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Abstract
The remediation of petroleum-contaminated soil and groundwater is a challenging task. The petroleum hydrocarbons have a long
persistence in both the vadose zone and in the aquifer and potentially represent secondary and residual sources of contamination.
This is particularly evident in the presence of residual free-phase. Pump-and-treat is the most common hydrocarbon decontam-
ination strategy. Besides, it acts primarily on the water dissolved phase and reduces concentrations of contaminants to an
asymptotic trend. This study presents a case of enhanced light non-aqueous phase liquid (LNAPL) remediation monitored using
noninvasive techniques. A pilot-scale field experiment was conducted through the injection of reagents into the subsoil to
stimulate the desorption and the oxidation of residual hydrocarbons. Geophysical and groundwater monitoring during pilot
testing controlled the effectiveness of the intervention, both in terms of product diffusion capacity and in terms of effective
reduction of pollutant concentrations. In particular, non-invasive monitoring of the reagent migration and its capability to reach
the target areas is a major add-on to the remediation technique. Most of the organic contaminants were decomposed, mobilized,
and subsequently removed using physical recovery techniques. A considerable mass of contaminant was recovered resulting in
the reduction of concentrations in the intervention areas.

Keywords Hydrocarbon contamination . Hydrogeophysical monitoring . Light non-aqueous phase liquid desorption . Pilot test .
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Introduction

The remediation of the areas contaminated by petroleum hy-
drocarbons and the selection of the best decontamination
methods represent a growing global concern (Kuppusamy

et al. 2020; Ossai et al. 2020; Verardo et al. 2021). The natural
aging of petroleum hydrocarbons in contaminated sites and
the water table fluctuations result in the chemical sequestra-
tion and physical entrapment of these hydrophobic com-
pounds (Gatsios et al. 2018; Teramoto et al. 2020). This aspect
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is particularly relevant in the case of contamination by fuels,
which are complex mixtures of hydrocarbons made of sub-
stances with significantly different chemical, physical, and
biodegradation properties (Vozka et al. 2019). The progres-
sive aging of the contaminants corresponds to a reduction of
the more mobile and degradable fractions and the increase of
compounds with a higher molecular weight (Tran et al. 2018).
Such immobile, less volatile, less soluble, more viscous, and
high molecular weight materials constitute the residual hydro-
carbons, which are difficult to be mobilized by traditional
extraction (i.e., pumping) technologies (Lari et al. 2019b;
Ossai et al. 2020; Teramoto et al. 2020; Trulli et al. 2016).
This aging or weathering can cause modifications that are
necessary to consider when selecting a remediation technique
and is therefore essential to the polluted site s management
(Lari et al. 2019a; Tang et al. 2012). The light non-aqueous
phase liquid (LNAPL) recovery and contamination mitigation
approaches may include hydraulic pumping (mainly to recov-
er the LNAPL), soil vapor extraction (SVE), chemical oxi-
dants (e.g., to reduce saturation and degrade contaminants),
air sparging (e.g., to augment biodegradation and volatiliza-
tion), thermal methods (e.g., to decrease LNAPL viscosity and
increase volatilization), enhanced bioremediation, multiphase
extraction (MPE), skimming of mobile LNAPL, and natural
source zone depletion (i.e., NSZD) (Besha et al. 2018; Bortoni
et al. 2019; Gatsios et al. 2018; Kuppusamy et al. 2020; Lari
et al. 2019a; Lari et al. 2020; Ossai et al. 2020; Sharma et al.
2020; Verardo et al. 2021; Xie et al. 2020; Yao et al. 2020).
Among the physical extraction-based remediation techniques,
the pump-and-treat is traditionally the most commonly used
approach for treating contaminated groundwater (Brusseau
2019; Teramoto et al. 2020). While the initial phase of
pump-and-treat systems typically achieves a rapid reduction
of light non-aqueous phase liquids (LNAPLs) aqueous con-
centrations, its long-term effectiveness diminishes, and the
system often reaches asymptotic conditions (Truex et al.
2017). Further operations of the system provide small incre-
mental benefits in treating soil or groundwater contamination,
often not achieving the regulation cleaning goals and being
operationally long and expensive (Lari et al. 2019b). Pump-
and-treat efficacy tends to plateau as a result of a variety of
factors such as (a) hydrocarbon distribution through zones of
differential matrix permeability and (b) the presence of slowly
dissolving smeared free phase and/or adsorbed hydrocarbon
contamination (Lee et al. 2001; Lari et al. 2019a; Teramoto
et al. 2020).Miscible solvents and surfactants can act as chem-
ical enhancers for pump-and-treat: the petroleum hydrocarbon
mass can be removed using reagent to enhance recovery of
sorbed-phase or smeared hydrocarbon (McCray et al. 2011;
Sharma et al. 2020). The hydrocarbons are made available in
the dissolved or lower viscosity phase, to enhance the recov-
erability of the product in a separate phase, allowing a subse-
quent rapid and effective physical recovery (Birnstingl et al.

2014; Lari et al. 2019b). Characterization efforts are critical
for determining the applicability, deployment, and efficacy of
remediation technology. From the implementation perspec-
tive, field applications should continuously emphasize ade-
quate site characterizations for a proper remedial design
(Lari et al. 2020; Suthersan et al. 2016). Verification of
amendment distribution in soils should be part of the perfor-
mance monitoring (Fan et al. 2017).

A possible strategy for this monitoring relies on the use of
non-invasive geophysical techniques to visualize the time-
lapse distribution of reagents. Thus, the resulting physical
changes due to the injected solution may be measured using
physical methods. The use of repeated geophysical measure-
ments to highlight changes in the system‘s condition is the
state-of-the-art for several hydrological applications
(Cassiani et al. 2006; Deiana et al. 2008; Morita et al. 2020;
Perri et al. 2012; Haaken et al. 2017) but rarely implemented
at contaminated sites, particularly during remediation activi-
ties (Cassiani et al. 2014; Perri et al. 2020). Although geo-
physical experiments and field studies provided valuable in-
sights on the behavior of contaminants, the results are still
ambiguous, leading to widely divergent explanations
(Atekwana and Atekwana 2010; Deng et al. 2020; Hort
et al. 2015). These methods can provide potentially critical
information on where and how in situ remediation actions
affect different portions of the subsurface, as an effect of sub-
soil hydraulic heterogeneity (Vereecken et al. 2006). The
physical variable of interest, i.e., the electrical resistivity, is
strongly linked to state variables of key environmental interest
(Lesmes and Friedman 2005). In this regard, the joint model-
ing of geological-geophysical data enabled Ciampi et al.
(2019a) to discretize the electrical response and to track the
product diffusion resulting from reagent injection into a het-
erogeneous, dense non-aqueous phase liquid (DNAPL)-con-
taminated aquifer. The present paper, unlike the previous one,
aims to unmask the decontamination dynamics induced by the
injection of amendments in the context of an LNAPL-
contaminated site. The geophysical-chemical cross-analysis
can potentially explain the removal mechanisms of residual
hydrocarbons, by identifying the different fractions of product
involved in the degradative processes (Ossai et al. 2020).
Effective remediation of a site contaminated with hydrocar-
bons requires a sound understanding of regulatory issues,
technology options, and the site s hydrogeology (Lari et al.
2020). In this context, the challenge to be faced is to simulta-
neously integrate the information relating to the
hydrogeophysical sphere in all its dimensions (Harris et al.
2004; Teramoto et al. 2020; Verardo et al. 2021). A cross-
disciplinary geodatabase and an interactive model become
the instruments for managing and analyzing multi-source data
(Ciampi et al. 2019a). The hydrogeological complexity, geo-
physical manifestation, and contamination or decontamina-
tion processes are caught by information sharing, knowledge
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convergence, and high-resolution depiction of environmental
diversity (Ciampi et al. 2019b). In this direction, the present
work presents a case study that dealt with the application of an
innovative technology to remediate a site contaminated with
petroleum hydrocarbons. This paper focuses on a field injec-
tion of the PetroCleanze™ product (Regenesis, San Clemente,
CA) for enhancing and extending the effectiveness of physical
extraction systems. The technology combines in situ chemical
oxidation (ISCO) and enhanced desorption to treat bound hy-
drocarbon and LNAPL (Besha et al. 2018; Wang et al. 2013).
PetroCleanze™ is a two-part reagent, which targets sorbed-
mass and residual NAPL, bringing each into the soluble and
recoverable phase from where they may then be extracted
through pumping systems (Sharma et al. 2020). This strategy
was here verified through a pilot test, to evaluate the possible
scaling up of the process. The pilot test, which was properly
orchestrated via a multidisciplinary and multitemporal data
management model, was assessed in terms of yield during
the implementation process. Electrical resistivity tomography
(ERT) monitoring and groundwater sampling were performed
to evaluate the effectiveness of the intervention, both in terms
of product diffusion capacity and in terms of effective reduc-
tion of pollutant concentrations. The near real-time observa-
tion of decontamination dynamics at the field scale can repre-
sent an added value to interpret the spatial and temporal
physio-chemical changes during the remediation process,
explaining the contaminant-geophysical behavior. The case
study presents possibilities for optimizing LNAPL contami-
nant removal since it is substantially unrecoverable using tra-
ditional remediation technologies at long-term polluted sites.

Materials and methods

The study site is a large airport area (NATO Military Base of
Decimomannu) located in Sardinia (Italy), where about ten
years ago a jet fuel spill occurred due to leakage of a transfer
pipeline around the fuel tanks. The detected contamination,
despite being mainly caused by a single spill, is quite exten-
sive and has been the subject of years of pump-and-treat in-
tervention (Trulli et al. 2016). This is operational.

The Regenesis PetroCleanzeTM was employed to develop
an in situ enhanced chemical desorption strategy. The main
technological functionality of the product is to enhance the
desorption of hydrocarbons adsorbed to saturated soils or at
the capillary fringe, and the product's recoverability as a sep-
arate phase (Sharma et al. 2020). The application of the prod-
uct is aimed at making the hydrocarbons available in the dis-
solved phase, allowing a subsequent rapid and effective phys-
ical recovery (Birnstingl et al. 2014).

Pilot testing occurred in two different areas, by a direct
application at existing wells and reactivating the pump-and-
treat system a few days later. The chosen areas are

characterized by two geological scenarios that are representa-
tive of the site’s conditions. In addition, the two zones are
close to the source of historical pollution and have been
strongly impacted by contamination.

From the characterization phase to the application of the
treatments, the processing of a vast volume of heterogeneous
data accompanied the entire remediation process (Suthersan
et al. 2016). An automated knowledge management and anal-
ysis dashboard containing information relating to geological,
geophysical, hydrological, and chemical fields was employed
to archive and coordinate multi-thematic data. The 4D multi-
disciplinary geodatabase (which takes into account the time
factor) held the role of an effective “near real-time” decision
support system (DSS), which manages and releases data from
site characterization to technique application (Ciampi et al.
2019a; Huysegoms and Cappuyns 2017). The digital and the-
matic database constitutes a data source used for the modeling
and the editing of georeferenced information (Artimo et al.
2008). The interpretation of the resulting hydrological-
geophysical model and the selection of remediation solutions
were subsequently accomplished using a multiscale and mul-
tiphase methodology. (Ciampi et al. 2019a). The essential
hydrogeological characteristics of the site at full scale were
collected and employed to populate the model in the first step.
The research centered on the pilot test areas in the final stage,
with higher resolution, to examine in depth the effects of geo-
logical complexity and chemical mechanisms in the interven-
tion sector, beginning with the multidisciplinary conceptual
model derived from the first step. (Ciampi et al. 2019b). The
RockWorks 17 application was employed to recreate the
hydrogeological 3D model (Lekula et al. 2018). This software
enables the acquisition, analysis, visualization, and integration
of information from geo-referenced data. The geological, geo-
physical, and hydrochemical variables were interpolated and
modeled during the data integration and analysis procedure
(Kaliraj et al. 2015; Safarbeiranvnd et al. 2018). Geologic-
geophysical data and chemical analyses performed on water
samples represent the variables involved in the modeling ac-
tivities. The stratigraphic sequence was reconstructed based
on data derived from 85 boreholes. Stratigraphic logs reach
depths ranging from 10 m to 26 m and cover an investigation
area of about 265000m2. A piezometric network consisting of
62 monitoring points was installed on the site. Piezometers
completely intercept contaminated groundwater, generally
reaching a depth of 10 m from the ground level. Data
concerning chemical analyzes of water sampled and the pres-
ence of supernatant product from 2012 to 2018 are available.
Dynamic and interactive extraction, both in time and space, of
multi-source data from the multi-modality data source and
joint model aimed to support decision-making (Lekula et al.
2018). The complete multi-temporal and multidisciplinary
characterization helped the selection of a remediation technol-
ogy. The joint management of geological and hydrochemical
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data oriented the location of the interventions at the field scale.
Following an accurate reconstruction of the geochemical pe-
culiarities, a field test was designed to optimize the operating
conditions.

The pilot test aimed to assess the potential mobilization of
sorbed-mass and residual LNAPL (McCray et al. 2011;
Sharma et al. 2020). The remediation strategy involves the
injection of reagents into the aquifer through piezometers.
The reagents consist of two parts: a desorbent part
(PetroCleanze™) and an oxidizing part (Regenox™,
Regenesis, San Clemente, CA). The desorbed fractions can
be partially oxidized but mainly physically removed by
pumping. Partial oxidation intended to “break” the longest
hydrocarbon chains, making the hydrophobic contaminants
(slightly degradable) more soluble and easily degradable
(Besha et al. 2018; Cheng et al. 2017). The injection of the
parts constituting the reagent was carried out during various
phases of implementation of the test at the field scale. The
injections were performed at the three points of the piezomet-
ric network. Figure 1 presents the stages and the configuration
of the pilot test, in terms of quantity of injected product and
injection pressure or rate of the different reagents.

Groundwater sampling followed three different phases of
implementation of the field test (i.e., pre-injection, post-injec-
tion, and after pumping activities). The water samples were
subjected to gas chromatography and mass spectrometry (GC-
MS) analysis to obtain the chemical speciation of the hydro-
carbons (Fiorenza et al. 2000).

In addition to monitoring and laboratory activities, time-
lapse geophysical investigations played a specific role in
keeping track of cleanup mechanisms. ERT was cased in
monitoring the remediation process (e.g., Chambers et al.
2010; Ciampi et al. 2019b), at injection points. The aim of
the field application during the pilot test was to check the
process performance and the extent of the treatment, which
may differ based on the site s geological features. Time-lapse
changes in observed electrical resistivity of the subsoil are
likely to be related to the presence of injected solutions if these
have an electrical conductivity different from that of native

groundwater. Similar approaches have been used in a variety
of cases with different specific goals, but always ultimately
linked to identifying pathways of solute migrations in the
subsurface (e.g., Cassiani et al. 2006; Perri et al. 2012, 2018;
Camporese et al. 2015; Busato et al. 2019).

The analytical monitoring of the piezometric network is
intended to weigh the yield of the remediation technology
used, thus indirectly assessing the performance and contribu-
tion of the intervention methodology. The pilot test was de-
signed to ameliorate the layout of the intervention, to check its
efficiency, and to calibrate the preliminary design of an opti-
mized full-scale intervention.

Results

The 3D geological model

In the spill area, the most recent deposits are related to a Plio-
Quaternary depositional sequence of alluvial sediments (Bini
2013), organized in two macro-levels: an upper (and more
recent) level is characterized by gravels and sands with the
presence of fine fraction (recent alluvia), extending to maxi-
mum depth between 4 and 6 m, and a lower level featured by
gravel and sand in a silty-clay matrix (ancient alluvia),
reaching a depth between 8 and 10 m. The two levels have a
highly variable thickness and are separated by a discontinuous
horizon of sandy-gravelly clays with hazelnut color (interme-
diate clays) of ca. 1–2-m thickness. The whole sequence over-
lies a thick layer of clays and silty clays (base clays); both the
base and the intermediate clays possess hydrogeological char-
acteristics of an aquiclude and aquitard, respectively (Orozco
et al. 2021). The latter reaches its maximum thickness in the
western sector while locally disappears to the east, where the
mixing groundwaters hosted in the two aquifers (recent and
ancient alluvia) occur. The local subsoil is characterized by
the alternation of fine- and coarse-grained materials hosting a
groundwater circulation, with a mean depth to the water table
of about 5 m showing significant fluctuations throughout the

Fig. 1 Configuration of pilot test
and location of injection
piezometers (PZI, PZ15, PZ11)
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year. The geological model presented in Fig. 2 uses a vertical
exaggeration factor and a representation offset between the
different stratigraphic levels to mark the lithological steps.

The 3D stratigraphic reconstruction reveals a different geo-
logic context for the east and west portions of the model. In the
eastern sector, the intermediate clays are absent while the
alluvia are preponderant. In the western sector, the intermedi-
ate clays reach their maximum thickening at the site and the
recent alluvia disappear. This inevitably affects the hydraulic
properties of the system, delineating a more permeable zone to
the east and a less permeable zone to the west.

Evolution of groundwater contamination

The reconstruction of the evolution of groundwater contami-
nation status illustrates (1) the effects of pump-and-treat inter-
vention over time, (2) the reduction of the total contaminant
mass, and (3) a narrowing of the contaminant plume that pro-
gressively reaches an asymptotic trend (Truex et al. 2017)
(Fig. 3).

The significant decrease in hydrocarbon concentrations
over time suggests the aging of the contamination primary
source (Atekwana and Atekwana 2010; Tran et al. 2018).
This assertion is confirmed by the total absence of volatile
organic compounds, such as benzene, ethylbenzene, toluene,
and xylene, in the last years of monitoring (not shown here)
(Trulli et al. 2016; Verardo et al. 2021). The recent measure-
ment of hydrocarbon concentrations in groundwater reveals

the presence of residual contaminants (Gatsios et al. 2018;
Teramoto et al. 2020). They are considered not movable with
the pump-and-treat technology being performed, due to the
presence of phases adsorbed mainly to the less permeable
portions of the aquifer and the occasional occurrence of
LNAPL product in separate phase (limited thickness difficult
to remove) (Lee et al. 2001; Lari et al. 2019a; Lari et al.
2019b).

Pilot testing

The zones selected for conducting the pilot test differ in terms
of the presence or absence of the intermediate clay lens, which
influences the hydraulic characteristics of the sediments below
the airbase. In addition, the chosen areas recorded the highest
contaminant concentrations in groundwater during the histor-
ical monitoring campaigns and a sporadic presence of super-
natant thicknesses. Performing the test in areas affected by
important historical contamination and a different geological
setting provided valuable information to evaluate the efficien-
cy of the implemented technology, furnishing insightful evi-
dence about amendment and contaminant behavior in the sub-
surface. The results of the geophysical investigation reveal the
reagent diffusion and the decontamination dynamics (Binley
et al. 2010, 2015). The results of the ERT time-lapse surveys
carried out in the two areas were expressed as resistivity
changes with respect to the background. In particular, the re-
sults in correspondence to the long-term persistence 1 (LTP1)

Fig. 2 Three-dimensional
geological model (with vertical
exaggeration) of the
Decimomannu military airbase
and location of injection points
(PZI, PZ11, PZ15). The dashed
line identifies the area used for the
storage of fuel tanks
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line (permeable zone), covering the PZ11 injection point illus-
trate a good diffusion of the second reagent in the aquifer
shown by the light blue color in Fig. 4, as the injected solution
is more electrically conductive than the resident groundwater
(Morita et al. 2020).

During the reagent injection activities, the product ascent
along the PZI was observed (Fig. 1). The blue shallow anom-
aly in the ERT time-lapse imaging of the long-term persis-
tence 3 (LTP3) line, covering the area of PZI (having a low
permeability), reveals the ascent of the second reagent along
the piezometric tube (Fig. 5). On the other hand, the red anom-
aly indicating the resistivity increase in Fig. 5 is likely to be
linked to the mobilization of the contaminants desorbed from
the solid matrix (Javanbakht and Goual 2016; Sharma et al.
2020). This assertion is confirmed by the chemical analysis
executed on the water samples collected during the implemen-
tation of the field test. Monitoring performed on water sam-
ples, at the different phases of the pilot test, exhibits a substan-
tial increase in post-application dissolved concentrations, with
a subsequent decrease following the pumping activities. The
data demonstrate how a considerable mass of contaminants
was recovered and how the polluting load was reduced in
the area of interest (Fig. 6).

Speciation analysis, by and large, revealed an increase in
the shorter hydrocarbon chains, probably indicating the oxi-
dative effect of the treatment, with partial rupture of longer
chains (Tomlinson et al. 2017) (Fig. 7).

Discussion

The pilot test confirms the mobilization of petroleum products
present in the residual phase, which constitutes the secondary
source of contamination (Frollini et al. 2016; Teramoto et al.
2020; Verardo et al. 2021). The results obtained at PZ11 infer

the occurrence of desorption and oxidation processes even
after pumping activities (Besha et al. 2018; Sharma et al.
2020). This evidence provides a valuable indication
concerning the site-specific reaction times, and this informa-
tion will be used to optimize the full-scale intervention con-
figuration. The presence of the hydraulic barrier does not
bring issues concerning the possible migration of mobilized
contaminants. The extracted water (in which the mobilization
of the residual phase was provoked) was conveyed to the
existing groundwater treatment plant (Brusseau 2019;
Teramoto et al. 2020; Trulli et al. 2016). The monitoring data
obtained during and after the test activities show the recovery
of a significant mass of contaminants and highlight a reduc-
tion of the pollutant load in the application’s area. Data sug-
gest a decrease in the effectiveness of pump-and-treat over
time without coupling with technologies that favor the desorp-
tion of aged contaminants (Ossai et al. 2020).

The evolution of the concentration of total petroleum hy-
drocarbons (Fig. 3) detected in the piezometric network con-
firms that, at present, there is no dissolved plume of contam-
ination. In a portion of the site corresponding to the primary
spill events, a residual and insoluble fraction of hydrocarbons
with a higher molecular weight remains (Lari et al. 2019b;
Ossai et al. 2020; Teramoto et al. 2020; Verardo et al.
2021). This is occasionally “mobilized” and then captured
during dynamic sampling activities (Javanbakht and Goual
2016; Sharma et al. 2020).

The results of the pilot test showed how it is possible to
mobilize a fraction of this residual hydrocarbon phase (Besha
et al. 2018; Sharma et al. 2020). The creation of “reactive”
zones in the vadose and in the saturated zones favors the
combined action of desorption of residual phase contaminants
and oxidation of longer hydrophobic chains (Birnstingl et al.
2014; Lari et al. 2019b; Ossai et al. 2020). The mobilization
capacity depends on the area of intervention and is strongly

Fig. 3 Concentration of total
petroleum hydrocarbons detected
in the piezometers located inside
the area used for the storage of the
fuel tanks over time
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influenced by the different stratigraphic characteristics (Lari
et al. 2020; Suthersan et al. 2016).

Geophysical methods represent valuable tools for monitor-
ing the dynamics of decontamination processes that occur
within the shallow subsurface (Binley et al. 2010, 2015).
ERT measurements, especially performed in time-lapse mo-
dality, have furnished intriguing insights into the reactants
repartition in the saturated and unsaturated subsurface, which
is greatly influenced by geologic inhomogeneity (Ciampi et al.
2019b). The physical variable of interest, i.e., electrical

resistivity, is strongly related to state variables of key environ-
mental interest (Lesmes and Friedman 2005). In the case con-
sidered here, the injected solutes (PetroClenze™ and
Regenox™) are characterized by a good electrical conductiv-
ity (Birnstingl et al. 2014), generally higher than that of resi-
dent groundwater. Thus, it is relatively easy to track the
injected amendments by using time-lapse ERT. Furthermore,
geophysical investigations provide an estimation of the injec-
tion radius for each reagent, representing a tool for perfor-
mance monitoring (Fan et al. 2017). The integrated use of

Fig. 4 ERT time-lapse results during different field test activities representing the LTP1 line, which covers the PZ11 injection point. The injection point
corresponds to the vertical blue arrow
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geophysical measurements and chemical analyses is arguably
the most effective means of explaining the contaminant-
geophysical behavior. This physicochemical model links geo-
physical signals to contaminant characteristics within contam-
inated porousmedia. The coordination of the pilot test through

the multidisciplinary and multitemporal data management
model and the experimentation at the field scale are relevant
indications for optimizing the selected strategy on a full scale.

The biggest constraint of this technique is related to the
permeability of the sediments and the presence of preferential

Fig. 5 ERT time-lapse results at different stages of reagent application corresponding to the LTP3 line, which covers the PZI injection point. The blue
arrow indicates the injection point (a), the ascent of the product along the piezometric tube (b)

Fig. 6 Analysis of water samples recovered during the phases of the pilot test monitoring over time
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flow pathways, which affect the spreading of the product in
the subsoil. Fine-grained deposits require low injection pres-
sures to homogeneously redistribute the product or to avoid
the rise of amendments along the piezometer. In the future, it
is possible to envision combining this remediation technique
with a more complex amendment distribution system.
Groundwater circulation wells (GCW–IEG) (Ciampi et al.
2019a) could conceivably provide homogeneous product dis-
tribution due to the recirculation of fluids in the aquifer, by
targeting underground portions classically unaffected by tra-
ditional extraction techniques.

Conclusion

Simultaneous data integration and the multi-source model
enabled accurate pilot site selection and the implementa-
tion of innovative remediation approaches. Geophysical
surveys and groundwater sampling during pilot testing
evaluated the effectiveness of the intervention, both in
terms of product diffusion capacity and effective reduc-
tion of pollutant concentrations. Time-lapse geophysical
imagery throughout field experimentation yielded crucial
insights, especially about where and how in situ remedia-
tion activities impacted distinct parts of the subsoil as a
consequence of underground hydraulic inhomogeneity.
Chemical analysis showed a significant recovery and a
reduction of hydrocarbons, increasing the pumping sys-
tem efficiency. The physicochemical model, which links
geophysical signals to contaminant characteristics within
contaminated porous media, was explained through the
observation of contaminant-geophysical behavior. The
mobilization of the immobile and residual material which
constitutes the residual phase of hydrocarbons reveals the
limitations of hydraulic barriers. Analysis of all data
clearly shows that traditional extraction techniques are
ineffective in removing secondary sources of fuel contam-
ination. Our findings suggest that the desorption process
using PetroClenze™ and Regenox™ can contribute sig-
nificantly to the enhancement of hydrophobic pollutants

vacancy. When applied, this two-part reagent generates
detergent-like properties, significantly increasing the de-
sorption rates of hydrocarbons bound in saturated soils.
Once the hydrocarbons are liberated into the dissolved
phase, they are more readily available for removal using
physical recovery techniques. The inject ions of
PetroCleanze™ followed by contaminant extraction re-
vealed a significant removal of residual LNAPL, acting
as a chemical enhancer for pump and treat.
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