigate inside the virtual environment to visit several goal points
(Goalsgroup[1] andGoalsgroup[2]). Afterward, they move toward the entrance/exit to leave
the virtual environment, and they continue to move until they reach the last destination
point located at the End− point. In this study, the number of groups, pedestrians in each
group, types of pedestrians in each group, and the goal points are created randomly. The
variables are illustrated in Table 4.1, and the given scenario graphically is illustrated in
Figure 4.1.

4.2 Proposed Method for Crowd Simulation

This section introduces a new developed method to simulate the movement of crowds in
the virtual environment. For simulating the crowd movement in the virtual environment,
we consider multiple groups of different sizes and various types of pedestrians. In this
study, pedestrians in many groups moving through the navigable area inside a virtual
environment with different directions to reach their destination points. Pedestrians
should stay in the group, and they need to keep a certain distance between themselves.

4.2. PROPOSED METHOD FOR CROWD SIMULATION 55

Figure 4.1: Graphical representation of the given simple scenario.

Pedestrians in the same group have the same goal points to visit. Each group is assumed
to have a different list of goal points, where each goal point corresponds to a specific
region in the virtual environment. The virtual environment consists of walls, obstacles,
or other areas that may not be accessible to pedestrians in addition to the goal points.

The proposed method uses the multi − group microscopic model for generating a
real-time trajectory for each pedestrian while navigating in the walking area. Moreover,
an agent − based model is introduced into the proposed method for modeling pedes-
trian’s behaviors, where each type of pedestrian has its own attributes. This method in-
troduced several steering behaviors to help pedestrians to behave and interact with the
other pedestrian in the virtual environment. The steering behaviours include separation,
cohesion, alignment, obstacle avoidance, pedestrian collision avoidance, flocking,
goal−directed steering behavior, etc. Additionally, some techniques combine the steer-
ing behaviors to a single steering force that allows pedestrians to move toward their des-
tination points independently in real-time. The combinations of steering behaviors are
used to generate heterogeneous crowd behaviors. During the simulation, pedestrians
moving in groups toward their destination point in the simulated working environment,
and also pedestrians avoid obstacles and other pedestrians when they move closer. More-
over, the goal point for each group of pedestrians is changing dynamically, and the desired
goal point is defined at each step from the list of goal points. In the proposed method,
pedestrians carry out various crowd activities, such as adjusting their attributes, avoiding
collisions, optimizing their paths, changing their behavior, etc. In this study, pedestri-
ans use the local knowledge for local collision avoidance and for interacting with other
pedestrians. Also, pedestrians use global knowledge for long-term planning and to pro-
vide goal directing capability. The proposed method is illustrated by the flowchart shown
in Figure 4.2, and the steps followed in the flowchart is explained in detail in the following
subsections.

56 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

start

Environment Setting

nFrame? 1End

Goalsindex

kFrameactivate

nGroups?1 2

Pedestriansgroup
nPedestriansgroup

Goalsgroup

nPedestrians?2 3

Terminate?

Calculate : Separation,
Cohesion,

Alignment, Goal −
directed steering behavior

2

Calculate : Positionpe ,
V elocitype

, Energype

CalculateEnergype

updateEnergype

Energype
>

minEnergype

take a rest for

”t”Frame

modify Goalsgroup

modify Energype

after ”t”Frame
newEnergype

=
maxEnergype

updateEnergype

4

4

update :Goalsindex,
T erminategroups,

Activategroups

new Positionpe

new V elocitype

interference?
findnew

Positionpe

collision?
avoid obstacles

findnew

Positionpe

update new

Positionpe

3
2
1

4

End

no

yes

no

no

no

yes

yes

no

yes

yes

no

no

no

yes

yes

Figure 4.2: Flowchart illustrating the steps of the new proposed method for crowd simu-
lation.

4.2. PROPOSED METHOD FOR CROWD SIMULATION 57

In this study, pedestrians continuously adjust their position based on the proposed
method in real-time. Therefore, visualizing the 3D motion of pedestrians as they track
their trajectories is needed. For that reason, the virtual environment and the virtual
pedestrians are imported into the 3D animation software package AutodeskMaya [123]
via a custom Python script. Then the Maya’s keyframe system is used to visualize
the simulated scenario. In the proposed method, we created Python script models and
embedded them into the AutodeskMaya for generating real-time trajectories. The
code is written step-by-step from scratch in Pycharm [124]. Then Pycharm [124] is
connected to AutodeskMaya [123] by using MayaCharm Plugin.

The proposed method consists of three main steps: environment setting, motion com-
putation, and steering behaviors, and locomotion, as follow:

1. Environment setting: this step explains the construction of the virtual environment,
obstacles, pedestrians, goal points, and the initial state of the simulated scenario
(see Section 4.2.1).

2. Motion computation and steering behaviors: this step introduces the proposed
method for simulating the crowd and computes the pedestrians’ movement. Sev-
eral steering behaviors are described, and several techniques are used for combin-
ing steering behaviors to a single steering force to direct pedestrians toward their
destination points. Furthermore, this step explains the obstacles and pedestrians’
collision avoidance (see Section 4.2.2).

3. locomotion: this step concentrates on the virtual pedestrian’s animation in the vir-
tual environment. The locomotion converts the steering force to a control signal
motion, which guides the pedestrians to move in the virtual environment toward
their destination point (see Section 4.2.3).

4.2.1 Environment Setting

The first step of the proposed method (see Figure 4.2) introduces the working environ-
ment, obstacles, pedestrians, and goal points. Moreover, this step identifies the initial
state of the pedestrian’s attributes: position, velocity, etc. Also, interactions between
pedestrians with the environment have to be described. The detail of all these steps is
provided in the following subsections.

Remark. During this simulation, the virtual pedestrian’s Position is x, y, and z axes. We
assumed that the pedestrian is restricted to move in a 2D space in the proposed method.
Therefore, the pedestrian’s Position is defined by two independent coordinates, x and z,
and the value of the y− coordinate is set to zero.

58 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Figure 4.3: The layout of the virtual environment with obstacles.

Virtual environment and obstacles

This section describes the generation of the virtual environment with obstacles. First,
the virtual environment model is imported into the scene, as shown in Figure 4.3. The
walking area of the virtual environment is considered a two-dimensional (2D) workspace
(C) for all simulations. The workspace center is located on the original point (0, 0, 0),
and the continuous workspace is divided into square grid cells (x = 1, z = 1)unit.
After generating the workspace, the obstacle models import into the scene to prevent the
pedestrians from walking through the space occupied by obstacles. The region of space
occupied by obstacles is denoted by Cobs, and the obstacle-free region is represented by
Cfree. The grid cells have integer coordinates in the form C(x,z) ∈ C, with 1 ≤ x ≤ w,
and 1 ≤ z ≤ l, where w and l are represent the width and length of the simulated
workspace. A given cell can either correspond to a navigable area C(x,z) or to a space
occupied by obstacles C(x,z) ∈ Cobs. For each group during the simulation, each grid
cell C(x,z) in Cfree has a potential value E(x,y) ∈ E, which is calculated according to the
proposed potential function (see Subsection 3.2.1).

Pedestrians need to pay attention to the obstacles, and they have to keep a certain
distance from the obstacles. In this study, obstacles are distributed at different locations
in the free space. A safety zone is created around the obstacles to avoid the possibility
of overlapping the paths traced by pedestrians with the obstacle boundaries. The safety
zone is represented by a circle that the pedestrians can not enter during their motion. The
safety zone radius is constant, R, where the value of R depends on the size of obstacles.
Steps for constructing the workspace and obstacles are illustrated in Algorithm 6, and a
brief description of each step is provided as follow:

Step 1: Define number of obstacles n3DObstacles. Algorithm 6-Line(1)

4.2. PROPOSED METHOD FOR CROWD SIMULATION 59

Step 2: Import the models of the workspace and obstacles into the scene. Algorithm 6-
Lines(2,10)

Step 3: Determine the values of width w and length l of the simulated workspace from the
model in the scene. Algorithm 6-Line(3)

Step 4: Divide the continuous workspace into several square grid cells, and determine the
coordinates of each grid cell in the form C(i,j) ∈ C, where −w/2 ≤ i ≤ w/2, and
−l/2 ≤ j ≤ l/2. Algorithm 6-Lines(5-9)

Step 5: Set the value of each grid cell in the free spaceCfree inside the working environment
C to "0". Algorithm 6-Line(7)

Step 6: Set the value of each grid cell of the space occupied by obstacles Cobs inside the
working environment C to "1". Algorithm 6-Line(17)

Step 7: Create 2D array from the grid cells values, where the grid cells C(x,z) can either
correspond to the navigable area C(x,z) ∈ Cfree or to a space occupied by obstacles
C(x,z) ∈ Cobs. Algorithm 6-Lines(24,25)

Step 8: Create a safety zone around each obstacle with a radius of R, and there are
n3DObstacles obstacles in the scene. Each safety zone consists of a set of square
grid cells; the total number of the grid cells occupied by obstacles is equal to
nObstacles. The centre of the grid cells occupied by obstacles are denoted by
the matrix Cobs(h,l), (h = 1, 2), (l = 1...nObstacles).

Pedestrians

This section explains the creating of the virtual pedestrians and setting attributes asso-
ciated with each type of pedestrian in the crowd; these attributes include gender, age,
position, velocity, energy, etc. Creating pedestrians in the scene and setting attributes
of each pedestrian is illustrated in Algorithm 7, and a brief description of each step is
provided as follow:

Step 1: Define the number of groups (nGroups), number of pedestrian’s type nTypes, and
constant cp1. Algorithm 7-Line(1)

Step 2: Import the models of the pedestrians into the scene. Algorithm 7-Line(5)

Step 3: Simulate the crowd with several groups (nGroups), where each group consists of a
different number of pedestrians (nPedestriansgroup).

Step 4: Create pedestrians with their attributes for each type (nTypes) of pedestrians. This
study classified pedestrians into seven different types (nTypes=7) to establish the
range of variation; each type of pedestrian has an associated characteristic. Algo-
rithm 7-Lines(14-18)

60 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Algorithm 6 Generate workspace and obstacles
1: Inputs:

n3DObstacles
2: import theworkspacemodel into the scene
3: width(w), length(l)← workspace in the scene
4: Cobs = [], Cfree = [],
5: for i = −w/2 to w/2 do
6: for j = −l/2 to l/2 do
7: C(i, j)← 0
8: end for
9: end for

10: import obstaclesmodels into the scene
11: move obstacles to different locations
12: create a safety zone around obstacleswith the radius of (r)
13: for obs = 1 to n3DObstacles do
14: x1, z1 ← obstaclesmodel
15: for k = x1 − r to x1 + r do
16: for l = z1 − r to z1 + r do
17: if distance between (x1, z1) and (k, l) < R then C(k, l)← 1
18: end if
19: end for
20: end for
21: end for
22: for k = −w/2 to w/2 do
23: for l = −l/2 to l/2 do
24: if C(i, j) = 1 then assignC(k, l) asCobs

25: else assignC(k, l) asCfree

26: end if
27: end for
28: end for

4.2. PROPOSED METHOD FOR CROWD SIMULATION 61

Step 5: Formulate all pedestrians in the crowd (Pedestrianscrowd) with all their attributes
by concatenation of all pedestrians (nPedestriansgroup and Pedestriansgroup) of
all groups. Algorithm 7-Line(21-22)

Step 6: Determine the total number of pedestrians in the crowd (nPedestrianstotal) by
summing all pedestrians in all groups. Algorithm 7-Line(23)

Algorithm 7 Generate pedestrians with their attributes.
1: Inputs:

nGroups, nTypes, cp1
2: nPedestrianscrowd ← []
3: Pedestrianscrowd ← []
4: nPedestrianstotal ← 0
5: import pedestriansmodels into the scene
6: for gr = 1 to nGroups do
7: nPedestriansgroup ← 0
8: Pedestriansgroup ← []
9: for cl= 1 to nTypes do

10: nRandomTypes ← randomnumber between [1, cp1]
11: nPedestriansTypes ← nRandomTypes

12: nPedestriansgroup ← nPedestriansgroup + nPedestriansTypes

13: for pe = 1 to nPedestriansTypes do
14: create pedestrianwith attributes such as (position, velocity, scale, energy level)
15: define function to get/set position of pedestrians
16: define function to get/set velocity and energy level of pedestrians
17: define function to constrains an object′s orientation
18: Pedestriansgroup.append(Pedestrian)
19: end for
20: end for
21: Pedestrianscrowd.append(Pedestriansgroup)
22: nPedestrianscrowd.append(nPedestriansgroup)
23: nPedestrianstotal ← nPedestrianstotal + nPedestriansgroup
24: end for

Goal points

In the simulated environment, each group is assumed to have different goal points to visit
in terms of the number and sequence of the goal points. As shown in Figure 4.3, the goal
points (nGoals) in the simulated environment corresponding to a specific region in the
environment. Steps for formulating the list of goal points for each group in the simulated
environment is illustrated in Algorithm 8, and a brief description of each step is provided
as follow:

62 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Step 1: Define the number of the goal points nGoals and their locations (Goalsgroup) in the
crowd. Algorithm 8-Line(1)

Step 2: Denoted the list of all goal points existed in the scene by GoalPointslist, where we
obtained the values of x − coordinates (Goalsx) and z − coordinate (Goalsz) of
each goal in the scene (see Figure 4.3), the y − coordinate (Goalsy) is set to zero
vector. Algorithm 8-Line(3)

Step 3: Create the number of goal points randomly (nRandomgoals) between [1, nGoals]
for each group, and also the sequence of the goal points is generated randomly.
Algorithm 8-Line(6)

Step 4: Create the starting and the final destination points for each group, which are located
outside the working environment. Algorithm 8-Lines(16-23)

Step 5: Generate the x−coordinate for both the start and the end points randomly between
[(−w/2), (w/2)], the y−coordinate is set to "0", and the value of z−coordinate is
equal to l/2 + cs1. The value of constant cs1 represents how far the goal point from
the outside of the working environment in z direction. Algorithm 8-Lines(17-20)

Step 6: Formulate the overall goal points’ array of the crowd (Goalscrowd) by concatenating
of goal points’ array of all groups (Goalsgroup). Algorithm 8-Line(27)

The initial pedestrians’ state

This section demonstrates the steps involved in setting the initial state of each pedestrian
in each group Pedestriansgroup in terms of the pedestrian’s position Positionpe and ve-
locity V elocitype . Pedestrians Pedestrianscrowd in each created group Pedestriansgroup
are distributed randomly outside the working environment. Then they start to move to
reach the goal point in the list of the goal points (Goalsgroup). Steps to compute the initial
value of Positionpe and V elocitype for each pedestrian are illustrated in Algorithm 9, and
a brief description of each step is provided as follow:

Step 1: First, this algorithm starts with the previously created input data: number of
groups nGroups, number goal points nGoals, all pedestrians in the crowd
Pedestrianscrowd, number of pedestrians in the crowd nPedestrianscrowd, the list
of goal points of all groups in the crowd Goalscrowd, and define constants cf1, cf2
and cf3. Algorithm 9-Line(1)

Step 2: Create random position for each pedestrian Positionpe (pe = 1, ..,
nPedestriansgroup[gr]) in each group gr, (gr = 1, ..., nGroups) around the starting
point Goalsgroup[1]. The distance between the randomly created point (x, z) and the
starting point depend on the value of constant cf1. The starting point is represent
the first goal point in the goal points list Goalsgroup that belong to the group gr.
Algorithm 9-Lines(6-11)

4.2. PROPOSED METHOD FOR CROWD SIMULATION 63

Algorithm 8 Generate goal points
1: Inputs:

nGroups, nGoals
2: Goalscrowd ← [], Goalsgroup ← [], nGoalscrowd ← []
3: GoalPointslist ← 3Dmodel in the scene
4: for gr = 1 to nGroups do
5: nGoalsgroup ← 0
6: nRandomgoals ← between [1, nGoals]
7: for go = 1 to nRandomgoals do
8: nRandomgoalsIndex ← between [1, nGoals]
9: x− coordinate← GoalPointslist[nRandomgoalsIndex]

10: y − coordinaten← 0
11: z − coordinate← GoalPointslist[nRandomgoalsIndex]
12: goalposition ← [x− coordinate, y − coordinate, z − coordinate]
13: Goalsgroup.append(goalposition)
14: end for
15: create the starting and final destination points
16: for gp = 1 to 2 do
17: x− coordinate ← randomnumber between[(−w/2), (w/2)]
18: y − coordinate ← 0
19: z − coordinate ← l/2 + cs1
20: goalposition ← [x− coordinate, y − coordinate, z − coordinate]
21: if gp = 1 then Goalsgroup.append(first, goalposition)
22: else if gp = 2 then Goalsgroup.append(last, goalposition)
23: end if
24: end for
25: nGoalsgroup ← nRandomgoals + 2
26: nGoalscrowd ← nGoalscrowd.append(nGoalsgroup)
27: Goalscrowd.append(Goalsgroup)
28: end for

64 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Step 3: Check the distance between the generated position Positionpe and the position of
all other created pedestrians PositionnPede, the distance should not reside within a
certain value (cf2). Algorithm 9-Lines(12-20)

Step 4: Formulate the list of all pedestrian’s Position in the crowd (Pedestrianscrowd) by
concatenation of all randomly created Position of pedestrians Positionpe of all
groups. Algorithm 9-Line(11)

Step 5: Create random velocity value V elocitype (pe = 1, .., nPedestriansgroup[gr]) for
each pedestrian in each group gr, (gr = 1, ..., nGroups), where the value of the
constant cf3 creates diversity in walking velocity V elocitype in a specific range.
Algorithm 9-Lines(25-30)

Step 6: Update pedestrians’ positions Positionpe (see Algorithm 9-Line(24)) and velocity
V elocitype (see Algorithm 9-Line(31)) in the scene.

In addition to setting of the pedestrian’s attributes include position Positionpe and
velocity V elocitype , the other pedestrians’ attributes such as gender, age, energy, etc.,
are need to initialised as well.

In this study, all groups (Pedestrianscrowd[gr], gr = 1, ..., nGroups) do not enter
to the simulated environment all together at the same time. Groups in the crowd need
to decide whether and when (keyframe kFrame) they start to move from the starting
point. Based on the specific schedule, all groups of pedestrians (Pedestrianscrowd)
which are created outside the simulated environment are appropriately introduced
into the simulated environment, as described in Algorithm 10. Based on this algo-
rithm, each group gr, (gr = 1, ..., nGroups) activate to move at randomly created
keyframe (kFrameactivate[gr]) between (1, nFrames*ca1), where nFrames represent
the total number of frames and ca1 is a constant. At the first keyframe, the value of
Activategroups[gr] is set to ”off” for each group (gr), this value will switch to ”on”
when the keyframe reach to kFrameactivate[gr], then the group Pedestriansgroup starts
to move. In the same way, at the first keyframe, the value of Terminategroups[gr] is set to
“off” for each group (gr). The value of Terminategroups[gr] will switch to ”on“ when
the group Pedestriansgroup reaches the final destination point Goalsgroup[last] outside
the simulated environment.

The groups’ initial configurations in terms of the number of the pedestrian, type of
pedestrian, number of goal points and their sequence, pedestrian’s attributes, and most
of the other variables are generated randomly. Additionally, it is essential to simulate
each pedestrian independently and introduce interactions between pedestrians and the
simulated environment. In this study, we create a set of functions to get and set the
pedestrian’s attributes in the scene in real-time.

4.2. PROPOSED METHOD FOR CROWD SIMULATION 65

Algorithm 9 Setting the initial state of the pedestrians in the crowd Pedestriansgroup.
1: Inputs:

nGroups, nGoals, Pedestrianscrowd, nPedestrianscrowd, Goalscrowd, cf1, cf2, cf3
2: Positionscrowd ← []
3: for gr = 1 to nGroups do
4: Pedestriansgroup ← Pedestrianscrowd[gr], nPedestriansgroup ←
nPedestrianscrowd[gr]

5: Goalsgroup = Goalscrowd[gr]
6: for pe = 1 to nPedestriansgroup do
7: Positionpe ← []
8: x− coordinate← (Goalsgroup[1][0] + random.random() ∗ cf1)
9: y − coordinate← 0

10: z − coordinate← (Goalsgroup[1][2] + random.random() ∗ cf1)
11: Positionpe ← [x, y, z], nPede← 1
12: while nPede < Pe do
13: interfere← ”True”
14: while interfere← ”True” do
15: if distance between Positionpe and Positionscrowd[nPede]<cf2 then
16: create another randomposition for Positionpe

17: else
18: interfere← ”False”
19: end if
20: end while
21: nPede← nPede+ 1
22: end while
23: Positionscrowd.append(Positionpe)
24: update position inPedestriansgroup[pe]withPositionpe

25: create randomvelocity for Pedestriansgroup[pe]
26: V elocitype ← []
27: vx − coordinate← randomnumber ∗ cf3
28: vy − coordinate← 0
29: vz − coordinate← randomnumber ∗ cf3
30: V elocitype ← [vx, vy, vz]
31: update velocity in Pedestriansgroup[pe]with V elocitype
32: end for
33: end for

66 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Algorithm 10 Create a list of random keyframe for activating groups in the scene.
1: Inputs:

nGroups, Pedestrianscrowd, ca1
2: kFrameactivate = []
3: Activategroups = []
4: Terminategroups = []
5: for gr = 1 to nGroups do
6: randomkeyframe ← random integer between[1, nFrames ∗ ca1])
7: kFrameactivate.append(randomkeyframe)
8: Activategroups.append(”off”)
9: Terminategroups.append(”off”)

10: end for
11: sort Pedestrianscrowd according to kFrameactivate

4.2.2 Motion Computation and Steering Behaviours
This section presents the technique to compute each pedestrian’s movement in the sim-

ulated environment and directs the groups through the walking area until they terminate
the simulation. This section also describes various types of steering behaviors that help
pedestrians in each group to move in the virtual environment. The pedestrians’ behaviours
include activities such as flocking with neighbouring pedestrians, goal-directing, obsta-
cle avoidance, and pedestrian collision avoidance. The initial state of the pedestrians,
goals, obstacles, and interaction between pedestrianswith environment of the simu-
lated crowd are defined previously. At each key-frame (keyframe) pedestrians are mov-
ing forward from the current position to the new updated position (Positionpe) with the
walking velocity V elocitype . The new updated Positionpe and V elocitype is calculated
based on the steering behaviours with the current pedestrian’s position and velocity. Al-
gorithm 11 explains pedestrians’ movement in the virtual environment from the starting
point to the ending point (see Figure 4.2), and this process is illustrated in the following
steps.

Step 1: First, this algorithm starts with the previously created input data: number of
groups nGroups, groups’ activate list Activategroups, groups’ terminate list
Terminategroups, pedestrians in the crowd Pedestrianscrowd, number of the pedes-
trians in the crowd nPedestrianscrowd, list of the goal points for each group in the
crowdGoalscrowd, list of the pedestrian’s Position in the crowd Positionscrowd, and
number of frames nFrames. Algorithm 11-Line(1)

Step 2: At each keyframe (keyframe = 1, ..., nFrames), the activate group’s value
Activategroups[gr] set to ”on” when keyframe reach to kFrameactivate[gr] (see
Algorithm 11-Line(3)). Then, for each activate group we will define:

1. Index of the goal point Goalscrowd[gr] (goal index, Goali). Algorithm 11-
Line(7)

4.2. PROPOSED METHOD FOR CROWD SIMULATION 67

2. Pedestrians in the group Pedestrianscrowd[gr]. Algorithm 11-Line(9)

3. Number of pedestrians in the group nPedestrianscrowd[gr]. Algorithm 11-
Line(10)

4. The goal points Goalscrowd[gr] for the group nPedestrianscrowd[gr]. Algo-
rithm 11-Line(11)

Step 3: For each pedestrian (pe = 1, .., nPedestriansgroup[gr]), the current pedestrian’s po-
sition (Positionpe) is obtained from the scene in real-time, and the value of pedes-
trian’s velocity V elocitype and pedestrian’s energy level Energype is obtained from
the attributes of pedestrian Pedestriansgroup[pe]. Algorithm 11-Line(14)

Step 4: At each keyframe, (keyframe = 1, ..., nFrames), the new V elocitype is calcu-
lated for each pedestrian Pedestriansgroup[pe] in activated groups. In this study,
pedestrian’ velocity is limited to mSpeed (unite/timestep), and the value of con-
stant cs1 affect the speed of the pedestrians in the scene. Algorithm 11-Line(23)

Step 5: For each pedestrian Pedestriansgroup[pe] in activated group Pedestrianscrowd[gr],
a new position Positionpe inside the simulated environment is computed based
on the steering behaviors that we will explain in the following subsections. Algo-
rithm 11-Lines(23)

Step 6: During this simulation, pedestrians need to keep a certain distance (2r) between
themselves. Therefore, the new updated Positionpe of each pedestrian has to
check for collision with neighboring pedestrians, as illustrated in Figure 4.6. Algo-
rithm 11-Lines(24)

Step 7: The proposed method for crowd simulation uses the BNM method to check the
new updated Positionpe for collision with obstacles. Suppose a collision happens
between pedestrians and obstacles. In that case, the BNM method computes an-
other new position Positionpe for the pedestrian to avoid collision with obstacles.
Algorithm 11-Lines(26)

Step 8: At each keyframe (keyframe = 1, ..., nFrames) the energy level of every single
pedestrian is decrease as they walk through the environment as follow: Energype =
Energype - cs1 (see Algorithm 11-Line(15)), where the constant cs1 represent the
reduced value at each keyframe. Suppose the value of Energype reaches below
the minimum Energy level. In that case, all pedestrians in the group will visit the
service point in the walking area after finishing the current task (see Algorithm 11-
lines(29-30)). Meanwhile, the group stays in the service point, their energy will
increase again, and they stay in the service point until their energy reaches the
maximum level. Then they will start again to move to visit the rest of the goal
points. Algorithm 11-lines(31-36).

68 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Step 9: At each key − frame, if the distance between any pedestrian Positionpe in the
group Pedestriansgroup and Goalsgroup[Goali] is reached below cs2, it indicates
that this group is arrived to the current goal point. Therefore, this group has to get
a new goal point from the goal points list and update the goal’s index (Goalsindex).
Algorithm 11-lines(17-22)

Step 10: At each keyframe, pedestrian changes its position to the new position at
Positionpe in real time, afterward, pedestrians update their attributes include
V elocitype and energype in Pedestriansgroup[pe] with the new calculated at-
tributes. Algorithm 11-lines(38,39))

Step 11: When the group Pedestrianscrowd[gr] reach to last goal point Goalsgroup[last],
the value of Terminategroups[gr] is switch to ”on” and also the value
Activategroups[gr] is switch to ”off” as well. Algorithm 11-Line(19-20)

In this study, different steering behavior are considered to direct the pedes-
trians toward their goal points in the simulated environment. The steering be-
haviours include alignment, cohesion, separation, obstacle avoidance, pedestrian
collision avoidance which are discussed in the literature (see [1]). Additionally, other
steering behaviors such as goal − directed behavior has been included in the steering
behaviors to control pedestrians’ motion and direct them to the goal points. In this
study, the current implementation of the obstacle avoidance and the collision avoidance
steering behaviour is different from the local approximation strategy discussed in Ref [1].
In the local approximation strategy, a bounding box is created around the vehicle, and the
box moves with the vehicle forward in the scene. Afterwards, depending on where the
box intersects with the obstacles a steering force is added, this type of avoidance strategy
produces smooth steering behaviour [125]. In order to direct pedestrians to avoid the
collision in this study, the BNM method is used to generate a collision-free path for
each pedestrian when they move close to the obstacles in real-time. Using the global path
planning in real-time contexts is difficult for modelling pedestrians’ behaviors by using
the agent − based model because it becomes computationally expensive. Therefore,
the agent − based models used in this study separate local collision avoidance from
global path planning. Based on the extended BNM method, each pedestrian in the
crowd is simulated by a nine-node quadrilateral element (see Figure 4.4a). The nodes
are denoted by p(q), (q = 1...9), the centroid node p(5) represents the pedestrian’s
location, as illustrated in Figure 4.4a&c, the nodes p(1 → 4) with p(6 → 9) represent
the eight-boundary nodes that help pedestrians to move forward and avoid obstacles. As
shown in Figure 4.4b, pedestrian and boundary nodes p(q), (q = 1...9) are restricted to
move in eight-possible directions e(u), (u = 1...8) in the workspace. More details on the
BNM method for path planning and its applicability to various problem area is provided
in Section 3.2.

4.2. PROPOSED METHOD FOR CROWD SIMULATION 69

Algorithm 11 Motion computation and steering behaviors
1: Inputs:

nFrames, nGroups, Activategroups, T erminategroups, P edestrianscrowd,
nPedestrianscrowd, Goalscrowd, Positionscrowd, cs1

2: for keyframe = 1 to nFrames do
3: if keyframe = kFrameactivate then Activategroups[gr]← ”on”
4: end if
5: pc ← 0, Goalsindex([1] ∗ nGroups)
6: for gr = 1 to nGroups do
7: pc ← pc + 1 , Goali ← Goalsindex[gr]
8: if (Terminategroups[gr]← ”off” and Activategroups[gr]← ”on”) then
9: Pedestriansgroup ← Pedestrianscrowd[gr]

10: nPedestriansgroup ← nPedestrianscrowd[gr]
11: Goalsgroup ← Goalscrowd[gr]
12: for pe = 1 to nPedestriansgroup do
13: Compute Separation, Cohesion, Alignment
14: (Positionpe , V elocitype , Energype)← Pedestriansgroup[pe]
15: Energype ← Energype − cs1, Pedestriansgroup[pe] ← Energype
16: if Energype > minimumEnergype then
17: if dist((Positionpe , Goalsgroup[Goali]) < cs2 then
18: Goali ← Goali + 1, updateGoalsindex[gr]← Goali
19: if goali = len(Goalsgroup) then
20: Terminategroups[gr], Activategroups[gr]← ”on”, ”off”
21: end if
22: end if
23: compute new V elocitype andPositionpe

24: if ind collision = ”True” then Positionpe ← Algorithm 12
25: end if
26: if Obstacle collision = ”True” then Positionpe ← BNM
27: end if
28: else
29: stay in service point, modify Goalsgroup andEnergype
30: update Pedestriansgroup[pe]with newEnergype
31: if staying time is finished then
32: for pe = 1 to nPedestriansgroup do
33: newEnergype ← maximumEnergype
34: update Pedestriansgroup[pe]← newEnergype
35: end for
36: end if
37: end if
38: update Pedestriansgroup[pe] ← new (Positionpe , V elocitype)
39: Positionscrowd[pc]← Positionpe , update keyframe and positionpe

40: end for
41: end if
42: end for
43: end for

70 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Figure 4.4: A nine-node quadrilateral element with a safety zone (a) along with its
motion directions (b) and simulated pedestrian in a virtual environment (c).

Obstacle Avoidance: based on the obstacles avoidance procedure using the extended
BNM method, the pedestrian and boundary nodes are steering to avoid obstacles and
changing their motion direction by selecting a new position in the free space Cfree. Ob-
stacle avoidance gives a pedestrian the ability to move in a complex environment cluttered
with obstacles. At each keyframe, the obstacles avoidance method considers all obsta-
cles in the walking area when a pedestrian moves near the safety zone around obstacles.
While the 2D distance between the pedestrian’s position and center of the obstacle is less
than (r+R), the pedestrian interferes with the safety zone around obstacles, where R and
r represent the radius of the safety zone around the obstacle and pedestrian, respectively.

Pedestrian Collision Avoidance: in this study, groups of pedestrians navigating in the
virtual environment, which full of pedestrians walking in the same area from different
directions. Each moving pedestrian represents a dynamic obstacle for the remaining
pedestrians in the scene. Other pedestrians influence the pedestrian’s motion in the crowd,
which introduces interactions among pedestrians. Pedestrians should not reside within
the personal space requirement, the so-called private sphere, of the other pedestrians.
Usually, each pedestrian has a safety zone with a radius, r (see Figure 4.5), pedestrians
should keep a certain distance from the other neighboring pedestrians located too close.

For instance, as the current pedestrian tends to move forward, it should keep a cer-
tain distance from other neighboring pedestrians in the walking area, as demonstrated in
Figure 4.6a. This study assumes that the distance between pedestrians should not be less
than (2r). Suppose that the distance between current and neighboring pedestrian drops
below a specific value (2r). In that case, the current pedestrian changes its motion direc-
tion slightly in surrounding areas to prevent the collision. For this situation, the authors
in [74] mentioned that pedestrians usually choose the fastest route to reach their next des-
tination, but not the shortest one. In general, pedestrians consider detours and the comfort
of walking, thereby minimizing the effort [74]. We have proposed an appropriate reactive

4.2. PROPOSED METHOD FOR CROWD SIMULATION 71

Figure 4.5: Personal space requirements.

behavior, called pedestrian collision avoidance, for preventing collision between pedes-
trians walking closer, and the pedestrian collision avoidance is illustrated in Figure 4.6b.
Suppose the current and neighboring pedestrian move closer, and the distance between
them drops below 2r. In that case, the current pedestrian steers to either left or right for
a newly calculated position Positionpe , which is located on the third vertex of an equi-
lateral triangle (see Figure 4.6b). The overall process of pedestrian collision avoidance
illustrated in Algorithm 12, and the concept of collision avoidance is explained in the
following steps:

Step 1: First, this algorithm starts with the previously created input data: position of
all pedestrians in the crowd Positionscrowd, new calculated pedestrian’s position
Positionpe , current pedestrian’s position Positionpe , number of all pedestrians in
the crowd nPedestrianstotals. Algorithm 12-Line(1)

Step 2: Check for interfere between current new pedestrian Positionpe and all pedestrians
Positionpe (pe = 1, ..., nPedestrianstotal) in the crowd, if the distance between
new pedestrian Positionpe and other pedestrians in the crowd is less than 2r, then
the interfere will occur and a new position Positionpe need to be calculated. Algo-
rithm 12-Line(3)

Step 3: Suppose a collision happens between pedestrians, the proposed method implements
pedestrian collision avoidance to avoid collision between pedestrians, as shown
in Figure 4.6b. There are two possibilities for the new pedestrian’s position (right−
hand side or left− hand side) located on the third vertex of equilateral triangles.
Algorithm 12-lines(4-13). The pedestrian will choose right− hand side or left−

72 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Figure 4.6: Sketch of the simulated pedestrian, as the current pedestrian move for-
ward, it may interfere with the neighboring pedestrian: (a) the distance between the cur-
rent pedestrian and the neighboring pedestrian is higher than a certain distance (2r), (b)
pedestrian collision avoidance is used to prevent collision between pedestrians.

hand side to avoid collision problem based on the random value. Algorithm 12-
lines(6-8)

Step 4: As long as the current pedestrian Positionpe and the other pedestrians in the crowd
are not interfering, the pedestrian will move from the current position Positionpe

to the new calculated position Positionpe . Then, pedestrians update their positions
Positionpe in the scene and in Positionscrowd.

Flocking Behaviour: in this study, pedestrians are always moving with the same
group, and there is a cooperation behavior among pedestrians in the same group
(Pedestriansgroup). The pedestrians’ steering behaviors in the same group demonstrate
how pedestrians react with each other, and pedestrians outside of the group are ignored.
In this study, steering behaviors such as alignment, cohesion, and separation relate to
the groups of pedestrians are considered. These behaviors influence on controlling of
the pedestrians’ motion, more precisely, on the position and velocity of the pedestri-
ans. The separation steering behavior gives a pedestrian the ability to maintain a certain
separation distance from other pedestrians in the same group, as shown in Figure 4.7a.
The separation steering behavior is used to prevent pedestrians from crowding together.
Moreover, the cohesion steering behavior gives a pedestrian the ability to cohere with
the other pedestrians, as shown in Figure 4.7b. At the same time, the alignment steer-
ing behavior tends to turn pedestrian, so it aligned with its neighboring pedestrians, as
demonstrated in Figure 4.7c. For details on the steering behaviors, see Refs. [1, 70].

4.2. PROPOSED METHOD FOR CROWD SIMULATION 73

Algorithm 12 Pedestrian collision avoidance
1: Inputs:

Positionscrowd,
newPositionpe ,currentPositionpe ,nPedestrianstotal

2: for pe = 1 to nPedestrianstotal do
3: if (distance betweennew Positionpe andPositionscrowd[pe]) < (2× r) then
4: ∆x = newPositionpe [0]− Positionscrowd[pe][0]
5: ∆z = newPositionpe [2]− Positionscrowd[pe][2]
6: if random.random() < 0.5 then rotateangle ← 60.0
7: else rotateangle ← −60.0
8: end if
9: α← rotateangle/180 ∗math.pi

10: newx ← newPositionpe [0] +math.cos(α) ∗∆x+math.sin(α) ∗∆x
11: newy ← 0
12: newz ← newPositionpe [2] +math.sin(−α) ∗∆x+math.cos(α) ∗∆z
13: newPositionpe ← [newx, newy, newz]
14: else if (distance betweennew Positionpe andPositionscrowd[pe])) = 0) then
15: newPositionpe ← currentPositionpe

16: end if
17: end for

Figure 4.7: The three different types of steering behaviors (a) Separation, (b) Cohesion,
and (c) Alignment. A similar figure is described by [1]

74 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Goal-directed Behaviour : pedestrians’ motivation in each group walking towards a
well-defined goal at a certain point in the virtual environment modeled by a goal −
directed behaviour. The computation of the goal-directed steering behavior (goalvector)
is explained in the Algorithm 13. As shown in this algorithm, the distance between
the current position of pedestrian (current Positionpe) and the current active goal
(currentGoalsgroup) is calculated. On condition that the distance between these two
points is less than a certain value (Cg1), then a new goal point is assigned for the current
group. Suppose the current goal point Goalsgroup is the last destination point. In that
case, the group will terminate the simulation, and this group is not active anymore. Oth-
erwise, the goal_directed steering behavior calculates the goalvector and normalizing the
goalvector by applying a weighting goalweight, as illustrated in Algorithm 13.

Algorithm 13 Goal-directed behavior
1: Inputs:

currentGoalsgroup, current Positionpe(pe ← index), goalweight,
Cg1

2: Goali ← Goalsindex[gr]
3: if (distance between current Positionpe and currentGoalsgroup) < Cg1 then
4: Goalsindex[gr]← Goalsindex[gr] + 1
5: if Goalsindex[gr]← length(Goalsgroup) then
6: terminate[gr]← ”on”, activegroup[gr]← ”off”
7: end if
8: end if
9: goalvector =← subtracting(currentGoalsgroup, current Positionpe)

10: goalvector ← normalizing(goalvector, goalweight)
11:
12: Combining with other behaviors, if there is
13:

Combining Behaviours: combining behaviors can happen in two ways: (1) switching
(2) blending [1]. As the walking circumstance changes in the simulated environment,
the pedestrian may "switch" between behavioral modes. Alternatively, these behaviors,
which are acting in parallel, are commonly "blended" together. For example, in normal
situations, as the pedestrians moving around through the simulated environment toward
their destination, they blend both flocking and goal-directed behavior to a single steering
force vector to allow the group to walk toward their goal. Pedestrians in the group always
must stay moving with the group toward their destination, and they cannot afford to ig-
nore either component behavior. Furthermore, suppose that a group of pedestrians move
in a given environment, and they approach an obstacle or other pedestrians in the same
or different groups. This situation leads to a behavioral switch from moving to collision
avoidance. All pedestrians are trying to avoid collisions with obstacles and pedestrians,

4.2. PROPOSED METHOD FOR CROWD SIMULATION 75

and pedestrians will not prefer to remain with the group while avoiding obstacles. Multi-
ple steering behaviors previously discussed guarantee the shortest collision-free paths for
pedestrians, and pedestrians never get stuck behind obstacles. The proposed method uses
Python scripted models to evaluate pedestrians’ behaviors and computed a new state of
pedestrians, and also generates 3D scenes and viewed in the animation software package
AutodeskMaya [123], as illustrated in the following subsection.

4.2.3 Locomotion
In this study, the proposed method computes the pedestrians’ movement taking into ac-

count the steering behaviors, and generates locomotion for each pedestrian in the virtual
environment in real-time. In this study, the Maya’s keyframe is used for 3D animating
of a large crowd of multi-groups of pedestrians walking around through the virtual envi-
ronment toward their destination points. As an implementation of the pedestrian flow, we
used seven different pedestrians for this simulation. Then, we imported into theMaya via
Python scripted models. Subsequently, Maya allows the scripted models to control the
pedestrians. Based on the proposed method, the position (Positionpe) and the velocity
(V elocitype) of each virtual pedestrian in the scene are updated in real-time.

76 CHAPTER 4. PROPOSED METHOD FOR CROWD SIMULATION

Chapter 5

Path Planning Results

5.1 Path Planning Simulation Results

In this study, the proposed method is implemented in the Python and Matlab pro-
gramming language on a laptop computer with Intel(TM) Core(TM) i5-8300H CPU ,
2.3GHz, and 8GB RAM . The performances of the developed method have been tested
on many different workspace scenarios with different obstacle layouts. We have changed
the workspace’s size and the number of obstacles scattered in the workspace in all tested
scenarios. Additionally, the starting Cs and the goal Cg points are positioned in different
locations in the free space Cfree. For the workspace scenarios shown in Figure 3.5, the
proposed method is used to find an optimal or near-optimal path fromCs toCg. The simu-
lation results to find the shortest path for the mobile robot is presented in Subsections 5.1.1
to 5.1.5. The implementation of the proposed method for generating the shortest path be-
tweenCs andCg in multi-robot systems is discussed in Subsection 5.1.6. Additionally, the
performance evaluation of the proposed method compared with the other path planning
methods is presented in Subsection 5.1.7. Then, the application of the proposed method
for solving the multi-goal path planning problems for single and multiple mobile robot
systems is presented in Subsection 5.1.8.

5.1.1 Boundary Node Method (BNM)

This section presents the simulation results of the generated IFP between Cs and Cg for
the workspaces shown in Figure 3.5 by using BNM . The obtained IFP is represented
by a set of waypoints w(j), (j = 1→ J). Each new position of waypoint w(j+1) allocated
after the position of the current waypoint w(j), where J represents the time in which the
robot reaches the goal point.

The simulation results for all tested scenarios are presented in Figure 5.1, and the
summary of the obtained results is provided in Table 5.1. The figure shows that the
obtained IFP allows the robot to move from Cs to Cg without colliding obstacles. Red

78 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.1: Simulation results of the generated initial feasible path (IFP) for all three
workspace scenarios using BNM .

Table 5.1: The total computational time and path length of the initial feasible path (IFP)
and the shortest path by using BNM and PEM .

Workspace Total Computational Time [s] Total Path Length [unit]
No. IFP Shortest Path IFP Shortest Path
1 0.955601 1.043110 112.9662 83.4301
2 0.896196 1.004691 110.1285 81.0895
3 1.100025 1.138494 201.3783 146.3850

circle objects represent the path’s waypoints, and for better clarity, these waypoints are
connected into a continuous path. It can be seen that the BNM method can overcome
the local minima problem. From Table 5.1, we can see that the developed method
provides the collision-free path for the robot in a short time, in particular for the highly
complex environment shown in Figure 5.1c. As presented in the third scenario, the total
computational time to find a IFP is less than 1.1 second.

The results show that the BNM method has been well applied for generating IFP
for a mobile robot, and this method has achieved good results in terms of safety and short
computational time. However, the generated path is not optimal in terms of the total
path length. To reduce the path length, a new developed method, called PEM , is used
as explained in Subsection 3.2.3, and the obtained results are presented in the following
subsection.

5.1. PATH PLANNING SIMULATION RESULTS 79

Figure 5.2: Simulation results of the generated path for all three workspace scenarios by
using PEM .

5.1.2 Path Enhancement Method (PEM)

This section presents the obtained results from implementing the PEM method to find
an optimal or near-optimal collision-free path for the three workspace scenarios. The
simulation results are shown in Figure 5.2. Moreover, the obtained computational time
with the path length for all simulated scenarios is provided in Table 5.1. As shown in
Figure 5.2, the PEM method can find the collision-free path covering the least number
of waypoints, where the solid red lines represent the best solution. According to the
obtained results presented in Table 5.1, it can be stated that the total path length for all
three designed workspaces was significantly reduced, and the percentage of enhancement
for all three scenarios are 26.2%, 26.4%, and 27.3%, respectively.

The geometrical complexity of the working environment is the main factor affecting
the computational time. However, the simulation results show that the computational
time required to obtain the IFP and the shortest path by using BNM&PEM is not in-
creased significantly with the growing complexity of the workspace. For example, the
workspace’s size and the number of obstacles are increased 3.2 and 2.6 times, respec-
tively, from the second scenario (see Figure 5.2b) to the third scenario (see Figure 5.2c).
Accordingly, the total computational time to find the IFP and the shortest path is in-
creased only around 1.5 and 1.4 times, respectively (see Table 5.1). In the second scenario
(see Figure 5.2b) and the first scenario (see Figure 5.2a), the required computational time
to determine the IFP and the shortest path is increased by 6.6% and 3.8%, respectively,
as the number of obstacles is increased by 123.2% for the same workspace. For each iter-
ation t during the search process, all obstacles in the workspace are examined for possible
collisions with the direct path from the current p1(t) to updated p2(t) nodes’ location.

80 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.3: Simulation results of the generated smooth path for all three workspace sce-
narios by using the cubic spline method.

5.1.3 Path Smoothing Using Interpolation Technique

In the obtained results shown in Figure 5.2, it can be observed that the proposed
method generates the path that consists of straight lines between waypoints with
sharp turns. In real applications, when the robot follows a path in the workspace,
it may not be able to make a sharp turn, and also, it is not the safest path for the
robot. In order to improve the path concerning the robot dynamics, the cubic spline
method is applied to construct a continuous smooth path that connects the starting point to
the endpoint for all three designed workspaces, and the results are presented in Figure 5.3.

The results demonstrate that the spline method can generate a continuous smooth
path to eliminate sharp turns. At the same time, the cumulative length of the smooth
path shown in Figure 5.3 is longer than the cumulative length of the line segment path
presented in Figure 5.2. The path length is increased by 7%, 4.4%, and 4.5% for all three
scenarios, respectively.

The cubic spline method aims to generate a smooth path for the shortest path that con-
nects the starting point to the goal point. However, in some cases, the constructed smooth
path can bring the robot close to the safety zone around the obstacles, or the robot collides
with the safety zone, which is undesirable in practice. In order to avoid the possibility of
overlapping the path traced by the robot with the safety zone, additional waypoints can
be inserted between the original waypoints until no safety zone or obstacles were found
along the resulting path, as explained [122]. Alternatively, Piecewise Cubic Hermite In-
terpolating Polynomial (PCHIP) can be used to construct a continuous smooth path,
as illustrated in [14, 126]. The PCHIP is similar to the cubic spline interpolation, but

5.1. PATH PLANNING SIMULATION RESULTS 81

Figure 5.4: Simulation results of the generated smooth path for all three workspace
scenarios by using PCHIP .

the PCHIP ensures a shape-preserving and avoiding the overshoots and oscillations that
could arise from spline interpolation. The generated path from the X and Y vectors of
the waypoints w is a zigzag line; we generate a new vector xi of about "1000" points from
the start point to the goal point. yi = PCHIP (X, Y, xi) returns a vector of interpolated
values yi containing elements corresponding to the xi. The resulting xi versus yi gives the
smoothed path. Figure 5.4 shows the obtained results of the smoothed paths generated by
using PCHIP . The generated paths’ lengths increased by 4.4%, 2.4%, and 2.6% for all
three scenarios, respectively. We can see the difference between the interpolation results
produced by PCHIP and cubic spline in Figures 5.3 and 5.4.

5.1.4 Irregular-Obstacle Environment
The proposed method uses the grid-based method to create a workspace environment.
The workspace environment is divided into many small square grid cells of the same
size (1 × 1 unit). Each grid cell can either correspond to a navigable area or a space
occupied by obstacles. Different obstacle shapes can be generated, such as circular or
non-convex obstacles, by approximating the obstacles’ shape and dividing it into square
grid cells. The completeness of the obstacles’ shape depends on the resolution of the grid
environment. Figures 5.5a and 5.5e show two examples of different workspace scenarios.
In these scenarios, the workspace consists of (50 × 50) grid cells, and the number of the
obstacles in the workspace is "312" and "316" grid cells, respectively. The starting Cs and
goal Cg points are positioned in the free space Cfree at (5, 5) and (45, 45), respectively.
The proposed method is used to determine an optimal or near-optimal path from Cs to
Cg. The simulation results for generating the IFP between Cs and Cg are presented in
Figures 5.5b and 5.5f . The figures show that the obtained IFP could successfully drive

82 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.5: Examples of different workspace with different obstacle shapes (a and e),
and the simulation results of the generated path for two workspace scenarios by using
BNM (b and f), PEM (c and g), and cubic spline method (d and h).

the robot toward the goal while avoiding obstacles in the highly complex environment.
The robot’s location is represented by a red circle object at each iteration. Figures 5.5c
and 5.5g present the obtained results of the PEM method to find an optimal or near-
optimal path. As shown in the figures, the PEM method can generate a short path, where
the solid red lines between Cs and Cg represent the best solution. Finally, the cubic spline
interpolation is used to construct a continuous smooth path that connects the starting point
to the goal point, and the results are presented in Figures 5.5d and 5.5h.

5.1.5 Three-Dimensional Environment
The proposed method extended further to include altitude as a third coordinate to solve

the path planning problems in a three-dimensional (3D) workspace. The workspace dis-
cretized into uniform cubic grid cells (1× 1× 1 unit), and the generated path is consists
of a sequence of cubic cells in a 3D grid model. The proposed method was implemented
for several 3D scenarios with satisfactory results. An example of the workspace scenario
is presented in Figure 5.6. The left-hand side of the figure represents the simulation re-
sults of the generated initial feasible path (IFP) for the 3D workspace scenarios using
BNM . The figure shows that the obtained IFP allows the robot to move from Cs to
Cg without colliding obstacles. Green circle objects represent the path’s waypoints, and
for better clarity, these waypoints are connected into a continuous path. The right-hand
side represents the obtained results from implementing the PEM method to find an op-
timal or near-optimal collision-free path. As shown in the figure the PEM method can

5.1. PATH PLANNING SIMULATION RESULTS 83

Figure 5.6: Simulation results for constructing a collision-free path by using BNM (a)
and PEM (b) to solve the path planning problem in a three-dimensional (3D) workspace.

find the collision-free path covering the least number of waypoints, where the solid red
lines represent the best solution. The results demonstrate that the proposed method was
successfully used to create the path from the initial point to the goal point in a given 3D
workspace.

5.1.6 Multiple Robot System
This section presents the implementation of the proposed method for collision avoidance
in multi-robot systems. Figure 5.7 shows an example of the simulation result for a multi-
robot system. In this example, there are four robots with four different starting Cs and
goal Cg points corresponding to each robot, and there are "304" static obstacles in the
workspace. The problem formulation determines each robot’s path in the simulated envi-
ronment by avoiding collision with static obstacles and other moving robots in the system.
Each robot moves from a starting position Cs, through all the intermediate waypoints w
until it reaches the goal position Cg. Each robot uses the BNM to find IFP between Cs

and Cg in the workspace without colliding with any obstacles (see Figures 5.7a and 5.7d).
The IFP is generated from a set of waypoints w that the robot visits before reaching the
final destination point. Then, the PEM method used to reduce the number of waypoints
of the IFP to find an optimal or close-to-optimal path (see Figures 5.7b and 5.7e). Fi-
nally, the cubic spline interpolation is applied to construct a continuous smooth path that
connects the starting point to the goal point (see Figures 5.7c and f). The simulation re-
sults show that all the robots reached the final destination positions successfully without
any collision with static obstacles or other robots.

5.1.7 Performance Evaluation
This section presents the performance evaluation of the proposed method compared

to PSO, A-Star, and APF . For this purpose, a simple example of a workspace is
created, as shown in Figure 5.8. The workspace’s size is set to (43× 68), where the space

84 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.7: Simulation results for solving the multi-robot path planning problem.

Table 5.2: Summary of the obtained results from the implementation of BNM , PSO,
A-Star, and APF for solving the path planning problem.

Method Total Computational Time [s] Total Path Length [unit]
BNM 0.82 53.49
PSO 1.51 57.70
A-Star 2.57 57.11
APF 0.66 61.00

occupied by obstacles Cobs consists of "1078" grid cells, and the obstacle-free space
Cfree consists of "1846" grid cells. After constructing the workspace with obstacles,
all methods namely BNM , PSO, A-Star, and APF are used to find the shortest path
between Cs at (8, 10) and Cg at (32, 56). The simulation results are shown in Figure 5.8,
and the summary of the obtained results is provided in Table 5.2. By comparing the
obtained results, which are presented in Table 5.2 for the four methods, it can be seen
that the BNM method can find the shortest path within less than one second. The BNM
method requires less than 55% and 32% of the computational time to find the shortest
collision-free path using PSO and A-Star, respectively. In terms of the total path length,
the shortest path achieved by the BNM method is about 7.2% and 6.3% shorter than
the path length generated by PSO and A-Star, respectively. In this workspace, the
computational time required to find the shortest path by using APF is lower by 20%
compared to BNM . In contrast, the shortest path achieved by BNM is 12% shorter than
the path length generated by APF .

5.1. PATH PLANNING SIMULATION RESULTS 85

Figure 5.8: Simulation results for solving the path planning problem in a 2D workspace
by using BNM (a), PSO (b), A-Star (c), and APF (d).

Figure 5.9: Simulation results from the implementation of the PEM method for opti-
mizing the generated paths by using BNM (a), PSO (b), A-Star (c), and APF (d).

The PEM method can also be used to optimize the generated paths obtained by
using BNM , PSO, A-Star, and APF . The obtained results from the implementation
of the PEM are presented in Figure 5.9. As shown in the figure, the PEM method can
find the collision-free path covering the least number of waypoints, and the solid red
lines represent the best solution. The results revealed that the length of the paths obtained
from PSO, A-Star, and APF reduced by 7.6%, 5.1%, and 9.9%, respectively. Also, the
cubic spline interpolation is used to generate a continuous smooth path that connects the
starting point to the endpoint, and the results are presented in Figure 5.10.

To demonstrate the performance of the BNM method for solving the robot path plan-
ning problem in the workspace that has been used previously in [2–5], a 2D workspace is
created as shown in Figure 5.11. The size of the workspace is set to (67× 67), the space
occupied by obstacles Cobs consists of "1520 "grid cells, and the obstacle-free space
Cfree consists of "2969" grid cells. After constructing the workspace with obstacles,

86 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.10: Simulation results from the implementation of the cubic spline method for
smoothing the generated paths by using BNM (a), PSO (b), A-Star (c), and APF (d).

Figure 5.11: Simulation results for generating the path by using BNM (a), PEM (b),
and cubic spline (c) in the workspace that previously has been used in [2–5].

the BNM method is used to generate IFP (Figure 5.11a) from the Cs at (64, 4) to the
Cg at (4, 64). Then, the PEM method is implemented to find the shortest path (see
Figure 5.11b). After that, the cubic spline method is applied to generate a smooth path
(see Figure 5.11c). The simulation results compared with the results obtained by using
an improved GA that have been used in the previous studies (see Table 5.3) to solve the
path planning problem in the same workspace [2–5]. By comparing the obtained results
from the proposed method and an improved GA in terms of the computational time, it is
observed that the computational time of the proposed method was remarkably reduced.

The comparison results demonstrate the performance of the proposed method for
solving the robot path planning problem. A simple workspace scenario has been selected
for the comparison because the computational time to find the shortest collision-free
path by other path planning methods is growing exponentially as the complexity of the

5.1. PATH PLANNING SIMULATION RESULTS 87

Table 5.3: Total computational time required to find the shortest path by using BNM and
improved GA.

Method Total Computational Time [s]
Improved GA Ref [3] 1.03
Improved GA Ref [4] 4.07
Improved GA Ref [2] 1.68
Improved GA Ref [5] 0.85

BNM 0.964

Table 5.4: Mean and standard deviation (Std) of the computational time and the path
length for "1000" independent runs to find the collision-free path using BNM , PSO,
GA, and A-Star,

Methods Computational Time, CT [s] Path Length, PL [unit]
MeanCT StdCT MeanPL StdPL

BNM 0.0142 0.0072 30.7710 15.9340
A-Star 0.0489 0.0640 30.0907 14.6124
PSO 0.0217 0.0052 34.3788 15.2495
GA 0.1188 0.2122 33.0144 11.1463

path-planning problem increases. Even though in some circumstances, the path planning
methods cannot find a feasible path [32, 80, 85]. In contrast, the proposed method BNM
solves these problems.

To validate the proposed method and compare its performance with theA-Star, PSO,
and GA, a 2D workspace is created. The workspace’s size set to (60× 60) and the space
occupied by obstacles Cobs consists of "136" grid cells. Afterwards, the BNM , A-Star,
PSO, and GA are implemented simultaneously to find the collision-free path for "1000"
independent runs. At each time in the test, the starting point Cs, and the goal point Cg

are created randomly. Moreover, the obstacles are distributed randomly in the working
environment. Each random placement of the obstacles led to a different workspace lay-
out. Two parameters are used to compare the path planning methods: the computational
time and the path length. The mean and standard deviation (Std) of the calculated com-
putational time and the path length are presented in Table 5.4. The obtained results have
shown that the proposed method achieved the best solution within a reasonable computa-
tional time. Moreover, the computational time to find the collision-free path is decreased
significantly compared with other path planning methods. Compared with PSO and GA,
the BNM method showed noticeable improvement in the path length. The mean value of
the path length obtained by the proposed method is smaller than that obtained from PSO
and GA by 11.73% and 7.3%, respectively. However, the mean value of the path length
generated by BNM is slightly greater than that obtained from A-Star by 2.21%. The

88 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.12: Performance evaluation of BNM , PSO, GA, and A-Star to find the
collision-free path for "1000" independent runs, (a) presents the obtained results of the
path length, and (b) presents the computational time results.

graphical representation of the obtained results is illustrated in Figure 5.12. As shown
in the figure, the PSO method has the least variance of computational time, and GA
better than the other method in terms of variance of the path length. The comparative
study shows that heuristic algorithms did not yield optimal results, and the results agree
with [127].

5.1.8 Multi-Goal Path Planning
This section presents the implementation of the proposed method for solving the multi-

goal path planning problem MTP for single and multiple mobile robot systems. The
MTP is formulated to find a collision-free path for the robot by avoiding collision with
obstacles in the simulated environment. The robot starts to move from the first goal point,
and the robot moves through all the intermediate goal points, then it returns to the first
goal position. The robot uses the proposed method to find the collision-free path to visit
all the goal points in the simulated environment. In order to validate the performance of
the developed method, different simulated configurations with different parameters have
been conducted.

Simulation Results of Single-Robot System

This section presents the obtained simulation results of the multiple-goals path planning
problem MTP for a single mobile robot whose task requires visiting multiple-goal
points. In this study, GA and BNM&PEM have been implemented for solving the
MTP in several simulated scenarios with different obstacles layouts and different
goal points. To demonstrate the multiple-goals path planning problem in a given 2D
workspace with obstacles, let us consider an illustrative example shown in Figure 5.13.
The problem is solved as follow: first, the optimal sequence of the goal points (3 goals)

5.1. PATH PLANNING SIMULATION RESULTS 89

Figure 5.13: An illustrated example of the multi-goal path planning problem for three
randomly-selected goal points. (a) the path is determined by using GA, plotted in a red
dashed line. (b) the IFP is generated by using BNM , plotted in the blue line. (c)
optimize the generated path by using PEM , plotted in the blue line.

located in a Cfree is determined, regardless of the obstacles, by using GA (see Fig-
ure 5.13a). As shown in the figure, the path (tour) starts from g1, passing through g2 and
g3 and returns to g1, where the goals marked in the pink circle object, and the red dashed
lines represent the shortest path between sequenced goal points. Next, the BNM method
is used to find the initial feasible path (IFP) connecting every pair of the sequenced goal
points, as illustrated in Figure 5.13b. It can be seen clearly that the BNM successfully
generated the IFP for the robot to move from g1 to g2 (see Figure 5.14a), from g2 to
g3 (see Figure 5.14b), and from g3 to g1 (see Figure 5.14c). As the robot moves from
gi to gi+1, (i = 1...n) in the workspace, the IFP is constructed from the waypoints
w(j), (j = 1 → J) that visited by the robot, where J represents the time required by the
robot to reach the destination point. As shown in Figure 5.14a → c, the waypoints w
are represented by blue circles objects, each new waypoint position w(j+1) is allocated
after the current waypoint position w(j). The obtained IFP is the collision-free path, and
the waypoints do not fall on any obstacle, and also, the line segments that connect the
waypoints do not intersect with obstacles.

The BNM method generated the IFP safely and efficiently, but the path is not
optimal in terms of the total path length. Therefore, the PEM method is implemented
to find an optimal or close-to-optimal path for the robot by reducing waypoints and the
path length. Figure 5.13c presents the obtained results, where the thick blue line object
represents the shortest path. A complete multi-goal path can be constructed by joining
all line segments obtained from g1 to g2 (Figure 5.14d), from g2 to g3 (see Figure 5.14e),
and from g3 to g1 (see Figure 5.14f). The exact path length L is the sum of path length
between goal points sequentially (l1, . . . , ln).

In this study, the performance of the proposed method has been examined to solve

90 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.14: Illustrates the steps of solving a multi-goal path planning problem. The
BNM is applied to generate the IFP for the robot to move from g1 to g2 (a), from g2 to
g3 (b), and from g3 to g1 (c). The PEM is implemented to generate the shortest path from
g1 to g2 (d), from g2 to g3 (e), and from g3 to g1 (f).

5.1. PATH PLANNING SIMULATION RESULTS 91

Table 5.5: Performance evaluation results: The mean and standard deviation of the com-
putational time (in seconds) required to find the feasible path for a single mobile robot in
three different working environment.

No. of Goals First Environment Second Environment Third Environment
MeanCT StdCT MeanPL StdPL MeanPL StdPL

2 4.9125 0.1966 4.8895 0.1249 4.5685 0.1641
4 5.1960 0.2057 5.1235 0.0953 4.8500 0.1126
6 5.3210 0.1501 5.2915 0.1200 5.0000 0.09531
8 5.4410 0.1210 5.4935 0.3305 5.0970 0.1425
10 5.6395 0.1245 5.7085 0.4026 5.1665 0.1111
12 5.6585 0.1608 5.8520 0.1461 5.2430 0.1246
14 5.7020 0.2240 5.9955 0.2518 5.3095 0.1236
16 5.7240 0.2368 6.0505 0.1719 5.3790 0.1587
18 5.7670 0.2157 6.1275 0.1831 5.4735 0.2103
20 5.8170 0.1787 6.1575 0.3323 5.5105 0.1694

the MTP for a single mobile robot in three obstacle-filled environment scenarios with
complex obstacles layout (see Figure 3.12). In these scenarios, the given working
environment is known in advance, and the obstacles are assumed to be static in their
position. Several goal points (n) are positioned randomly in the free space of the working
environment. In implementing and testing the developed methods, we compute the
shortest collision-free path for the robot to reach all goal points and visit each goal once.
Throughout this section, we consider different numbers of goal points (2, 4, 6, 8, 10, 12,
14, 16, 18, and 20 goal points). The proposed method has been tested for "200" randomly
generated scenarios to find the initial feasible path. At each instance, the goal points are
located randomly in the working environment, where each random placement of the goal
points led to different results.

The performance of the proposed method has been examined in terms of the total
execution time required to find the feasible path. The mean and standard deviation (Std)
of the computational time for each instance is presented in Table 5.5. The graphical
representation of the simulation results is given in Figure 5.15. The obtained results
reveal that the proposed method can determine the shortest path between each instance’s
goal points within a reasonable computational time. In particular, for the high number
of goal points in a highly complex environment, the total computational time to find the
feasible path is around "6" second. The simulation results show that the mean value of
the computational time is not increased significantly with increasing the number of goal
points and the complexity of the workspace (see Table 5.5). The computational time
needs to find the collision-free path depends on the number of goals and their ordering
and the obstacles’ geometric complexity.

92 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.15: The influence of the number of goal points on the total computational time
required to solve MTP for each simulated working environment.

An example of the obtained results for each simulated scenario with "20" goal
points located randomly in the working environment are presented in Figures 5.16, 5.17,
and 5.18. For each examined scenario, the GA is used to optimize the goal points
sequence with the absence of obstacles. The obtained results are shown in Figures
5.16a, 5.17a and 5.18a, where the goal points marked in pink circle objects and the red
dashed lines represent the shortest path between sequenced goal points. As shown in the
figures, the robot visits all given goal positions located in the working environment with
minimizes the path length and the total execution time.

Subsequently, the BNM method is used for generating the IFP between every
pair of the sequenced goal points, and the simulation results are presented in Fig-
ures 5.16b, 5.17b and 5.18b. The obtained results of the IFP represented by a set of
waypoints w, and the blue circle objects indicate the waypoints. For better clarity, these
waypoints are connected into a continuous path. As observed from the figures, the
final path allows the robot to move from goal-to-goal sequentially and avoid obstacles
successfully.

From the obtained results, it can be seen that the BNM has been well applied to
generate IFP and reached important achievements in terms of safety and short computa-
tional time. However, the path is not optimal in terms of the total path length. Therefore,
the PEM method is used to reduce the overall length of the IFP . The obtained results
for all tested scenarios are presented in Figures 5.16c and 5.17c and 5.18c, where the solid
blue lines between goal points represent the final solution. As shown in the figures, the
PEM method finds the collision-free path that covers the lowest number of waypoints,
and the total path length for each tested scenario is reduced significantly. Moreover, the
obtained results clearly show that the BNM&PEM methods provide a short and safe
path for the robot to visit a given set of goal points (see Figures 5.16, 5.17 and 5.18).

5.1. PATH PLANNING SIMULATION RESULTS 93

Figure 5.16: The first scenario of the multi-goal path planning problem with "20"
randomly-selected goal points. (a) the path is formulated by connecting the sequenced
goal points, plotted in a red dashed line. (b) the IFP is generated by using BNM , plot-
ted in the blue line. (c) optimize the IFP by using PEM , plotted in the blue line.

Figure 5.17: The second scenario of the multi-goal path planning problem with "20"
randomly-selected goal points. (a) the path is formulated by connecting the sequenced
goal points, plotted in a red dashed line. (b) the IFP is generated by using BNM ,
plotted in the blue line. (c) optimize the IFP by using PEM , plotted in the blue line.

94 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.18: The third scenario of the multi-goal path planning problem with "20"
randomly-selected goal points. (a) the path is formulated by connecting the sequenced
goal points, plotted in a red dashed line. (b) the IFP is generated by using BNM , plot-
ted in the blue line. (c) optimize the IFP by using PEM , plotted in the blue line.

Table 5.6: Characteristics of three different example scenarios with different number of
goal points.

Scenarios Goal points
First Scenario (four goal points) [[14,5],[37,20],[29,41],[19,23]]
Second Scenario (three goal points) [[14,5],[29,41],[19,23]]
Third Scenario (two goal points) [[14,5] ,[19,23]]

Simulation Results of Multi-Robot System

In this section, We conducted different simulated scenarios with a different number
of goal points and robots. A statistical analysis has been carried out to examine the
performance of the proposed method by calculating the execution time to find the
collision-free path for each simulated scenario. As shown in Table 5.6, a different
number of goal points in different locations are considered in all tested scenarios. The
problem is formulated to find a path for each robot in the simulated environment by
avoiding collision with static obstacles and other moving robots in the simulated working
environment. Each robot uses the BNM method to find the collision-free path to move
from the first goal point through all the intermediate goal points until it returns to the first
goal position.

The total computational time (CT) required to find the collision-free path for each
scenario has been computed for "240" independent runs. The mean and standard
deviation (Std) of the computational time is calculated, and the results are provided
in Table 5.7. The graphical representation of the simulation results is presented in
Figure 5.19. The simulation results reveal that all robots reached their final destination
goal within a reasonable computational time without collision with either static obstacles

5.1. PATH PLANNING SIMULATION RESULTS 95

Table 5.7: Performance evaluation results: the mean and standard deviation of the com-
putational time (CT) in seconds to find a collision-free path for each instance in different
simulated scenario.

No. of Robots First Scenario Second Scenario Third Scenario
MeanCT StdCT MeanCT StdCT MeanCT StdCT

1 12.6479 0.6727 11.8793 0.7119 6.0778 0.4230
2 25.3430 1.1184 24.2406 1.3893 12.1266 0.7627
3 38.3126 1.1113 36.4111 1.1663 18.5977 1.0296
4 52.5791 2.1483 48.9389 1.6548 25.3420 1.5899
5 66.2990 2.0072 61.7195 1.9908 31.8260 1.4962
6 80.8070 2.1736 76.3014 2.7425 38.7869 1.5057

Figure 5.19: The influence of the number of robots on the total computational time to
solve MTP using the proposed method for each simulated scenario.

or other robots. Moreover, it is observed that the mean value of the computational time
to find the collision-free path increases linearly with an increase in the number of robots,
as shown in Figure 5.19, and Table 5.7.

An example of the simulation results for the multi-robot multi-goal path planning
problem is shown in Figure 5.20, with five-robots (m = 5), four-goal points (n = 4), and
"304" static obstacles. In the first step, the GA is used to optimize the sequence of the
goal points, scattered randomly in the simulated working environment with the absence
of the obstacles (see Figure 5.20a). A group of robots (5 robots) moves along a line
(denoted by the solid blue line) to visit a group of goal points (4 goals), marked in the red
square objects. The BNM method is used to generate a goal-to-goal path to direct each
robot from the starting goal point toward the next goal point while avoiding collision
with static obstacles and other robots, as illustrated sequentially in Figures 5.20b → f .
Different colours of the small coloured circles represent the position of the robots.

Additionally, an example of the simulation results for different numbers of the robot is
presented in Figure 5.21, the number of goal points fixed ("4" goal points) and the number

96 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.20: Simulation results for solving the MTP : (a) the sequence of the goal points
obtained from the implementation ofGA, the red square objects represent the goal points.
(b → f) multiple robots (5 robots) move to visit multiple-goal points (4 goals) in a
simulated working environment with obstacles.

Figure 5.21: Simulation results for solving the MTP : the number of goal points is fixed
(4 goals), and the number of robots is varied (1→ 6).

5.2. PATH PLANNING WITH PHYSICAL ROBOTS 97

of robots changed from 1 to 6. The simulation results show that each robot generates a
collision-free path independently. Moreover, all robots reach the final destination point
successfully without collision with either static obstacles or other moving robots.

5.2 Path Planning with Physical Robots

5.2.1 Experimental Results of Path Planning

This section presents the implementation of the developed method, introduced in
Chapter 3, on the real robot. The e-puck mobile robot, shown in Figure 5.22a, is used
for the experimental test. The e-puck robot has a diameter of 75 mm, and it has two
actuators that control the movement speed and direction of the robot. We have chosen an
e-puck robot because the e-puck robot is very compact, small, and flexible [128]. There
is also a library extension to MATLAB to program the robot and integrate it with the
developed method. The e-puck robot uses Bluetooth to connect to the computer, which
allows the control programs to be remotely uploaded to the robot. Figure 5.22b shows the
experimental set-up to demonstrate how the robot navigates along the collision-free path.

Figure 5.22: The e-puck mobile robot was used for the experimental test (a). The experi-
mental set-up (b) for testing the performance ofBNM&PEM to solve the path planning
problem in a static environment.

First, the developed method is used to generate the shortest collision-free path to direct
the robot to move from the starting point (Cs) to the goal point (Cg) while avoiding the

98 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.23: Simulation and experimental results: (a) simulation result to generate a
shortest collision-free path by using BNM&PEM , and (b) → (f) e-puck robot posi-
tions at different locations in the robot’s working environment.

obstacles, as illustrated in Figure 5.23a. The obtained shortest path from BNM&PEM
consists of several waypoints w(j),(j=1...J,J=5). As shown in Figure 5.23a, the red circle
objects represent the waypointsw, and the red dashed line represents the obtained shortest
path. The motion data of the e-puck robot is calculated based on the obtained results
from the generated shortest collision-free path. Next, the e-puck robot is connected to the
computer via Bluetooth and the generated motion data are transmitted to the robot via a
toolbox eP ic(v2.1.2), where eP ic(v2.1.2) is used to control e-puck in MATLAB. Let
w1(x,y) be the centroid of the first waypointw1 of the generated path, andw2(x,y) represents
the centroid of the second waypoint w2. Then, the orientation of the robot is calculated in
MATLAB by using atan2(w2y-w1y, w2x-w1x). Subsequently, to move the e-puck robot
towards the second waypoint w2, the angle of the w2 for the robot is calculated. Then,
the e-puck robot starts to move from w1 to w2, and this procedure is continuing until the
robot reaches the goal point. Figures 5.23(b → f) shows the robot’s position at different
locations in the robot’s working environment during the experimental test. The test results
demonstrate that the proposed method can generate the shortest path to direct the e-puck
robot toward the goal point.

5.2. PATH PLANNING WITH PHYSICAL ROBOTS 99

Figure 5.24: The experimental set-up for testing the performance of BNM&PEM to
solve multi-goals path planning problem in a static environment.

5.2.2 Experimental Results for Multi-Goal Path Planning

In this section, the performance of the developed method for solving the multi-goals
path-planning problem is examined by carrying out a set of experimental tests with the
e-puck mobile robot. Several experimental scenarios are tested with different positions
of the goal points and various obstacles configuration. Figure 5.24 presents an example
experimental scenario involving a single mobile robot that visits four randomly-selected
goal points. This figure illustrates the experimental set-up and the robot working
environment with obstacles for conducting the experimental test.

As a first step for solving this problem, the GA is used to optimize the sequence
of the goal points scattered randomly in the 2D simulated working environment with
the absence of obstacles, as shown in Figure 5.25a. The shortest path is constructed by
linking all sequenced goal points, plotted in the red dashed line in Figure a. Then, the
BNM method is used to generate IFP to direct the robot from its current goal position
toward the second goal position while avoiding obstacles, as shown in Figure 5.25b.
Finally, the PEM method is used to find an optimal or near-optimal collision-free path
from the IFP by reducing the number of waypoints and the overall path length (see
Figure 5.25c). The obtained shortest collision-free path is used to direct the e-puck robot
to move from the first goal point (g1), passing through all intermediate goal points (g2, g3

100 CHAPTER 5. PATH PLANNING RESULTS

Figure 5.25: Simulation results of the proposed method for solving the MTP : (a) the
sequence of the goal points obtained from the implementation of GA, (b) the initial feasi-
ble path (IFP) generated from the BNM method, (c) the shortest collision-free path is
generated by using PEM .

and g4), and return to the first goal point (g1).

From the simulation results, as shown in the Figure 5.25c, the shortest path consists
of the sequence of waypoints w(j),(j=1...J),(J=7). The e-puck robot’s motion data is
calculated based on the generated data from the simulation results, as explained in the
previous subsection. The e-puck robot is connected to the computer via Bluetooth,
and the generated motion data transmitted to the robot via a toolbox eP ic(v2.1.2).
Afterwards, the e-puck robot started to move from the first goal point g1 towards the
second goal point g2 as illustrated in Figures 5.26. The same procedure is repeated
for all intermediate goal points (g3 and g4) until the robot return to the first goal point
(g1). Figures 5.26(a → f) show the robot’s positions at different locations in the
robot working environment during the experimental test. The test results show that the
developed method provides the goal-to-goal path to direct the e-puck robot to move from
g1, passing through all intermediate goal points gi, (i = 2...n), (n = 4), and return to g1.
The proposed method generates the optimal path in the high-resolution grid environment.
However, the path is not optimal in the low-resolution grid environment. The quality
of the constructed path depends on the resolution of the grid map. Besides, there are
uncertainties such as friction and slippery surfaces in a real environment, leading to
non-optimal results.

5.2. PATH PLANNING WITH PHYSICAL ROBOTS 101

Figure 5.26: Experimental results: (a) shows the initial locations of the e-puck robot
and the goal points in the working environment. The movement of the robot is shown in
(b) from g1 to g2, (c) from g2 to g3, (d& e) from g3 to g4, and (f) from g4 to g1. The
shortest path that the robot has to follow to reach the destination point is represented by
blue and yellow dashed-line, and the starting and destination goal points are represented
by the yellow and red dashed circles, respectively.

102 CHAPTER 5. PATH PLANNING RESULTS

Chapter 6

Crowd Simulation Results

6.1 Crowd Simulation

This chapter summarizes the implementation results of the proposed method for
simulating the crowd movement in the virtual environment shown in Figure 4.3. The
proposed method, described in Section 4.2, is used for generating real-time trajectories
for groups of pedestrians navigating in the virtual environment. In this study, we present
the pedestrians’ trajectories for two different scenarios. The first scenario involves
a problem with only four groups of pedestrians navigating in the walking area (see
Subsections 6.1.1). In the second scenario, the real-life crowd situation is considered (see
Subsections 6.1.2). Additionally, the performance of the proposed method for simulating
the crowd movement is compared with the related techniques (see Subsections 6.1.3).
Moreover, the effect of the crowd’s size on the computational time is investigated for
different simulations with various configurations, and statistical analysis for the obtained
data was carried out (see Subsections 6.1.4).

In this simulation, pedestrians of different groups’ sizes entering the virtual environ-
ment through the main entrance (see Figure 4.3). The entrance’s width is "15" units,
assuming that the distance in this study is measured in unit of length. The width w and
the length l of the simulated environment are set to "105" and "330" unit, respectively.
Pedestrians continuously move forward in the navigable area to reach their desired goal
points, and then they leave the simulated environment at the same entrance they came in.
Inside the simulated environment, there are "8" regions (goal points) that the groups of
pedestrians want to visit ("4" goals on both the right and left-hand side). Each goal point
is corresponding to a specific region in the simulated environment. Moreover, there are
"2" general service points. These points are considered a temporary goal point. We add
them to the goal points when the group needs them (therefore, nGoals="10"). The x and
z − coordinates of the goal points are set to [37.5, 37.5, 37.5, -37.5, -37.5, -37.5, -37.5,
37.5] and [69, 10.5, -51, 10.5, -51, 69, -109.5, -109.5], respectively, and the services
points are located at (0,0,0) and (0,0,-135). Additionally, the values of the parame-

104 CHAPTER 6. CROWD SIMULATION RESULTS

Table 6.1: Pedestrians’ distribution with different group size: presents the number of
groups in the simulation (nGroups ="4"), number of pedestrians of each type in the same
group (nPedestriansTypes), number of pedestrians in each group (nPedestriansgroup =
[4, 4, 5, 3]), and the total number of pedestrians in the crowd (nPedestrianstotal ="16")

Groups Type1 Type2 Type3 Type4 Type5 Type6 Type7 nPedestriansgroup
group1 1 0 1 0 1 0 1 4
group2 1 0 1 1 0 1 0 4
group3 1 1 1 1 1 0 0 5
group4 0 1 0 1 0 1 0 3
total 3 2 3 3 2 2 1 16

ters related to the steering behaviours such as [cohesion radius, separation radius,
alignment radius, cohesionweight, separationweight, alignmentweight] are set to
[6, e, 1.8, 0.75, 0.55, 0.02].

During the simulation, each pedestrian was considered as a dynamic obstacle for other
pedestrians. Every single pedestrian has a personal space requirement with a radius, r,
where other pedestrians should not reside within the space. In this simulation, the ra-
dius of the safety space around pedestrians r is set to 0.9 units. The minimum dis-
tance between pedestrians is set to 2 × r units, such that pedestrians do not interfere
with the other neighbouring pedestrians. We assume that there are four static obstacles
(n3DObstacles="4") located [(−20, 0, 80), (20, 0, 120), (−20, 0, 120), and (20, 0, 80)]
and a circular safety zone is created around each obstacle with a radius of 4units. More-
over, there are other two static obstacles located at [(−30, 0,−35), (30, 0,−35)], where
a circular safety zone is created around these obstacles as well with a radius of 7units.
While pedestrians move close to the obstacles and other pedestrians, they should keep a
certain space for safety. The detail of the simulation results is presented in the following
subsections.

6.1.1 Simulation of Simple Scenario

In the simple crowd simulation scenario, we consider only four groups of pedestrians
(nGroups ="4"). Each group contains a different number of pedestrians with "7"
different types (nTypes="7"). The number of each type of pedestrian in each group is
generated randomly between [0, Nc], it is assumed that Nc = 1. Pedestrian’s type and
group size distributions illustrated in Table 6.1. As shown in the table, the total number of
pedestrians in each group is determined simply by summation of all type of pedestrians
in the same group nPedestriansgroup, which are [4, 4, 5, 3]. Therefore, the total number
of pedestrians in the crowd is the sum of all pedestrians in the scene, which is equal to
"16" pedestrians (nPedestrianstotal="16").

6.1. CROWD SIMULATION 105

Figure 6.1: Goal points for each group of pedestrians: each goal point represents by
two-points, the first point is the entrance of the goal, and the second point represents the
inside of the goal area.

In the simulated scenario, pedestrians’ attributes and their movement are investigated
in each frame keyframe, where the maximum number of keyframes (nFrames) set to
"500". In the proposed method, a set of functions is created to get and set the values of
pedestrian’s attributes in real-time. Based on the proposed method, initially groups of
pedestrians gr, (gr = 1, ..., nGroups, nGroups ="4") with different types (nTypes="7")
created in the front of the virtual environment around the starting point. The initial
position of each pedestrian Positionpe (pe = 1, .., nPedestriansgroup[gr]) in each group
gr is generated randomly. Afterward, the initial walking velocity for each pedestrian
V elocitype (pe = 1, .., nPndividualsgroup[gr]) generated randomly between (0, cf3). The
constant cf3 represents the maximum walking speed (mSpeed), and it has been limited
to "2" units/timestep. In the simulated environment, groups of pedestrians move in
different directions to reach their desired goal points while avoiding obstacles and other
pedestrians in the scene.

In this study, each pedestrian is considered independently, and all pedestrians in
the same group have the same independent goal points. A list of goal points has been
created for each group, as shown in Figure 6.1, where the goal points and sequences
are generated randomly. Both starting and ending points are created randomly outside
the virtual environment, and these points are added to the list of the goal points. The
value of the x − coordinate for the starting and ending points are generated randomly

106 CHAPTER 6. CROWD SIMULATION RESULTS

Figure 6.2: keyframes for activating groups to move in the simulated environment.

between [0, w]. In addition, the value of z − coordinate for the starting and ending
points are fixed to l + cs1, it is assumed that the constant cs1 is set to "15". Moreover,
the goal point at the centre of the scene (w/2,l/2) represents the first service point. The x
and z − coordinates of the entrance are set to w/2 + 7.5 and l, respectively. As shown
in Figure 6.1, the origin point (0,0,0) of the virtual environment transformed from the
centre of the scene to the bottom left corner. The proposed method updates the current
group’s goal point if the distance between the current pedestrian and the current goal
point drops below a certain valueCg1. It is assumed that the value ofCg1 is set to 1.5units.

In this simulation, each group gr, (gr = 1, ..., nGroups, nGroups ="4") starts
to move to enter the simulated environment at a randomly generated keyframe
(kFrameactivate[gr]) between (1, nFrames*ca1), where nFrames represent the max-
imum number of frames and the value of constant ca1 is set to "0.5". The activated
keyframe for all groups illustrated in Figure 6.2, as shown in the figure, the blue circle
objects represent the keyframe for activating the groups to move, where the groups
1, 2, 3 and 4 are activated at keyframes 41, 137, 181, and 203, respectively. The red
circles in the graph represent the size of the groups in terms of the number of pedestrians,
the bigger circle represents the group with a higher number of pedestrians. Afterwards,
at each keyframe (keyframe = 1, ..., nFrames, nFrames ="500"), the position and
the velocity of pedestrians are computed by using the proposed method. The simulation
results of the pedestrians’ positions and velocity for all groups are shown in Figures 6.3
and 6.4.

The achieved results shown in Figure 6.3 represent pedestrians’ position in each
group after the simulation runs for "500" keyframe; red circle objects represent the
pedestrians’ positions. From the obtained results shown in Figure 6.3, it is observed
that the proposed method can create the trajectories for each pedestrian to move from
the starting point to the final destination point in the virtual environment. This study
considers the safety-zone around obstacles to avoid the possibility of overlapping the

6.1. CROWD SIMULATION 107

Figure 6.3: Pedestrian’ trajectory: showing the pedestrians’ movement towards their goal
points in a simulated environment.

Figure 6.4: Pedestrian’ velocity: change the walking velocity of all pedestrians.

trajectories traced by pedestrians with obstacle boundaries. The proposed method
provides a collision-free path for pedestrians to reach their goal points (see Figure 6.1).
Each new position allocated after the current pedestrians’ position and pedestrians start
to change their direction as they move closer to obstacles or other pedestrians in the scene.

Figure 6.4 presents the simulation results of the calculated pedestrians’ velocity based
on the proposed method. The left-hand side of the graph represents the pedestrians’
velocity in x and z − directions, and the right-hand side represents the absolute velocity
of all pedestrians in the scene. We obtained "4235" values of pedestrians’ velocity from
the simulation results, where the maximum value of the pedestrian’s velocity reaches to
1.139 units/timestep. The mean and the standard deviation of the calculated velocity
are equal to 0.929 units/timestep and 0.205, respectively. It can be observed from the
simulation results that the pedestrian’s velocity decrease as the pedestrians come closer
to the goal points. As shown in Figure 6.4, the minimum velocity is achieved near the
goal points.

Each pedestrian has a personal space requirement with a radius, r (see Figure 4.5)
to avoid pedestrians’ collisions. The radius of the personal space r set to 0.9unit.
Pedestrians should not interfere with the space of the other neighbouring pedestrians.
The minimum distance between pedestrians set to 2 × r units. At each keyframe, the
minimum distance between the current pedestrian and all other pedestrians is calculated,
and the obtained results presented in Figure 6.5. The mean and the standard deviation
of the calculated minimum distance are equal to 3.915 units and 2.038, respectively.

108 CHAPTER 6. CROWD SIMULATION RESULTS

Figure 6.5: The minimum distance between pedestrians.

The obtained results showed that the minimum distances do not fall below 1.8017 units.
The study of group behaviours can help to better understanding and respecting different
cultures’ personal space. Even identify the minimum personal space requirements needed
to protect health and limit the spread of the disease.

In this simulation, each group consists of several pedestrians’ type, where each type
of pedestrian has a different energy level energype , as illustrated in Table 6.2. Based on
the proposed method, the pedestrians’ energy level is calculated, and the obtained results
are presented in Figure 6.6. As illustrated in the figure, each raw represents the change in
the energy level of each pedestrian. For example, the first group consist of 4 pedestrians
Type1, Type3, Type5, and Type7 (see Table 6.1). Each pedestrian in this group has the
initial level of energy energype (maximum energype level) as starts to move to enter the
simulated environment at randomly created key-frame (keyframe 41, see Figure 6.2).
The maximum energy level for the Type1, Type3, Type5, and Type7 are equal to 8 * Ce,
12 * Ce, 16 * Ce, and 14 * Ce, respectively (see Table 6.2), the value of Ce is set to 25
in this simulation. As the pedestrians walk through the environment toward their goal
points, the energy level will decrease for all pedestrians, as shown in Figure 6.6. The
energy level of Type1 will reach below the minimum energype level first (see Figure 6.6)
because Type1 has a lower energy level than other pedestrians in the group. In this
situation, all pedestrians in the group will visit the service point in the walking area after
finishing the current task (see Figures 6.1 and 6.3). Meanwhile, the pedestrian stays in
the service point; their energy will increase again. They are staying in the service point
until their energy reaches the maximum level, and then they will start again to move to
visit the rest of the goal points.

In order to illustrate the pedestrian’s movement in the simulated environment,

6.1. CROWD SIMULATION 109

Figure 6.6: Pedestrian’ energy level: change of the pedestrians’ energy level at each
keyframe.

Figure 6.7: Pedestrian’s trajectory: the graph shows pedestrians’ movement in different
directions in the simulated walking area at different keyframes: 65, 100, 145, 165, 200,
230, 240, 270, 287, and 310. The red circle objects represent the pedestrians’ trace in
the virtual environment at each keyframe. The left graph shows the generated planned
pedestrian’s trajectory, and the right graph shows the simulation result of the pedestrian’s
trajectory in the virtual environment after the simulation runs for 500 keyframe.

110 CHAPTER 6. CROWD SIMULATION RESULTS

Table 6.2: Maximum and minimum energy level for each type of pedestrian

Types Type1 Type2 Type3 Type4 Type5 Type6 Type7
max energy 8 * Ce 10 * Ce 12 * Ce 20 * Ce 16 * Ce 18 * Ce 14 * Ce

min energy 4 * Ce 5 * Ce 6 * Ce 10 * Ce 8 * Ce 9 * Ce 7 * Ce

different stages of the simulation results are presented in Figure 6.7. A pedestrian (we
consider a group that consists of one pedestrian) activates to move to enter the walking
area at a randomly created keyframe, as shown in the Figures 6.7 left (a0) and 6.7
right (b0). Afterwards, the pedestrian enters the walking area through the entrance
at keyframe 65, as illustrated in the Figures 6.7 left (a1) and 6.7 right (b1), then
pass through the walking area to reach the goal points while avoiding obstacles. The
simulation results in Figures 6.7 left (a2) and 6.7 right (b2) present the time that the
pedestrian comes closer to an obstacle at keyframe 100, where the pedestrian turns to
the left to pass the obstacle without collision. As the pedestrian reach to the first goal
point, the current goal point update to the second goal point in the list of the goal points,
and then the pedestrian move toward the new goal point, as shown in Figures 6.7 left
(a3) and 6.7 right (b3) at keyframe 145. The pedestrian keeps changing the motion
directions in the walking area to determine a collision-free path and track the goal points.
The simulation results at several locations at keyframe 165, 200, 230, 240, and 270 are
presented in Figures 6.7 left (a4 → a8) and 6.7 right (b4 → b8). In this simulation,
the pedestrian visits the service point in the middle of the simulated environment, as
shown in Figures 6.7 left (a9) and 6.7 right (b9) at keyframe 287. Subsequently,
the pedestrian moves toward the entrance/exit to leave the working environment, as
illustrated in Figures 6.7 left (a10) and 6.7 right (b10) at keyframe 310. At the last
stage of the simulation, the pedestrian continues moving until it reaches the final destina-
tion point located at theEnd−point as shown in Figures 6.7 left (a11) and 6.7 right (b11).

The next simulated scenario demonstrates the construction and configuration of the
proposed method for simulating pedestrian crowd movement in a virtual environment of
public spaces such as a shopping mall. The simulation results with a higher number of
small groups are discussed and presented in the following subsection.

6.1.2 Simulation of Real-Life Crowd Movements

This section investigates the implementation of the proposed method for simulating
pedestrian crowd movement in a large and complex virtual environment of public
spaces such as a shopping mall for a limited time. To demonstrate a realistic pedestrian
movement through a virtual environment, we consider different groups with various types
of pedestrians (family, friends, etc.) in the crowd. Whereas each type of pedestrian has
its own attributes such as gender, age, position, velocity, energy, etc. In this scenario,
many groups of pedestrians are appropriately introducing into the shopping mall. Each

6.1. CROWD SIMULATION 111

Figure 6.8: A large-scale 3D model of the commercial mall populated by virtual groups
of pedestrians [6].

group’s intention is different for visiting the number of shops in the shopping area with
different visiting sequences. At each step in the simulation, virtual pedestrians adjust
their attributes and optimize their paths independently in real-time. Moreover, they avoid
stationary obstacles and other pedestrians in the virtual environment when they move
closer.

In this study, a multi-level shopping mall environment is considered, as shown
in Figure 6.8. For simplicity, we assume that the pedestrians are moving within a
pedestrianized area on the ground floor of the shopping mall (see Figure 6.9). The other
floor of the mall is not accessible by pedestrians. Pedestrians’ activities are categorized
into walking through the large environment model and shopping activities. The shopping

Figure 6.9: Screen-shot of the shopping mall with obstacles: shows the walking area on
the ground floor of the shopping mall with the 3D obstacles.

112 CHAPTER 6. CROWD SIMULATION RESULTS

Figure 6.10: Shows different 3D characters animation obtained from Mixamo [7]

mall consists of several shops, as shown in Figure 6.9, and the shops are located on both
sides of the shopping area to emulate the real-world scenario.

In this scenario, pedestrians formulated in groups before entering the shopping
mall. Each group consists of multiple pedestrian types (male and female) of different
ages (old, young, and child) to establish the range of personality variation. Several
examples of the virtual pedestrian [7] that have been used in this simulation are shown
in Figure 6.10. Each pedestrian has a different energy level, i.e., an old pedestrian has a
lower energy level than a young pedestrian. The energy level will decrease as they walk
through the environment. Pedestrians rest at the sitting place in a service point when their
energy level (energype) reaches below the minimum energy level. Furthermore, during
the visit, sometimes pedestrian considers undertaking other activities, and it can happen
between two sequential visits. Examples of activities in the proposed model include
having food and using other mall services. In the simulated scenario, pedestrians in the
same group have the same goal points (shops) to visit, and each group is assumed to
have a different list of goal points. Each goal point (nGoals) corresponding to a specific
region (shop) in the shopping mall environment. The detail of the simulation method is
described in Section 6.1.

Apart from pedestrians and shops, the simulated environment consists of walls,
obstacles, and other regions that not accessible by pedestrians in the crowd. For example,
there are several planting pots in the walking area of the shopping mall at different
locations (see Figure 6.9). In this study, the planting pots are used as obstacles to prevent
pedestrians from walking through, and pedestrians need to pay attention and keeps a
certain distance. Nevertheless, in reality, the planting pot maybe uses for decorating the
mall. Many other things can be used for preventing pedestrians from accessing a partic-
ular area and making pedestrians change their motion direction, such as barriers, signs,
etc. In this study, we defined the positions of the obstacles at different locations inside the
shopping mall. Then a safety zone around each obstacle is created to avoid the possibility

6.1. CROWD SIMULATION 113

Table 6.3: Pedestrians’ group size distributions in the crowd, where pedestrian is denoted
by p.

1p/ 2p/ 3p/ 4p/ 5p/ 6p/ 7p/
group group group group group group group

Number 8 29 65 46 38 9 1
Percentage 0.04 0.145 0.325 0.23 0.19 0.045 0.005

Table 6.4: Pedestrians type contribution in the crowd.

Type1 Type2 Type3 Type4 Type5 Type6 Type7
Number 108 93 97 92 99 104 103

Percentage 0.155 0.134 0.139 0.132 0.142 0.149 0.148

of overlapping the paths traced by pedestrians with obstacle boundaries. An abounding
circle represents a safety zone that the pedestrians can not enter during their motion.
The safety zone radius is constant,R, where the value ofR depends on the obstacles’ size.

In this simulation, we present the pedestrians’ movement in the crowd with "200"
different small groups, where each group has distinct goal points at known locations.
The total number of pedestrians in the crowd is the sum of all pedestrians in all groups,
which is equal to "696" pedestrians (nPedestrianstotal="696"). Pedestrians’ group size
distributions in the crowd are illustrated in Table 6.3. As shown in the table, the groups’
size is different in terms of the number of pedestrians. For example, in the condition
of pedestrian walking alone, "8" groups (4% of the whole number groups (nGroups),
where nGroups ="200") are seen in the crowd. The number of each pedestrian’s type
(nTypes="7") in each group is generated randomly between [0, Nc], and we assumed
that Nc = 1, and the obtained results are presented in Table 6.4. From the table, it is
observed that the total number of each type of pedestrian in the crowd is different. For
example, the total number of the first type of pedestrian (Type1) is "108" pedestrians
(15.5% of the total number of pedestrians in the crowd (nPedestrianstotal), where
nPedestrianstotal=696).

In this simulation, seven different types of characters (see Figure 6.10) are used
to generate "200" groups with "696" pedestrians. Initially, all groups of pedestrians
scattered in the front of the virtual environment around the starting point, as shown in
Figure 6.11a. In this scenario, the x − coordinate for the starting and ending points
for pedestrians is generated randomly between [−50, w + 50]. Moreover, the value of
z − coordinate is set to l + cs1, where cs1 is determined randomly between [10, 60].
Afterwards, the groups of pedestrians were appropriately introduced into the shopping
mall environment based on the schedule models (see Figure 6.12a). Each group starts to
move to enter the mall at randomly created keyframe (kFrameactivate[gr]) between (1,

114 CHAPTER 6. CROWD SIMULATION RESULTS

Figure 6.11: Screen-shot of pedestrian flow: a) shows the initial configuration of the
simulation, and b) the pedestrians’ trajectories in the final stage of the simulation.

nFrames*ca1), where ca1 is set to 0.5.

Figure 6.13 illustrates the activation’s’ keyframes of all groups; the blue circle
objects represent the keyframes for activating groups to move. The red circle represents
the groups’ size in terms of the number of pedestrians; a larger circle represents a group
with a higher number of pedestrians.

At each keyframe, pedestrians’ attributes and their positions are calculated and
updated independently in real-time. The maximum number of frames nFrames is set to
"200" keyframes. The simulation results of the pedestrians’ trajectories for all groups at
each keyframe are shown in Figure 6.11b. The figure shows that the proposed method
allows pedestrians to navigate in the walking area from the starting point to the final
destination point. The results have shown that the proposed method prevents pedestrians
from colliding with the obstacles and pedestrians in the scene by using the obstacle and
pedestrian avoidance method. As the pedestrians move closer to the obstacle and other
pedestrians, they need to change their motion direction to avoid collision problems. The
proposed method uses BNM for collision avoidance because this method has a high
computational performance. Moreover, pedestrians never get stuck in the local minima
behind the obstacles, and the BNM method guarantees the collision-free path.

Different screen-shot of the simulation results from different viewpoints presented
in Figures 6.12 and 6.14. As shown in Figures 6.12b&c, pedestrians attempt to walk in
different directions to reach their desired goal points while avoiding obstacles and other
pedestrians in the scene. All pedestrians remain with the group during the simulation.
Diffident types of walking states are demonstrated in the zoom-in Figure 6.14b of the
particular part of the scene. For example, a pedestrian (A) who has walked alone and
changing his motion direction to avoid stairs on his right. Moreover, a pedestrian (B) has
a limited space to move after leaving the shop − 6. At the same time pedestrian (C) has
a free moving space to move. At the end of the simulation, all groups terminated in front
of the shopping mall, as illustrated in Figure 6.14a. The figure showed that the most

6.1. CROWD SIMULATION 115

Figure 6.12: Screen-shot of crowd simulation: groups of pedestrians move in differ-
ent directions to reach their desired goal points while avoiding the static obstacles and
pedestrians in the scene.

116 CHAPTER 6. CROWD SIMULATION RESULTS

Figure 6.13: Keyframes for activating groups of pedestrians to move in the virtual envi-
ronment.

Figure 6.14: Screen-shot of the simulation: showing the pedestrian’s movement towards
the goal points in a scene.

Figure 6.15: Pedestrian’ velocity: change the walking velocity of all pedestrians.

6.1. CROWD SIMULATION 117

Figure 6.16: Screen-shot of the simulation: shows a single pedestrian trying to move
through the walking area toward the goal point, and he starts to change his motion direc-
tion near the safety area around the stairs at keyframes a)118, b)122, and c) 124.

crowded area in the virtual environment is found in front of the mall, where the distance
between pedestrians is very small.

The calculated results of the pedestrians’ velocity of all groups of pedestrians using
the proposed method are shown in Figure 6.15. the left-hand side of the graph represents
the pedestrians’ velocity in x and z − directions, and the right-hand side represents
the absolute velocity of all pedestrians in the scene. After the simulation runs for "200"
keyframes, the computed mean and standard deviation is reached to "0.905" and
"0.216", respectively. By comparing the obtained results with the pedestrians’ velocity
in Subsection 6.1.1, it can be concluded that the increasing number of groups has the
reverse effect on the mean velocity of the pedestrians in the crowd. This is because
increasing the groups of pedestrians normally slow down the pedestrians’ movement.

In this simulation, pedestrians change their position and velocity based on various
steering behaviours. In each keyframe, the new position of each pedestrian is calculated
based on the proposed method. If the pedestrian does not interfere with the obstacles and
other pedestrians, then the pedestrian’s current position will update to the new determined
position (see Figure 4.2). Simultaneously, if the pedestrian interferes with the obstacles
or pedestrians, the proposed method will find another pedestrian position based on the
obstacle and pedestrian avoidance methods. Then the current pedestrian’s position will
update with the newly calculated position. Different illustrative examples for obstacle
and pedestrian avoidance methods are presented in Figures 6.16, 6.17, and 6.18.

Figure 6.16 demonstrates the situation when the pedestrian tries to pass an obstacle
(stair). In this step of the simulation, the pedestrian checks the path for collision with
obstacles. If the pedestrian moves in the current direction, they will collide with the
obstacle, as shown in the figure. Therefore the pedestrian needs to change his motion
direction. The proposed method uses the BNM method to find the collision-free path
and guide the pedestrian to turns his direction to the left and then to the right to pass the

118 CHAPTER 6. CROWD SIMULATION RESULTS

Figure 6.17: Screen-shot of the simulation: shows a group of pedestrians, consists of two
pedestrians (pedestrian A and pedestrian B), that using the obstacle avoidance method to
pass the obstacle. Afterwards, pedestrians keep moving toward their desired goal points:
a) collision avoidance between pedestrians and obstacle at keyfram = 94, b) collision
avoidance between pedestrian A and obstacle at keyfram = 95, and c) collision avoid-
ance between pedestrian B and obstacle at keyfram = 96.

obstacle. Afterwards, the pedestrian keeps moving to reach his destination point. When a
pedestrian updating its position with the newly calculated position, there is a possibility
to collide with the other pedestrians in the scene. An illustrative example of obstacle
avoidance and pedestrian avoidance is introduced to address this problem, as shown in
Figures 6.17 and 6.18. In this example, we consider a group of pedestrians that consist of
two pedestrians moving forward to their goal point.

Firstly, at the keyframe 94, as shown in Figure 6.17a, on condition that the
pedestrians move in the current direction, after coming closer to the obstacle (planting
pot), they will collide with the obstacle because the obstacle blocks the path. Therefore,
the proposed method uses the BNM method to find a new position for pedestrians.
Afterwards, pedestrians change their positions to the newly calculated positions, as
demonstrated in Figures 6.17b&c at the keyframe 95, and 96.

Secondly, after the pedestrians pass the obstacle, a collision may happen between
pedestrians at the keyframe 97. If the distance between pedestrians reaches below 2× r,
then pedestrian (B) uses the pedestrian avoidance method to resolve this condition (see
Figure 6.18a). Based on this method, a pedestrian (B) has to change his motion direction
to the right to avoid collision with a neighbouring pedestrian (A). Then pedestrians (A)
and (B) keep moving at keyframe 98 to reach their destination point, as demonstrated
in Figure 6.18b. The red circle objects represent the pedestrians’ movement, which can
be seen clearly near the obstacle in the walking area. The results show that the groups of
pedestrians can avoid collisions and reach their goal points by using the proposed method.

6.1. CROWD SIMULATION 119

Figure 6.18: Screen-shot of the simulation: shows a group of pedestrians, consists of
two pedestrians (pedestrian A and B), passing each other using the pedestrian avoidance
method. a) collision avoidance takes place between pedestriansA andB at keyframe 97.
b) pedestrian B changes the motion direction to avoid pedestrian A without any collision
at keyframe 98, and then they keep moving to reach their goal point.

6.1.3 Comparison with Different Methods

This section presents the comparison between the proposed method and the related
methods based on the evaluation criteria described in [121]. However, setting uniform
evaluation criteria for different categories of models is quite difficult. The authors
in [121] collected and analyzed the information provided by the papers describing
different models to simulate crowds in the years 2000-2020, and they presented their
results in Table 4 [121]. This table shows the group behaviour of the models that
have been used previously in the field of crowd simulation. In order to compare the
proposed method with these models, the group behaviours of the proposed method for
simulating the crowd movement are defined and presented in Table 6.5. In this study,
each pedestrian in each group is influenced by other pedestrians in the same group.
The pedestrian-to-pedestrian influencing relationships inside a group are referred to as
intra-group structure. However, a group of pedestrians in the crowd is not influenced
by other groups, and the relationships s group-to-group are referred to as inter-group
relationship [129]. As shown in Table 6.5, the proposed method focus on intra-group
interactions such as group formation, group structure, group cohesion, group coopera-
tion, peer behaviour, Intra-group Emotion Contagion. Moreover, this method pays less
attention to the inter-group relationship.

Table 5 [121] presents the obtained simulation results compared with the other models
that have been used previously in the years 2000-2020. By comparing the agent− based
models with the obtained results based on the proposed method, one can conclude that the

120 CHAPTER 6. CROWD SIMULATION RESULTS

Table 6.5: Ability of simulating group dynamics with the proposed method for the crowd
simulation (GA: Group Avoidance, GI: Group–pedestrian Interaction, InterE: Inter-group
Emotion Contagion. LF: Leader–Follower, GF: Group Formation, GS: Group Structure,
GC: Group Cohesion, GCo: Group Cooperation, PB: Peer Behavior, IntraE: Intra-group
Emotion Contagion).

Method Inter-Group Intra-Group
GA GI InterE LF GF GS GC GCo PB IntraE

Proposed method × × × ×

Table 6.6: The mean and the standard deviation Std of the pedestrians’ number (NOP),
and the computational time (CT) (in seconds, [S]) required to find the trajectories for the
pedestrians in each group.

nGroups No. of Pedestrians (NOP) Computational Time (CT)
MeanNOP StdNOP MeanCT StdCT

1 6.101 2.405 3.540 1.348
2 12.681 3.384 6.910 1.860
3 18.703 4.332 10.475 2.349
4 24.920 4.996 13.860 2.607
5 31.231 5.375 17.400 2.900
6 36.775 5.581 21.320 3.170
7 42.475 6.532 24.335 3.272
8 49.077 7.175 27.830 3.906
9 56.590 7.667 31.810 4.006
10 61.838 7.701 35.375 4.105

proposed method can simulate different scales of crowds (small scale, pedestrians < 200,
medium scale, 200 < pedestrians < 500, large scale, 500 < pedestrians < 1000). In con-
trast, there are other agent− based models that cannot simulate large-scale crowds [121].

6.1.4 Statistical Analysis

To evaluate the performance of the proposed method, we implemented the pro-
posed method for simulating the crowd movement in the virtual environment with
different groups (from 1 → 10 groups) and different scales. For each simulation
instance, we perform "200" independently runs for "200" frames. For each group,
the proposed method is used to generate pedestrians’ trajectories that navigating
in the virtual environment shown in Figure 6.8. The mean and the standard de-
viation (Std) of pedestrians’ number of each group is calculated. The results are
presented in Table 6.6, and the graphical representation of pedestrians’ number of
each group is illustrated in Figure 6.19a. For each simulation scenario presented in

6.1. CROWD SIMULATION 121

Figure 6.19: Simulation and performance evaluation: (a) the number of pedestrians, and
(b) the computational time required to generate the pedestrians’ trajectories in each group
using the proposed method.

Table 6.6, the generated pedestrians in different groups are located randomly at the
front of the simulated environment. Then, each group gr, (gr = 1, ..., nGroups)
starts to move to enter the simulated environment at a specific keyframe number
(kFrameactivate[gr]=1). After that, pedestrians continuously move forward to reach their
desired goal points, where the number of goal points and their sequence are defined
as follow: [[37.5, 0.0, 10.5], [−37.5, 0.0,−51], [37.5, 0,−109.5], [−37.5, 0.0, 10.5]] (see
Goalsgroup[1] in Figure 4.1). In this scenario, pedestrians’ attributes and their movement
calculated in each keyframe, where the maximum number of keyframes (nFrames)
is set to 200 keyframes. All other parameters are the same as the previous simulations.

At each independent run, the proposed method calculated the total computational time
required to generate the pedestrians’ trajectories and avoid obstacles and pedestrians in
the scene. Table 6.6 presents the calculated mean and the standard deviation (Std) of the
total computational time, and the graphical representation of the simulation results illus-
trated in Figure 6.19b. The obtained results reveal that the proposed method can generate
the trajectories for the groups of pedestrians navigating in the virtual environment to visit
several goal points within a reasonable computational time. Moreover, the obtained re-
sults reveal that the mean value of the computational time is not increased significantly
with increasing the number of pedestrians in the crowd (see Table 6.6). The computa-
tional time depends on the number of pedestrians, the number of goal points and their
ordering, the complexity of geometric problems, pedestrian avoidance, etc.

122 CHAPTER 6. CROWD SIMULATION RESULTS

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In the first part of this thesis, a new developed method, called the Boundary Node
Method (BNM), is presented for solving the path planning problem. The developed
method is used to find a collision-free path for a mobile robot through a sequence
of waypoints that the robot has to traverse from the starting point to the goal point
without colliding with any obstacles. The BNM method can generate a path safely
and efficiently. However, the path is not optimal in terms of the total path length. An
additional new developed method, called Path Enhancement Method (PEM), is used on
top to generate an optimal or close-to-optimal collision-free path. The developed method
uses an optimization technique to generate a collision-free path in a relatively short
computational time. The computational time required to solve the path planning problem
does not significantly increase the environment’s complexity. Moreover, this method
does not work through random operations. There is no uncertainty in generating points,
which leads to finding the final solution for the problem without variation in the solution.
The developed method has been successfully used in several working environments with
different degrees of complexity. The obtained results show that the developed method
can provide the shortest collision-free path for a mobile robot within a relatively short
computational time. In order to validate the performance of the developed method, the
simulation results compared with the results of the existing path planning methods. The
comparison results reveal that the proposed method achieved better performance for
solving the path planning problem in terms of the computational times and the path length.

From the obtained results, it was observed that the proposed method generates a path
that consists of straight lines between waypoints with sharp turns. In real applications,
when the robot follows a path in the workspace, it may not be able to make a sharp turn,
and it is not the safest path for the robot. In order to improve the path concerning the
robot dynamics, the cubic spline method is used to construct a continuous smooth path
that connects the starting point to the goal point.

124 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The application of the developed method is extended further for solving the multi-goal
path planning problem (MTP). This method is used to find the shortest collision-free
path connecting a given set of goal points scattered randomly in a 2D workspace without
colliding with any obstacles. In this study, the shortest collision-free path is determined
in a two-step. First, we applied the Genetic Algorithm (GA) to find an optimal sequence
of the goal points. Second, we used the BNM method to construct a collision-free path
between every pair of sequenced goal points. Subsequently, the PEM method is used
to obtain an optimal or near-optimal collision-free path from the initial feasible path
by minimizing the overall path length. The performance of the developed method has
been tested on many different workspace scenarios with varying layouts of obstacles.
The simulation results show that the developed method has been efficiently generated
an optimal or near-optimal collision-free path that is connecting a given set of goal
points. Each robot find its way independently without collision with static obstacles
or other robots in the system. The developed method is then extended further to solve
the multi-goal path planning problem for multiple mobile robot systems. This method
is used to find the shortest collision-free path connecting every pair of sequenced goal
points. The simulation results demonstrate the effectiveness of the developed method for
constructing the multi-goal path for multi-robot systems. Moreover, the results reveal
that all robots reached their final destination goal within a reasonable computational time
without collision with either static obstacles or other robots.

Furthermore, to verify the performance of the developed method for solving path-
planning problem, several experimental tests have been performed on the e − puck
robot with different obstacle configurations and various positions of the goal points.
The experimental results showed that the proposed method could construct the shortest
collision-free path and direct the real physical robot to the final destination point.

In the second part of this study, a new method is developed for simulating pedestrian
crowd movement in a virtual environment, where the first part of this study concerning
the generation of the shortest collision-free path is used. In this study, the virtual pedestri-
ans in many groups navigated in the virtual environment with different directions to reach
their distinct destination points. The developed method uses the multi-groupmicroscopic
model for generating a real-time trajectory for each pedestrian in the crowd. Addition-
ally, an agent − based model is introduced into the developed method for modelling the
pedestrians’ behaviours. Each pedestrian in the crowd has a particular set of data that
represents the characteristics of the pedestrian. Moreover, various steering behaviours are
introduced, and several techniques have been presented for combining steering behaviours
to a single steering force to allow the pedestrians to walk toward their goal points. The
developed method demonstrates how the pedestrians choose their path with their group in
a virtual environment toward their goal points while avoiding static obstacles and other
pedestrians. Based on this method, each pedestrian in each group constantly adjust their
paths toward the desired goal point and updated their attributes independently in real-

7.2. FUTURE WORKS 125

time. The obtained results demonstrate that the developed method has been well applied
to generate the pedestrian crowd movement in a virtual environment. Furthermore, it is
concluded that the developed method had achieved good results in terms of safety and
accuracy.

7.2 Future Works
This study opens several new directions for future research:

1. During this study, the robot has been stimulated by a simple nine-node quadrilateral
element, better results might be obtained if we attempt to use other element types
such as a nine-node circular element (see Figure 7.1a) a seventeen-node quadri-
lateral element (see Figure 7.1b), and a thirteen-node octagonal element (see Fig-
ure 7.1c).

2. Further study is required to address several research issues related to autonomous
navigation of mobile robots in unknown environments, where the robot does not
have full knowledge about its environment.

3. Another possible direction for future work is to simulate crowd movement in an
environment with dynamic obstacles and goals. Moreover, the developed method
can be extended for further simulation to capture the attractive and repulsive effects
acting on the pedestrians. Sometimes pedestrians are attracted by other persons
(e.g., friends) or objects (e.g., window displays). Additionally, the application of
the developed method can be extended to describe more complex desired behaviour
and other social phenomena.

4. Extend the developed method further to investigate the robot’s trajectory navigating
through the crowd of people.

126 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Figure 7.1: Different types of elements to simulate a mobile robot, such as a) nine-node
circular element, b) seventeen-node quadrilateral element, and c) thirteen-node octagonal
element.

Bibliography

[1] Craig W Reynolds. Steering behaviors for autonomous characters. In Game devel-
opers conference, volume 1999, pages 763–782. Citeseer, 1999.

[2] Adem Tuncer and Mehmet Yildirim. Dynamic path planning of mobile robots with
improved genetic algorithm. Computers & Electrical Engineering, 38(6):1564–
1572, 2012.

[3] Qing Li, Wei Zhang, Yixin Yin, Zhiliang Wang, and Guangjun Liu. An improved
genetic algorithm of optimum path planning for mobile robots. In Intelligent Sys-
tems Design and Applications, 2006. ISDA’06. Sixth International Conference on,
volume 2, pages 637–642. IEEE, 2006.

[4] Amir Hossein Karami and Maryam Hasanzadeh. An adaptive genetic algorithm
for robot motion planning in 2d complex environments. Computers & Electrical
Engineering, 43:317–329, 2015.

[5] Changan Liu, XH Yan, CY Liu, and GD Li. Dynamic path planning for mo-
bile robot based on improved genetic algorithm. Chinese Journal of Electronics,
19(2):2010–2014, 2010.

[6] kofta55. Commercial mall 3d model. https://free3d.com/3d-model/
commercial-mall-689388.html, 2019.

[7] Adobe. Mixamo. https://www.mixamo.com/, 2018.

[8] N Leena and KK Saju. A survey on path planning techniques for autonomous
mobile robots. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE),
8:76–79, 2014.

[9] Jihee Han and Yoonho Seo. Mobile robot path planning with surrounding point set
and path improvement. Applied Soft Computing, 57:35–47, 2017.

[10] P Victerpaul, D Saravanan, S Janakiraman, and J Pradeep. Path planning of au-
tonomous mobile robots: A survey and comparison. Journal of Advanced Research
in Dynamical and Control Systems, 9:1535–1565, 2017.

https://free3d.com/3d-model/commercial-mall- 689388.html
https://free3d.com/3d-model/commercial-mall- 689388.html
https://www.mixamo.com/

128 BIBLIOGRAPHY

[11] Nan Chao, Yong-kuo Liu, Hong Xia, Abiodun Ayodeji, and Lu Bai. Grid-based rrt∗
for minimum dose walking path-planning in complex radioactive environments.
Annals of Nuclear Energy, 115:73–82, 2018.

[12] Alex Shum, Kirsten Morris, and Amir Khajepour. Direction-dependent opti-
mal path planning for autonomous vehicles. Robotics and Autonomous Systems,
70:202–214, 2015.

[13] Yong Zhang, Dun-wei Gong, and Jian-hua Zhang. Robot path planning in uncertain
environment using multi-objective particle swarm optimization. Neurocomputing,
103:172–185, 2013.

[14] Azzeddine Bakdi, Abdelfetah Hentout, Hakim Boutami, Abderraouf Maoudj,
Ouarda Hachour, and Brahim Bouzouia. Optimal path planning and execution for
mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robotics
and Autonomous Systems, 89:95–109, 2017.

[15] Tomás Lozano-Pérez and Michael A Wesley. An algorithm for planning collision-
free paths among polyhedral obstacles. Communications of the ACM, 22(10):560–
570, 1979.

[16] Michael Brand, Michael Masuda, Nicole Wehner, and Xiao-Hua Yu. Ant colony
optimization algorithm for robot path planning. In Computer Design and Applica-
tions (ICCDA), 2010 International Conference on, volume 3, pages V3–436. IEEE,
2010.

[17] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[18] Jussi Rintanen. Introduction to automated planning. Lecture notes of the AI plan-
ning course, Albert-Ludwigs-University Freiburg, 2006.

[19] Chaymaa Lamini, Said Benhlima, and Ali Elbekri. Genetic algorithm based ap-
proach for autonomous mobile robot path planning. Procedia Computer Science,
127:180–189, 2018.

[20] Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, and Robin De Keyser. Heuristic
approaches in robot path planning: A survey. Robotics and Autonomous Systems,
86:13–28, 2016.

[21] Hsu-Chih Huang and Ching-Chih Tsai. Global path planning for autonomous robot
navigation using hybrid metaheuristic ga-pso algorithm. In SICE Annual Confer-
ence (SICE), 2011 Proceedings of, pages 1338–1343. IEEE, 2011.

[22] Oscar Montiel, Ulises Orozco-Rosas, and Roberto Sepúlveda. Path planning for
mobile robots using bacterial potential field for avoiding static and dynamic obsta-
cles. Expert Systems with Applications, 42(12):5177–5191, 2015.

BIBLIOGRAPHY 129

[23] Marco A Contreras-Cruz, Victor Ayala-Ramirez, and Uriel H Hernandez-
Belmonte. Mobile robot path planning using artificial bee colony and evolutionary
programming. Applied Soft Computing, 30:319–328, 2015.

[24] WANG Song, Hong-xing LI, and Yi-nong ZHANG. Path planning of mobile robot
based on genetic bee colony algorithm. DEStech Transactions on Computer Sci-
ence and Engineering, 16(5):615–620, 2016.

[25] Hong Liu, Bin Xu, Dianjie Lu, and Guijuan Zhang. A path planning approach for
crowd evacuation in buildings based on improved artificial bee colony algorithm.
Applied Soft Computing, 2018.

[26] Jitin Kumar Goyal and KS Nagla. A new approach of path planning for mobile
robots. In Advances in Computing, Communications and Informatics (ICACCI,
2014 International Conference on, pages 863–867. IEEE, 2014.

[27] Yanrong Hu and Simon X Yang. A knowledge based genetic algorithm for path
planning of a mobile robot. In Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, volume 5, pages 4350–4355.
IEEE, 2004.

[28] Bing Fu, Lin Chen, Yuntao Zhou, Dong Zheng, Zhiqi Wei, Jun Dai, and Haihong
Pan. An improved a* algorithm for the industrial robot path planning with high
success rate and short length. Robotics and Autonomous Systems, 2018.

[29] Nadia Adnan Shiltagh and Lana Dalawr Jalal. Optimal path planning for intelligent
mobile robot navigation using modified particle swarm optimization. International
Journal of Engineering and Advanced Technology, 2(4):260–267, 2013.

[30] František Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin Florek,
Tomáš Fico, and Ladislav Jurišica. Path planning with modified a star algorithm
for a mobile robot. Procedia Engineering, 96:59–69, 2014.

[31] Akshay Kumar Guruji, Himansh Agarwal, and DK Parsediya. Time-efficient a*
algorithm for robot path planning. Procedia Technology, 23:144–149, 2016.

[32] Shuzhi Sam Ge and Yan Juan Cui. New potential functions for mobile robot path
planning. IEEE Transactions on robotics and automation, 16(5):615–620, 2000.

[33] Gene Eu Jan, Ki Yin Chang, and Ian Parberry. Optimal path planning for mo-
bile robot navigation. IEEE/ASME Transactions on mechatronics, 13(4):451–460,
2008.

[34] Mitul Saha, Tim Roughgarden, Jean-Claude Latombe, and Gildardo Sánchez-Ante.
Planning tours of robotic arms among partitioned goals. The International Journal
of Robotics Research, 25(3):207–223, 2006.

130 BIBLIOGRAPHY

[35] Christian Wurll, Domink Henrich, and Heinz Wörn. Multi-goal path planning for
industrial robots. International Conference on Robotics and Application (RA’99),
Santa Barbara, USA, 1999.

[36] Emile Glorieux, Pasquale Franciosa, and Dariusz Ceglarek. Coverage path plan-
ning with targetted viewpoint sampling for robotic free-from surface inspection.
Robotics and Computer-Integrated Manufacturing, 61:101843, 2020.

[37] Jan Faigl. An application of self-organizing map for multirobot multigoal path
planning with minmax objective. Computational intelligence and neuroscience,
2016, 2016.

[38] Chutian Sun. A study of solving traveling salesman problem with genetic algo-
rithm. In 2020 9th International Conference on Industrial Technology and Man-
agement (ICITM), pages 307–311. IEEE, 2020.

[39] Liu Hongyun, Jiang Xiao, and Ju Hehua. Multi-goal path planning algorithm for
mobile robots in grid space. In Control and Decision Conference (CCDC), 2013
25th Chinese, pages 2872–2876. IEEE, 2013.

[40] Steven N Spitz and Aristides AG Requicha. Multiple-goals path planning for co-
ordinate measuring machines. In Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, volume 3, pages 2322–2327. IEEE,
2000.

[41] Kevin Vicencio, Brian Davis, and Iacopo Gentilini. Multi-goal path planning based
on the generalized traveling salesman problem with neighborhoods. In Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on,
pages 2985–2990. IEEE, 2014.

[42] Vojtěch Vonásek and Robert Pěnička. Space-filling forest for multi-goal path plan-
ning. In 2019 24th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), pages 1587–1590. IEEE, 2019.

[43] Ali Noormohammadi-Asl and Hamid D Taghirad. Multi-goal motion planning
using traveling salesman problem in belief space. Information Sciences, 471:164–
184, 2019.

[44] Zhong Yu, Liang Jinhai, Gu Guochang, Zhang Rubo, and Yang Haiyan. An im-
plementation of evolutionary computation for path planning of cooperative mobile
robots. In Proceedings of the 4th World Congress on Intelligent Control and Au-
tomation (Cat. No. 02EX527), volume 3, pages 1798–1802. IEEE, 2002.

[45] P Th Zacharia and NA Aspragathos. Optimal robot task scheduling based on ge-
netic algorithms. Robotics and Computer-Integrated Manufacturing, 21(1):67–79,
2005.

BIBLIOGRAPHY 131

[46] Martin Bonert, LH Shu, and Beno Benhabib. Motion planning for multi-robot
assembly systems. International Journal of Computer Integrated Manufacturing,
13(4):301–310, 2000.

[47] Yiqing Huang, Zhikun Li, Yan Jiang, and Lu Cheng. Cooperative path planning for
multiple mobile robots via hafsa and an expansion logic strategy. Applied Sciences,
9(4):672, 2019.

[48] Shuang Liu, Dong Sun, and Changan Zhu. Coordinated motion planning for mul-
tiple mobile robots along designed paths with formation requirement. IEEE/ASME
transactions on mechatronics, 16(6):1021–1031, 2010.

[49] Keerthi Sagar, Dimiter Zlatanov, Matteo Zoppi, Cristiano Nattero, and Sreeku-
mar Muthuswamy. Multi-goal path planning for robotic agents with discrete-
step locomotion. In International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, volume 58172, page
V05AT08A033. American Society of Mechanical Engineers, 2017.

[50] Stefania Pellegrinelli, Nicola Pedrocchi, Lorenzo Molinari Tosatti, Anath Fischer,
and Tullio Tolio. Multi-robot spot-welding cells for car-body assembly: Design
and motion planning. Robotics and Computer-Integrated Manufacturing, 44:97–
116, 2017.

[51] Jakub Hvězda, Miroslav Kulich, and Libor Přeučil. Improved discrete rrt for coor-
dinated multi-robot planning. arXiv preprint arXiv:1901.07363, 2019.

[52] Rahul Kala. Sampling based mission planning for multiple robots. In 2016 IEEE
Congress on Evolutionary Computation (CEC), pages 662–669. IEEE, 2016.

[53] Haoyao Chen, Dong Sun, and Jie Yang. Global localization of multirobot forma-
tions using ceiling vision slam strategy. Mechatronics, 19(5):617–628, 2009.

[54] Ryan Luna and Kostas E Bekris. Efficient and complete centralized multi-robot
path planning. In 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3268–3275. IEEE, 2011.

[55] Saad Ali, Ko Nishino, Dinesh Manocha, and Mubarak Shah. Modeling, simula-
tion and visual analysis of crowds: a multidisciplinary perspective. In Modeling,
simulation and visual analysis of crowds, pages 1–19. Springer, 2013.

[56] Stephen J Guy. Geometric collision avoidance for heterogeneous crowd simulation.
2012.

[57] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds. ACM Trans-
actions on Graphics (TOG), 25(3):1160–1168, 2006.

132 BIBLIOGRAPHY

[58] Rahul Narain, Abhinav Golas, Sean Curtis, and Ming C Lin. Aggregate dynamics
for dense crowd simulation. In ACM SIGGRAPH Asia 2009 papers, pages 1–8.
2009.

[59] Roger L Hughes. A continuum theory for the flow of pedestrians. Transportation
Research Part B: Methodological, 36(6):507–535, 2002.

[60] Roger L Hughes. The flow of human crowds. Annual review of fluid mechanics,
35(1):169–182, 2003.

[61] Hamid Izadinia, Imran Saleemi, Wenhui Li, and Mubarak Shah. 2 t: multiple
people multiple parts tracker. In European Conference on Computer Vision, pages
100–114. Springer, 2012.

[62] CK Lim, KL Tan, AA Zaidan, and BB Zaidan. A proposed methodology of bring-
ing past life in digital cultural heritage through crowd simulation: a case study
in george town, malaysia. Multimedia Tools and Applications, 79(5):3387–3423,
2020.

[63] Funda Durupinar, Nuria Pelechano, Jan Allbeck, Ugur Gudukbay, and Norman I
Badler. How the ocean personality model affects the perception of crowds. IEEE
Computer Graphics and Applications, 31(3):22–31, 2009.

[64] Stephen J Guy, Sujeong Kim, Ming C Lin, and Dinesh Manocha. Simulating het-
erogeneous crowd behaviors using personality trait theory. In Proceedings of the
2011 ACM SIGGRAPH/Eurographics symposium on computer animation, pages
43–52, 2011.

[65] Pierre Degond, Cécile Appert-Rolland, Mehdi Moussaid, Julien Pettré, and Guy
Theraulaz. A hierarchy of heuristic-based models of crowd dynamics. Journal of
Statistical Physics, 152(6):1033–1068, 2013.

[66] Lin Cheng, Vikas Reddy, Clinton Fookes, and Prasad KDV Yarlagadda. Impact of
passenger group dynamics on an airport evacuation process using an agent-based
model. In 2014 International Conference on Computational Science and Compu-
tational Intelligence, volume 2, pages 161–167. IEEE, 2014.

[67] Avneesh Sud, Erik Andersen, Sean Curtis, Ming Lin, and Dinesh Manocha. Real-
time path planning for virtual agents in dynamic environments. In 2007 IEEE
Virtual Reality Conference, pages 91–98. IEEE, 2007.

[68] Chao Cao, Peter Trautman, and Soshi Iba. Dynamic channel: A planning frame-
work for crowd navigation. In 2019 International Conference on Robotics and
Automation (ICRA), pages 5551–5557. IEEE, 2019.

BIBLIOGRAPHY 133

[69] Sachin Patil, Jur Van Den Berg, Sean Curtis, Ming C Lin, and Dinesh Manocha.
Directing crowd simulations using navigation fields. IEEE transactions on visual-
ization and computer graphics, 17(2):244–254, 2010.

[70] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In
Proceedings of the 14th annual conference on Computer graphics and interactive
techniques, pages 25–34, 1987.

[71] Wei Shao and Demetri Terzopoulos. Autonomous pedestrians. Graphical models,
69(5-6):246–274, 2007.

[72] Naveen K Mahato, Axel Klar, and Sudarshan Tiwari. Particle methods for multi-
group pedestrian flow. Applied Mathematical Modelling, 53:447–461, 2018.

[73] Lorenza Manenti and Sara Manzoni. Crystals of crowd: Modelling pedestrian
groups using mas-based approach. In WOA, pages 51–57, 2011.

[74] Dirk Helbing, Illes J Farkas, Peter Molnar, and Tamás Vicsek. Simulation of pedes-
trian crowds in normal and evacuation situations. Pedestrian and evacuation dy-
namics, 21(2):21–58, 2002.

[75] Carsten Burstedde, Kai Klauck, Andreas Schadschneider, and Johannes Zittartz.
Simulation of pedestrian dynamics using a two-dimensional cellular automaton.
Physica A: Statistical Mechanics and its Applications, 295(3-4):507–525, 2001.

[76] Siamak Sarmady, Fazilah Haron, and Abdullah Zawawi Hj Talib. Modeling groups
of pedestrians in least effort crowd movements using cellular automata. In 2009
Third Asia International Conference on Modelling & Simulation, pages 520–525.
IEEE, 2009.

[77] Nuria Pelechano, Jan M Allbeck, and Norman I Badler. Controlling individual
agents in high-density crowd simulation. 2007.

[78] Benedetto Piccoli and Andrea Tosin. Pedestrian flows in bounded domains with
obstacles. Continuum Mechanics and Thermodynamics, 21(2):85–107, 2009.

[79] Rahul Kala, Anupam Shukla, and Ritu Tiwari. Robotic path planning in static
environment using hierarchical multi-neuron heuristic search and probability based
fitness. Neurocomputing, 74(14-15):2314–2335, 2011.

[80] Mansoor Davoodi, Fatemeh Panahi, Ali Mohades, and Seyed Naser Hashemi.
Clear and smooth path planning. Applied Soft Computing, 32:568–579, 2015.

[81] Brendan Englot and Franz Hover. Multi-goal feasible path planning using ant
colony optimization. In Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, pages 2255–2260. IEEE, 2011.

134 BIBLIOGRAPHY

[82] Mitul Saha, Gildardo Sánchez-Ante, and J-C Latombe. Planning multi-goal tours
for robot arms. In 2003 IEEE International Conference on Robotics and Automa-
tion (Cat. No. 03CH37422), volume 3, pages 3797–3803. IEEE, 2003.

[83] Stefan Edelkamp, Morteza Lahijanian, Daniele Magazzeni, and Erion Plaku. In-
tegrating temporal reasoning and sampling-based motion planning for multigoal
problems with dynamics and time windows. IEEE Robotics and Automation Let-
ters, 3(4):3473–3480, 2018.

[84] Purushothaman Raja and Sivagurunathan Pugazhenthi. Optimal path planning of
mobile robots: A review. International Journal of Physical Sciences, 7(9):1314–
1320, 2012.

[85] Omar Souissi, Rabie Benatitallah, David Duvivier, AbedlHakim Artiba, Nicolas
Belanger, and Pierre Feyzeau. Path planning: A 2013 survey. In Industrial En-
gineering and Systems Management (IESM), Proceedings of 2013 International
Conference on, pages 1–8. IEEE, 2013.

[86] Zeng Bi, Yang Yimin, and Yuan Wei. Hierarchical planning approach for mobile
robot navigation under the dynamic environment. In Industrial Informatics, 2008.
INDIN 2008. 6th IEEE International Conference on, pages 372–376. IEEE, 2008.

[87] MA Porta Garcia, Oscar Montiel, Oscar Castillo, Roberto Sepúlveda, and Patricia
Melin. Path planning for autonomous mobile robot navigation with ant colony op-
timization and fuzzy cost function evaluation. Applied Soft Computing, 9(3):1102–
1110, 2009.

[88] BK Patle, DRK Parhi, A Jagadeesh, and Sunil Kumar Kashyap. Matrix-binary
codes based genetic algorithm for path planning of mobile robot. Computers &
Electrical Engineering, 67:708–728, 2018.

[89] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Robotics and Automation. Proceedings. 1985 IEEE International Con-
ference on, volume 2, pages 500–505. IEEE, 1985.

[90] J-O Kim and Pradeep K Khosla. Real-time obstacle avoidance using harmonic
potential functions. IEEE Transactions on Robotics and Automation, 8(3):338–
349, 1992.

[91] Ahmed Hussain Qureshi and Yasar Ayaz. Potential functions based sampling
heuristic for optimal path planning. Autonomous Robots, 40(6):1079–1093, 2016.

[92] Lucas Janson, Brian Ichter, and Marco Pavone. Deterministic sampling-based mo-
tion planning: Optimality, complexity, and performance. The International Journal
of Robotics Research, 37(1):46–61, 2018.

BIBLIOGRAPHY 135

[93] Wei Wang, Lei Zuo, and Xin Xu. A learning-based multi-rrt approach for robot
path planning in narrow passages. Journal of Intelligent & Robotic Systems, 90(1-
2):81–100, 2018.

[94] Ezequiel Di Mario, Zeynab Talebpour, and Alcherio Martinoli. A comparison of
pso and reinforcement learning for multi-robot obstacle avoidance. In 2013 IEEE
Congress on Evolutionary Computation, pages 149–156. Ieee, 2013.

[95] Zhuang Wang and Jiejin Cai. Probabilistic roadmap method for path-planning in ra-
dioactive environment of nuclear facilities. Progress in Nuclear Energy, 109:113–
120, 2018.

[96] Petr Vaněk, Jan Faigl, and Diar Masri. Multi-goal trajectory planning with motion
primitives for hexapod walking robot. In 2014 11th International Conference on
Informatics in Control, Automation and Robotics (ICINCO), volume 2, pages 599–
604. IEEE, 2014.

[97] Kai Li Lim, Kah Phooi Seng, Lee Seng Yeong, Li-Minn Ang, and Sue Inn Ch’ng.
Uninformed pathfinding: A new approach. Expert Systems with Applications,
42(5):2722–2730, 2015.

[98] Kevin Hernandez, Bladimir Bacca, and Breyner Posso. Multi-goal path planning
autonomous system for picking up and delivery tasks in mobile robotics. IEEE
Latin America Transactions, 15(2):232–238, 2017.

[99] Laura Burke. “conscientious” neural nets for tour construction in the traveling
salesman problem: the vigilant net. Computers & operations research, 23(2):121–
129, 1996.

[100] Christian Wurll and Dominik Henrich. Point-to-point and multi-goal path planning
for industrial robots. Journal of Robotic Systems, 18(8):445–461, 2001.

[101] Paraskevi Th Zacharia, Elias K Xidias, and Nikos A Aspragathos. Task schedul-
ing and motion planning for an industrial manipulator. Robotics and computer-
integrated manufacturing, 29(6):449–462, 2013.

[102] Jan Faigl, Miroslav Kulich, and Libor Přeučil. A sensor placement algorithm for a
mobile robot inspection planning. Journal of Intelligent & Robotic Systems, 62(3-
4):329–353, 2011.

[103] Miroslav Kulich, Jan Faigl, and Libor Preucil. Cooperative planning for heteroge-
neous teams in rescue operations. In Safety, Security and Rescue Robotics, Work-
shop, 2005 IEEE International, pages 230–235. IEEE, 2005.

[104] Tim Danner and Lydia E Kavraki. Randomized planning for short inspection
paths. In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE Interna-
tional Conference on, volume 2, pages 971–976. IEEE, 2000.

136 BIBLIOGRAPHY

[105] Radu-Emil Precup, Emil M Petriu, Mircea-Bogdan Radae, Emil-Ioan Voisan, and
Florin Dragan. Adaptive charged system search approach to path planning for
multiple mobile robots. IFAC-PapersOnLine, 48(10):294–299, 2015.

[106] PK Das, HS Behera, and BK Panigrahi. Intelligent-based multi-robot path planning
inspired by improved classical q-learning and improved particle swarm optimiza-
tion with perturbed velocity. Engineering science and technology, an international
journal, 19(1):651–669, 2016.

[107] Stefan Edelkamp and Junho Lee. Multi-robot multi-goal motion planning with
time and resources. In Annual Conference Towards Autonomous Robotic Systems,
pages 288–299. Springer, 2019.

[108] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Phys-
ical review E, 51(5):4282, 1995.

[109] Stephen J Guy, Jatin Chhugani, Changkyu Kim, Nadathur Satish, Ming Lin,
Dinesh Manocha, and Pradeep Dubey. Clearpath: highly parallel collision
avoidance for multi-agent simulation. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 177–187, 2009.

[110] Jamie Snape, Jur Van Den Berg, Stephen J Guy, and Dinesh Manocha. Independent
navigation of multiple mobile robots with hybrid reciprocal velocity obstacles. In
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5917–5922. IEEE, 2009.

[111] Jur van den Berg, Jason Sewall, Ming Lin, and Dinesh Manocha. Virtualized traf-
fic: Reconstructing traffic flows from discrete spatio-temporal data. In 2009 IEEE
Virtual Reality Conference, pages 183–190. IEEE, 2009.

[112] Xiaogang Jin, Jiayi Xu, Charlie CL Wang, Shengsheng Huang, and Jun Zhang.
Interactive control of large-crowd navigation in virtual environments using vector
fields. IEEE Computer Graphics and Applications, 28(6):37–46, 2008.

[113] Julien Pettré, Jan Ondřej, Anne-Hélène Olivier, Armel Cretual, and Stéphane
Donikian. Experiment-based modeling, simulation and validation of inter-
actions between virtual walkers. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 189–198, 2009.

[114] Barbara Yersin, Jonathan Maïm, P Ciechomski, Sébastien Schertenleib, and Daniel
Thalmann. Steering a virtual crowd based on a semantically augmented naviga-
tion graph. In Proc. The First International Workshop on Crowd Simulation (V-
CROWDS’05), Lausanne, Switzerland, pages 169–178, 2005.

[115] George Kingsley Zipf. Human behavior and the principle of least effort. 1949.

BIBLIOGRAPHY 137

[116] Ioannis Karamouzas, Peter Heil, Pascal Van Beek, and Mark H Overmars. A pre-
dictive collision avoidance model for pedestrian simulation. In International work-
shop on motion in games, pages 41–52. Springer, 2009.

[117] G Keith Still. Crowd dynamics. PhD thesis, University of Warwick, 2000.

[118] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[119] Raghavender Etikyala, Simone Göttlich, Axel Klar, and Sudarshan Tiwari. Particle
methods for pedestrian flow models: From microscopic to nonlocal continuum
models. Mathematical Models and Methods in Applied Sciences, 24(12):2503–
2523, 2014.

[120] Sujeong Kim, Stephen J Guy, Dinesh Manocha, and Ming C Lin. Interactive sim-
ulation of dynamic crowd behaviors using general adaptation syndrome theory. In
Proceedings of the ACM SIGGRAPH symposium on interactive 3D graphics and
games, pages 55–62, 2012.

[121] Shanwen Yang, Tianrui Li, Xun Gong, Bo Peng, and Jie Hu. A review on crowd
simulation and modeling. Graphical Models, 111:101081, 2020.

[122] Konstantin Yakovlev, Egor Baskin, and Ivan Hramoin. Grid-based angle-
constrained path planning. In Joint German/Austrian Conference on Artificial In-
telligence (Künstliche Intelligenz), pages 208–221. Springer, 2015.

[123] Autodesk. Maya. https://www.autodesk.com/maya/, 2018.

[124] JetBrains. Pycharm. https://www.jetbrains.com/pycharm/, 2018.

[125] Jared Go, Thuc D Vu, and James J Kuffner. Autonomous behaviors for interactive
vehicle animations. Graphical Models, 68(2):90–112, 2006.

[126] James M Hyman. Accurate monotonicity preserving cubic interpolation. SIAM
Journal on Scientific and Statistical Computing, 4(4):645–654, 1983.

[127] Imen Chaari, Anis Koubaa, Hachemi Bennaceur, Adel Ammar, Maram Alajlan,
and Habib Youssef. Design and performance analysis of global path planning tech-
niques for autonomous mobile robots in grid environments. International Journal
of Advanced Robotic Systems, 14(2):1729881416663663, 2017.

[128] Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christopher
Cianci, Adam Klaptocz, Stephane Magnenat, Jean-Christophe Zufferey, Dario Flo-
reano, and Alcherio Martinoli. The e-puck, a robot designed for education in en-
gineering. In Proceedings of the 9th conference on autonomous robot systems
and competitions, volume 1, pages 59–65. IPCB: Instituto Politécnico de Castelo
Branco, 2009.

https://www.autodesk.com/maya/
https://www.jetbrains.com/pycharm/

138 BIBLIOGRAPHY

[129] Fasheng Qiu and Xiaolin Hu. Modeling group structures in pedestrian crowd sim-
ulation. Simulation Modelling Practice and Theory, 18(2):190–205, 2010.

	Abstract
	Acknowledgements
	Publications
	List of Figures
	List of Tables
	Introduction
	Overview and Motivation of the Thesis
	Path Planning
	Multi-Goal Path Planning
	Multi-Robot Path Planning
	Crowd Simulation and Path Planning

	Research Gaps and Limitations
	Objectives of the Thesis
	Contributions of the Thesis
	Structure of the Thesis

	Related Work
	Path Planning
	Multi-Goal Path Planning
	Multi-Robot Multi-Goal Path Planning

	Crowd Simulation and Path Planning

	Proposed Method for Path Planning
	Problem Formulation
	Proposed Method for Path Planning
	Modelling of the Workspace
	Boundary Node Method (BNM)
	Path Enhancement Method (PEM)
	Smooth Path Planning
	Multi-Goal Path Planning
	Multi-Robot Multi-Goal Path Planning

	Proposed Method for Crowd Simulation
	Problem Formulation
	Proposed Method for Crowd Simulation
	Environment Setting
	Motion Computation and Steering Behaviours
	Locomotion

	Path Planning Results
	Path Planning Simulation Results
	Boundary Node Method (BNM)
	Path Enhancement Method (PEM)
	Path Smoothing Using Interpolation Technique
	Irregular-Obstacle Environment
	Three-Dimensional Environment
	Multiple Robot System
	Performance Evaluation
	Multi-Goal Path Planning

	Path Planning with Physical Robots
	Experimental Results of Path Planning
	Experimental Results for Multi-Goal Path Planning

	Crowd Simulation Results
	Crowd Simulation
	Simulation of Simple Scenario
	Simulation of Real-Life Crowd Movements
	Comparison with Different Methods
	Statistical Analysis

	Conclusions and Future Work
	Conclusions
	Future Works

	Bibliography

