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Abstract: A healthy condition is defined by complex human metabolic pathways that only function
properly when fully satisfied by nutritional inputs. Poor nutritional intakes are associated with a
number of metabolic diseases, such as diabetes, obesity, atherosclerosis, hypertension, and osteo-
porosis. In recent years, nutrition science has undergone an extraordinary transformation driven
by the development of innovative software and analytical platforms. However, the complexity and
variety of the chemical components present in different food types, and the diversity of interactions
in the biochemical networks and biological systems, makes nutrition research a complicated field.
Metabolomics science is an “-omic”, joining proteomics, transcriptomics, and genomics in affording a
global understanding of biological systems. In this review, we present the main metabolomics ap-
proaches, and highlight the applications and the potential for metabolomics approaches in advancing
nutritional food research.
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1. Introduction

Society’s awareness of the importance of food quality arose at the beginning of the
nineteenth century, when French lawyer Anthelme Brillat-Savarin wrote, in Physiologie du
Gout, ou Meditations de Gastronomie Transcendante: “Dis-moi ce que tu manges, je te dirai ce
que tu es.” (En. “Tell me what you eat and I will tell you what you are”]. The twentieth
century, marked by successive wars, shifted food quantity to the fore, and humanity focused
on mass food production, ignoring the efficiency and quality of nutritional products.
Nowadays, we are experiencing a healthy-eating renaissance that has been unexpectedly
further amplified by the COVID-19 pandemic [1].

A properly balanced diet, based on the qualitative and quantitative analysis of each
product, can be used as supportive therapy in metabolic disorders, including those with
a genetic etiology (e.g., a ketogenic diet for renal dysfunction [2]). Food products with
particular functions (often related to health promotion or disease prevention), made by
adding new ingredients or more of the existing ingredients, are termed “functional food”.
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The global market for the functional food industry (food, beverage, and supplements) has
been growing extremely fast in recent years, reaching USD 177,770.00 million in 2019 [3].
In order to increase the importance of nutrition in the global market, new techniques
associated with global data-analysis systems are needed for food analysis.

Metabolomics qualitatively and quantitatively defines metabolites (small molecules)
present in biological samples, and is becoming increasingly important in nutritional re-
search (Figure 1). Metabolite screening provides a wealth of biological data, such as diet
intake, drug administration molecular fingerprints, and a snapshot of metabolism. Addi-
tionally, metabolomics approaches enable monitoring of metabolites in correlation with
genetic and environmental components, including age, gender, drug toxicology, lifestyle,
health status and most notably nutrition intake [4–9]. Different metabolomics approaches
are employed in nutrition research of food components, body fluids, and biological tissues
analysis. Moreover, physiological responses to a particular food regimen [10–14] are stud-
ied with metabolomics. In this review, we will discuss the NMR technique while it is widely
used in the metabolomic profiling of selected food products, which significantly influence
the global food market. Additionally, we will present the largest databases gathering
metabolomics data of food products.

Figure 1. Number of published papers over the years. Each line represents search results conducted (13 January 2021) on
Web of Science (www.webofknowledge.com, accessed on 13 January 2021) for: (blue) topic: (metabolomics) and topic: (food),
(orange) topic: (metabolomics) and topic: (nutrition), and (gray) for topic: (metabolomics) and topic: (diet). Timespan:
all years. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-EXPANDED, IC. The higher results of
the search topics among metabolomic papers were for “metabolomics with food” with 2253 papers, followed by the topic
“metabolomics with diet” with 2168 papers, and finally “metabolomics with nutrition” with 995 papers. Moreover, the topic
“metabolomics with food” has shown an exponential increase over the years with R2 = 7, higher than both “metabolomics
with diet and nutrition” with an exponential trend of R2 = 5, pointing to a positive exponential growth of interest among
scientists towards the exploration of food metabolomics. Further information about the published papers in the three topics
is in the Supplementary Materials (Table S1).

www.webofknowledge.com
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2. (Un)Targeted Metabolomics

Metabolomics is “the measurement of metabolite concentrations and fluxes and se-
cretion in cells and tissues, in which there is a direct connection between the genetic
activity, protein activity and the metabolic activity itself” [15], while metabonomics is
“the quantitative measurement of the multivariate metabolic responses of multicellu-
lar systems to pathophysiological stimuli or genetic modification” [15,16]. Nowadays,
metabolomics and metabonomics are used to describe similar research approaches, and in
this review the term metabolomics will be used even when referring to papers that used
metabonomics terminology.

Metabolomics analysis can be either targeted (i.e., focused on quantitative measure-
ments of usually small numbers of metabolites) or untargeted (i.e., focused on metabolic
profiling of the total complement of metabolites for the studied samples) [17,18]. Untar-
geted analysis screens the metabolites with the intention to compare a profile or a pattern
among different sub-groups of samples. The untargeted analysis is frequently used in
nutrition research to profile food molecular composition, determine the outcome of dietary
intervention on human metabolism, and to characterize an individual’s metabolic phe-
notypes. The untargeted analysis usually starts with metabolite extraction from studied
samples, where different extraction methods can be utilized sequentially to maximize the
extracted molecules. Untargeted analysis is frequently combined with statistical analysis
(such as multivariate), and pattern recognition analyses, to perceive changes in metabo-
lites and within sub-groups of samples. In addition to valuable information that can
be extracted from statistical approaches, additional data from metabolomics database(s)
and/or using standard samples are required for evaluating the outcome, such as reporting
new metabolites.

Conversely, targeted metabolomics focuses on analysis of a number of selected metabo-
lites, such as studies related to specific metabolic pathways, drug toxicology, and specific
effects of certain foods/diets [19–21]. Targeted metabolomics approaches are mostly based
on hypothesis-driven investigation, where specific quantification methods are optimized
to quantify the concentration of the specific metabolites. In nutrition research, the targeted
metabolomics approaches are used in different aspects, for instance to determine the impact
of certain diets/foods on metabolic pathways, and dietary effects on human health.

3. Metabolomics Analytical Tools

Metabolomics employs different analytical platforms including high-performance liq-
uid chromatography (HPLC) [22–27], Fourier transformed infrared (FT-IR)
spectroscopy [28–31], mass spectrometry (MS) [32–35] and nuclear magnetic resonance
(NMR) spectroscopy [36–42].

Next to the conventional HPLC [35,43,44], ultra-performance LC (UPLC) has been
developed, which utilizes smaller beads in the column (less than 2 um) and operates under
higher pressure than conventional LC, offering a significant reduction of band broadening.
In this way, it increases sensitivity up to 2–3 times over the standard HPLC [44,45]. More-
over, UPLC is a cost-reducing method that requires a smaller sample and a shorter time for
measurement [44,45].

MS is a sensitive analytical tool, capable of detecting metabolites at very low con-
centrations, but it requires a preliminary separation step, such as gas chromatography or
liquid chromatography [46].

The minimal sample preparation requirements, high reproducibility, and non-destructive
character are major advantages of the NMR analytical technique in metabolomics analysis.
Another important advantage of the NMR technique is that it can be used both for iden-
tification and quantification of the analyzed molecules although qualitative analysis of a
multi-component sample is complicated. In addition, the NMR signal’s low sensitivity and
overlap can be improved using recent technological advances (hardware, pulse sequence
and spectral acquisition) [47]. Although low sensitivity is the main limitation of NMR spec-
troscopy, significant developments have been made to enhance the sensitivity, including



Foods 2021, 10, 1249 4 of 20

micro probes [48], cryogenically-cooled probes [49] and the dynamic nuclear polarization
(DNP) approach [50–52].

Nowadays, it is not possible to analyze all metabolites with one analytical tool due
to molecule diversity with respect to size, polarity, concentration levels and stability.
Metabolomics data can be enriched by a sequential combination of different analytical
techniques. For instance, separation signals can be improved with NMR-coupled gas
chromatography, (GC-NMR), liquid chromatography (LC-NMR) and solid phase extraction
(LC-SPE-NMR). Nevertheless, few laboratories have a facility of combined techniques due
to high costs and in practice, combine techniques are used rarely. In the coming years
NMR-based analysis will most likely be favored by scientists as the essential analytical
approach that provides reproducible results [53–55].

A wide range of NMR experiments are available and commonly used in metabolomics
applications [42,56–63] and later on we will focus on NMR results. For instance, one-
dimensional (1D) experiments are used for detection and quantification of compounds
containing atoms such as 1H, 13C, 15N, 31P [37,64]. More sophisticated experiments such
as two-dimensional (2D) correlation spectroscopy (COSY), total correlation spectroscopy
(TOCSY), and heteronuclear single quantum correlation spectroscopy (HSQC) are usually
used to remove the overlapping effects of peaks on NMR spectra, and to allow the detection
and identification of more metabolites than with 1D NMR [37,42,65–69].

Selected examples of NMR data in nutritional metabolomics studies are presented
in Table 1.

Table 1. Selected examples of metabolomic studies using NMR spectroscopy in food science.

Analytical
Method

Example of Use in Sample
Analysis Purpose of Study Reference

Honey Determination of the geographical origin of honey [70]

Watermelon Description of metabolites in red and yellow watermelon cultivars with
focus on the carotenoid group [71]

Pine mushrooms Ilustration of differences among the various grades of pine mushroom [72]

Wine Characterization of the metabolites in wines vinified in different continental
areas and from different grape varieties to improve the quality of wine [73,74]

Green tea Developing a method to evaluate the quality of Japanese green tea [75]

Ginseng (Panax ginseng) Developing a method to control the quality of Ginseng commercial products [76]

NMR Fish tissue Demonstrating the efficacy of NMR in environmental
research/Optimization of tissue extraction methods [77,78]

Maize (Zea mays) Safety evaluation of genetically modified maize [79]

Black raspberry fruit Monitoring biochemical changes of black raspberry fruits based on the
maturation level, extraction method and NMR-solvent conditions [80]

Tomato dry-powder with
organic solvents

Profile and level characterization of carotenoids and flavonoid
glycosides/Detection of potential unintended effects of genetic modification

on tomato
[81–83]

Tomato dry-powder with
water Evaluation of the role of polyamines in growth and development in tomato [84]

Tomato juice/pulp Metabolite characterization of tomato juice and pulp/Metabolite profiling
of 50 different tomato cultivars [85,86]

St. John’s wort
Comparison of St. John’s wort extracts that have been subjected to the same

standardization procedure/Prediction of pharmacological efficacy of
different extracts

[87,88]

HPLC-NMR Gingko (Gingko biloba)
Investigation of metabolomic composition of 16 commercially available

Ginkgo preparations and identification of flavonoid glycosides and terpene
trilactones

[89]
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4. Foodomics Databases

Foodomics is defined as “a discipline that studies the Food and Nutrition domains
through the application and integration of advanced -omics technologies to improve
consumers’ well-being, health, and knowledge” [90].

The metabolomics workflow starts with a biological sample preparation for analysis
(Figure 2), which needs to satisfy standards for the chosen analytical method. The numerous
analytical data are analyzed with statistical methods and then gathered in the databases.

Figure 2. Schematic representation of metabolomics workflow in nutritional research.

Although foodomics is a fairly new discipline, there is an abundance of databases
related to the topic. Those databases provide various information about the product of
interest—from NMR/MS reference spectra of a product’s metabolites, to the cDNA clone
libraries, full-length mRNA sequences, gene structures and expression profiles of genes.
That information can be later used to further identify/analyze products of interest, whether
metabolites or genes.

One example is TOMATOMICS (http://plantomics.mind.meiji.ac.jp/tomatomics/,
accessed on 13 January 2021)—a web database of genetic information of the Solanum
lycopersicum (tomato) [91]. The TOMATOMICS database provides users with Basic Local
Alignment Search Tool (BLAST) search functions and a JBrowse-based genome browser.
The BLAST program is used to align query sequences with those stored within the database
in order to find sequence homology, and provides further information about the significance
of each alignment [92,93]. On the other hand, the JBrowse-based genome browser allows the
visualization and comparison of genome annotations, transcripts, variations, and T-DNA

http://plantomics.mind.meiji.ac.jp/tomatomics/
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insertion sites between different cultivars [91,94]. Additionally, TOMATOMICS provides
information on locus groups and visualizes them using the JBrowse browser. However,
TOMATOMICS is not the only database that focuses on tomatoes. TOMATOMA (https:
//tomatoma.nbrp.jp/, accessed on 13 January 2021) collects information about mutant
lines of the Micro-Tom cultivar generated by ethyl methane sulfonate (EMS) treatment
or γ-ray irradiation [95,96]. What differentiates TOMATOMA from TOMATOMICS is
the fact that TOMATOMA offers a set of metabolic information, such as Brix values and
carotenoid content values, of the mutant fruits. Both of these factors affect the preferences
of consumers as Brix values provide information about the sweetness of the fruit (therefore
the taste) while carotenoids act as an indicator for nutritional value. This database can also
provide users with Micro-Tom mutant seeds that can be used for further investigation [95].

Another database related to foodomics is the Tea Metabolome database (TMDB) [97].
This database provides users with information about small chemical compounds found
in Camellia spp., with a special focus on Camellia sinensis. TMDB, 1H NMR and 13C NMR
spectra with similarity identification as well as MS and MS/MS data can be obtained for
the purpose of identification of metabolites. As for the amount of records, at the time
of creation (2014), it contained more than 1473 compound entries with more than 30,000
different data entry fields [97]. The entries presented in TMDB were collected based on
the information obtained in 364 published books, journal articles, and electronic databases.
In 2014, the number of compounds recorded for different types of tea was presented:
713 compounds in green tea, 497 in black tea, 140 in oolong tea, and 445 for dark tea. Most
of the compounds (74%) collected in the database have a molecular weight of less than
500 Da. Additionally, each compound entry in TMDB has a bioactivities data field, which
describes the biochemical effects on the cells [97].

Databases that focus on meat and dairy products also exist, such as the Bovine
Metabolome Database (BMDB) (www.bovinedb.ca, accessed on 13 January 2021) [98]. This
database contains in total 51,801 metabolites, and only a small fraction (4.1%) of metabolites
with unique structures have been quantified [98]. Each of the metabolites stored within
the database have their own structures in multiple formats, basic descriptions, chemical
ontology, physico-chemical properties, their reference spectra (NMR, GC-MS, and LC-MS),
pathway information, and literature citations from the scientific literature [98]. The metabo-
lites in BMDB have been linked to eight bovine tissues and six different bovine biofluids.
For the tissues, the most information about the metabolites can be found for the liver, with
1254 identified metabolites with unique structures, of which only 273 were quantified [98].
As for biofluids, milk has been the most widely investigated, with 2350 unique metabolites
identified, with around 70% of them (1652) being quantified [98]. As a complex biofluid,
milk itself has a dedicated database called the Milk Composition Database or MCDB
(http://www.mcdb.ca/, accessed on 13 January 2021) storing more than 19,000 spectra
(NMR, LC-MS, GC-MS) [99].

In addition to the aforementioned databases, a group of more general ones exist that
focus not only on one product or products from the same origin but on diverse types of
food. For example, FooDB (https://foodb.ca/, accessed on 13 January 2021) is the world’s
largest open-access database that provides information on macronutrients and micronutri-
ents as well as compound nomenclature, descriptions, information on structure, chemical
class, physico-chemical data, food source(s), color, aroma, taste, physiological effects, pre-
sumptive health effects (from published studies), and concentrations in various foods [100].
Currently, almost 800 types of products are listed, with more than 70,000 compounds
characterized [100]. In addition, databases that have a particular focus on a group of
compounds, rather than types of food, also exist. A prominent example is PhytoHUB
(http://phytohub.eu/, accessed on 13 January 2021), which specializes in phytochemicals
and their human and animal metabolites [101]. The content of PhytoHUB consists of about
1850 entries of which around 1200 are polyphenols, terpenoids, alkaloids, and other plant
secondary metabolites, with 560 human or animal metabolites [101]. The total number of
plant-based foods featured in PhytoHUB, as of 2021, is 371 [101].

https://tomatoma.nbrp.jp/
https://tomatoma.nbrp.jp/
www.bovinedb.ca
http://www.mcdb.ca/
https://foodb.ca/
http://phytohub.eu/
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5. Foodomics as a Standard for Safety and Quality Assessment

The quality of food is one of the most important factors that is considered when
choosing products [102–105]. The preference for food quality over quantity and price
have been extensively observed among individuals with a higher income and higher level
of education [103,106]. Since global education levels across many areas are rising [107],
and a link between level of education and health awareness has been observed [108,109],
one can expect a constant increase in the preference for food quality throughout the next
decades [103,106]. This will require utilization of new, reliable, and rapid methods to meet
demand. Luckily, recent progress in the field of foodomics has demonstrated the efficiency
of NMR and MS methods to resolve problems related to safety evaluation and establishing
standards of quality on different products.

A recent example is the MEATabolomics approach that focused on the identifica-
tion of potential biomarkers to control meat quality and safety [110]. Assessment of
meat quality from the consumers’ perspective mainly involves appearance (including
the color) [110–112]. The red color of meat is mainly due to the presence of myoglobin,
although factors such as the structure of the tissue, pH, muscle source, presence of antioxi-
dants or lipid oxidation also play significant roles [113,114]. In this case, gaining insight
into the metabolomics effects on the color of meat, as well as the environmental factors
affecting their changes, are crucial factors for increasing physical quality.

One study related to the biochemical changes and their impact on meat color was
undertaken by Ramanathan et al. [115]. Their goal was to determine the differences in
metabolite profile and mitochondrial content between normal-pH and dark-cutting beef.
For that, a GC-MS spectrometer-based nontargeted metabolomic approach was taken that
revealed the downregulation of glycolytic metabolites and the upregulation of tricarboxylic
substrates in dark-cutting beef when compared to normal-pH beef. Additionally, dark-
cutting beef had greater mitochondrial content and higher levels of neurotransmitters
such as 4-aminobutryic acid and succinate semialdehyde. The authors speculated that the
mitochondrial content and downregulation of metabolites involved in glycolytic pathways
resulting in lower lactic acid formation during anaerobic metabolism would result in a
high-pH of dark-cutting beef [115].

Another study by Beauclercq et al. [116] characterized the metabolomics signature of
muscle and serum of two chicken lines with almost 17% difference in glycogen content in
the breast muscle. The differences were investigated by quantification of muscle metabolites
by high-resolution NMR (1H and 31P) and serum metabolites by 1H NMR. The analysis
identified 20 and 26 discriminating metabolites in muscle and serum, respectively, between
the two lines, the majority of which were related to carbohydrate metabolism and the
production of energy such as glycogen or glucose 6-phosphate. The main conclusion
however was that the pHu-line (with a low ultimate pH of the meat) used carbohydrate as
the main source of energy, whereas those in the pHu+ (high pH of the meat) used energy
produced from amino acid catabolism and lipid oxidation, which leads to an adaptive
response to oxidative stress. Additionally, 15 biomarkers were identified that could help to
distinguish poultry likely to produce meat with high or low pHu values, thereby improving
the quality of sold meat [116].

6. The Impact of Food Metabolites on Human Health

The changes in metabolite levels in a person are affected by many factors, including
genetics, the environment, and dietary intake [117]. The type of diet is not only directly
responsible for the metabolites but also indirectly via nutritional changes inflicted upon
the gut microbial and thereby their own metabolism [117,118]. In recent years, more
evidence has surfaced proving that many aspects of human health are affected by the
gut microbiota such as obesity-associated disorders, regulation of blood pressure, and the
immunity of the host to pathogens [119–121]. There are approximately 1014 bacterial cells
in the gastrointestinal tract of a human, which is about 10 times the total number of human
cells in the body, with a total biomass of 2 kg [122,123]. These bacteria belong to more
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than 1000 different species [122], some of which are crucial for our wellbeing, such as lactic
acid bacteria and Bifidobacteria for their ability to synthesize vitamin K as well as many B
vitamins, such as biotin, cobalamin, folates, nicotinic acid, pantothenic acid, pyridoxine,
riboflavin, and thiamine [124,125]. Furthermore, the functionality of gut microbiota is
modified by their environments in response to dietary changes, thereby improving human
dietary flexibility. The microbiota and its metabolic pathways are influenced by the genetics,
geographical regions, diets, antibiotics and other therapies of the host [126].

In recent work, Farag et al. [123] evaluated the impact of functional food, which
is defined as a dietary supplement that beneficially regulates body functions, on the
microbiota with a focus on the microbiota physiology that could be evaluated by un-
targeted metabolomics. Seven functional foods, such as green tea, black tea, Opuntia
ficus-indica (prickly pear, cactus pear), black coffee, green coffee, pomegranate, and sumac
were introduced to consortium culture with eight different types of bacteria: Anaerostipes
caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Blautia producta, Clostridium
butyricum, Clostridium ramosum, Escherichia coli and Lactobacillus plantarum that would
resemble metabolic activities found in the human gut [123]. Samples of functional food
extract and from blank culture were analyzed using GC coupled to MS detection (GC-MS).
The results stated that 131 metabolites were identified, including organic, amino, fatty,
nucleic acids, alcohols, sugars, inorganic, nitrogenous compounds, phenolics, and steroids.
The most abundant class in the cultures was amino acids. Moreover, multivariate data
analysis was performed to identify samples and examine how functional foods influence
gut microbiota metabolisms. These results provided insights into how functional foods
modulate gut-microbiota metabolism by either inducing or inhibiting specific metabolic
pathways such as increased GABA production in the presence of higher acidity induced by
metabolites such as polyphenols and organic acids, or purine alkaloids such as caffeine
acting as precursors of purine by microbiota demethylation [123].

Another interesting aspect of metabolomics is its ability to obtain information on an
individual’s diet from food-induced shifts in metabolites.

Analysis of dietary patterns allows researchers to gain a broader insight into dietary
intake and applying metabolomics to achieve this is promising. Untargeted metabolomic
profiles were employed to distinguish between two Nordic dietary patterns used in an
intervention study; the New Nordic Diet (NND) or the Average Danish Diet (ADD) [127].
Using the metabolomic data a multivariate model was established, which classified the
two dietary patterns with a low misclassification error rate (19%). A study by Posma and
colleagues [128] highlighted the power of such metabolomics approaches. Urine was col-
lected from 1848 Americans, and 1H NMR spectroscopy was used to measure the urinary
metabolome, producing a wide range of chemical profiles. It was observed that 46 metabo-
lites can differentiate between people with healthy and unhealthy dietary patterns, such as
an association between sodium and calcium with citrate and formate on blood pressure, adi-
posity, and renal function, and a correlation between fructose, glucose, and vitamin C with
biomarkers of citrus fruit consumption such as prolinebetaine, 4-hydroxyprolinebetaine
and 2-hydroxy-2-(4-methylcyclohex-3-en-1-yl)propoxy glucuronide [128].

7. NMR in Analysis of Food Components

In general, food and drink component analysis include the identification, quantifica-
tion, and classification of food constituents such as carbohydrates, lipids, hormones, nucleic
acids, vitamins, and minerals. Metabolomics allows the detection and characterization of
hundreds of biological sample components simultaneously, offering powerful tools for
more comprehensive and detailed pictures of food composition. This provides a means to
analyze food components for certain important pursuits, such as knowing the bio-active
molecules, food quality, and authenticity, as well as searching for significant nutrients.
For example, Kim et al. [80] used 1H NMR coupled with multivariate statistical analysis
to monitor changes in metabolic profiling of raspberry fruits at different ripening stages
using multiple extraction and NMR dissolution solvent condition systems. NMR-based
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metabolomics approaches were also used to analyze the polar portion of methanol ex-
tracts of celery seeds, and several compounds were identified, including sesquiterpenoid
glucosides, norcarotenoid glucosides and phthalide glycosides, and their structures were
determined [129].

In the next section, we will highlight several examples of profiling food constituents
using NMR-based metabolomics approaches.

7.1. Tomato

Perez et al. [130] performed a metabolomic analysis of tomato fruit and tomato tissues
at three different ripening stages using high resolution magic angle spinning (HRMAS)
NMR. NMR data of whole fruits were obtained, which showed a spectral resolution like
that of solution 1H-NMR with the advantages of minimal sample manipulation and the
possibility of simultaneous analysis of polar and non-polar metabolites. The same technique
was used by Perez et al. [131] to investigate differences at the metabolic level between
flavor varieties of high quality tomatoes from Spain. The results showed clear differences
between varieties as a function of the ripening process, and revealed the existence of
variety-dependent relationships between external appearance and metabolic content.

Stark et al. [132] reported a comprehensive 13C NMR relaxation study of hydrated
tomato fruit cuticle that discovered changes in the individual polymer motion of the
cutin/wax components of the tomato cuticle, and the interaction of these components
within intact cuticles in response to the addition of water. Additionally, they reported
the effect of thermal stress on biomacromolecular dynamics on different timescales. The
influence of these factors on protective plant covering characteristics was also discussed.

Le Gall et al. [82] showed that NMR combined with chemometrics and univariate
statistics can successfully trace differences in metabolite levels between genetically modified
tomatoes and non-modified (control) tomato plants, grown side by side under the same
conditions, and detected potential unintended effects in the genetically modified crops.

De Falco et al. [133] analyzed the changes in metabolites of three different tomato
genotypes (tolerant “T”, susceptible “S”, and “F1” hybrid obtained between T and S) after
exposure to Tuta absoluta using 1H-NMR. T. absoluta “tomato leafminer, tomato moth” is
considered to be one of the most harmful tomato crop pests causing yield loss. NMR-
based metabolomics approaches coupled with multivariate data analysis were performed
to profile detailed metabolites of the control and the pest exposed samples on the three
different tomato genotypes (T, F1, and S), which could explain the chemical diversity of the
signaling compounds that contribute to defense mechanisms in the plants. Results showed
that γ-aminobutyric acid (GABA) signals were much higher in all the samples that were
exposed to T. absoluta compared to the control tomato samples. Moreover, organic acids
such as fatty acids and acyl sugars, chlorogenic acid, neo-chlorogenic acid, and feruloyl
quinic acid were much higher in the tolerant (T) genotype exposed samples, suggesting the
correlation with exposure to leafminer. They also showed that trigonelline increased in all
tomato varieties after exposure to T. absoluta. The authors concluded that metabolomics
analysis may provide fundamental insights for better understanding of the tomato–pest
interactions and for enhancing tomato breeding in agriculture [133].

In another study, Meza et al. [134] discovered that tomato quality was improved by
growing under moderate salt stress, which may allow for sustainable fruit yields. It is
known that salinity can affect fruit quality by changing its metabolic pathways, which
depends on the fruit variety and salt concentration. Two traditional tomato varieties grown
in the Mediterranean region were chosen because of their genetic diversity that may give a
comprehensive view of fruit quality traits. Planting the two varieties with no salt stress
as a control, and with moderate salt stress (50 mM NaCl), had no effect on fruit yield of
either variety. Fruit quality traits, including primary and secondary metabolites, were
analyzed in those two Mediterranean tomatoes (Tomate Pimiento “TP” and Muchamiel
Aperado “MA”). 1H- NMR was used for the analysis of the primary metabolites, and
UHPLC to analyze the secondary metabolites. Results showed that primary metabolism
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for both tomato varieties was similar, and in “TP” fruits, the highest constituents were
three free amino acids present in tomato, GABA, glutamate, and glutamines, which were
increased also under salinity. The most important shift in secondary metabolites attributed
to salinity was α-tocopherol, which increased in both “TP” and “MA” red mature fruit.
Meza et al. [134] concluded that the two tomato varieties can be considered good sources
for genetic diversity in breeding because of their ability to improve the quality of tomato
fruit under moderate salt stress.

7.2. Green Tea

Camellia sinensis L. is popularly known as green tea, and is one of the most consumed
beverages in the world. There are many primary metabolites, such as organic acids,
amino acids, and carbohydrates, present at different concentrations in the tea leaves. In
addition, secondary metabolites, which include alkaloids and polyphenols, are also present
that influence many biological and pharmacological activities, such as anti-microbial,
anti-tumor, and anti-oxidative properties. In addition, the quality of the tea leaves is
determined by these metabolites, which are influenced by different factors such as species
type, geographical status, and climate factors.

There are several metabolomics studies that have focused on profiling the chemical
composition of green tea [135–138]. Lee et al. studied the changes in green tea metabolites
during tea fermentation using 1H NMR coupled with multivariate statistical analysis, and
were able to distinguish between metabolic profiling of green tea and fermented tea [139].
NMR-based metabolomics approaches were used to study the effects of geographical origin,
climate, cultivar, and manufacturing and cultural practices on tea chemical compositions
by analyzing 180 tea samples collected from Japan, South Korea, and China [136]. The
results showed a clear correlation between environmental factors and the metabolome of
green, white, and oolong teas from all three countries [136].

Wahyuni et al. [140] identified the primary and secondary metabolites of three varieties
of dried green tea leaves, which were grown at Kemuning, Indonesia, using 1H-NMR with
two-dimensional NMR techniques such as J-resolved and 1H-1H COSY. Results showed
that amino/organic acids and phenolic metabolites were detected in the spectra of the three
varieties of green tea leaves, containing amino acid characteristics, theanine, and phenolic
characteristics, and epicatechin derivates.

7.3. Olive Oil

The olive tree (Olea europaea L.) is widely cultivated in many parts of the world
especially in Mediterranean countries [141]. Its cultivation date has been estimated to be
5000 B.C. One of the oldest olive trees in the world exists in Elwalaja, Bethlehem, Palestine,
which was estimated to be more than 4000 years old (https://www.palestine-studies.
org/en/node/78472, accessed on 13 January 2021). This tree, and similar ancient trees,
have literally survived attacks from hundreds of generations of pathogenic organisms,
indicating that they have developed a particularly efficient molecular defense system
against pathogens [142]. Nowadays, in Mediterranean countries, there are more than 2000
varieties of olive tree [143]. The climatic conditions in these countries, like warm weather
and long days of sunlight irradiation positively contribute to the cultivation of the olive
trees and activate the synthesis of phenolic compounds in the fruits and leaves [144].

The quality of olives and olive oil has received much worldwide attention. To prevent
fraud issues and ensure quality, the International Olive Council (IOC) issued guidelines
for their sensory evaluation. Beteinakis et al. [145] developed a method to assess the
quality of edible olives from the Konservolia, Kalamon and Chalkidikis cultivars collected
from different areas of Greece and processed using the Spanish or the Greek method.
They used so-called statistical total correlation spectroscopy (STOCSY) to measure specific
biomarkers such as tyrosol, hydroxytyrosol, verbascoside, luteolin, quercetin, maslinic
acid, oleanolic acid, succinic acid, lactic acid, propionic acid, acetic acid, formic acid,
triacylglycerols, linoleic acid and glycerol to assess the quality of the olives. Their findings

https://www.palestine-studies.org/en/node/78472
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suggest that the phenolic composition of the olives, at least for the Konservolia variety,
is significantly influenced by the geographical origin, and more than by the cultivar.
Additionally some cultivars were richer in some of the biomarkers than others, and the
method of preparation also had an impact on the concentration of some biomarkers. They
concluded that STOCSY revealed certain peak correlations, which, with input from the
literature, led to an unprecedented peak assignment for these compounds in the total
sample extracts. In addition, they also highlighted the value of STOCSY for supporting
the assignment of biomarkers, which has been a limitation of untargeted metabolomics
approaches [145].

The health benefits of olive oil have been attributed to several of its contents, specifi-
cally polyunsaturated fatty acids, polyphenols, and squalene, as well as oleocanthal, which
is a secoiridoid phenolic compound with potential therapeutic properties against inflam-
mation, cancer, and neurodegenerative diseases. The quality of olive oil has been the focus
of many studies in the last few decades. Merchak et al. used NMR spectroscopy to study
olive oils from different regions in Lebanon [146]. A total of 187 samples were tested using
1H NMR spectroscopy as a rapid metabolomic tool. Several illustrative variables related
to olive oil contents such as fatty acids were measured and used in multivariate analyses.
The samples were classified according to the geographical region, shape, size, and color
of the olives, ripening period and latitude. Their results indicated some variations in the
composition of oil contents according to these classifications [146].

Similarly, Rongai et al. used NMR spectroscopy coupled with multivariate analysis to
investigate the metabolomic profiles of more than 200 extra virgin olive oil (EVOO) samples
from different countries compared with EVOOs of different regions in Italy [147]. Relatively
high polyunsaturated fatty acid content, such as linolenic acid, was observed in Tunisian
oil, while a high relative content of monounsaturated fatty acids was associated with all
other oils. This result was partly attributed to the different rainfalls and temperatures
between these countries. The authors concluded that simple climate predictors were not
enough to identify correlations with specific EVOO metabolic profiles, and further studies
of more detailed climate parameters were needed [147].

A second study by Rongai et al. used 13C NMR and multivariate analysis to dis-
criminate between olive oil samples from different regions in Italy [148]. Their results
indicated similarities between EVOOs from regions with similar geographical conditions,
and some differences between EVOOs from regions with different geographical conditions,
in agreement with the previous studies [148].

In conclusion, NMR spectroscopy can be used to distinguish and evaluate EVOOs,
which helps to prevent instances of fraud and ensure quality.

8. Metabolomics in Food Quality Control

Food composition defines its quality and authenticity. Food authentication and quality
control is a major concern in all countries and markets, where the declaration label should
match the chemical composition and the origin of the food item. Metabolic fingerprint-
ing has proven to be a powerful, rapid, and cost-efficient approach for evaluating food
authentication and quality. Although metabolomics approaches have been used in the
authentication and quality control studies of several foods, the applications of figure print-
ing are still in the initial stages and no country has yet approved metabolomics for food
validation. Thus, more studies with larger number of samples and databases are required.
In particular, more studies should be conducted to investigate factors that may influence
the fingerprinting features, such as climate factors, agricultural production systems, food
processing, production systems, and genetics [127].

One of the earlier studies, from Roberto Consonni and Laura R. Cagliani, investigated
the ability to distinguish polyfloral and acacia honeys based on their geographical point
of origin (i.e., from the European Community or not), and potential differences in sugar
isoforms [149]. They analyzed 41 honey samples (polyfloral and acacia) from different
countries by 1H NMR and 13C spectroscopy, coupled with a multivariate statistical method
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(i.e., principal component analysis (PCA) and hierarchical projection to latent structures
discriminant analysis (partial least-squares discriminant analysis (PLS-DA)). Their results
showed a significantly higher fructose and sucrose content in acacia honey than in polyfloral
honey. Additionally, a different ratio was observed between fructose forms βFP and βFF
only for polyfloral honey with an Argentinean point of origin, while Hungarian samples
showed resonance shifts for fructose forms of αFF, βFP, βFF, and the glucose form of
αGP isoforms for both varieties. These data could be used as geographical markers for
Argentinean and Hungarian honey [149].

Another interesting example is the study by Alonso-Salces et al. who studied finger-
prints of virgin olive oil from Italy, Spain, Greece, France, Turkey, Cyprus, and Syria, from
three different periods of harvests [150]. The researchers utilized 1H NMR and combined
it with PCA, linear discriminant analysis (LDA), and PLS-DA, in order to determine ge-
ographical origin with the support of isotope ratio mass spectrometry (IRMS) of carbon
(δ13C) and hydrogen (δ2H). Their results enabled the authors to create models that would
help to distinguish geographical origin between Spain, Italy, and Greece. For example,
the model distinguished virgin olive oil from Greece from the rest of the virgin olive oils
with >97% success rate. For Italy and Spain, the models presented classification abilities of
89% [150].

In Table 2, we present a few more examples of recent studies where metabolomics
approaches have been used to investigate food authentication.

Table 2. Selected literature examples of food authentication via metabolomics approaches.

Food Study Analytical
Method

Statistical
Analysis References

Olive oil

1H NMR fingerprints of virgin olive oils (VOOs) from the Mediterranean
basin (three harvests) were analyzed by principal component analysis
(PCA), linear discriminant analysis (LDA), and partial least-squares

discriminant analysis (PLS-DA) to determine their geographical origin at
the national, regional, or PDO level

1H- and 13C-NMR

ANOVA
PCA
LDA

PLS-DA

[150]

Olive oil NMR-based metabolomics approach used to classify the extra virgin olive
oils based on their geographical origin

1H-NMR
PLS-DA
SIMCA [151]

Honey NMR was used as an analytical tool to confirm honey origin 1H-NMR – [152]

Honey
Proton NMR was used in conjunction with multivariate analysis

techniques (PLS, PLS-LDA) to classify honey into groups by geographical
origin including honey from Corsica Island and other part of Europe

1H-NMR
PLS

PLS-LDA
PLS-GP

[70]

Honey
41 honey samples from different countries were analyzed using 1H-NMR
spectroscopy in conjunction with PCA to distinguish between polyfloral

and acacia honey samples

1H-NMR
PCA

PLS-DA [149]

Milk

The application of attenuated total reflectance mid-infrared (MIR)
microspectroscopy was evaluated as a rapid method for detection and
quantification of milk adulteration. Milk samples were purchased from

local grocery stores (Columbus, OH, USA) and spiked at different
concentrations with whey, hydrogen peroxide, synthetic urine, urea and

synthetic milk

1H-NMR
SIMC
PLS [153]

Beef

There is a need for new, non-invasive, rapid and reliable analytical
methodologies that can easily be implemented and used for authentication

of cattle production systems and the meat derived from them. Easily
quantifiable markers could strengthen the current tracing methods for beef

authentication. This study investigated the use of a nuclear magnetic
resonance-based metabolomic approach as a tool to authenticate beef on

the basis of the pre-slaughter production system

NMR PCA
PLS-DA [154]

Cabbage

Cabbage (Brassica rapa ssp. pekinensis) is one of the most popular foods
in Asia and is widely cultivated in many countries for the production of

lightly fermented vegetables. In this study, metabolomic analysis was
performed to distinguish two cultivars of cabbage grown in different
geographical areas, Korea and China, using 1H-NMR spectroscopy

coupled with multivariate statistical analysis. PCA showed clear
discrimination between extracts of cabbage grown in Korea and China for

two different cultivars (Chunmyeong and Chunjung)

NMR PCA [62]
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9. Food Intake Promoting a Healthy Lifestyle

Intake of a Western diet (WD), which is rich in saturated fats and simple sugars,
is associated not only with weight gain, diabetes, and metabolic diseases, but also with
impaired hippocampal-dependent memory and hippocampal pathologies [155]. In contrast,
a high content of ketone bodies may protect against the adverse effects of high adiposity
and/or high blood glucose levels on hippocampal-dependent cognition [156].

The ketogenic (or keto) diet (KD) was elaborated in the 1920s for the treatment of
refractory epilepsy. It produces similar physiological effects to that of fasting, and reduces
the occurrence of epileptic seizures. In the 90s, the keto diet was extended to overweight
patients, and patients with diabetes, metabolic syndrome, cancers, and specific psychiatric
and neurological disorders [157], providing health benefits.

The nervous system appears to be particularly susceptible to dietary treatment.
Recently, therapeutic diets for the management of autism spectrum disorder were re-
viewed [158]. Interestingly, the neuroprotective effect of a keto diet in animals might be
modulated by the gut microbiota [159]. Moreover, the keto diet has been associated with a
range of shifts in the gut microbiota, namely it influences microbial diversity, and reduces
concentrations of saccharolytic taxa, including beneficial bacteria such as Bifidobacteria
spp [157]. The keto diet excludes or limits major food groups (e.g., grains, dairy, and certain
fruit and vegetables). In order to contrast the negative effects of the keto diet, vitamins with
trace elements supplementation [160], and pre- or probiotics have been proposed [161,162].

Numerous therapeutic diets have become an integral part of the clinical treatment for
obesity, dyslipidemias, diabetes, cardiovascular disease, and hypertension [163]. Integra-
tive and functional medical nutrition therapy (IFMNT) is defined by in-depth assessment of
a patient’s nutritional status followed by the implementation of a personalized therapeutic
diet using food and targeted supplementation. The history and principles of therapeutic
diets are reviewed elsewhere [164].

Metabolomics plays an important role not only in the analysis of nutrients in single
food products, but also in the analysis of diet outcomes. A recent study with the use of
a mouse model by Licha et al. presented biochemical reactions and pathways of KD in
combination with chemotherapy [165]. Jin et al. reviewed how the metabolomics approach
is use to investigate the effects of a Mediterranean diet, and the role of the microbiome [166].
Metabolomics is allowing researchers to understand mechanisms following dietary inter-
ventions, which in turn advance our knowledge of the relationships between diet and
health/disease.

10. Conclusions and Future Perspectives

Metabolomics analytical approaches are forming the foundations of innovative nutri-
tional science that is opening up new therapeutic opportunities and markets. Chromatog-
raphy and NMR spectroscopy, separately or combined, deliver qualitative and quantitative
data on the molecular contents of all food types, which can be collected and disseminated
by databases. Food metabolomics data can be combined with metabolomics of life pro-
cesses, and together depicting in detail the living matter at previously unknown levels. At
this point, we have the capabilities to re-design the food market from strictly nutritional to
therapeutic, and to be in equilibria with the environment.
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Abbreviations

High performance liquid chromatography (HPLC); Fourier transformed infrared (FT-IR); mass
spectrometry (MS); nuclear magnetic resonance (NMR); dynamic nuclear polarization (DNP); NMR-
coupled gas chromatography, (GC-NMR); liquid chromatography (LC-NMR); solid phase extraction
(LC-SPE-NMR); complementary DNA (cDNA); messenger RNA (mRNA); Basic Local Alignment
Search Tool (BLAST); transfer DNA (T-DNA); ethyl methane sulfonate (EMS); Tea Metabolome
database (TMDB); Bovine Metabolome Database (BMDB); Milk Composition Database (MCDB); high
resolution magic angle spinning (HRMAS) NMR; γ-aminobutyric acid (GABA); Tomate Pimiento
(TP); Muchamiel Aperado (MA); diode array and electrospray ionization mass spectrometric detec-
tion (LC-DAD-ESI/MS); International Olive Council (IOC); statistical total correlation spectroscopy
(STOCSY); extra virgin olive oil (EVOO); analysis of variance (ANOVA); principal component analy-
sis (PCA); linear discriminant analysis (LDA); partial least-squares discriminant analysis (PLS-DA);
soft independent modeling by class analogy (SIMCA); partial least squares regression (PLS); partial
least squares-linear discriminant (PLS-LDA); partial least squares-genetic programming (PLS-GP);
cluster analysis (CA); principal component regression (PCR); isotope ratio mass spectrometry (IRMS);
volatile organic components (VOCs); attenuated total reflectance (ATR); reflectance mid-infrared
(MIR); Western diet (WD); ketogenic (or keto) diet (KD); integrative and functional medical nutrition
therapy (IFMNT).
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