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Abstract 

Using cross-sectional geometry (CSG), entheseal changes (ECs), and presence of external 

auditory meatus exostosis (EAE), this study tests hypothesis – bases on isotopic and 

zooarchaeological evidence – that in the Sicilian Mesolithic terrestrial rather than marine 

resources were predominantly exploited, in substantial continuity with previous Epigravettian 

hunters. Results show similarities in the general frequency of ECs – a rough proxy for overall 

activity – with Late Pleistocene hunters, in contrast with Mesolithic coastal foragers or 

Neolithic herders/farmers. Yet, CSG suggests that this possible continuity in the type of 

resources exploited was accompanied by a behavioral change, and in particular the 

abandonment of the throwing technology, possibly in favor of new tools such as traps and the 

bow and arrow. In fact, the dramatic decrease in humeral bilateral asymmetry documented at 

a European level with the Pleistocene-Holocene transition can be found also in the Sicilian 

Mesolithic. Results for the lower limb appear compatible with a certain degree of terrestrial 

mobility in a rugged environment. The frequency of EAE suggests that activities related to 

water were present but not common; however, their prominence is difficult to determine 
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given the small sample size. The pattern of information provided by the proxies for activity 

used here is complex and partially contrasting, but has the potential to integrate and enrich 

archaeological methods and biochemical approaches. This study corroborates a varied 

scenario of continuity and discontinuity in subsistence at the Pleistocene-Holocene transition, 

and highlights the importance of a regional bioarchaeological approach of human biological 

and behavioral adaptations. 

1. Introduction 

Human adaptive strategies appear to have been strongly impacted by the major climatic 

oscillations that happened with the Last Glacial Maximum (LGM; c. 20,000 years BP; Clark 

et al. 2009) and the following de-glaciation, which marks the end of the Pleistocene. The 

Pleistocene-Holocene boundary is conventionally placed at 10,000 BP [e.g., Mangerud et al., 

1974; or c. 11,700 yr b2k (before AD2000; Walker et al., 2009) using polar ice cores; see 

also Lowe and Walker, 2000]. The various techno-cultural complexes comprised between the 

last Upper Paleolithic cultures and the diffusion of the Neolithic agricultural “package” 

between 8-5,000 BP (Bogucki, 2001; Zvelebil, 2001) are generally called “Mesolithic”. 

Parallel to the major environmental changes that occurred all over Europe during glaciation 

and deglaciation, shifts in subsistence practices took place alongside cultural diversification 

and fragmentation. The pre-LGM inhabitants of Europe appear to have focused on hunting 

mid- to large-size ungulates, which consisted mainly of red deer and ibex in peninsular Italy 

(Mussi et al., 2000; Mussi 2001; Bocherens et al. 2015; Wojtal and Wilczyński 2015a,b; 

Drucker et al. 2017). Indeed, most of the isotopic investigations conducted on the Early 

Upper Paleolithic humans suggest important consumption of animal protein, namely 

terrestrial herbivores (Richards 2009). Climatic cooling forced human groups into southern 

refugia, where they had to intensify exploitation of existing resources and increasingly 

acquire high-cost/low-yield resources, such as marine and freshwater fish, shellfish, and 

hunting small game such as birds (Straus et al. 1981; Clark and Straus 1986; Stiner et al. 

1999; Mussi 2001; Richards et al. 2001). After the LGM, the arid glacial steppe gradually 

gave way to a more varied environment, with an increase in the presence of trees culminating 

into the mesophyll Holocenic forest (Gamble 1986; Ravazzi et al., 2007; Magri, 2008). While 

coastal plains shrank and disappeared, high mountain ranges became accessible, and entire 

portions of the continent could be recolonized. Within this framework, the Italian peninsula, 
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due to its complex geomorphology, presented a variety of niches for human adaptation, from 

coastal lagoons and marshes to hillsides and mountains (Mussi 2001). 

Subsistence practices of Late Upper Paleolithic human groups reflect this increased 

ecological diversity. Hunting of large mammals endured in those areas where they survived 

(Richards et al., 2000; Germonpré et al., 2008; Jacobi and Higham 2009; Garcia- Guixe et al., 

2009), but also the exploitation of both freshwater or marine and terrestrial resources 

continued (Richards et al. 2001, 2005; Stiner and Munro 2011; Gazzoni et al. 2013; Mannino 

et al. 2011a,b). Depending on the local ecologies, in some areas the terrestrial (Cassoli and 

Tagliacozzo 1994; Richards et al. 2000; Craig et al. 2010; Stevens et al. 2010; Mannino et al. 

2011a,b) or the marine/freshwater component (Richards at al. 2005, 2015) became 

predominant. This anticipated what happened in the Mesolithic, when at coastal and estuarine 

sites in the Baltic, UK, Croatia, Portugal, Spain and France, up to 100% protein in the diet is 

supposed to have derived from the sea (Richards and Mellars 1998; Mannino and Thomas 

2001; Schulting and Richards 2002; Richards et al. 2005; Cristiani et al. 2018; Salazar-García 

et al. 2014; 2018). The explanation provided for this shift is that expanding groups of hunters 

turned to the exploitation of marine and freshwater resources in those areas, such as the 

Baltic, where river estuaries, vast intertidal areas, and high sea productivity make it 

advantageous (Zvelebil 2008). Archaeological evidence suggests that, in the Mediterranean, 

Mesolithic groups continued to base their subsistence on the exploitation of terrestrial 

animals, including high-altitude hunting in the Alpine and Apennine areas (Fontana et al. 

2009; Moore 2014; Fontana and Visentin, 2016), with no or little contribution of marine and 

freshwater resources (Stiner and Munro 2011; Mannino et al. 2011a, 2012). This may be due 

to a lower productivity of the Mediterranean Sea (Fa, 2008; Diniz, 2016) or to the possibility 

that sites bearing abundant evidence of marine food exploitation were submerged by rising 

sea levels (Bailey and Flemming, 2008). Nevertheless, direct biochemical evidence from 

human remains via isotopic analysis supports the scenario of a diet mainly based on terrestrial 

resources (Garcia-Guixe et al., 2006; Paine et al., 2009; Lightfoot et al., 2011; Mannino et al, 

2011a,b; Mannino et al., 2012; Goude et al. 2017). 

Biomechanical properties and patterns of enthesopathies can provide data on subsistence-

related functional adaptations and alterations (Pearson and Lieberman, 2004; Ruff et al., 

2006b; Villotte 2009). When pooling skeletal remains from Europe, Upper Paleolithic people 

show lower limb adaptations/alterations related to high mobility levels, while according to 

the same traits, Mesolithic groups appear to have been more sedentary (Holt 1999, 2003; Holt 
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et al. 2000; Holt and Formicola 2008; Villotte et al, 2010; Shaw and Stock 2013; Sparacello 

et al., 2018). In addition, Mesolithic skeletal assemblages do not show the high levels of 

humeral bilateral asymmetry in mechanical rigidity that were one of the hallmarks of Late 

Pleistocene hunters (Sládek et al., 2016; Sparacello et al., 2017; Villotte et al., 2017). These 

results are in agreement with a shift from a highly-mobile subsistence based on hunting, 

especially using throwing technology, to a more sedentary exploitation of coastal and 

estuarine resources (e.g. Marchand et al., 2016). 

However, the variability in Mesolithic subsistence regimes evidenced by the archaeological 

and isotopic analyses outlined above requires a more regional approach in order to explore 

subsistence-related habitual behaviors via skeletal functional adaptations. This study focuses 

on Mesolithic human remains from three nearby sites on the coast of western Sicily: Grotta 

d’Oriente in the Favignana Island (which was probably attached to the Sicilian mainland in 

the Mesolithic; Mannino et al., 2012), Grotta della Molara near Palermo, and Grotta 

dell’Uzzo near San Vito lo Capo (Figure 1). Archeozoological and isotopic studies suggest 

that the Pleistocene-Holocene transition in western Sicilian sites did not result in a major shift 

in subsistence regimes. In fact, Mesolithic foragers appear to have not developed strongly 

marine-oriented adaptations, but continued a subsistence mainly based on hunting terrestrial 

mammals (Tagliacozzo, 1993; Mannino and Thomas, 2009; Mannino et al., 2012). This 

should result in a substantial continuity in skeletal functional adaptations between Pleistocene 

and Sicilian Mesolithic foragers. We will test this hypothesis through the cross-sectional 

geometry method (CSG), and the study of entheseal changes (EC). Furthermore, we will 

assess the prevalence of external auditory canal exostosis (EAE), which has been associated 

with frequent contact with cold water (see Villotte and Knüsel 2016 for a review). Although 

the resulting sample size is small (13 individuals, which are detailed below), we surveyed for 

this study totality of the Mesolithic individuals in this area, in order to attempt to capture as 

much as possible the Sicilian Mesolithic variability of human bone functional adaptations and 

alterations. 

Figure 1 about here 

2. Materials and methods 

Data were collected from 13 Sicilian Mesolithic adult individuals (Table 1): one from the site 

of Grotta d’Oriente (8730-8570 cal BC; Di Salvo et al., 2012a; Mannino et al., 2012), two 

from Grotta della Molara (c. 7960-7470 cal BC; Borgognini Tarli 1976; Canci et al., 1995; 
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Gowlett et al., 1987), and ten from Grotta dell’Uzzo (AMS on Uzzo IV: 8750-8300 cal BC; 

AMS on shell with Uzzo XI: 7850-7510; Di Salvo et al., 2012; Borgognini Tarli, 1980; 

Borgognini Tarli and Repetto, 1986; Borgognini Tarli et al., 1993; Mannino et al., 2015). 

Albeit fragile, bones are generally in a good state of conservation, with a level of completion 

and surface preservation sufficient for both CSG reconstruction and evaluation of ECs. 

Sex was re-assessed by MS (Samsel, 2018) based on pelvic morphology and morphometry 

(Bruzek 2002; Murail et al. 2005; Bruzek et al., 2017) and using the secondary sex diagnosis 

(see Murail et al. 1999), and is sometimes in disagreement with previous studies, mostly in 

the direction of considering previous determination as “undetermined” (cf. Borgognini Tarli 

1980, 1993; Alciati et al., 2005; Samsel, 2018; Table 1). Detailed tables for sex estimations, 

including the results for each methodology used, are available in Samsel (2018). Age at death 

estimation was based on the state of fusion of later-fusing secondary centers of ossification, 

following Owings Webb and Suchey (1985) and Albert and Maples (1995), on the surface 

characteristics of the pubic symphyseal face, and on the form of the sacroiliac surface of the 

os coxae, following Schmitt’s methods (Schmitt, 2005; Schmitt and Georges, 2008). Given 

the well-known limitations in the precision of age at death estimation, most individuals fall 

under the “adult” category (or 20-39 and > 30 years old), one can be considered “old” (Grotta 

d’Oriente B, probably > 50 years old), and three appear to be young adults (20-29 years old, 

Table 1). 

[Table 1 about here] 

The biomechanical analysis of postcranial functional adaptations employs the cross-sectional 

geometry method (CSG), which is based on the widely accepted notion that bone tissue 

optimizes to its mechanical environment so as to maintain physiological strains within the 

normal limits (“Wolff’s Law”, better referred to as “bone functional adaptation”; Pearson and 

Lieberman, 2004; Ruff et al., 2006b). Bone tissue is deposited in the shaft’s cross-section 

where mechanical loads require it to prevent strains in excess of the elastic limit, whereas 

below a certain strain threshold, the bone tissue is reabsorbed. By analyzing the cross-

sections of the diaphysis at specified percentages of bone length, it is therefore possible to 

obtain variables that correlate with the bending moments (second moments of area: Ii) and 

overall torsional rigidity (polar moment of area: J) of the diaphysis (all moments of area are 

expressed in mm4). Although the complexity of the factors influencing bone robusticity 

should always be taken into account when interpreting CSG results (Pearson and Lieberman, 
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2004), it is generally presumed that variation in CSG properties correlate with activity levels 

and types once the effect of body size is factored out (Ruff et al., 2006b). Following this 

rationale, the integration of quantitative data derived from CSG with ethnographic and 

archaeological information has been widely used in reconstructing the mechanical 

environment of past and recent populations and to make inferences about their subsistence 

strategies, mobility levels, and other habitual activities (reviews in Carlson and Marchi, 

2014). 

In this study, we reconstructed the cross sections (35% and 50% from the distal end for the 

humeri, and 50% for the femur and tibia) from the surface 3D scans of the Sicilian Mesolithic 

individuals (collected using the DAVID SLS-2 structured light scanner), which were virtually 

positioned according to the reference planes following Ruff (2002). The cross sections were 

obtained using the function “slice” in Netfabb Standard 2018 for PC (copyright by Autodesk 

2017), and CSG properties calculated using a version of the program SLICE (Nagurka and 

Hayes, 1980) adapted as a macro routine inserted in Scion Image release Beta 4.03. The 

“Solid CSG” method was employed to estimate actual CSG properties from the periosteal 

contour via regression equations (provided in Sparacello and Pearson, 2010; Marchi et al. 

2011), as justified in previous research (Stock and Shaw, 2007; Sparacello and Pearson, 

2010; Macintosh et al., 2013). 

The variable expressing overall diaphyseal rigidity discussed in this study is calculated from 

the polar second moment of area (J) – corresponding to the torsional and (twice) average 

bending rigidity of the beam – raised to the power of 0.73 (Ruff, 1995, 2000). The value of 

J0.73 is proportional to the section modulus (Zp), which can be more precisely calculated 

dividing J by the average radius of the section. Although J0.73 is proportional to rather than 

strictly equivalent to Zp, we will refer to it as Zp, as done in previous research (e.g., 

Sparacello et al., 2011). 

The mechanical loading on long bones is a function of physical activity, bone length, and 

body mass (Ruff, 2000). To isolate the effects of activity, the estimate of overall bone 

strength Zp was scaled for size dividing by bone mechanical length (as defined in Ruff, 2002) 

and body mass (Ruff, 2000). Body mass was estimated from the superoinferior diameter of 

the femoral head following the guidelines in Trinkaus and Ruff (2012). 

In order to characterize the prevalent use of one arm in stressful activities, the degree of 

humeral bilateral asymmetry in J was calculated using the formula [(Jmax – Jmin)/Jmin]×100 
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and expressed as a percentage, following previous studies (Trinkaus et al.,1994; Rhodes and 

Knüsel, 2005; Sparacello and Marchi, 2008; Sparacello et al., 2011). The resulting value 

represents an absolute (non-directional) asymmetry. Asymmetry was calculated from 

absolute values of J (i.e. not standardized by body size), because any prior size 

standardization would be elided. 

Given their correspondence with mobility levels (Holt, 2003; Shaw and Stock, 2009a; 

Carlson and Marchi, 2014; Macintosh and Stock, 2018), lower limb CSG shape indices were 

also analyzed. For the femur, we consider the ratio between Ix (second moment of area in the 

anteroposterior plane) and Iy (second moment of area in the mediolateral plane). For the tibia, 

we used the ratio of Imax (maximum second moment of area) to Imin, (minimum second 

moment of area). 

Lesions at tendon attachment sites (entheses) are called enthesopathies in the medical 

literature, whereas alterations visible on the skeleton are now called entheseal changes (ECs) 

in the anthropological literature (see Villotte and Knüsel 2013; Villotte et al. 2016). ECs have 

been associated with activity patterns in bioarcheological studies but, their reliability as 

indicator of past behaviors is still highly debated. It has been shown that a significant part of 

this issue is related to the methods used and the nature of entheses under study (Villotte 2006; 

2009; Villotte et al. 2010; Villotte and Knüsel 2013). Many factors have been mentioned by 

biological anthropologists to explain the apparition of ECs, but from the medical literature 

three mains causes can be identified (see Villotte and Knüsel 2013 for a discussion): age 

(lesions at fibrocartilaginous entheses are more frequent in older individuals, especially after 

50 years old), micro and macrotraumas, and systemic diseases (mainly DISH and 

spondyloarthropathies). 

ECs were originally recorded using four generic scoring systems (Villotte 2006), allowing the 

comparison with other samples of Upper Paleolithic, Mesolithic and Neolithic individuals 

studied with the same method. It has been shown that biomechanical factors seem to play a 

significant role in the apparition of the ECs scored with the system 1 (Villotte 2009; Villotte 

et al. 2010) and the results provided here are only about this system. The system was 

originally created to score ECs at 5 upper limb entheses and 4 at the lower limb. However, it 

has been suggested that one them (the insertion of the m. biceps brachii on the radius) may 

not be relevant for reconstruction of past behaviors (Villotte 2009; Villotte and Knüsel 

2013a,b). ECs at 8 attachment sites are thus considered in the present paper, 4 on the humerus 
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(m. subscapularis, mm. infra and supraspinatus, common flexors, common extensors), 1 one 

the coxal bone (mm. semimembranosus and biceps femoris) and 3 on the femur (m. gluteus 

minimus, m. gluteus medius, and m. iliopsoas).  

Considering the low number of individuals, results are mostly presented in a descriptive way. 

Overall frequency of ECs (number of ECs/number of entheses scored) are computed. When 

controlled for age, this can be considered as an indicator of overall biomechanical stresses 

during life. Laterality was considered (the side of the upper limb with most ECs) as well as 

asymmetry (a difference of score between left and right site for a given upper limb enthesis).  

External auditory exostoses (EAEs) are osseous exostoses that form in the external auditory 

canal resulting from an irritation of the periosteum. Many conditions can be responsible for 

this trait, but contact with cold water appears to be the main cause (for review of the medical 

and anthropological literature, see Kennedy 1986, Villotte and Knüsel 2016). EAE can be 

considered as one of the most informative of activity-related skeletal morphologies: it has a 

very well-known etiology, the amount of available clinical data is substantial, and it is 

possible to make comparisons of frequencies between current and past populations, with only 

minor methodological problems (Villotte and Knüsel 2016). One main issue should be 

emphasized though: the absence or low frequency of EAE in a small sample does not mean 

that contact with cold water was absent. Indeed,  many individuals regularly in contact with 

cold water do not develop this exostosis. EAEs were recorded using a scoring system of the 

extent of occlusion previously applied by biological anthropologists (e.g. Crowe et al. 2010, 

Standen et al. 1997, Velasco-Vazquez et al. 2000, Villotte et al. 2014), and by clinicians (e.g. 

Cooper et al. 2010, Hurst et al. 2004).  

The comparative samples for CSG properties and ECs consist of European Middle 

Paleolithic, Late Upper Paleolithic, and Mesolithic individuals, as well as an Italian Neolithic 

sample (Square Mouthed Pottery from Liguria; Varalli et al., In Press). Data were collected 

by the authors and from the literature (Tables 2 and 3). For EAEs, these samples are detailed 

in Villotte et al. 2014. For ECs, individuals displaying any changes indicating a possible 

systemic disease were discarded following the criteria presented in Villotte et al. (2010), and 

skeletal elements presenting signs of in vivo fractures were not scored. 

The CSG parameters were variously obtained from CT scans, subperiosteal molds plus 

biplanar radiography for cortical thicknesses (LCM method; O’Neill and Ruff, 2004), ellipse 

formulae employing external diameters and cortical thicknesses (Holt, 1999), the “Solid 
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CSG” method (Sparacello and Pearson, 2010), and scaled photographs of fossilization breaks. 

In addition, in some cases CSG properties were estimated from maximum and minimum 

subperiosteal diameters using the relevant least squares multiple regressions provided in 

Pearson and Sparacello (2017) and Sparacello et al (2017). The different techniques for 

obtaining cross-sectional parameters provide consistent results that are within the variation 

produced by the variable preservation of the fossil remains, and therefore can be pooled (cf. 

Macintosh et al., 2013; O’Neill and Ruff, 2004; Sparacello and Pearson, 2010; Stock, 2002). 

Statistical analysis of CSG parameters involved ANOVA (main effect period) by sex for the 

variable normally distributed (Zp of all limbs), with post-hoc multiple comparisons 

(Bonferroni correction). For variables not normally distributed (shape indices and humeral 

asymmetry), a Kruskal-Wallis ANOVA with post-hoc multiple comparisons of mean ranks 

was performed. Boxplots and confidence intervals are provided in figures to best interpret 

possible differences among groups beyond the p-value results (Smith, 2017). 

[Tables 2 and 3 about here] 

 

3. Results 

Table 4 contains the raw data used for the CSG analysis. Figure 2 shows the diachronic trend 

in humeral robusticity from the Middle Upper Paleolithic to the Neolithic (Ligurian skeletal 

series).  Although the samples size is small, Sicilian Mesolithic individuals appear to 

consistently show the most robust humeri, especially in the left side, and particularly when 

compared to earlier Upper Paleolithic individuals (Table 5). Humeral bilateral asymmetry is 

significantly lower in the Sicilian Mesolithic sample than in earlier Paleolithic samples 

(Figure 3, and Table 5). Contrary to both Paleolithic and Neolithic samples, sexual 

dimorphism for upper limb robusticity and asymmetry is not significant in the Sicilian 

Mesolithic sample. 

[Figures 2, 3 and Table 5 about here] 

Figure 4 shows the diachronic trend in femoral and tibial robusticity and shape indices. 

Similarly to the humerus, both the femur and tibia of the Sicilian Mesolithic sample show 

higher robusticity than the comparative Upper Paleolithic, European Mesolithic, and 

Neolithic samples, especially in males (Table 6). The Sicilian Mesolithic males are also 

different than their European counterparts in not having a significantly lower femoral shape 
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index when compared to the Paleolithic groups (Figure 4). In contrast, the tibial shape index 

Imax/Imin of Sicilian Mesolithic males is significantly lower when compared with the same 

groups (Figure 4; Table 6). Sexual dimorphism is not significant for all lower limb variables 

only in the European Mesolithic sample, while the Sicilian males have significantly higher 

tibial robusticity than females (Table 6). 

[Figure 4 and Table 6 about here] 

Table 7 presents the raw data used for EC analysis. ECs are very rare in the Mesolithic 

Sicilian sample, and no major changes (stage C) were recorded. Considering the very small 

Mesolithic Sicilian sample, the interpretation of difference with other prehistoric samples is 

tentative. When controlling for age (only 20-49 years old individuals), the overall frequency 

of EC in the Sicilian Mesolithic sample is very low (5.6% (3/54)), close to the MUP and LUP 

ones (respectively 8.2 (8/98), and 7.3%, (14/192)) and clearly inferior to the frequencies 

obtained for the Mesolithic (16.4% (98/598)) and Neolithic (14.5% (215/1479)) samples. 

Sicilian Mesolithic males and females do not differ in term of overall frequencies. 

Considering the laterality of the humeral lesions: Uzzo 1A (F), Uzzo 7 (M) and especially 

Uzzo 4A (I) tend to indicate a right side dominance whereas Molara 2 (M) tend to indicate a 

dominance for the left hand side. Results for asymmetry are similar: Uzzo 7 (M), Uzzo 4A (I) 

and Molara 2 (M) are asymmetrical for at least one enthesis. This relatively clear pattern of 

laterality for ECs tends to place the Sicilian Mesolithic sample closer to Upper Paleolithic 

samples than to other Mesolithic and Neolithic ones (Table 8). Interestingly, Uzzo 7 (a male), 

displays a unilateral lesion at the right medial epicondyle, whereas none was recorded in 

females 

One individual (Uzzo 5) displays slight bilateral EAEs (Table 7). The frequency of EAE in 

the Sicilian sample is 14.3% (1/7) is comparable to those seen in Late Mesolithic costal and 

estuarine sites (comprised between 9.9 and 19.4%), below those of Mesolithic groups from 

the Iron Gates (40.1%) and above those of European Neolithic groups (from 0.0 to 6.7%) (see 

Villotte et al. 2014 for the raw data for each of the sites considered).  

[Table 7 and 8 about here] 

4. Discussion 

The purpose of this paper was to make inferences on Mesolithic Sicilian activity patterns by 

integrating results from different types of activity-related skeletal morphologies (CSG, ECs, 
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and EAE). We tested the hypothesis, based on isotopic and archaeozoological evidence 

(Tagliacozzo, 1993; Mannino and Thomas, 2009; Mannino et al., 2012) of a subsistence 

based on terrestrial hunting in continuity with earlier Pleistocene hunter-gatherers, and in 

contrast with other coastal and estuarine Mesolithic European groups. The comparison with 

other Late Pleistocene and Holocene prehistoric groups allowed for a characterization of the 

Sicilian group in terms of overall amount of subsistence-induced biomechanical stresses, 

upper limb asymmetry, and mobility, as well as possible differences in these parameters 

based on biological sex. We emphasize that the results should be discussed cautiously, given 

the small sample size involved in most comparisons. However, we collected the totality of the 

available data in a relatively small region, western Sicily, which is by far the Italian region 

with most Mesolithic human remains. By comparison, only three other Italian Mesolithic 

burials are published, and were unearthed in the northeastern Alps (Mezzocorona, Mondeval, 

and Vatte di Zambana; e.g. Sparacello et al., 2017). Therefore, the individuals analyzed here 

constitutes the best available assemblage to attempt inferences about Mesolithic lifestyle in 

this region of the Mediterranean. 

Humeral biomechanical properties suggest that Sicilian Mesolithic males and females 

performed activities requiring a robust upper limb, as expected in a context of exploitation of 

high-cost/low-yield resources (Straus et al. 1981; Clark and Straus 1986; Stiner et al. 1999; 

Mussi 2001; Richards et al. 2001). In addition, and contrarily to what was observed in earlier 

periods, these activities did not result in a disproportionate involvement of the dominant limb. 

Paleolithic males show high values of humeral bilateral asymmetry, several times higher than 

what seen in modern sedentary individuals, and similar to that observed in professional tennis 

players (Jones et al., 1977; Trinkaus et al., 1994; Haapsalo et al., 2000; Sládek et al., 2016; 

Sparacello et al., 2017; Villotte et al., 2017). Upper limb asymmetry is generally linked to 

specific stressful activities that characterize the subsistence patterns of a population 

(Churchill, 1994; Trinkaus et al., 1994; Churchill et al, 1996, 2000; Marchi et al., 2006, 

2011), as well as people practicing different sports (Trinkaus et al., 1994; Shaw and Stock, 

2009b) or military activities (Sparacello et al., 2011, 2015). Churchill and colleagues 

(Churchill, 1993, 2002; Churchill et al., 2000; Schmitt et al., 2003) proposed that the 

Paleolithic activity that likely influenced asymmetry was the frequent use of throwing 

weapons during hunting, and especially long-distance hunting via atl-atl (Churchill, 2002; 

Churchill and Rhodes, 2009; Rhodes and Churchill, 2009). Antler and bone spear throwers 

have been unearthed in Solutrean to Upper Magdalenian layers (about 17,500 to 12,500 BP) 



12 
 

in France, Switzerland, Germany, and Spain (Cattelain, 1997), although their invention was 

probably earlier (Shea, 2006). This activity is not only strenuous when performed during 

hunting, but requires continuous training for both strength and aim (Cattelain, 1997; 

Whittaker and Kamp, 2006). Overhead unilateral throwing generates levels of humeral torque 

as high as 48% of the total theoretical torsional rigidity of the humerus (Sabick et al., 2004), 

and can result in spiral “ball-thrower’s fractures” to the humeral shaft (Ogawa and Yoshida, 

1998). Accordingly, Paleolithic males share other traits with professional modern-day 

pitchers and javelin hurlers, such as high asymmetry in humeral retroversion (Rhodes and 

Churchill, 2009), and frequent unilateral medial humeral epicondyle enthesopathies (Villotte 

et al., 2010). 

The significant decrease in the asymmetry of humeral robusticity observed in Sicilian 

Mesolithic males parallels previous studies based on classic osteometric measurements 

(Borgognini Tarli and Repetto, 1986), as well as the results obtained by Sládek et al (2016) in 

European skeletal series. Sládek et al (2016) propose that this change at the beginning of the 

Holocene could be attributed to a more frequent use of the bow-and-arrow over other types of 

projectile weapons, as demonstrated by archaeological evidence (Bergman, 1993; Churchill, 

1993; Cattelain, 1997, 2006; Knecht, 1997). The cessation of the high torsional loading in the 

dominant arm due to throwing, as well as the increased loading on the non-dominant, holding 

arm would lead to a decrease in asymmetry, as suggested by previous studies on medieval 

military archers (Stirland, 1993; Knüsel, 2000; Rhodes and Knüsel, 2005). Although only the 

medieval longbow would probably generate significant bending moments on the upper limb 

(Rhodes and Knüsel, 2005), the frequent use of the bow use can produce mechanical stress 

leading to bursitis in the drawing shoulder and in the elbow of the holding arm (Lapostolle, 

2004). However, the decrease in asymmetry alone is not sufficient to suggest that Sicilian 

Mesolithic people has a subsistence based on terrestrial hunting, possibly in forested 

environments where the use of bow over throwing spears is more appropriate (Cattelain, 

1997). In fact, a number of activities linked to marine exploitation, including swimming, 

rowing, fishing, and food processing can involve the upper limb in a symmetric fashion 

(Weiss, 2003; Sparacello and Marchi, 2008; Shaw and Stock, 2009b). 

Results from the lower limb allow for a direct comparison with European Mesolithic 

individuals whose subsistence was mainly based on coastal exploitation of marine resources 

(Holt, 2003). Although sample size is small, and results often do not reach statistical 

significance when reducing for multiple comparisons, Sicilian Mesolithic individuals, 



13 
 

especially males, appear to have a more robust femur, and higher femoral shape indices, than 

their European counterparts. Femoral Ix/Iy is considered to be correlated with mobility 

patterns, and is normally referred to as a “mobility index” (review in Carlson and Marchi, 

2014). Accordingly, highly mobile hunter-gatherers generally show higher values of femoral 

shape ratios than sedentary agriculturalists (e.g. Stock and Pfeiffer 2001; Holt 2003; Ruff et 

al. 2006a; Sládek at al. 2006a,b; Marchi 2008; Marchi et al. 2011; Sparacello et al. 2014), and 

athletes such as soccer players and runners show higher shape ratios than swimmers or 

sedentary controls (Macintosh and Stock, 2018). In addition, given similar mobility levels, 

groups settled in mountainous areas tend to have more robust femora (Ruff, 1999). Results 

from tibial CSG indicate high robusticity in males, and a lower shape index when compared 

with Paleolithic and European Mesolithic groups. This result may appear contradictory, given 

that both high tibial robusticity (Stock, 2006) and high tibial shape index (Ruff and Hayes, 

1983; Holt, 2003, Marchi, 2008) have been associated with mobility levels. However, 

experimental evidence suggests that a combination of high tibial robusticity and low shape 

index can be caused by high mobility coupled with the medio-lateral bending loads generated 

by frequent swerving and/or traversing rugged terrain (Shaw and Stock 2009; Marchi and 

Shaw 2011). Among prehistoric groups, similarly leg loading patterns may have been caused 

by mobility in highly uneven and mountainous terrains (Marchi et al. 2011; Sparacello et al., 

2014, 2018; Higgins 2014). While Sicilian Mesolithic people were possibly less mobile than 

Upper Paleolithic hunters (Borgognini Tarli and Repetto, 1986), our results (especially for 

males) tend to set them apart from the European Mesolithic sample in having a stronger 

component of mobility in the inland. This would be compatible with a more important 

exploitation of terrestrial resources, as indicated by isotopic analyses (Mannino et al, 

2011a,b; Mannino et al., 2012). Unfortunately, no data on fibular robusticity and tibio-fibular 

ratio is available for European Mesolithic people, which could further inform on medio-

lateral bending loads correlated to traversing uneven terrains (Sparacello et al., 2014; 

Hagihara and Nara, 2016, 2018).  

The main factor affecting the frequency of ECs remains age. Unfortunately, obtaining an age-

at-death estimation has been possible only for part of the individuals in the Mesolithic 

sample. When controlled for age (i.e. considering only the adult individuals that died before 

50 years old; see Villotte 2009; Villotte et al. 2010a, b), the overall frequency of ECs is very 

low, especially when compared to Late Mesolithic and Neolithic samples. This seems to 
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indicate a relatively lower overall amount of biomechanical stresses for the Sicilian 

Mesolithic sample compared to later prehistoric groups.  

Considering the upper limb, the study of ECs and CSG properties provides contrasting 

results. ECs indicate a relatively clear importance of unimanual activities, whereas CSG 

properties provide low values of asymmetry, which in a context of high robusticity can be 

interpreted as an indicator of bimanual activities (see above).  Furthermore, there is no 

consistent correspondence between laterality as described by ECs and CSG, and the 

individual with a unilateral lesion at the right medial epicondyle (Uzzo 7) is the least 

asymmetric in the sample when considering CSG. 

Both CSG and ECs have been extensively used to infer activity patterns in bioarchaeological 

samples, although numerous studies have warned against simplistic interpretations of the 

results, given the number of concomitant factors influencing bone mechanical competence, 

entheseal appearance, and other “markers of activities” (Pearson and Lieberman, 2004; 

Meyer et al., 2011; Jurmain et al., 2012). Few studies have been explicitly focusing on the 

relationship between the types of markers analyzed here (Niinimäki, 2012; Niinimäki and 

Baiges Sotos, 2013; Ibáñez-Gimeno et al., 2013), and at best have found a general 

correspondence between the two (e.g. Lieverse et al., 2011). More detailed tests between ECs 

scores and CSG values have failed to provide a consistent association (Niinimäki, 2012; 

Michopoulou et al., 2017; Nikita et al., 2019). The small sample size, and the fact that 

subsamples based on variables often include different assortments of individuals, may explain 

in part the substantial discrepancy found here. In addition, the information provided by CSG 

and ECs properties may differ in a substantial way. The “baseline” total area and thickness of 

diaphyses, which determine CSG robusticity, is the result of the ‘mechanical environment’ 

affecting body dimensions and activity levels during the pre- and peri-pubertal periods 

(Lazenby, 1990; Pearson and Lieberman, 2004). Although imperfect, standardization by body 

size is commonly employed in CSG studies (Ruff, 200). Senescence does influence CSG 

properties, due to continued periosteal apposition to mechanically compensate for medullary 

expansion (especially in males; Martin and Atkinson, 1977; Ruff and Hayes, 1988). This 

generally plays a minor role in prehistoric samples: in our study, only the female Oriente B 

has an estimated age > 50 years old, and her CSG robusticity does not appear particularly 

high. In addition, it is generally assumed that bioarchaeological samples are mostly composed 

by individuals that participated to activities typical of their subsistence regimes early in life, 
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and died before the onset of senescence, hence CSG is mostly a reflection of activity early in 

life. 

In contrast, for ECs, the whole correlation with activity patterns is questioned once age and 

body size are taken into account (e.g. Alvares Cardoso and Henderson, 2010; Nikita et al., 

2019). Compared to CSG, the ECs “baseline” early in life is 0, and lesions must be acquired 

throughout the lifetime. Moreover, ECs do not appear automatically with the specific or 

repetitive use of a muscle, i.e. their absence does not mean that a certain muscle or limb was 

not involved in strenuous habitual activities. Therefore, there may be little justification for 

expecting a general correspondence between ECs scores and CSG robusticity; they may 

inform on different processes and may or may not correlate with each other depending on the 

individual’s history. However, it is possible that specific entheseal changes, and especially 

their asymmetry, may be indicative of certain habitual activities, which may also be detected 

by biomechanical analysis. In this complex scenario, further research is necessary. Finite 

elements analysis may inform on the areas of bone that sustain most stress, and may therefore 

more likely to show structural adaptations and alterations (e.g. Vickerton et al., 2014). 

Multivariate and 3D analysis of overall entheseal morphology and shape may correlate better 

with biomechanical parameters or muscle use (e.g. Karakostis et al., 2017, 2018, 2019a,b). 

Future studies will certainly take advantage of the data collection of 3D models conducted 

here, making sharing raw data and collaborations easier than in the past. 

In the Sicilian Mesolithic sample, only one case of bilateral EAE (grade 1) has been recorded. 

It is always complicated to discuss low frequencies of EAEs, especially in a small sample 

(Villotte and Knüsel 2016). In addition to frequent contact with cold water, infection, 

eczema, trauma, or other pathological conditions affecting the normal homeostasis of the 

external ear canal may cause an auditory exostosis in a very small number of individuals (Di 

Bartolomeo et al., 1991; Fowler and Osmun, 1942), and Uzzo 5 may represent one of these 

cases. Furthermore, the absence of EAE does not exclude aquatic activities, as individuals 

may protect their ears, young adults frequently in contact with cold water may have died 

before developing the condition, and some individuals do not develop EAE, even if they are 

frequently engaged in aquatic activities during their whole life. A great part of the Sicilian 

Mesolithic individuals are young adults, and may have not lived long enough to develop 

EAEs. It is tempting to consider the presence of bilateral EAEs in one individual as an 

indicator of aquatic activities practiced by these groups, but if this is the case, these aquatic 

activities were likely not a preponderant part of their daily life. Indeed, in populations for 
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which isotopic data indicated a strong reliance on aquatic resources, EAEs tend to be very 

frequent and the occlusion of the ear canal is sometimes important (i.e.; grades 2 or 3) (e.g. 

Villotte et al. 2014, Crow et al. 2010, Kusaka et al. 2010), which is not the case here. Our 

results, even if they have to be taken with caution considering the sample size, seem 

compatible with those from isotopic analyses previously carried out on these individuals, 

indicating at least for the diet, not a strong relationship with the aquatic environment.   

5. Conclusions 

We tested, using cross-sectional geometry, entheseal changes, and presence of external 

auditory meatus exostosis the hypothesis – bases on isotopic and zooarchaeological evidence 

– that in Sicily, marine food become important only in the late Mesolithic, while in the earlier 

phases terrestrial resources were predominantly exploited, in substantial continuity with 

previous Epigravettian hunters. Results indeed show similarities in the general frequency of 

entheseal changes – a rough proxy for overall activity – with Late Pleistocene hunters, in 

contrast with Mesolithic coastal foragers or Neolithic herders/farmers. Yet, cross-sectional 

geometry suggests that this possible continuity in the type of resources exploited was 

nevertheless accompanied by a substantial behavioral change, and in particular the 

abandonment of the throwing technology, possibly in favor of new tools such as traps and the 

bow and arrow. In fact, this study confirms that the dramatic decrease in humeral bilateral 

asymmetry documented at a European level with the Pleistocene-Holocene transition can be 

found also in the Mediterranean at a regional level. Results for the lower limb are less clear, 

probably due to the small sample size, but appear compatible with a certain degree of 

terrestrial mobility in a rugged environment. The presence of EAE suggests that activities 

related to water were present but not common; however, their prominence is difficult to 

determine given the small sample size, and given that absence of EAE does not exclude 

contact with water. 

The pattern of information provided by the proxies for activity used here is complex and 

partially contrasting, but has the potential to integrate and enrich archaeological methods and 

biochemical approaches. This study corroborates a varied scenario of continuity and 

discontinuity in subsistence at the Pleistocene-Holocene transition, and highlights the 

importance of a regional bioarchaeological approach of human biological and behavioral 

adaptations. 
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Sicilian Mesolithic 
sample Age Sex 

literature1 

Sex 
(Samsel, 

2018) 
Grotta d,Oriente B > 50  F 
Grotta della Molara 1 Adult  U 
Grotta della Molara 2 Adult  M 
Grotta dell’Uzzo 1A 20-39 F F 
Grotta dell’Uzzo 1B 20-29 M F 
Grotta dell’Uzzo 2 >40 M M 
Grotta dell’Uzzo 4A Adult M U 
Grotta dell’Uzzo 4B 20-49 F F 
Grotta dell’Uzzo 5 >30 M M 
Grotta dell’Uzzo 7 Adult M M 
Grotta dell’Uzzo 8 Adult F/U U 
Grotta dell’Uzzo 10 20-29 F U 
Grotta dell’Uzzo 11 20-29 M M 

 

Table 1 – The sample of Sicilian Mesolithic individuals used in this study.  

1 From Borgognini Tarli 1976; Borgognini Tarli, 1980; Borgognini Tarli and Repetto, 1986; Borgognini Tarli et al., 1993; Di Salvo et al., 2012a,b. M: male; F: female; U: 
undetermined. 
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Table 2 – The bioarchaeological samples employed in this study for CSG analysis, and the references used for published data. 1 Humeral data not included – possibly 
pathological asymmetry (Churchill and Formicola, 1997). 

2 Data for Ligurian Neolithic individuals include only the ones attributed to the Square Mouthed Pottery chronology (c. 5,000-4,300 cal BCE) thanks to the recently 
performed AMS dates on human bone (e.g. Sparacello et al., 2019a, b). 

 

 

 

 

 

 

Cultural 
Period N Individuals Data Source 

Mid Upper 
Paleolithic 

Total: 36 
Males: 20 
Females: 9 
Undetermined Sex: 7 

Abri Pataud 3, Barma Grande 21, 5, 6; Bausso da Ture 1, 2; Barma del Caviglione 1; Cro 
Magnon 1 (4296, 4327, 4332), 4294, 4295, 4322, 4324, 4330, 4333; Dolní Věstonice 3, 13, 
14, 16, 35; Grotte des Enfants 4, 5; Neuessing 2; Ostuni 1; Paglicci 25; Parabita 1, 2; 
Paviland 1; Pavlov 1; Předmostí 1, 3, 4, 5,  9, 10, 14; Sunghir 1, 4. 

Vernau, 1906; Matiegka, 1934, 
1938; Pearson, 1997; Holt, 1999; 
Sládek et al., 2000; Trinkaus and 
Ruff, 2012; Trinkaus et al., 2014; 
Sparacello et al., 2017, 2018. 

Late Upper 
Paleolithic 

Total:32 
Males: 19 
Females: 11 
Undetermined Sex: 2 

Arene Candide 2, 3, 4, 5, 10, 12; Bichon; Cap Blanc; Chancelade; Continenza 7; Cova Fosca 
A1 AD, Gough’s Cave; Grotte des Enfants 3; Lafaye; Laugerie Basse 4, Los Azules,  Maritza 
2; Oberkassel 1, 2; Peyrat 5, Riparo Tagliente; Rochereil; Romanelli 1; Romito 1-6; San 
Teodoro 1, 4; Saint-Germain-de-la-Rivière 4; Villabruna. 

Holt, 1999; Sparacello et al., 2014,  
2017, 2018. 

Mesolithic 
Total: 40 
Males: 26 
Females: 14 

Birsmatten; Blocksbjerg 251; Bottendorf; Culoz 1, 2; Dragsholm A, B; Gramat 1; Hoëdic 1, 
2, 4, 5, 6, 8, 9, 10; Holmegaard; Koelbjerg; Korsor Glas; Le Rastel; Loschbour; Melby; 
Moita de Sebastiao 1, 2, 3, 7, 9, 18, 31; Sejerø; Téviec 1, 3, 4, 7, 8, 9, 11, 16; Unseburg; 
Vaegensø. 

Holt, 1999. 

Neolithic 

Total: 34 
Males: 16 
Females: 17 
Undetermined Sex: 1 

Arma del Morto 251+254; Arene Candide 6 Pe, 7 Pe, 8 Pe, II BB, III BB, IV BB, VI BB, VII 
BB, IX BB; Arma dell’Aquila 1 Zambelli; Bergeggi 2, 3, 4, 5; Pian del Ciliegio; Pipistrelli 3, 
5, 6; Pollera 1 Tiné, 10 Pe, 110a, 110b, 12 Pe, 13 Pe, 14 Pe, 22 Pe, 30 Pe, 32 Pe, 33 Pe, 6246 
Pe, 6673.6 FI, 6690bis.3+6692.1. 

Marchi et al., 2006, 2011; Marchi, 
2008; Sparacello and Marchi, 
2008; Sparacello et al., 2011, 2014, 
2018, 2019a, b. 
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Cultural 
Period N Individuals 

Mid Upper 
Paleolithic 

Total: 20; 
Males: 10; 
Females: 7;  
Undetermined Sex: 3. 

Abri Pataud 1, 3, 5; Baousso da Torre 2; Barma Grande 5, 6; Cro-Magnon 2, 3; Dolni 
Vestonice 3, 13, 15, 16; Grotte des Enfants 4, 5; Ostuni 1, Paglicci 25, Paviland, Sunghir 1,  
Veneri Parabita 1, 2. 

Late Upper 
Paleolithic 

Total:35; 
Males: 16; 
Females: 10; 
Undetermined Sex: 9. 

Arene Candide 4, 10, 12, 14; Bichon, Chancelade, Continenza 7, Grotte des Enfants 3, 
Lafaye 1, Laugerie Basse 4, Maritza 2, Romanelli 1, Romito 3, 4, 5, 6, 7; Saint Germain La 
Rivière 4, San Teodoro 1, 3, 4, 5; Stare Mesto 1, Tagliente 2, Vado All’ Arancio 1, 
Vasilievka III 10, 12, 13, 22, 28, 35, 36, 37, 38; Villabruna 1 

Mesolithic 

Total: 200; 
Males: 73; 
Females: 81; 
Undetermined Sex: 46. 

Individuals from Muge and Sado sites : (Amoreira: 6 ind.; Arapouco: 16; Arruda:45, Pez: 9; 
Poças de S. Bento: 2; Romeiras: 2; Sebastiao: 54); from Brittany (Hoëdic: 7; Teviec: 8), from 
the Iron Gates (Kula:3; Padina: 7; Schela Cladovei: 18); Auneau 3; Birsmatten Basisgrotte, 
Fatma Koba, Gough cave 1, La Brana 1, 2; La Chaussée-Tirancourt, Lavergne ST03, ST10 
(inf),  ST11(1); Le Closeaux 1, Loschbour, Murzak Koba 1, 2 ; Vasilievka II 08, 11, 12, 14, 
18, 21, 24, 25, 27  

Neolithic 

Total: 257; 
Males: 116; 
Females: 114;  
Undetermined Sex: 27. 

Ajmana (4 ind.), Barmaz I (20), Barmaz II (14), Chamblandes (26), Corseaux (9), Gurgy 
(32), Pontcharauld (40), Sion Collines (10), Sion Ritz (9), Saint Guerin (3),  Saint Leonard 
(2), Stuttgart-Mülhausen (88)  

 

Table 3 – Comparative samples used for the ECs analysis. All data recorded by SV. 
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Molara 1 Molara 2 OrienteB Uzzo 1A Uzzo 1B Uzzo 2 Uzzo 4A Uzzo 4B Uzzo 5 Uzzo 7 Uzzo 8 Uzzo 10 Uzzo 11 

Sex U M F F F M U F M M U U M 
AGE Adult Adult > 50 20-39 20-29 > 40 Adult 20-49 > 30 Adult Adult 20-29 20-29 
Humerus right 

             

Maximum length 
 

330.8 293.5 288.5 307.0 
 

293.5 300.0 306.0 312.0 
   

Physiological length 
 

326.0 290.5 285.5 304.0 
 

292.5 296.0 304.0 309.0 2931 2642 3051 
J mid-distal 16147.04 20757.91 14047.03 11018.86 12441.62 

 
11809.51 10676.12 15355.86 13712.19 8380.56 3525.19 15492.24 

J midshaft 
 

27943.08 18017.89 13613.55 14694.29 
 

13768.39 14038.71 16573.52 16723.43 
 

5423.59 22053.76 
Humerus left 

             

Maximum length 
 

331.2 287.5 288.2 304.2 
 

292.0 294.0 305.0 
  

257.0 
 

Physiological length 
 

327.0 284.5 285.0 301.0 
 

291.0 289.0 302.0 3072 2902 257.0 3031 
J mid-distal 15689.13 21995.92 13935.43 9306.26 11022.30 

 
12804.00 10331.95 13627.73 13599.56 

 
3617.98 16810.60 

J midshaft 
 

24604.62 18310.16 11129.85 13157.33 
 

15245.12 13098.92 15102.18 16739.89 
 

4925.22 21873.10 
Femur 

             

Maximum length 
 

465.2 4073 382.9 417 405.1 
  

428 425.6 
  

434.1 
Mechanical length4 

 
439 3835 358 393.5 381   401.5 402   4095 

FEMHSI 
 

49.5 43 41.5 43 44.4 
  

45 45.6 
  

43 
J midshaft 

 
97086.83 62015.91 37757.71 43444.85 56725.48 49872.49 55942.94 46320.42 53830.99 41060.66 13871.84 75624.95 

Ix/Iy 
 

1.38 1.13 1.41 1.23 1.34 1.18 1.34 1.25 1.61 1.43 1.27 1.70 
Tibia 

             

Maximum length 
 

393 342 338 359 359 
  

368 370 
  

351 
Mechanical length 

 
380 329 322 345 345 

  
354 359   338 

J midshaft 
 

87529.14 35926.83 27275.50 36949.90 40844.16 
  

49147.44 50523.02 27732.29 10960.29 51727.59 
Imax/Imin 

 
2.10 2.10 2.55 2.43 2.26 

  
2.26 2.15 2.13 2.21 1.79 

Bodymass7 
 

74.23 59.90 56.55 59.90 61.28 
  

62.67 64.07 
  

58.02 
Table 4 – Cross-sectional geometric properties discussed in this study and the relevant osteometric measurements for the Sicilian Mesolithic sample. Legend: M, males; F, 
females; U: sex is uncertain. FEMHSI: femoral head supero-inferior diameter. 
1 Estimated from ulnar mechanical length (Ruff, 2002) using the regression equation based on the rest of the Sicilian Mesolithic sample (n=6): Humerus M2 = -5.2383 + 
1.3613* UL_MECH;  r2 = 0.8781.   
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2 Estimated from the opposite side using the regression equation based on the rest of the Sicilian Mesolithic sample (n=7): Humerus M2L= -31.9675 + 1.0976*Humerus 
M2R; r2 = 0.9704. 
3 Estimated based on the distance from the adductor tubercle (medial condyle) to the top of the femoral head. Regression based on the rest of the sicilian MESO sample (n=7) 
Femur M1=12.7277 + 1.0669*FEMADT r2=0.988. 
4 Mechanical length as defined in Ruff, 2002. 
5 Estimated based on maximum femoral length using the regression equation based on the rest of the Sicilian MESO sample (n=6): FEMMECH=-15.7231+0.9784*Femur M1 
r2=0.998. 
6 Body mass was estimated from the superoinferior diameter of the femoral head following the guidelines in Trinkaus and Ruff (2012), where three sets of formulae for body 
mass estimation (all from recent humans) were used for individuals of contrasting body sizes. The formula from McHenry (1994) was used for individuals with femoral head 
superoinferior diameters of <38 mm. An average of the estimates from McHenry (1992), Ruff et al. (1991), and Grine et al. (1995) was used for individuals whose femoral 
head diameter was between 38 and 47 mm. An average of Ruff et al. (1991) and Grine et al. (1995) was used for individuals whose femoral head diameter exceeded 47 mm. 
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Humerus CSG MUP LUP MESOSIC NEOL Main Effect 
(period) 

MUP- 
MESOSIC 

LUP- 
MESOSIC 

NEOL- 
MESOSIC 

Males n Mean SD n Mean SD n Mean SD n Mean SD ANOVA Post-hoc multiple 
comparisons (Bonferroni) 

Zp mid-distal R 10 54.32 9.58 13 52.03 7.13 4 58.96 4.83 14 54.19 9.97 NS NS NS NS 
Zp midshaft R 10 51.23 8.12 15 60.65 8.53 4 10.18 10.33 14 61.08 10.03 P<0.01 P<0.01 NS NS 
Zp mid-distal L 11 37.55 6.68 13 42.28 10.53 4 59.51 7.26 15 48.68 7.78 P<0.001 P<0.001 P<0.01 NS 
Zp midshaft L 13 40.64 6.67 14 50.58 12.71 4 67.71 11.08 15 53.88 8.31 P<0.001 P<0.001 P<0.05 P<0.1 

             Kruskal-Wallis 
ANOVA 

Multiple comparisons 
of mean ranks 

HUMBA 35% 9 62.42 23.49 14 58.61 28.03 4 6.99 4.96 14 19.35 9.32 P<0.001 P<0.01 P<0.01 NS 
HUMBA 50% 10 44.43 27.45 14 58.28 29.47 4 6.06 6.65 14 23.73 15.65 P<0.001 P=0.05 P<0.01 NS 

Females n Mean SD n Mean SD n Mean SD n Mean SD ANOVA Post-hoc multiple 
comparisons (Bonferroni) 

Zp mid-distal R 2 42.6 11.64 4 49.24 8.06 3 56.58 4.03 12 45.72 4.47 P<0.05 NS NS NS 
Zp midshaft R 6 47.57 8.72 5 57.07 8.66 3 66.16 6.64 12 58.93 14.42 NS NS NS NS 
Zp mid-distal L 3 37.56 5.59 5 48.15 7.51 3 53.56 7.48 14 46.38 4.82 P<0.05 P<0.05 NS NS 
Zp midshaft L 7 42.58 5.78 4 52.96 4.22 3 62.69 11.45 13 55.13 10.99 P<0.05 P<0.05 NS NS 

             Kruskal-Wallis 
ANOVA 

Multiple comparisons 
of mean ranks 

HUMBA 35% 3 12.94 12.66 4 12.52 2.81 4 8.85 8.22 13 6.94 5.76 NS NS NS NS 
HUMBA 50% 7 16.15 14.6 7 18.17 15.62 4 10.7 8.77 13 11.99 8.47 NS NS NS NS 
Sexual 
dimorphism MUP LUP MESOSIC NEOL     

Zp mid-distal R NS NS NS P<0.05     

Zp midshaft R NS NS NS NS     

Zp mid-distal L NS NS NS NS     

Zp midshaft L NS NS NS NS     

HUMBA 35%1 P<0.05 P<0.01 NS P<0.001     

HUMBA 50%1 P<0.05 P<0.01 NS P<0.1     

Table 5 – Humeral CSG data. Legend: MUP, Middle Upper Paleolithic; LUP, Late Upper Paleolithic; MESOSIC, Sicilian Mesolithic; NEOL, Neolithic. 1 Mann-Whitney U 
Test. 
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Lower Limb 
CSG MUP LUP MESOEURO MESOSIC NEOL Main Effect 

(period) 

MUP 
MESOSI

C 

LUP 
MESOSI

C 

MESOEUR
O 

MESOSIC 

NEOL 
MESOSI

C 

Males n Mean SD n Mea
n SD n Mea

n SD n Mea
n SD n Mean SD ANOVA Post-hoc multiple 

comparisons (Bonferroni) 

Femur Zp 19 103.7 22.9
5 

1
8 

106.
2 

10.5
3 

2
0 

100.1
4 

15.1
4 5 125.1

4 
20.4

8 
1
4 102.14 13.99 P<0.1 NS NS P<0.05 NS 

Tibia Zp 18 108.5 28.3 1
6 

109.
4 

15.7
8 

1
7 

103.8
8 

20.5
2 5 126.4

4 
14.9

2 
1
4 104.69 18.44 NS NS NS NS NS 

                
Kruskal-

Wallis 
ANOVA 

Multiple comparisons 
of mean ranks 

Femur Ix/Iy 19 1.48 0.33 1
8 1.4 0.25 2

6 1.15 0.16 5 1.38 0.24 1
4 1.32 0.17 P<0.01 NS NS NS NS 

Tibia 
Imax/Imin 18 2.82 0.63 1

6 2.85 0.64 2
1 2.66 0.51 5 2.11 0.19 1

4 2.67 0.33 P<0.05 P<0.1 P<0.05 NS NS 

Females n Mean SD n Mea
n SD n Mea

n SD n Mea
n SD n Mean SD ANOVA Post-hoc multiple 

comparisons (Bonferroni) 

Femur Zp 8 99.97 17.7
3 7 96.7

5 
13.3

9 
1
0 94.75 11.8

6 3 116.2
9 

18.4
6 

1
2 94.87 11.41 NS NS NS NS NS 

Tibia Zp 8 100.1 30.5
5 5 101.

2 8.44 8 92.6 19.3
9 3 102.2

9 6.46 1
3 97.15 15.53 NS NS NS NS NS 

                
Kruskal-

Wallis 
ANOVA 

Multiple comparisons 
of mean ranks 

Femur Ix/Iy 8 1.38 0.45 1
1 1.26 0.27 1

4 1.1 0.19 4 1.23 0.14 1
2 1.15 0.17 NS NS NS NS NS 

Tibia 
Imax/Imin 8 2.33 0.4 6 2.14 0.27 1

0 2.47 0.33 3 2.36 0.23 1
3 2.34 0.32 NS NS NS NS NS 

Sexual 
dimorphism MUP LUP MESOEURO MESOSIC NEOL      

Femur Zp NS NS NS NS NS      

Tibia Zp NS NS NS P<0.05 NS      

Femur Ix/Iy1 NS NS NS NS P<0.05      

Tibia 
Imax/Imin1 P<0.1 P<0.01 NS NS P<0.05      

Table 6 – Femoral and tibial CSG data. Legend: MUP, Middle Upper Paleolithic; LUP, Late Upper Paleolithic; MESOSIC, Sicilian Mesolithic; NEOL, Neolithic. 1 Mann-
Whitney U Test. 
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Uividual Sex Age Side m. 
subscapularis 

mm. infra 
and 

supraspinatus 

Common 
extensors 

common 
flexors 

mm. 
semimembranosus 

and biceps 
femoris 

m. 
gluteus 

minimus 

m. 
gluteus 
medius 

m. 
iliopsoas EAE 

Molara 1 U Adult 
R          

L          

Molara 2 M Adult 
R  A A       

L A B A A      

OrienteB F > 50 
R A A A A A A A  0 
L A A A A A A   0 

Uzzo 1A F 20-
39 

R A B A  A A B A 0 
L A  A  A A B  0 

Uzzo 1B F 20-
29 

R A A A A A A   0 
L A A A A A A A A 0 

Uzzo 2 M > 40 
R     B A A A  

L          

Uzzo 4A U Adult 
R B B A A     0 
L A A A A     0 

Uzzo 4B F 20-
49 

R A A A A     0 
L A A A      0 

Uzzo 5 M > 30 
R A  A A A A   1 
L A  A A A A A A 1 

Uzzo 7 M Adult 
R   A B    A  

L   A A A A A A  

Uzzo 8 U Adult 
R    A B     

L    A A  A   
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Uzzo 10 U 20-
29 

R   A    A A  

L A A A A A A A A 0 

Uzzo 11 M 20-
29 

R A  A A A   A  

L   A A  A A A  

 

Table 7 – ECs and EAEs scores for the Sicilian Mesolithic sample. A: no ECs, B: minor change. 0: no EAE, 1: minor EAE. R: Right, L: left.  

 

 

 Right upper limb Left upper limb 

 N observed 
entheses N ECs % of 

ECs 
N observed 

entheses N ECs % of 
ECs 

MUP 35 7 20.0% 43 4 9.3% 
LUP 68 12 17.6% 60 4 6.7% 
MESO 330 89 27.0% 241 43 17.8% 
MESOSIC 32 5 15.6% 33 1 3.0% 
NEO 576 187 32.5% 497 85 17.1% 

 

Table 8 – Frequencies of ECs for the right and left upper limb for the Sicilian Mesolithic sample and the comparative samples. As there is no control for age, the percentages 

cannot be compared between samples, but instead illustrate the variation of the differences between left and right sides through time.  
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Figure 1 – Geographical collocation of the Sicilian sites included in this analysis. Maps were 
downloaded and modified from d-maps.com. 

 

 

 

 

 



46 
 

 

Figure 2 – Robusticity (mechanical rigidity scaled to body size) of the humerus in the Mesolithic 
Sicilian and comparative samples. Boxplots indicate the mean, the standard error, and 95% 
confidence intervals. A) Right mid-distal humerus; B) left mid-distal humerus; C) right midshaft 
humerus; D) left midshaft humerus. MUP: Mid-Upper Paleolithic; LUP: Late Upper Paleolithic; 
MESOSIC: Mesolithic Sicilian; NEOL: Ligurian Neolithic. M: males; F: females; U: undetermined 
sex. 
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Figure 3 –Humeral bilateral asymmetry in mechanical rigidity, calculated as [(Jmax – 
Jmin)/Jmin]×100, in the Mesolithic Sicilian and comparative samples. Boxplots indicate the mean, the 
standard error, and 95% confidence intervals. A) mid distal humerus; B) midshaft humerus. MUP: 
Mid-Upper Paleolithic; LUP: Late Upper Paleolithic; MESOSIC: Mesolithic Sicilian; NEOL: 
Ligurian Neolithic. M: males; F: females; U: undetermined sex. 
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Figure 4 – Robusticity (mechanical rigidity scaled to body size) of the lower limb, and shape indices 
(Ix/Iy for the femur, Imax/Imin for the tibia) in the Mesolithic Sicilian and comparative samples. 
Boxplots indicate the mean, the standard error, and 95% confidence intervals. A) Femoral midshaft 
robusticity; B) tibial midshaft robusticity; C) femoral shape index Ix/Iy; D) tibial shape index 
Imax/Imin. MUP: Mid-Upper Paleolithic; LUP: Late Upper Paleolithic; MESOEUR: European 
Mesolithic; MESOSIC: Mesolithic Sicilian; NEOL: Ligurian Neolithic. M: males; F: females; U: 
undetermined sex. 

 

 

 

 

 

 


