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Abstract

Human activity is overloading our atmosphere with carbon dioxide and other global warming emis-
sions with immense risks to our climate. Green energy harvesting are needed to supply electricity
from one or different energy sources present in the environment. One of this sources is thermal
energy through the phenomenon called thermoelectricity. The thermoelectric energy harvesting
technology exploits the conversion of temperature gradient into electric power. The significant request
for thermoelectric energy harvesting is justified by developing new thermoelectric materials and
the design of new thermoelectric generator (TEG) devices for many different applications. The
fundamental problem in creating efficient thermoelectric materials is that they need to be good at
conducting electricity, but not at conducting thermal energy. But in most materials, electrical and
thermal conductivity go hand in hand.
The aim of this thesis is to describe the methods and results in the field of thermoelectricity. I report a
theoretical study of electronic properties, transport coefficients and lattice thermal conductivity for
promising thermoelctric materials. The theoretical approach to thermoelectricity is unusually complex
as it tackles transport in the two distinct subsystems of electrons and phonons. The calculations are
rather difficult and use multifarious methods, each with its peculiar problems and pitfalls. In general,
there are ab initio electronic bands calculations, rigid-band Boltzmann-equation calculations of elec-
tronic transport including various scattering mechanisms, ab initio or model calculations of phonon
transport under several scattering (which in turn involve phonon calculations etc.). Comfortingly, the
final product is the ZT figure of merit, a blend of the various ingredients that is relatively insensitive
to the fine details.
Chapter 1 provides context on the importance of thermoelectricity, the basics of this phenomenon and
ways proposed in the literature to improve it. Chapter 2 reports the background of density functional
theory used for our calculations while Chapter 3 is about transport phenomena in the Boltzmann
Transport Equation framework. Chapter 4 reports the methods and results about the β -phase of
Mg3Sb2. Then in Chapter 5, a study of layered perovskite La2Ti2O7 is presented, and finally, in
Chapter 6, a new promising material, the orthorhombic phase of LaSO is studied. The last part
contains the conclusion remarks.
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Chapter 1

Introduction

1.1 Thermoelectric Phenomena: Background and Applications

Thermoelectricity is the direct conversion of heat into electrical energy. Thermoelectric systems are
solid-state devices that either convert heat directly into electricity or transform electric power into
thermal power for heating or cooling. Such devices are based on thermoelectric effects involving
interactions between the flow of heat and electricity through solid bodies. These phenomena, called
Seebeck effect and Peltier effect (and Thomson effect as an extension created by Lord Kelvin), can
be used to generate electric power and heating or cooling. More specifically, the Seebeck effect is
the build up of an electric potential across a temperature gradient, the Peltier Effect is the presence
of heating or cooling at an electrified junction of two different conductors, and finally the Thomson
effect is the presence of cooling when electric current passes through a circuit composed of a single
material (this is the biggest difference with the Peltier Effect) when a temperature gradient is applied
along its length. We will look into this matter in the next paragraph.
Over the past decades, there has been heightened interest in the field of thermoelectrics, driven by the
need of more efficient materials for electronic refrigeration and power generation [1]. This solid-state
technology has long been used for powering the spacecrafts of several NASA deep-space missions
[2]: when a spacecraft is too far from the Sun or on the dark side of the Planet, it does not have
access to photovoltaic and the only access to energy needs to be some other source; Radioisotope
Thermoelectric Generators (RTGs) provide electricity using heat from the natural radioactive decay
of PU-238, in the form of plutonium dioxide. The difference in temperature between this hot fuel
and the cold environment of space is applied across p-n junctions of silicon-germanium generating a
voltage [3]. This process worked for 30 years without a single failure.
Although thermoelectrics have limited commercial use in niche applications, these are growing due to
interest in waste-heat recovery and increasing global energy efficiency reducing our dependence on
fossil fuels. Proposed industrial and military applications of thermoelectric materials are generating
increased activity in this field by demanding higher performance high temperature TE materials
than those that are currently in use. Thus, the development of higher-performance TE materials is
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becoming ever more important. Power-generation applications are currently being investigated by the
automotive industry (ATEGs - automotive thermoelectric generators) as a means to develop electrical
power from waste engine heat from the radiator and exhaust systems for use in next-generation
vehicles. Indeed, it is estimated that roughly 75% of the energy produced during combustion is lost in
the form of heat [4], this heat is wasted unless it can be used for other applications, such as to charge
the battery instead of using an alternator. By converting the lost heat into electricity, ATEGs lead to a
less fuel consumption by reducing the electric generator load on the engine. Since the electricity is
generated from waste heat that would otherwise be released into the environment, the engine burns
less fuel to power electrical components. In ATEGs, thermoelectric materials are packed between
the hot-side and the cold-side heat exchangers (metal plates with high thermal conductivity).The
temperature difference between the two surfaces of the thermoelectric modules (several hundred
degrees) generates electricity using the Seebeck Effect.
In addition,TE refrigeration applications include seat coolers for comfort and electronic component
cooling by exploiting the Peltier effect. In these cases, Peltier effect is used to create a heat pump
which transfers heat from one side of the device to the other, consuming electrical energy, It can be
used either for heating or for cooling or as a temperature controller that either heats or cools. This
effect is commonly used for cooling electronic components and small instruments

1.1.1 Advantages and disadvantages of Thermoelectrics

Thermoelectric devices are solid-state devices without moving parts, noise or vibrations, ensuring
increased reliability and long life. In addition, they are thermoelectric cooling and thermoelectric
power generation is very scalable from less than one watt of cooling power or power generation up to
kilowatts. In the cooling process, since the temperature of a thermoelectric cooler is dependent on the
current provided to it, there is a precise temperature control and below ambient temperatures can be
achieved.
Its main disadvantages are high cost for a given cooling capacity (in Peltier devices) and poor power
efficiency. Many researchers and companies are trying to develop thermoelectrics that are cheap and
more efficient.

1.2 The thermoelectric effects

1.2.1 Seebeck and Peltier effects

In the early 1800s, Seebeck observed that when two dissimilar materials are joined together and the
junctions are held at different temperatures (T and T+∆T), a voltage difference (∆V) develops. This
voltage is proportional to the temperature difference (∆T) [5]. The ratio of the voltage developed to
the temperature gradient (∆V/∆T) is related to an intrinsic property of the materials called the Seebeck
coefficient S (Equation 1.1). More in detail, consider a finite rod of a conducting material heated only
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on one end. Due to temperature gradient the charge carriers (either electrons, or places where an
electron is missing, known as “holes”) are forced to move from the heated side to the cooler side.
If a temperature gradient exists in a junction of two dissimilar conductors, a voltage is produced:
that is the definition of thermocouple. The voltage generated depends on Seebeck coefficient and on
temperature gradient between the two parts on the thermocouple (Fig 1.1).

S =
∆V
∆T

(1.1)

Fig. 1.1 A functioning thermocouple requires a p-type/n-type pair (acceptor/donor). The sign of
the Seebeck coefficient is determined by the direction of current flow. If T2 is greater than T1
and the current is flowing clockwise, then the Seebeck coefficient is positive, and if the current is
counter-clockwise it is negative. The Seebeck coefficient is very low for metals (only a few µV/K)
and much larger for semiconductors (typically a few hundred µV/K).

A p-type/n-type module allows for an exchange between electrons and holes or holes and elec-
trons at the junctions J1 and J2, completing the circuit and allowing for either power generation or
refrigeration. Thermoelectric devices contain many thermoelectric couples connected electrically in
series and thermally in parallel (Fig. 1.2).

A related effect was discovered a few years later by Peltier, in which, when an electrical current
is passed through the junction of two dissimilar materials, heat is either absorbed or rejected at the
junction, depending on the direction of the current. This effect is due largely to the difference in
Fermi energies of the two materials, i.e. the highest occupied energy level of a material at zero Kelvin:
in n-type semiconductors, Fermi energy is close to the conduction band while p-type semiconductors
have Fermi energies close to the valence band. Peltier coefficients represent how much heat is carried
per unit charge: electrons can transfer heat in two ways: through collisions with other electrons, or
by carrying internal kinetic energy during transport; the second way is the Peltier effect. We can say
that if the Seebeck effect describes how a temperature difference creates electrical current, the Peltier
effect describes how an electrical current can create a heat flow. These two effects are related to each
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Fig. 1.2 Thermoelectric module showing the direction of charge flow on both cooling and power
generation. Original Figure on [6].

other, as shown in the definition of the Peltier coefficient:

Π = ST

Lord Kelvin discovered later a third effect: an electric current is passed through a homogeneous
circuit in the presence of a temperature gradient. This is now called the Thomson effect and it has the
smallest magnitude among the thermoelectric effects.
These effects, which are generally quite inefficient, began to be developed into practical products,
such as power generators for spacecraft, in the 1960s.

1.3 Figure of Merit and Thermoelectric Performance

The potential of a TE material and the efficiency of a thrermoelectric device are determined in large
part by a measure of the material’s figure of merit ZT which is simply a particular combination of
transport coefficents:

ZT =
S2σT

κ
=

S2σT
κℓ+κe

(1.2)

where S is the Seebeck coefficient, σ is the electrical conductivity, and κ is the total thermal
conductivity (κℓ and κe, the lattice and electronic contributions, respectively). The higher the material
fiugre of merit is, the higher the performance of the device. The figure of merit is linked to the



1.3 Figure of Merit and Thermoelectric Performance 5

maximum efficiency of the device by:

ηmax =
TH −TC

TH

√
1+ZT av −1√

1+ZT av + TC
TH

(1.3)

Where TC and TH are the cold and the hot temperature respectively, while the average temperature T av

is given by
TH +TC

2
.

Since thermoelectric devices are heat engines, their efficiency is limited by the Carnot efficiency
TH −TC

TH
and by the value of ZT (Fig 1.3).

The best TE materials currently used in devices have ZT ≈ 1. This value has been a practical upper

Fig. 1.3 Maximum efficiency of a thermocouple in function of hot temperature TH when TC is kept
at 300 K and ZT is treated as a constant, the red curve represents the maximum efficiency for a heat
engine according to Carnot’s theorem.

limit for more than 30 years, yet there are no theoretical or thermodynamic reasons for that value as an
upper barrier [6]. If the ZT could be increased to 3 or 4, the potential applications would dramatically
increase 1.

1Going on to the practical aspect, the ZT for a single material is somewhat meaningless, since an array of TE couples is
utilized in a device or module.
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1.3.1 Optimize thermoelectric properties

A detailed derivation of thermoelectric parameters is discussed in Chapter 3. Here we limit to report
the essential elements for the discussion.
Considering parabolic bands and an energy-independent scattering approximation [7], the expression
for Seebeck coefficient S is:

S =
8π2k2

B

3eh2 m∗T
(

π

3n

)2/3
(1.4)

Where m∗ is the effective mass of the carrier and n is the carrier concentration, while the basic
expression for electrical conductivity is

σ = neµ (1.5)

with µ the carrier mobility.
To ensure that Seebeck coefficient is large, one should have low carrier concentration insulators or
semiconductors but this leads to low electrical conductivity. Therefore we say that maximize ZT
means make a trade-off between conflicting properties. The peak of ZT typically occurs at carrier
concentrations between 1019 and 1021 carriers per cm3 depending on the material system. In particular
figure 1.4 refers to Bi2Ti3, one of the best thermoelectrics. We might get an idea of the value power
factor ( S2σ ) we should have by considering a total thermal conductivity of about 1 (W/mK) typical
of low thermal conductivity good thermoelectric materials and a desirable ZT of at least 1. At 300 K,
it is needed a power factor of 3.3 (mW/mK2). By looking at some well characterized materials (not
necessarily good thermoelectrics), we found Silicon with a peak of 2 (mW/mK2) [8], considerably
less than Bi2Ti3 with a peak in power factor of 4 (mW/mK2) [9]. The power factor(S2σ ), is typically
optimized in narrow-gap semiconducting materials as a function of carrier concentration (typically
1019 carriers/cm3), through doping, to give the largest ZT [10]. High-mobility carriers are most
desirable, in order to have the highest electrical conductivity for a given carrier concentration. At the
same time , total thermal conductivity needs to be as small as possible to increase ZT.
A key factor in developing these technologies is the development of higher-performance TE materials,
either completely new materials or through more ingenious materials engineering of existing materials.
Some of the research efforts focus on minimizing the lattice thermal conductivity as we will see in the
next section, while other efforts focus on materials that exhibit large power factors. This latter point
will be our main focus on Chapter 6.
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Fig. 1.4 Constituents of the Thermoelectric Figure-of-Merit, ZT. In this figure S is the Seebeck
coefficient plotted from 0 to 500 µV K−1, σ is the electrical conductivity plotted from 0 to 5000
Ω−1 cm−1 , κ is the electrical contribution to the thermal conductivity plotted from 0 to a top value
of 10 W m−1 K−1, S2σ is the power factor, and ZT is the thermoelectric figure-of-merit. Trends
shown for Bi2Ti3. Published in Nature (see [6]).
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1.3.2 Nanostructuring

Thermoelectrics require a rather unusual material: a phonon-glass electron-crystal [11] The electron-
crystal behavior is needed because crystalline semiconductors possess the required electronic prop-
erties that are Seebeck coefficient, electrical conductivity and electronic thermal conductivity. The
phonon-glass is needed in order to have a lattice thermal conductivity as low as possible. The mini-
mization of lattice thermal conductivity can come through solid solution alloying with isoelectronic
elements to preserve a crystalline electronic structure while creating large structural anisotropy to
disrupt the phonon path (for example SiGe alloys). Recently, another approach in this field is the
nanostructuring. Indeed, one of the development of the past couple of decades has been the artificially
structurization at the nanoscale to engineer the lattice thermal conductivity and reduce it from the
value that it would normally have. This can be done, for instance, by introducing an high density
of grain boundaries and other scattering centers that scatter phonons but non effective in scattering
electrons( Fig. 1.5). Reduced thermal conductivity in thin-film superlattices was investigated in the

Fig. 1.5 Schematic illustration of all length-scale structures for high performance TE systems where
major contributing factors for reducing the lattice thermal conductivity are indicated [12]

1980s, but has only recently been applied to enhanced thermoelectric materials. This idea represented
a significant advancement in thermoelectric performance (Fig 1.6).

1.3.3 Calculation methodology

The intention of this study is to calculate the thermoelectric properties of materials with ab initio
methods.
The methodology for this study is split into two major steps:

1) A density functional theory (DFT) calculation (A detailed explanation of the density functional
theory is reported in Chapter 2), to find both the minimum energy structure and the ground-state
electronic structure.
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Fig. 1.6 Materials for thermoelectric cooling are shown as blue dots and for thermoelectric power
generation as red triangles. After 1970 there was a period of time when almost no progress occured.
When the idea of using nanostructuring to enhance TE performance was introduced, there was an
important advance in them. References for the ZT of nanoscale thermoelectric materials can be
found in the original graph [13]

2) The application of the Boltzmann transport theory ( presented in Chapter 3), by using data from
a density functional theory calculation to determine the thermoelectric properties

With this approach we computed thermoelectric properties for different materials. In Chapter 4
we will present the main results for the hexagonal Zintl phase of Mg3Sb2 while in Chapter 5 the
Layered-structural monoclinic-orthorhombic perovskite La2Ti2O7. Chapter 6 is devoted to the
High-Throughput database search method and the results following this line of research about a
orthorhombic phase of LaSO. Chapter 7 contains the conclusion remarks.





Chapter 2

Computational methods

2.1 Density Functional Theory

Density functional theory is nowadays the primary tool for the calculation of electronic structure in
condensed matter and is increasingly important in quantitative studies of molecules and other finite
systems. The first formulation of density functional theory has been made by Hohenberg and Kohn in
a famous paper written in 1964. In this paper they showed that all properties of a quantum many-body
system can be considered to be universal functional of the ground state density (n0) [14]. The next
year Kohn and Sham completed the theory with an ansatz: to replace the original many-body problem
with a problem of non-interacting particles introducing an exchange-correlation functional which
contains all the many-body terms [15]. In this chapter will be explained, in broad terms, the general
principles behind this theory.

2.1.1 Theoretical background

A physical problem can be described by the solution of the Schödinger equation.

ih̄
∂Ψ(r,R; t)

∂ t
= ĤΨ(r,R; t) (2.1)

Where the wavefunctions Ψ(r,R) depends on electronic positions r and nuclei positions R, Ĥ is the
Hamiltonian of the system:

Ĥ =− h̄2

2me
∑

i
∇

2
i −∑

i,I

ZIe2

|ri −RI|
+

1
2 ∑

i ̸= j

e2

|ri − r j|

− h̄2

2MI
∑

i
∇

2
i +

1
2 ∑

I ̸=J

ZIZJe2

|RI −RJ|

(2.2)
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where lower case letters indicate electrons and upper case letters indicate nuclei [16]. The stationary
equation can be written as:

Ĥ |Ψ⟩= E |Ψ⟩ (2.3)

The first approximation to solve the many-body system is the adiabatic approximation of Born and
Oppenheimer (1927) for which it can be possible to neglect the ionic contribution at kinetic energy
due to the large ionic masses compared with electronic masses. This is a good approximation for
many purposes, e.g. the calculation of nuclei vibration modes in solids and also it is the starting point
for the perturbation theroy in electron-phonon interactions.
By using the Born- Oppenheimer approximation, the Hamiltonian which acts onto the electronic
variables and depends parametrically upon R can be written as:

Ĥ =− h̄2

2me
∑

i
∇

2
i +

1
2 ∑

i ̸= j

e2

|ri − r j|
+∑

i,I

ZIe2

|ri −RI|
+EN(R) (2.4)

Or implicitly:
Ĥ = Te +Vext +Vint +EN (2.5)

Te is the kinetic energy of electrons, Vext the potential energy of electrons due to their interaction
with ions, Vint is the potential energy due to electron-electron interactions and EN(R) is the classical
electrostatic energy between different nuclei that doesn’t concern the electronic problem.
As it has been anticipated, the density of particles plays a central role in electronic structure theory,
and in view of quantum mechanics, it can be written as the expectation value of density operator
n̂(r) = ∑i=1,N δ (r− ri):

n(r) =
⟨Ψ| n̂(r) |Ψ⟩
⟨Ψ |Ψ⟩ (2.6)

The same applies to the total energy, which is the expectation value of the hamiltonian:

E =
⟨Ψ| Ĥ |Ψ⟩
⟨Ψ |Ψ⟩ (2.7)

2.1.2 Hohenberg-Kohn theorems

The Hohenberg-Kohn theory starts considering the system of interacting particles in an external
potential Vext . This theory is based on two theorems:

1. Vext(r) is a unique functional of n0(r), apart from a trivial additive constant.

2. E[n] is a universal functional for the energy, valid for any number of particles and any external
potential. For a given Vext(r) the global minimum of this functional represents the ground state
energy of the system and the density n(r) that minimizes this functional is the exact ground
state energy n0(r)
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According to these theorems, no two different potentials acting on the electrons of a given system can
give rise to a same ground-state electronic charge density. This property can be used in conjunction
with the standard Rayleigh- Ritz variational principle of quantum mechanics to show that a universal
functional F [n(r)] of the electron charge density exists such that the functional is minimized by the
electron charge density of the ground state corresponding to the external potential Vext(r), under the
constraint that the integral of n(r) equals the total fixed number of electrons.

E[n(r)] = F [n(r)]+
∫

n(r)Vext(r)dr (2.8)

Furthermore, the value of the minimum coincides with the ground-state energy. From the first theorem:

〈
Ĥ
〉
=
〈
T̂e
〉
+
〈
V̂int
〉
+
∫

d3r Vext(r)n(r)+
〈
ÊN
〉

(2.9)

The classical term with the nuclear-nuclear interactions can be also included on the external potential.
Unfortunately, Hohenberg-Kohn theory does not tell how to construct this functional and this is
the reason why so much effort has been dedicated to the task of obtaining approximate functionals
for the description of the ground-state properties of many-particle systems. This ignorance can be
handled considering, in agreement with Kohn and Sham ansatz, an auxiliary non-interacting particle
system. This leads to soluble independent equations with all the terms unknown incorporated into an
exchange-correlation functional of the density (a reminiscence from the Hartree-Fock theory) [16]. In
this approach the Hohenberg-Kohn ground-state energy can be written as:

EKS = Te[n]+
∫

n(r)Vext(r)d(r)+EHartee[n]+EN +Exc[n] (2.10)

In which the Hartree term takes into account the classical Coulomb interaction energy of the electron
density interacting with itself and the kinetic independent contribution is given directly as a functional
of orbitals. Variation of the energy functional with respect to n(r) with the constraint that the
number of electrons be kept fixed leads formally to the same equation as would hold for a system of
noninteracting electrons subject to an effective potential.

VKS(r) =Vext(r)+VHartree(r)+Vxc(r) (2.11)

with the Kohn-Sham Hamiltonian given by:

HKS(r) =−1
2

∇
2 +VKS(r) (2.12)

These equations have the form of independent-particle equations with a potential found self-consistently
with the resulting density. Solving separately the kinetic energy and the Hartree contributions, the
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exchange and correlation contribution can be approximated with a local functional of the density:

Exc(r) =
∫

n(r)εxc(r)dr (2.13)

with εxc the energy contribution per electron.

2.1.3 Functional for exchange and correlation

The exchange correlation energy can be approximated with a functional of the density. The most
widely used approximations for the exchange and correlation potential are:

• Local Density Approximation (LDA)

• Generalized Gradient Approximation (GGA)

• Hybid functionals

LDA

The exchange and correlation energy is an integral over all space with the energy density at each point
the same as a homogeneous electron gas with that density. The LDA is exact in the limit of high
density or of a slowly varying charge-density distribution([15]). On the other hand LDA overestimates
binding energies producing a bad description of some kind of materials.

GGA

This approximation is the step beyond LDA. Indeed in this case the functional depends not only on
density, but also on the magnitude of its gradient (|∇n|) and higher order derivatives.

EGGA
xc =

∫
n(r)εxc[n,∇n,∇2n, ...]dr (2.14)

In this case not only there is a correction for the LDA overbinding, but generally this approximation
improves agreement with experiments. The most popular functionals of this type are those of Perdew,
Burke and Ernzerhof (PBE) [17] and Perdew and Wang [18]. Generally, the GGA Functionals
give total energies of atoms and cohesive energies of solids that are closer to experiment than the
LDA results [19]. However GGA sometimes overcorrects LDA results in ionic crystals where the
lattice constants from LDA calculations fit well with experimental data but GGA will overestimate it.
Nevertheless, both LDA and GGA perform badly in materials where the electrons tend to be localized
and strongly correlated such as transition metal oxides and rare-earth elements and compounds. This
weakness leads to go beyond these approximations.
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Hybrid functionals

Hybrid functionals were introduced since the beginning of the nineties and are mainly used in quantum
chemistry calculations. These functionals solve problems related to the local density approximation
and generalized gradient approximation by adding explicitly a fraction of the real exchange energy
which can be obtained by Hartree-Fock methods. As a result they take into account non-local effects
of the exchange energy and are the most accurate functionals if we consider energetics [16].

2.1.4 Solving Kohn-Sham Equations

By using independent-particle methods, the KS equations provide a way to obtain the exact density
and energy of the ground state of a condensed matter system. The KS equations must be solved
consistently because the effective Kohn-Sham potentials VKS and the electron density n(r) are related
to each other. This can be done numerically with a self-consistent scheme as shown in the flow chart
2.1.
The concept of self-consistency has been prevalent across many fields of physics. At the beginning
of the process an electron density is required nin to compute the Hartree and exchange-correlation
potentials. Then, the effective KS potential VKS is calculated and the KS equation is solved with
single-particle eigenvalues and wavefunctions and a new electron density nout is then calculated from
the wavefunctions [20]. After this, self-consistent condition(s) is checked. For a given external
potential and exchange-correlation functional, the density is self-consistent when nin = nout. To put it
in the words of Hartree [21] : "If the final field is the same as the initial field, the field will be called
self-consistent". If the self-consistency is not achieved,the calculated electron density will be mixed
with electron density from previous iterations to get a new electron density. A new iteration will
start with the new electron density. This process continues until self-consistency is reached. After
the self-consistency is reached, several quantities can be calculated including total energy, forces,
stress, eigenvalues, electron density of states, band structure, etc.. The most timing consuming step
in the whole process is to solve KS equation with a given KS potential VKS. Modern computational
implementations of Kohn-Sham theory can vary significantly due to the choice of basis set, which
leads to the related problem of whether one treats all the electrons in the computation explicitly, or
treats core electrons with a pseudopotential.

2.1.5 Pseudopotentials

Pseudopotentials are generated in atomic calculations and used to reproduce properties of valence
electrons in molecules and solids. To solve electronic structure in solids, it can be used the so called
plane wave pseudo potential method. This method adopts a complete set of plane waves (eik·r) to
describe non-interacting electronic orbitals moving in a local field which takes into account electron-
electron interactions and the external potential of nuclei are replaced by pseudopotentials which
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Initial
guess: nin

0 (r)
nin(r) = nin

0 (r)

Calculate effective potential
VKS(r)

evaluate
candidate
models

Solve KS equation:
HKS(r) |Ψi(r⟩ = εi |Ψi(r⟩

Calculate electronic
charge density:

nout(r) = ∑iΨ
∗
i (r)Ψi(r)

nin(r) = nout(r)

is
nin(r)≈
nout(r)?

Output quantities:
energy, forces, stress,

eigenvalues etc.

no

yes

Fig. 2.1 Flowchart of self-consistency loop for solving KS equations. At the beginning an electron
density is required nin. Then the effective KS potential VKS is calculated and the KS equation is
solved with single-particle eigenvalues and wavefunction and a new electron density nout is calculated
from the wavefunctions. For given Vext and Vxc , the n(r) is self-consistent when nin = nout. If the
self-consistency is not achieved, the calculated electron density will be mixed with electron density
from previous iterations to get a new electron density. A new iteration will start with the new electron
density. This process continues until self-consistency is reached.
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include effects from core electrons.
There are two desirable characteristics for Pseudopotentials:

1. Transferability: modern pseudopotentials are constructed on the isolated atom. Transferability
can be estimated by computing eigenvalues from atomic calculations on different configurations.

2. Softness: atoms with strongly oscillating pseudo-wavefunctions (first-row elements, elements
with 3d and 4f valence electrons) will require many plane waves in calculations. Larger core
radius means better softness but worse transferability.

It is convinient to distinguish between norm-conserving (NCPP) and ultrasoft (USPP) pseudopoten-
tials. For the first type, the key is to create pseudopotentials which are accurate and trasferible from
an environment to another (for example they should describe the valence properties of an atom in ions
and condensed matter). Norm-conserving pseudopotentials are constructed to enforce two conditions
[22]:

1. Inside the chosen cut-off radius rc, the norm of each pseudo-wavefunction should be identical
to its corresponding all-electron wavefunction:∫

r<rc

dr3ΨR,i(⃗r)ΨR, j (⃗r) =
∫

r<rc

dr3Ψ̃R,i(⃗r)Ψ̃R, j (⃗r)

Where ΨR,i and Ψ̃R,i are the all-electron and pseudo reference states for the pseudopotential on atom
R .

2. All-electron and pseudo wavefunctions are identical for r > rc

NCPPs require a large plane-wave basis sets (Ec > 70Ry) for first-row elements (in particular N,
O, F) and for transition metals (Cr, Mn, Fe, Co, Ni, ...) and that means large computational cost.
To reduce CPU and RAM requirements, USPPs have been introduced: considering auxiliary localized
functions, it is possible to define ultrasoft potentials as the sum of a smooth part and a rapidly varying
function localized around each ion core, improving the accuracy of norm-conserving pseudopotential
and at the same time making the calculation less costly because norm-conservation condition is not
required and this significantly reduces the number of plane waves needed to expand the wavefunctions
(the computational cost scales as a power of the number of Fourier components needed to complete the
calculation). Plane waves calculations are generalized to projector augmented wave (PAW) method.
The PAW formalism is strongly linked to ultrasoft pseudopotentials [23] and it was first proposed and
implemented by Blöchl [24]. Basically, in the PAW method, the one electron wavefunctions Ψn are
derived from the pseudo orbitals Ψ̃n in a linear transformation:

Ψn = T Ψ̃n.

How to define the operator T ?

• define a complete set of initial and final states for the transformation :
∀i |φi⟩= T |φ̃i⟩
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• Final states: All-electron valence partial waves: |φi⟩

• Initial states: Auxiliary partial waves |φ̃i⟩
True and auxiliary wave function are identical outsides the augmentation radius rc φi(⃗r) =
φ̃i(⃗r) |⃗r− R⃗|< rc

T = 1+∑
j
(|φ j⟩− |φ̃ j⟩)⟨p̃ j|

With ⟨p̃ j| the Projector function localized in the augumentation region and it must obey the orthogo-
nality condition: ⟨p̃i|φ̃ j⟩= δi, j.
By using this transformation, the all-electrons wave function is:

|Ψn⟩= |Ψ̃n⟩+∑
j
(|φ j⟩− |φ̃ j⟩)⟨p̃ j|Ψ̃n⟩

The most widely used codes with plane waves and pseudopotentials are ABINIT [25], VASP [26] and
Quantum ESPRESSO [27] [28].

2.2 Phonons

In any solid crystal, atoms are bound into a specific periodic three-dimensional lattice. One could
imagine that, because of an external force or their own thermal energies, atoms vibrate as a system of
tiny springs connected to each other. This generates mechanical waves that carry energy in form of
heat and sound through the lattice. A packet of these waves can travel throughout the crystal with a
definite energy and momentum, so in quantum mechanical terms the waves can be treated as a particle
and in condensed matter Physics this quantum of vibrational mechanical energy is called a phonon.
The term phonons comes from the Greek φωνη which translates to sound since phonons give rise
to sound. The name stresses the analogy with photons (minute energy packet of electromagnetic
radiation).
Phonon calculation is the starting point to obtain lattice dynamical properties as we will see in the
next paragraph.

2.2.1 Linear response and density functional perturbation theory

Density Functional Perturbation Theory (DFPT) is widely used to predict the linear response (and
related physical quantities) of periodic systems when they are submitted to an external perturbation
[31] [32]. Some perturbations can be for example atomic displacements (phonons), dilatation and
contraction of the primitive cell, homogeneous external field. In solid state physics, there are many
properties associated with derivatives of the total energy with respect to the "atomic displacement"
and "homogeneous electric field" perturbations. Examples of first order derivative is the force exerted
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on nuclei, stresses and dipole moments.
Physical properties connected with second derivatives of total energy are often referred to as linear-
response coefficients. The first-order Hamiltonian and the polarizability tensor are indeed second-order
derivatives of the energy. The description of the molecular vibrations, in the harmonic approximation,
is based on the knowledge of the "interatomic force constants", second derivatives of the total energy
with respect to the change of nuclei positions, describing the forces that appear when a nucleus is
displaced from its equilibrium position, in the linear regime. Going to the nonlinear regime, one
has higher-order derivatives, such as the nonlinear dielectric tensor and anharmonic force constants
(phonon - phonon interaction, Grüneisen parameters).
In this method, it is essential to calculate the second-order perturbation of DFT total energy, i.e. δ 2E,
in the framework of density functional theory.
Let us consider one perturbation, and suppose each atom to be displaced by an atomic displacement
δu from its equilibrium position, which results in changes in the external potential Vext , the wave
function of Kohn-Sham equation and the charge density n(r). The atomic frequencies can be obtained
by the diagonalization of the dynamical matrix:

Dsαs′β (q) =
√

1
MsMs′

∑
ν

∂ 2Etot

∂uµsα∂uνs′β
eiq(Rν−Rµ ) (2.15)

Where s and s′ run on atoms, α and β are cartesian components for each atom while uµsα and uνs′β are
the atomic displacements and Rµ ,Rν indicate the Bravis lattice vectors. To obtain the full dispersion,
derivatives of the energy and wave-functions are calculated on a grid of q-points. Detailed expressions
can be found in [29].





Chapter 3

Transport Phenomena in solids

In general, all phenomena in which heat, electricity and matter itself are carried through a structure,
under the influence of a temperature gradient, an electric field potential or an atomic concentration
gradient are considered transport phenomena.
To study transport phenomena we need conservation laws formulated as continuity equations and
equations which describe how a certain quantity responds to a perturbation via transport coefficients.
An example can be the Fourier’s Law of Heat Conduction which describes the response of heat flux to
temperature gradients along a certain direction:

qx =−κ
dT
dx

(3.1)

Where q is the local heat flux density along x direction, κ is the material thermal conductivity and dT
dx

is the temperature gradient through x direction.
Understanding transport phenomena is nowadays a challenge for the discovery and the development

Fig. 3.1 Scheme for 1 dimensional Fourier’s Law: the rate of heat flux qx is proportional to
temperature gradient ∆T = T1−T2. The proportionality factor κ is the material thermal conductivity.

of high-performance materials and devices for applications ranging from nanoelectronics to energy
conversion technologies, among which we find thermoelectrics. To understand electrical and thermal
flows, electrons have been treated as particles. For example, in the classic model, an electron moving
with velocity v⃗ in presence of an electric field E⃗ after a time t will gain an energy given by:

δE = e⃗v · E⃗t (3.2)
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Assuming that its motion is governed by a relaxation time τ i.e. the time associated with the return to
the equilibrium distribution, the probability at the time t that the particle has already lived without
being scattered is:

P(t) = exp−
t
τ (3.3)

Taking the average over, the extra energy due to electric field is:

δE =
∫

∞

0
e⃗v · E⃗t

∂P(t)
∂ t

dt = e⃗v · E⃗τ (3.4)

So the average drift velocity (in the case in which velocity and field are parallel) is:

δ v⃗ =
evτ

∂E /∂v
E⃗ (3.5)

Consequently, current density for n electrons per unit of volume is:

J⃗ = neδ v⃗ =
ne2vτ

∂E /∂v
E⃗ (3.6)

In the macroscopic form, introducing the electrical conductivity σ , the current density is given by:

J⃗ = σ⃗ E⃗ (3.7)

Where, with the definition of effective mass (m):

σ =
ne2τ

m
(3.8)

On thermal conduction, a gradient of temperature ∆T is established and analogous to electrical
conduction, it can be possible to find a relation between the amount of energy due to thermal flow and
the particle velocity. The heat current is given by:

U =
1
3

Cv2
τ∆T (3.9)

Where the thermal conduction (introducing the mean free path Λ) is:

κ =
1
3

CvΛ (3.10)

In many metals and semiconductors there exists a coupling between the electrical current and the
thermal current. This coupling can be appreciated by observing that when electrons carry thermal
current, they are also transporting charge and therefore generating electric fields. Hence, this coupling
between the charge transport and heat transport gives rise to thermoelectric phenomena.
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3.1 Boltzmann transport equation (BTE)

Thermoelectric properties of materials have been traditionally simulated using Boltzmann Transport
Equation (BTE). BTE provides a way to accurately and efficiently approximate the Seebeck coefficient
S, the electrical conductivity σ and the electronic contribution to the thermal conductivity κe from first
principles. BTE is a statistically based method that calculates properties at the nanoscale and larger,
close to equilibrium conditions. It is a powerful way to study non-equilibrium systems through the
application of properties of an equilibrium system. BTE uses the group velocities of charge carriers
(obtained from the electronic structure of materials) combined with an occupational probability and
shifting chemical potential to approximate charge transport.
Consider a system with non-uniform particle density and temperature. Within the system there are
local regions where particles distributions are given by an equilibrium distribution function, which
varies from place to place. A non-equilibrium Boltzmann transport equation expresses the global
non-equilibrium distribution in terms of local equilibrium distributions.
Let us consider the distribution function f (⃗r,⃗k, t) for a system of randomly moving electrons, which
determines the probability of finding an electron at position r⃗ with a crystal momentum k⃗ at time t.
Changes in the distribution function are due to 3 processes [35]:

• diffusion of particles

• collisions between particles

• effects of external fields

The diffusion process is the movement of electrons (subject to random movement from place to place)
from an area of high concentration to an area of low concentration. Collisions between particles may
cause loss of kinetic energy and generation of heat and depends on the time between two collisions.
External fields are for example a thermal gradient or an external current applied to the system. The
general equation can be written as:

d f (⃗r,⃗k, t)
dt

=
∂ f (⃗r,⃗k, t)

∂ t

∣∣∣
di f f usion

+
∂ f (⃗r,⃗k, t)

∂ t

∣∣∣
collision

+
∂ f (⃗r,⃗k, t)

∂ t

∣∣∣
f ields

(3.11)

In the steady state there is not net change in the distribution function, meaning that:

d f (⃗r,⃗k, t)
dt

= 0

It is conventional to write the diffusion process as a continuity equation in the absence of other
phenomena:

∂ f (⃗r,⃗k, t)
∂ t

∣∣∣
di f f usion

= −⃗v(⃗k)
∂ f (⃗r,⃗k, t)

∂ r⃗
(3.12)
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With v⃗(⃗k) the group velocity of particles:

v⃗(⃗k) =
1
h̄

∂E (⃗k)

∂ k⃗
(3.13)

For the fields by analogy:
∂ f (⃗r,⃗k, t)

∂ t

∣∣∣
f ields

=− d⃗k
dt

∂ f (⃗r,⃗k, t)

∂ k⃗
(3.14)

Therefore the BTE can be rewritten as:

∂ f (⃗r,⃗k, t)
∂ t

+ v⃗(⃗k)
∂ f (⃗r,⃗k, t)

∂ r⃗
+

d⃗k
dt

∂ f (⃗r,⃗k, t)

∂ k⃗
=

∂ f (⃗r,⃗k, t)
∂ t

∣∣∣
collision

(3.15)

The first term gives the explicit time dependence needed in case of time dependent perturbations.
In the case of a weak field, for example a weak electric field E⃗, the perturbation connected to the
external force is assumed to be small enough so that the distribution function can be linearized. In our
case, neglecting quadratic terms, the linearized BTE equation is :

f (⃗r,⃗k) = f0(E)+ f1(⃗r,⃗k) (3.16)

where: f0(E) is the equilibrium distribution function (Fermi function for electrons) depending only
on the energy of electrons [36][37].

f0(E) =
1

1+ e(E−EF )/KBT
(3.17)

and f1(⃗r,⃗k) is the perturbation term. More explicitly:(
∂ f0(⃗r,⃗k)

∂E (⃗r,⃗k)

)
v⃗(⃗r,⃗k)

[
E −µ

T
∆T + eE⃗

]
=

(
∂ f (⃗r,⃗k)

∂ t

)
(3.18)

3.1.1 Relaxation Time Approximation

To simplify this equation, it is often used the constant relaxation time approximation (RTA) for the
collision contribution term in which the relaxation time is assumed to be independent of position and
velocity of the electrons.
Physically, the relaxation time τ represents the time it takes for an electron to relax to the equilibrium
from a non-equilibrium state when the external field (or more in general, when an external perturbation)
is switched off.

∂ f (⃗r,⃗k)
∂ t

=− f (⃗r,⃗k)− f0(⃗r,⃗k)
τ

(3.19)
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With this approximation, the BTE equation is solved to obtain the current density j⃗(⃗r, t):

j⃗(⃗r, t) =
e

4π3

∫
v⃗(⃗k) · f (⃗r,⃗k, t)d3⃗k (3.20)

where d3⃗k is the element of 3D wave vector space.
In the next subsections we will present the expressions for the electronic parameters used in thermo-
electricity derived from BTE.

3.1.2 Electrical Conductivity

As mentioned at the beginning of this chapter, the electrical conductivity can be derived from the
macroscopic relation:

J⃗ = σ⃗ E⃗ (3.21)

Since there are not thermal gradients in the simplest calculation of electrical conductivity, equation
3.18 can be written as: (

∂ f0(⃗r,⃗k)

∂E (⃗r,⃗k)

)
v⃗(⃗r,⃗k)eE⃗ =

(
∂ f (⃗r,⃗k)

∂ t

)
(3.22)

By using the relaxation time approximation 3.19:

f1(⃗k) =−eτ v⃗(⃗k) · E⃗ ∂ f0(E)
∂E

(3.23)

and the electric current density can be obtained by replacing 3.23 in 3.20:

j⃗ =
e2E⃗
4π3 ·

∫
τ v⃗(⃗k) · v⃗(⃗k) · ∂ f0(E)

∂E
d3⃗k (3.24)

Thus, electrical conductivity is :

σ⃗ =
e2

4π3 ·
∫

τ v⃗(⃗k) · v⃗(⃗k) · ∂ f0(E)
∂E

d3⃗k (3.25)

3.1.3 Electronic thermal conductivity

Because in a lattice heat is carried by electrons as well as vibrating atoms, the thermal conductivity of
any material is the sum of the electronic contribution and lattice contribution.

κtot = κe +κℓ (3.26)

Let us consider the calculation of the electronic contribution to the total thermal conductivity.
Applying a thermal gradient to a solid results in a net heat flow. As in the previous case, we can define
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a thermal current U⃗ driven by a difference in energy from the equilibrium E −EF :

U⃗ =
1

4π3T
∂T
∂ r⃗

·
∫

τ v⃗ · v⃗(E −EF)
2 ∂ f0(E)

∂E
d3⃗k (3.27)

Thus, from Fourier’s law mentioned at the beginning of this chapter:

κe =
1

4π3T
·
∫

τ v⃗ · v⃗(E −EF)
2 ∂ f0(E)

∂E
d3⃗k (3.28)

3.1.4 Approximations for conductivities

The equations 3.25 and 3.28 are valid in general, but it can be complicated to deal with. Therefore
some approximations are introduced:

1. In the case in which (E −EF)<< kBT , where kB is the Boltzmann constant, the distribution
function is replaced with the classic Maxwell - Boltzmann distribution:

f0(E) = e−(E−EF )/kBT (3.29)

2. Electronic bands are assumed to be parabolic:

E =
h̄2k2

2m∗ (3.30)

3. Relaxation time τ is assumed to be constant (indipendent of k⃗ and E). With some mathematical
steps, the final expression for σ is:

σ =
2e2τ

m∗

(
m∗kBT
2π h̄2

)3/2

e−EF/kBT (3.31)

and
κe = cost ·m∗5/2

T 5/2
τ e−EF/kBT (3.32)

with a numerical constant cost containing all the physical constants and numerical quantities.
This usual assumption of a constant relaxation time (CRT) is in many cases inadequate for
a quantitative comparison with experiment. In paragraph 3.2 a simple analytic energy and
temperature-dependent model is explained to go beyond constant relaxation time approximation.

3.1.5 Seebeck coefficient

The Seebeck coefficient S is the characteristic coefficient which governs the Seebeck effect, where a
material under a thermal gradient ∆T exhibits an open circuit voltage ∆V =−S∆T under conditions
of no current flow. In the application of the Seebeck effect to thermocouple operation, it is usually
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measured the difference SA − SB between two different materials A and B by measuring the open
circuit voltage VAB as shown in Fig. 3.2 . This voltage can be calculated from:

VAB =−
∫ T2

T1

(SA −SB)dT (3.33)

The simplest formula for Seebeck coefficient is:

S =
8π2k2

B

3eh2 m∗T
(

π

3n

)2/3
(3.34)

This equation is an approximation as anticipated on Chapter 1, but, for many thermocouples, the S(T )
dependence is approximately linear, and for many materials there are only small variations from this
relation.

Fig. 3.2 Seebeck effect between two different materials showing the principle of operation of a
thermocouple under open circuit conditions.

3.2 Scattering mechanisms for electrons

Transport properties depend on the number of carriers and on the way they can scatter. Electron
collisions occur through a variety of mechanisms such as electron-phonon, electron-impurity, electron-
defect, and electron-electron scattering processes [33] [34]. Here, principal mechanisms of electron
scattering are presented.

3.2.1 Polar-optical scattering

The most important electron scattering mechanism for crystalline semiconductors is electron-phonon
scattering, due to electrons scattered by the thermal motion of the lattice. The optical scattering
is important only for polar semiconductors where the charge distribution has different signs on
neighboring ion sites. In this case, the oscillatory electric field leads to oscillating dipole moments
associated with longitudinal optical (LO) modes. This mechanism is important in III-V and II-VI
compound semiconductors. According to Ridley formula [38][39], the total rate of the polar optical
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scattering is given by:

Ppolar(T,E) = ∑
i

C(T,E,eLO
i )−A(T,E,eLO

i )−B(T,E,eLO
i )

Z(T,E,eLO
i )E3/2

(3.35)

where the sum runs over all longitudinal-optical phonons, with energy eLO
i the functions A , B , C ,

and Z are [39] :

A(E) = [n(ωLO)+1]
f0(E + h̄ωLO)

f0(E)

×
{
(2E + h̄ωLO)sinh−1( E

h̄ωLO

)1/2 − [E(E + h̄ωLO)]
1/2
} (3.36)

B(E) = n(ωLO)θ(E − h̄ωLO)
f0(E − h̄ωLO)

f0(E)

×
{
(2E − h̄ωLO)cosh−1( E

h̄ωLO

)1/2 − [E(E − h̄ωLO)]
1/2
} (3.37)

C(E) = 2E
{

n(ωLO +1)
f0(E + h̄ωLO)

f0(E)
sinh−1(

E
h̄ωLO

)1/2

+n(ωLO)θ(E − h̄ωLO)
f0(E − h̄ωLO)

f0(E)
cosh−1(

E
h̄ωLO

)1/2
} (3.38)

Z =
2

W0(h̄ω0)1/2 (3.39)

Where θ is the step function, ωLO is the LO phonon frequency and n(ωLO) is the phonon occupation
factor phonon, while :

W0 =
e2

4π h̄

(
2m∗ωLO

h̄

)1/2( 1
ε∞

− 1
εs

)
(3.40)

and εs and ε∞ are respectively the low-frequency and the high-frequency permittivities.
The importance of introducing these equations lies in the fact that here it is shown the explicit
dependence of polar-optical scattering on phonons energy. The parameters derived from phonon
calculations used to obtain the scattering rate, play a decisive role in the determination of transport
coefficients, as we will see in the next chapters.

3.2.2 Acoustic phonon scattering

Acoustic phonon mechanism is associated with energy shifts of the energy band extrema caused by the
compression and expansion of crystals during acoustic mode vibrations. The deformation potential
scattering mechanism is important in crystals with inversion symmetry and with the same species on
each site.
While LO optical phonons make a contribution in polar-optical scattering, for acoustic phonon
scattering, it is the LA acoustic phonons that are most important. Acoustic phonon scattering is treated
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within the elastic deformation potential 1 approach in the long-wavelength acoustic phonon limit, and
the scattering rate is:

Pac(T,E) =
2m̄3/2kBT D2

√
E

2π h̄4
ρv2

(3.41)

where E is the electron energy, D the deformation potential of the band energies calculated at the band
extrema, ρ the mass density, v the average sound velocity, m̄ the average effective mass.

3.2.3 Impurities scattering

As the temperature is reduced, phonon scattering becomes less important so that in this regime,
ionized impurity scattering and other defect scattering mechanisms become prevalent. This scattering
mechanism involves the deflection of an electron by the Coulomb field of an ion with charge ZIe.
Using Brooks-Herring formula:

Pimp(T,E) =
πnIZ2

I e4E−3/2
√

2m̄(4πε0ε)2

log

(
1+

8m̄E
h̄2q2

0

)
− 1

1+(
h̄2q2

0
8m̄E )

 (3.42)

Where ε0 and ε are the vacuum permittivity and the relative dielectric constant, ZIe is impurity charge,
nI is the ionized impurity concentration and:

q0 =
√

e2nI/ε0εkBT

Scattering probabilities for more than one scattering process are additive and therefore the total
relaxation time is obtained as the inverse of the total rate:

τ(E,T ) =
1

Pimp +Ppolar +Pac
(3.43)

3.3 Lattice thermal conductivity

As mentioned above, total thermal conductivity is the sum of the electronic contribution κe and the
lattice contribution κℓ. The lattice thermal conductivity is calculated from kinetic theory and is given
by:

κℓ =
CpvqΛph

3
(3.44)

where Cp is the heat capacity, vq is the average phonon velocity that can be derived from the phonon
dispersion and Λph is the phonon mean free path. In semiconductors, this is the major contribution to
thermal conductivity.
The lattice thermal conductivity κℓ, is not directly connected to the other thermoelectric parameters.

1The deformation potential D is defined as the effective electric potential experienced by free electrons in a semiconductor
or metal resulting from a local deformation in the crystal lattice.
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A reduction in κℓ is desirable to increase ZT and may be achieved by phonon scattering. For that
reason, in our study, κℓ plays a central role.

3.4 Scattering Processes in Phonons

In the same way that electron scattering is important in electronic transport properties, phonon
scattering is important in thermal transport. The major scattering mechanisms for phonons are phonon-
phonon scattering (Umklapp collisions), phonon-boundary scattering and isotope scattering, briefly
discussed in the following subsections.

3.4.1 Phonon-Phonon scattering

Phonons are scattered by other phonons because of anharmonic terms in the potential acting on them.
Two different options:

• a phonon mode q j scatters by absorbing another mode q′ j′ to generate a third phonon mode
q′′ j′′

• a phonon mode q j decays in two modes q′ j′ and q′′ j′′

In these anharmonic processes, energy and wavevector conservation is different for normal and
umklapp phonons:

• N - process

q j+q′ j′ = q′′ j′′ (3.45)

• U - process

q j+q′ j′ = q′′ j′′+Q (3.46)

where Q corresponds to a phonon wave vector of magnitude comparable to that of reciprocal
lattice vectors. When Q is zero the interaction is called an N-process. When there are umklapp
processes 2 the scattered phonon wavevector can be in a direction opposite to the energy flow. For
that reason, umklapp processes are important in considering the lattice contribution to the thermal
conductivity because they dominate the thermal conductivity at high T for low defect crystals (Fig.3.3)
with a 1/T dependence.

2The name derives from the German word umklappen (to turn over), because of the behavior of phonons when this
phenomenon occurs.
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Fig. 3.3 Normal process (N-process) and Umklapp process (U-process). While the N-process
conserves total phonon momentum, the U-process changes phonon momentum.

3.4.2 Phonon Boundary Scattering

The border scattering results in a process that describes the reflection of a phonon from a specific
state(qj) from the surface. Phonon-boundary scattering is important at low temperatures where the
phonon density is low and it is particularly important in low-dimensional nanostructures. In this
regime, the scattering time is independent of T . The thermal conductivity in this range is proportional
to the phonon density thus to T 3.

3.4.3 Isotope Scattering

Isotope phonon scattering is due to different isotopes of the host constituents. This mass disorder can
play a role when calculating the lattice thermal conductivity.

3.4.4 Limit of κℓ

By alloying, as already mentioned in the introduction, the lattice thermal conductivity lowers. The
reasons are the scattering phonons processes mentioned above. The short wavelength phonons are
scattered by point defects created by substituted atoms as well as impurities. The rate of scattering is
determined by the mass of the atoms, hence alloying is a key point for phonons scattering.
Phonons may also be scattered by grain boundaries. Reduction of grain size to maximize the grain
boundary area has successfully lowered the thermal conductivity in a number of materials [40] [41].
A lower limit in κℓ can be estimated by using the Einstein model for thermal conductivity. Assuming
that the atoms are harmonic oscillators with the Einstein frequency (ωE) coupled to each other, but
the oscillations are not coherently coupled as would be the case in a crystal lattice, the expression
for the lower limit (often referred to as the amorphous limit or phonon glass limit) of the thermal
conductivity κmin

ℓ is :

κ
min
ℓ =

(
π

6

)1/3
kBn2/3

∑
i

vi
T
θi

∫ θi
T

0

x3ex

(ex −1)2 dx (3.47)
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Fig. 3.4 Typical trend in lattice thermal conductivity at increasing temperatures. At low temperatures
the conductivity is limited by boundary scattering. At high temperatures it is limited by Umklapp-
scattering
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where n is the number density of atoms and θi is the temperature corresponding to the cutoff frequency
for each polarization in Kelvin. The phonon group velocity vi is assumed to be constant for all modes
while sum is taken for the three acoustic modes (two transverse and one longitudinal). This approach
has correctly estimated a lower limit for for a large number of compounds [42]. This limit to the
thermal conductivity leads to the concept of Electron-crystal Phonon-glass, indeed what we need in
thermoelectricity is a material with optimal electronic properties like perfect crystals and at the same
time a glass behavior to reduce the thermal conductivity.





Chapter 4

Zintl phase Mg3Sb2

In the following section I report the work done during my first Ph.D. year. During this time I studied
a promising thermoelectric material, the β phase Mg3Sb2, both in terms of electronic transport
coefficients and lattice thermal conductivity.

4.1 Introduction

As we have already seen in the first chapter, a good thermoelectric material requires the combination
of high electrical conductivity (σ ), low thermal conductivity (κ), and high thermopower or Seebeck
coefficient (S), ultimately resulting in a high figure of merit. Materials that best meet these require-
ments are typically heavily doped, small band-gap semiconductors or semimetals. Such materials
provide a balance between the high Seebeck coefficient of semiconductors and the low electrical
resistivity of metals.

4.1.1 Zintl phase

Zintl phase is the product of a reaction between an alkali metal or alkaline earth and any post-
transition metal or metalloid. From an electronic point of view, these compounds are defined as
valence precise intermetallic phases in which electro-positive cations donate electrons to covalently
bonded poly-anions [43]. Complex Zintl antimonides have recently emerged as a new class of
promising thermoelectric materials due to their low lattice thermal conductivity and highly favorable
electronic properties. However, most of these compounds consist of expensive, rare, and toxic
elements, limiting their industrial power generation applications. Among reported thermoelectric
Zintl compounds, Mg3Sb2 consists of cheap, environmentally friendly, and earth abundant elements.
The Zintl β -phase Mg3Sb2 crystallizes in the CaAl2Si2 structure (space group P3̄m1, No. 164) with
two inequivalent Mg sites, denoted as Mg(I) and Mg(II), occupying the 1b (0, 0, 0.5) and 2d (1/3, 2/3,
0.834) Wyckoff positions, respectively and the Sb atoms at 2d (1/3, 2/3, 0.228). The crystal structures
of Mg3Sb2 was reported by Zintl and Husemann in 1933 [44].
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Fig. 4.1 The Zintl β -phase Mg3Sb2 crystallizes in the CaAl2Si2 structure (space group P3̄m1, No.
164) with two inequivalent Mg sites, denoted as Mg(I) and Mg(II), occupying the 1b (0, 0, 0.5) and
2d (1/3, 2/3, 0.834) Wyckoff positions, respectively and the Sb atoms at 2d (1/3, 2/3, 0.228)

Fig. 4.2 Crystal structure and electronic bands of CaAl2Si2-type Zintl compounds. AB2X2 Zintl
compounds crystallize in trigonal (space group: Pm1) CaAl2Si2-type structures, where A is an
alkaline-earth or a divalent rare-earth element, B is a transition-metal or a main group element, X
normally comes from group 15 and 14. Generally, layered AB2X2 Zintl compounds can be described
as trigonal monolayers of A2+ cations in the a-b plane separating [B2X2]2− covalently bound slabs.
[45]
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In this chapter we show a complete study of the electronic transport coefficients and the thermoelectric
figure of merit ZT in n-doped Mg3Sb2 based on density-functional electronic structure and Bloch-
Boltzmann transport theory with an energy- and temperature-dependent relaxation time. Both the
lattice and electronic thermal conductivities affect the final ZT significantly, therefore we included the
lattice thermal conductivity calculated ab initio. Here, the lattice thermal conductivity of Mg3Sb2

is studied from first principles, with the inclusion of anharmonic, isotope, and boundary scattering
processes, and via an accurate solution of the Boltzmann equation. All the theory used for this
calculations can be found on Chapter 3.
This chapter is divided in two sections: in the first one I will present the lattice thermal conductivity
calculations, while in the second one I am going to discuss electronic transport calculations.

4.2 Lattice Thermal Conductivity

4.2.1 Computational details

We use the QUANTUM ESPRESSO suite [27][28] to optimize the structure of Mg3Sb2 and obtain
the phonon spectrum, and the D3Q - THERMAL2 codes [46] [47] for the anharmonic force constants,
thermal conductivity, and q-dependent linewidths, including Casimir and isotopic-disorder scattering.
We use generalized-gradient approximation (GGA) density-functional theory (DFT) for electron-
electron interaction, and Hartwigsen-Goedeker-Hutter [48] norm-conserving pseudopotentials for
electron-ion interaction. The plane-wave cutoff is set at 50 Ry, and the k-point grids are 8×8×8 for
both structure optimization and phonon dynamical-matrix calculations, 4×4×4 for the third-order
force constants, and 10×10×10 for the thermal conductivity. For the lattice thermal conductivity
calculation, the "exact" iterative conjugate-gradient solution method of Ref. [47] is used, with δ

functions mimicked by Gaussians with a width of 5 cm−1 . Tests on grids, cutoff, and widths suggest
that the lattice thermal conductivity value is stable to within about 5 %.

4.2.2 Results for lattice thermal conductivity

Here, we take into account different mechanisms of scattering to understand the reason of low κ

values and if vibrational properties are responsible for that. Figure 4.3 reports the inverse average
of the tensor components: since we are dealing with an hexagonal structure, due to the crystal
symmetry , these components are (mildly) anisotropic: they are κxx

ℓ = κ
yy
ℓ ≃ 1.1κ

zz
ℓ . Starting with

only anharmonic scattering, the resulting lattice thermal conductivity is about 10 W/(m· K) at 400 K:
that value differs from most experiments for which κℓ is ten times smaller. The blue dashed-dotted
curve shows the typical behavior for umklapp phonons processes, with a 1/T dependence for κℓ.
Including isotopic disorder scattering, due to different isotopes of Mg and Sb, κℓ is slightly reduced
but not enough to explain experimental results. Then, considering Casimir boundary scattering, lattice
thermal conductivity decreases by 30%. This difference is more marked at low temperatures, where
the T 3 dependence of lattice thermal conductivity, typical of boundary scattering, is dominant. That
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result is obtained with a length L = 50 nm and an isotropic shape. In our calculation a correction factor
(F) is present depending on the width to length ratio of the sample (more info in [47][83][84][85]).
F is set to 1 and it takes into account grains with rough surface and separated by large disordered
regions as found in the real material. That factor plays an important role for κℓ: actually, setting F =
0.5, lattice thermal conductivity decreases by 15 - 20 % (see formula 4.1).

PC
q, j,n̂ =

cq, j · n̂
FL

nq, j(nq, j +1) (4.1)

with n the equilibrium phonon occupations, L the film thickness, F a correction factor between 0.5
and 1 (we set it to 1), cq, j the group velocity of mode j at wave vector q, and n̂ the normal to the film.
The last ingredient considered in our calculation is the polycrystallinity of this compound. The grain

Fig. 4.3 Temperature dependence of lattice thermal conductivity in Mg3Sb2 . On the top curve the
calculation was done with only anharmonic scattering, then we included anharmonic and isotopes
(second curve from the top); anharmonic, isotopes, and Casimir scattering with a length L = 50 nm
(third curve). The lowest curve (plotted in red with diamonds) is the average conductivity over an
experimental grain-size distribution in Mg3Sb2 polycrystals as reported on [49].

size distribution is based on that used by [50] and, first of all, we analyzed the size dependence of κℓ

at room T and compared with grain size distribution of figure 3d of [50] finding that grain distribution
is localized over about 20 nm in average and at larger values it becomes negligible [63]. Supposing
randomly oriented grains with size L and assuming that thermal transport occurs in series, the lattice
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thermal conductivity averaged over all grains is:

κ̄ℓ = 1/

[
∑
L

nL

κℓ(L)

]
(4.2)

Where nL is the grain size normalized distribution (Figure 4.4). At room temperature, κ̄ℓ is about 1.65
W/(m · K), in agreement with experiments. We can conclude that the major cause of low thermal

Fig. 4.4 Normalized distributions of grain sizes vs sample length in Mg3Sb2 and Mg3Sb1.8Bi0.2( the
distribution of grain sizes is taken from [50])

conductivity in Mg3Sb2 is due to its polycrystalline behavior. Finally, we consider more in detail
the mass disorder in the case in which 10 % of Sb is replaced by Bi as it were a heavy isotope. To
reproduce the distribution we follow the composition of that alloy from reference [50]. The resulting
thermal conductivity is in good accordance with experiments [49]. The alloying reduces appreciably
the value of κℓ and therefore enhances ZT. The largest effect, of course, on ZT comes from the
crystallinity or polycrystallinity of the samples (Fig. 4.22).
Indeed, as anticipated in the introduction, the nanostructuring is one of the ways to improve the
thermoelectric efficiency via a reduction of lattice thermal conductivity from the value in crystalline
samples. We will return to this point in the last section of this chapter.
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Fig. 4.5 Lattice thermal conductivity as a function of grain size L computed for different temperatures
for a sample of Mg3Sb2. Temperatures are in Kelvin.

Fig. 4.6 Lattice thermal conductivity with a polycrystal sample of Mg3Sb2 and with an alloy with
Bismuth given by Mg3Sb0.8Bi0.2 from [49]
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Phonons linewidths

In this paragraph, I will briefly discuss the phonon-phonon scattering and the relative phonon linewidth.
The energy dependence of phonon linewidth exhibits its largest values in the central region of the
spectrum, between 100 and 150 cm−1, we can see the largest values of linewidths (Fig. 4.7). Watching
the phonon dispersion considering only anharmonic and isotope scattering, they are much more
relevant along the Γ-A-L-M-Γ path. Including Casimir scattering the regions close to A and M points
have the most significant scattering 4.8a and 4.8b. This behavior is in agreement with [51].

Fig. 4.7 Phonon linewidths as function of energy, with and without Casimir scattering, with a
scattering length of L = 20 nm, at 300 K
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(a) – Phonon linewidths for low-energy phonons including anharmonic and natural-
isotope scattering, infinite size of the sample at 300 K.

(b) – Phonon linewidths for low-energy phonons including anharmonic and natural-
isotope scattering and Casimir scattering, with a length of L = 20 nm and T = 300
K

Fig. 4.8 Phonon linewidths
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4.2.3 Comparison with experiments

We now compare our results with experiments and other theoretical investigations of lattice thermal
conductivity in Mg3Sb2.
Two papers, [54] and [55], give an estimation of κℓ ≃ 1.5 W/(K·m), by using harmonic and anharmonic
force constants obtained via a fit to frozen-phonon distortions in real-space supercells to build the
relaxation time for use in the Boltzmann equation.
One of the differences from our calculation may be the group velocity estimation: indeed ,in our case,
group velocities are directly estimated from interpolated dynamical matrices obtained with a grid of
8× 8×6, while in other works phonon group velocities are computed as finite differences on k grids,
based on force constants obtained on relatively coarser equivalent grids. However, in those papers,
the method used is not specified, nor is specified whether convergence in k-point in the Boltzmann
equation solution is reached.
In addition, Ref. [55] uses single-mode approximation, that may artificially reduce κℓ, an effect
mentioned in [47]. By contrast,in our calculation the full iterative solution of Ref. [47] is used and we
carefully checked convergence in k-space.
Another paper [52] reports a κℓ of 2.5 W/(K·m) obtained via an expression involving average
Grüneisen parameters and sound velocities.
Many experimental papers report low thermal conductivities (1 - 1.5 W/(K · m)) in Mg3Sb2-based
polycrystals and alloys [55] and are in general agreement with our proposed explanation. Instead [56]
reports a κℓ about 1.5 W/(K · m) at room temperature in nominally pure and perfect single crystals1

as well as in alloys without any explanation of the reason why polycrystals and single crystals would
have essentially the same lattice thermal conductivity.
It may of course be the case that the single-crystal unalloyed character of the samples is not as perfect
as declared; in general, single crystals are apparently hard to come by (and may in fact be uninteresting
technologically), intentional alloying is ubiquitous, and general defectivity and off-stoichiometry are
considerable.
Ref. [57] and [58] suggests that, by varying composition, impurity content, preparation of samples, κℓ

assumes a wide range of values (6 W/(m·K) in Ref. [57], while in Ref. [58] they go from 2.5 W/(m·K)
in hot-pressed pellets to 1.5 W/(m·K) in alloyed materials). If we consider only mass disorder
(i.e. isotope disorder) as source of scattering, neglecting Casimir boundary scattering, assuming a
composition with a strong mass disorder like Mg2.99Sb1.5Bi0.5 taking cues from [55], we find at room
T a value for κℓ equal to 1.6 W/(m·K) in agreement with experiments, so we can say that κℓ can be
suppressed by polycrystallinity and large mass disorder 2.
We are lead to conclude that the anomalously low observed conductivity is due to grain-boundary
scattering of phonons, as we mentioned in the introduction, while the pure anharmonic contribution to
the lattice thermal conductivity is an order of magnitude larger. Other mechanism seem to contribute

1since κ shows a typical finite-size downturn at low T [57], it is unclear whether this value is representative of
macroscopic single crystals

2the x = 2.99 Mg composition is meant to simulate the effect of Mg vacancies at the 1% concentration level.
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significantly to decrease the conductivity. Combining ab initio values vs sample size with measured
grain-size distributions, we obtain an estimate of κℓ vs T in nanopolycrystalline material in good
agreement with typical experiments, and compute the ZT figure of merit in the various cases, that I
will present in the next section.
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4.3 Electronic Transport Coefficients

4.3.1 Computational details

The electronic and atomic structure of this compound are calculated within density functional theory
in the generalized gradient approximation (GGA) with the projector augmented wave (PAW) as
implemented in the VASP code [26]. Mg3Sb2 has been relaxed in trigonal symmetry (space group
P-3m1 [164]), obtaining a=4.60Å, c=7.28Å as lattice parameters. Standard cut-off is used for the
plane wave basis, and the k-point mesh for the bulk material is 24 ×24×18. The eigenvalues are then
interpolated by a Fourier-Wannier technique [59] over a finer grid including a number of k-points
given by the original number of points times an amplification factor, which we choose to be A =
20 (the approximate equivalent grid will be 65×65×48). This setting is enough to converge with a
variation for example, for the Seebeck coefficient of about 1% compared with a 12×12×12 ab initio
grid, depending on T. Ab initio band structure calculation by density functional theory (DFT) for

Fig. 4.9 Calculated GGA band structure of Mg3Sb2 as obtained from Vasp. The dashed line through
energy zero represents the Fermi level. The minimum (indirect) gap is 0.13 eV. Fermi surface of
n-type Mg3Sb2 exhibits 6 anisotropic carrier pockets along the M-L line and 6 one-third pockets at
the K point, whereas p-type Mg3Sb2. It possesses only one highly anisotropic carrier pocket at the Γ

point

Mg3Sb2 along the high-symmetry directions path is presented in Fig. 4.9.
The valence band maximum peak is at the Γ-point (Center of Brillouin Zone), the conduction band
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minimum is at the K-point and degenerate in energy 3 with the point along the L-M segment of the
hexagonal Brillouin zone. Hence, Mg3Sb2 is an indirect band-gap semiconductor. The first minimum
of conduction band possesses a valley degeneracy of 2 while the minimum along L-M band possesses
a valley degeneracy of 6. [49]
Detailed analysis of DOS reveal that the valence bands are spread by about 10 eV and can be broadly
divided into two main parts. The first part is the low lying band located at about 9 eV (Fig. 4.10)
which mainly comprise the Sb states. The second part is located from -5 eV to the Fermi Energy and
are dominated by the Sb with little contribution of the Mg states. The conduction band is composed
of the Mg and Sb states. The gap magnitude is estimated to be 0.22 eV, when exchange correlations
were treated in the GGA formalism. A more detailed analysis of band structure is presented on Fig.
4.11 where the elements contributions to the overall spectrum are indicated by a color representation.
It is also interesting to note the distribution of the Mg and Sb states, according to the fat-band analysis
as shown in Fig. 4.11. Mg atoms appear to be insignificant in determination of in the valence band,
suggesting they have a ionic character in the system. Interestingly, it is also found that some of the Sb
states are distributed in the empty conduction band centered on the Γ-point. It seems to be appropriate
suggesting a fully ionic Mg(I) atom with a certain degree of covalency between the Mg(II)-Sb and
Sb-Sb bonds [50].
This behavior is typical of Zintl materials. Indeed, for these compounds the mostly ionic cations are

Fig. 4.10 The GGA calculated total and atom-resolved density of states of Mg3Sb2. The dashed line
through energy zero represents the Fermi level.

3The energy difference between these two conduction bands is about 0.02 eV. This is a small energy difference compared
with kBT at room T . Consequently, it might be said that the two conduction bands converged.
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Fig. 4.11 The GGA generated band structure of Mg3Sb2 as obtained from Vasp. The red and the blue
colors are the representation of the Sb and Mg states, respectively. The black line through energy
zero represents the Fermi level. The valence band is dominated by Sb states, while the conduction
band is a mixture of Sb and Mg states.

supposed to be electron donors, donating their electrons to the covalently bonded anionic substructures.
The covalent bonding in the anionic parts leads to a significant orbital overlap, a light band mass, and
thereby, a high carrier mobility, whereas the ionic cations are suitable for doping substitution, with
the aim to tune the carrier density without affecting the covalent anionic networks (as it is done with
Bismuth for instance). Such bonding features make Zintl compounds, and in particular Mg3Sb2 very
promising for thermoelectric applications [53]
To compute electronic transport properties we used the BoltzTraP [59] code, obtaining directly from it
Seebeck coefficient, electrical conductivity and electronic thermal conductivity under the rigid bands
approximation, which assumes that bands do not change with doping or temperature. In the following
equations the expressions for these quantities are summarized:

σ = L (0) (4.3)
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S =
L (1)

eTL (0) (4.4)

κe =
1

e2T
(
L (1)

L (0) −L (2)) (4.5)

with e the electronic charge and

L (N) = e2
∫

K(E,T )(E −µ)N(−∂ fF(E,µ,T )
∂E

)dE, (4.6)

K(E,T ) =
∫

∑
b

vb,k ×vb,kτb,kδ (E −Eb,k)
dk
8π3 (4.7)

where b is the band index, k is the wavevector, Eb,k is the band energy, vb,k is the band velocity, fF

the Fermi distribution, µ the chemical potential and τ the relaxation time. These equations are exactly
the same as I reported in Chapter 3 in a different way.
In our study, major electronic scattering sources are included, namely electronic acoustic phonons,
polar-optical phonons and charged impurities scattering. These three rates of scattering have been
implemented by our group in BoltzTraP code. The single mechanisms, more in detail, are reported in
Chapter 3. As you will see in the next sections, the choice to use a model for relaxation time based
on main scattering mechanisms for electrons makes the difference in the calculation of the figure of
merit.

Parameters used in calculations

All the material parameters needed in scattering processes are computed via Quantum-Espresso code
except for effective masses imported from [49] and [50]. These values are:

• ε∞ = 14.2

• ε = 26.7

• average sound velocity v = 2.7 km s−1

• LO-phonon frequencies ωLO = 165 cm−1, 220 cm−1, 250 cm−1

• conduction-band deformation potential D = 6.4 eV

• average effective mass m∗ = 0.3 me

• constant relaxation time τ0 = 1.34 · 10−14 s

4.3.2 Results for electronic calculations

Figure 4.12 shows the behavior of τ(T,E) and its components as function of T at 40 meV above the
band edge and, as function of energy at 500 K. As expected in polar semiconductors (see also chapter
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Fig. 4.12 Left: τ vs Temperature at E = 40 meV at optimal doping level. Right: τ vs Energy at T =
500 K at optimal doping level.

3), scattering of carriers by optical phonons is the principal mechanism which determines mobility at
room T: since LO phonons energies are low in Mg3Sb2 and τ is inversely proportional to them, the
total relaxation time is definitely dominated by polar scattering.

Electronic thermal conductivity

In our calculations we use the total thermal conductivity. The electronic thermal conductivity is shown
below, while the lattice thermal conductivity was the subject of section 4.2.
All the calculations refer to doping of n-type. As it can be seen in Figure 4.13, κe has the same
order of magnitude as κℓ. Comparing the case of energy-dependent scattering time and constant
scattering time at the same level of doping, κe rises with T in the constant scattering time model. As
can be seen in Fig. 4.14, different scattering models lead to qualitatively different predictions. In the
constant-time approximation, κe becomes larger than in the energy-dependent case and rises sharply
at high temperature, because the constant relaxation time does not take into account the phonon
scattering, dominant scattering mechanism for electrons as the temperature increases. This causes a
strong increase of the thermal conductivity at high temperature. In the energy-dependent case, instead,
the electronic thermal conductivity shows a weak temperature dependence, which is usually the case
in experiments (Fig. 4.14). The behavior of the electronic thermal conductivity emphasizes the need
for an improved description of scattering over that provided by the simple constant time. Indeed, a
constant scattering time model overestimates the electronic contribution to the thermal conductivity,
and this leads to a significantly underestimation of the ZT, consequently, it is appropriate to select a
refined model, as ours, to obtain a better prediction.
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Fig. 4.13 Electronic contribution to the thermal conductiviy at different doping levels. The values
above 10−19 cm−3 indicates a transition from a doped semiconductor to a metal behavior

Fig. 4.14 Comparison between constant and energy dependent relaxation time for the electronic
contribution to the thermal conductivity due at doping level 1020 cm−3 for a range of temperatures
between 100 and 800 K. In the constant relaxation time approximation, κe becomes larger than in
the energy-dependent case and rises sharply at high temperature, because of lack of the phonon
scattering. In the energy-dependent case, instead, the total thermal conductivity shows a weakly
temperature dependence.
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Electrical conductivity

Turning now to the electrical conductivity σ , we found that doping values larger than 1019 cm−3

lead to a transition from semiconductor behavior to metal behavior, in agreement with [49]. This
can be seen in Figs 4.15a and 4.15b, whereas the change in σ is a sign of a transition from a doped
semiconductor to a degenerate-like behavior. There are several cases of alloyed MgSb samples with
the same behavior as the nominal doping increases [49].
Considering a constant scattering time, the electric conductivity increases with temperature at dopings
in the range between 1018 cm−3 and 1019 cm−3 , while in energy-dependent scattering time model,
there is a decrease of σ with T above that doping level.

Seebeck coefficient

Seebeck coefficient is displayed on Fig. 4.16a and Fig. 4.16b for τ = τ0 and τ = τ(E,T ), respectively.
Above 1019 cm−3, S increases monotonically with T, reaching values in the range of 150-250 µV/K.
The values are consistent with previous work ([49], [50]). Considering the case with in the constant
time approximation, the Seebeck coefficient is similar only at high doping both in behavior and values,
contrary to what is seen for lower doping levels with a net underestimation of S in all the range of
temperatures considered.
Again, the choice of a refined scattering model has an high impact on final results. Fig. 4.17 shows
the Power Factor σS2 for three different doping levels. The sharp decrease of electrical conductivity
at high dopings (above 1019 cm−3) is compensated by the Seebeck coefficient squared. The values for
thermopower are poor: the sixfold conduction band bottom makes it possible to have a promising
Seebeck coefficient but only a low electrical conductivity.

4.3.3 Figure of merit

In Fig. 4.18 ZT is plotted for different doping levels in the range of temperature between 100 and 800
K for the thermal conductivity given by the sum of electronic contribution and lattice contribution for
the polycrystal material. The relaxation time τ used is the one shown in Fig. 4.12. From these data,
we estimate the doping at which ZT is a maximum to be around 5×1019 cm−3 over all the considered
temperature range. This is a typical doping level for electric applications (see Chapter 1) and relatively
simple to get experimentally. In Fig. 4.19 is shown the figure of merit and its T dependence in the
case of n-doped polycrystal which, as we will see, is the main reason of low κℓ if we compare it with
the case of a perfect crystal. For the same doping levels, the figure of merit assumes higher values
in the polycrystal sample due to the lower κℓ in this case. Looking at the same doping, 1019 cm−3

for example (filled circles for polycrystal, empty circles for crystal), ZT ≃ 1.5 at T = 700 K: three
times larger than in the crystal sample. The nanostructuring plays a decisive role in improving figure
of merit. In Fig 4.20 it is shown ZT calculated neglecting the electronic thermal conductivity (red
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(a) – Electrical conductivity computed with energy-dependent scattering time. The
doping level is indicated in labels in cm−3.

(b) – Electrical conductivity computed with constant scattering time. The doping
level is indicated in labels in cm−3.

Fig. 4.15 Electrical conductivity σ
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(a) – Absolute value of the Seebeck coefficient computed with energy-dependent.
The doping level is indicated in the labels.

(b) – Absolute value of the Seebeck coefficient computed with constant scattering
time. The doping is indicated in the labels. Seebeck coefficient is significantly lower
than in the previous case especially at doping levels in the range between 1018 cm−3

and 1019 cm−3. On the contrary, above this nominal doping, the chosen model for τ

does not affect the Seebeck coefficient.

Fig. 4.16 Seebeck coefficient S
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Fig. 4.17 Power Factor S2σ for different dopings (given in the labels) expressed in cm−3.

Fig. 4.18 Figure of merit at different doping levels for the range of temperature between 100 and
800 K. The thermal conductivity is estimated taking into account both the electronic and lattice
contribution. The latter by considering the polycrystal sample. The n-doping level is indicated in the
plot (units are in cm−3). The maximum value for ZT is estimated to be about 5 ·1019 cm−3 for each
of temperautes considered.
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Fig. 4.19 ZT vs temperature for n-doping both in the polycrystal sample (indicated with filled
symbols) and the single crystal (empty symbols) at different dopong levels. The value for the
polycrystal material are larger as expected taking into account the difference on thermal conductivity
in the two cases.

Fig. 4.20 Figure of merit ZT at optimal doping of 5 · 1019 cm−3 taking into account only one of
the two components of thermal conductivity. Neglecting one of the two contributions enhances
artificially ZT, reaching values over 3 for T = 800 K.
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empty squares), neglecting the lattice contribution (green circles) and considering both of them (in
blue). The red dashed line explains the overly optimistic values of 2.5-3 reported in recent work [52],
where electronic thermal conductivity was not included. Clearly, both the contributions to thermal
conductivity have an impact on the ZT: neglecting one of them means overestimate figure of merit by
more than a factor 2.
In any case, that is not the only important point to consider: the chosen scattering model has an
equal relevance. In particular, the full ZT with a energy and temperature-dependent relaxation time
approximation is compared with ZT in constant time approximation on figure 4.21. ZT reaches values
around 1.6 in the considered range of temperatures, showing a good agreement with experiments
for that material (figure 1(a) of [49]). The constant τ0 case is about a factor of 2 smaller for high
temperatures, mainly due to the larger increase in κe as temperature increases. This is not true in
general. Depending on the material and on the choice of τ0, the ZT for constant relaxation time can
also be larger than with E-dependent τ (e.g. in the next Chapter). Finally, we compare our results

Fig. 4.21 Figure of merit for constant τ = τ0 and for energy-dependent τ = τ(E,T ). The constant τ0
case is about a factor of 2 smaller, and has a clear maximum in T , mainly due to the larger increase
in κe with T in that case.

with experiment data from [49] in Fig. 4.22, to evaluate our model’s consistency with experiment.
Since the actual experimental doping level is not available, we compared experiments with three
different calculations at three different nominal doping values. Our calculation underestimates ZT at
low temperature and overestimates it at high temperatures [64] [65]. The value reached are in general
good agreement with the experiments, and the ZT is in line with typical thermoelectric materials
available today.
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Fig. 4.22 Comparison of our calculated ZT with the values measured in Ref [49]. Since the doping
level considered in the experiment is unknown, we cannot make the comparison with the exact
doping. The values indicate a good agreement with experimental results with an overestimation of
ZT at high temperatures and an underestimation at low temperature compared with experimental
results.
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4.3.4 Comparison between Vasp and QuantumEspresso electronic structure

Throughout the previous discussion, some doubts might arise on why two different codes (VASP and
Quantum Espresso (QE)) are used in the calculations, and if their results may be mixed to compute
the thermoelectric figure of merit. The answer is not simple, but the reasons behind this choice can be
found on the different approaches and tool that VASP and QE offer.
Theoretically, it would be possible to compute phonons with VASP and to derive all anharmonic
terms, instead of using QE; however, this would make the procedure very complicated for two reasons:
firstly, QE tools that we used to calculate phonons and third-order derivatives are interfaced directly
with QuantumEspresso outputs (dynamical matrix format), greatly reducing the time needed for
post-production of data and, secondly, VASP derives phonons from finite differences calculations 4

and can compute only zone-center (Γ-point) frequencies 5. In Quantum Espresso, Density Functional
Perturbation Theory is implemented and the whole phonon spectrum can be easily computed.
At the same time, we could have calculated both electronic and lattice properties with QE. In this
second case, the decision derives from a greater knowledge of VASP and the possibility to use
BoltzTraP code as modified by our research group, directly using the EIGENVAL file from VASP
calculations, thus, avoiding file format conversion from QE.
To ensure our method reliability, we compare results for electronic structures as the results of VASP
(Fig. 4.23) and QE (Fig.4.24). Both the structures are relaxed in a trigonal P-3m1 space-group 164
structure. The optimized lattice parameters are:

Lattice Parameter a (Å) c (Å)

VASP 4.601 7.281
QuantumEspresso 4.587 7.273

Pseudopotentials: from VASP Pseudopotentials Repository:

Mg : PAW_PBE Mg (2001)
Sb : PAW_ PBE Sb (2000)

From Pslibrary - QuantumEspresso repository [66]:

Mg : Mg.pbe-hgh.UPF
Sb : Sb.pbe-hgh.UPF

Vasp and QE electronic band strcutures show remarkable agreement between them, allowing us
to build confidence in our method. In addition, the lattice parameters differ only for 0.2 % despite
different pseudopotentials employed in the calculation.

4Finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating
derivatives with finite differences.

5https://www.vasp.at/wiki/index.php/Phonons_from_finite_differences

https://www.vasp.at/wiki/index.php/Phonons_from_finite_differences
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Fig. 4.23 Calculated GGA electronic band structure of Mg3Sb2 as obtained from Vasp. The dashed
line through energy zero represents the Fermi level. The band structure is obtained by using the
Python Library Pymatgen [93]

Fig. 4.24 Calculated GGA electronic band structure of Mg3Sb2 as obtained from Quantum Espresso.
The band structure is obtained from thermo_pw [97] software.





Chapter 5

Layered perovskite La2Ti2O7

In this chapter I report an ab initio study on layered perovskite La2Ti2O7 belonging to the family of
layered perovskite oxides AnBnO3n+2. As in the previous chapter, we report the calculations for the
electronic trasport coefficients as well as for the lattice thermal conductivity.

5.1 Perovskites

Materials with layered perovskite-related structures display several structural, chemical and physical
properties [78]. Perovskite structures are adopted by many oxides that have the chemical formula
AnBnO3n. The idealized form is a cubic structure (Pm3m) which is rarely encountered. Barium
titanate is an example of a perovskite which can take on the rhombohedral (R3m), orthorhombic,
tetragonal and cubic forms depending on temperature (Fig. 5.1). Several compounds with the formula

Fig. 5.1 Structure of rhombohedral (R3m) BaTiO3. The red spheres are oxide centres, blue is the
Ti4+ cation, and the green spheres are Ba2+. The solid exists in one of four polymorphs depending
on temperature. From high to low temperature, these crystal symmetries of the four polymorphs are
cubic, tetragonal, orthorhombic, and rhombohedral crystal structure, respectively.

AnBnO3n+2, such as La2Ti2O7, do not form the expected isometric pyrochlore structure, as is typical
for many of the heavy-rare earths and transition metal oxides, but rather form a layered structure
comprised of slabs of the ABO3 perovskite structure [71] [72] [73].



62 Layered perovskite La2Ti2O7

5.2 Crystal structure of Lanthanum titanate

The layered perovskite La2Ti2O7 belongs to the homologous series AnBnO3n+2 with n = 4. Fig. 5.2
shows the schematic crystal structure of La2Ti2O7 projected along the [100] direction. The perovskite
“slab” contains four layers of corner-sharing TiO6 octahedra. The octahedra in different slabs are
separated by layers of A-site cations, in our case made up of La.
Despite other doped perovskites having ZT at most 0.3 at high T [62], the layered variant LTO looks
very promising for thermoelectric efficiency. One of the reasons is the conduction band behavior
which leads to a rapidly rising density of states and, according to the Mott-Cutler formula [61],
should produce a significant Seebeck coefficient. Moreover, the layered structure of peroskite blocks
consisting of four perovskite octahedral units stacked along a [110] direction in cubic perovskite
axes, as sketched in Fig.5.2, may be expected to avoid phonon propagation, much as a multi-interface
structure, and lead to a reduced lattice thermal conductivity compared to normal perovskites. Recently,
La2Ti2O7 and other layered perovskites have received considerable attention because of their potential
applications in fuel cell and other energy conversion technologies [75][76][78].

5.2.1 Methods

For the electronic coefficients (electrical and electronic thermal conductivity and Seebeck coefficient)
we calculate the electronic band structure from first principles within density functional theory in
the generalized gradient approximation, and then, use it to calculate the coefficients as functions of
temperature and doping, in the relaxation-time approximation to the linearized Boltzmann transport
equation, known as Bloch-Boltzmann theory [36][37][59][60]. We, then, use a T-dependent relaxation
time to obtain ZT (Section 5.4). The lattice thermal conductivity is estimated with the Boltzmann
equation applied to phonons which includes ab initio third-order anharmonic scattering, isotopic
scattering, and Casimir finite-size boundary scattering (Section 5.3) as in the case of Mg3Sb2 as
described in [47].

5.3 Lattice thermal conductivity

Lattice thermal conductivity, as we have already discussed in previous chapters, is an important
ingredient to compute ZT. In the case of La2Ti2O7 we chose to fix κℓ to the value of 1.2 W/(m · K)
and this value is T independent as observed in [82]. That choice can be justified considering the small
and weakly T-dependent κℓ.
Because a direct calculation of phonons and third-order dynamical matrices for this large unit-cell
material is prohibitively costly, we computed the ab initio κℓ of BaTiO3 in a geometrically fixed
configuration for the bulk material and for a 1.5 nm thick film, in such a way to have the individual
perovskite block thickness of La2Ti2O7. The choice to use this model is due to different reasons:
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Fig. 5.2 Schematic crystal structure of La2Ti2O7 projected along the [100] direction. The a axis
points into the page, the b axis vertically, and the c axis from left to right. The primitive cell is
outlined. The perovskite “slab” contains four layers of corner-sharing TO6 octahedra. The octahedra
in different slabs are separated by layers of La.
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i Ba is mass-wise the closest element to La in the periodic table (excluding rare earths).

ii The local structure of both BaTiO3 and La2Ti2O7 are made up of TiO octahedra, and therefore
most likely share the main vibrational features. In addition La2Ti2O7 has internal interfaces
which are modeled by Casimir term (Fig 5.1).

We have included anharmonic scattering, isotope-disorder scattering and Casimir boundary scattering
in our calculation. The latter is:

PC
q, j,n =

cq, j ·n
F ·L

nq j(nq j +1) (5.1)

with n the equilibrium phonon occupations, L the film thickness and the correction factor F takes into
account the width to length ratio of the sample. In our study, this value is put equal to 1. cq, j is the
group velocity of mode j at wave vector q and n is the normal to the film [47] [83] [84] [85].
Thus, the anisotropy of the material is accounted for by projecting each phonon velocity along the
short direction. Indeed, phonons traveling orthogonal to the plane of the film are scattered more then
others, in fact they should be scattered proportionally to the projection wave vector and, at the same
time, those in the plane of the film are not scattered at all.
The possible occurrence of mass disorder, which can be an important source of thermal conductivity
reduction as already discussed in previous chapters, is not considered in this work because it does not
appear to be significant in the high-quality material of Ref. [82]. Moreover, a similar κℓ value has
been found in the layered perovskite Sr2Nb2O7 which is isostructural at La2Ti2O7 [79] reinforcing
the theory that the small value of thermal conductivity is due to a geometric cause.

5.3.1 Computational details for κℓ

Similarly to previous Mg3Sb2, we employed the Quantum Espresso suite [27] [28] and its extensions
[46] [47] to obtain κℓ. Furthermore we did calculations with optimized pseudopotentials from
PseudoDojo [87], the generalized gradient approximation [17] to density functional theory and
a plane-wave basis cutoff of 100 Ry. We obtained the relaxed configuration in the ground state
rhombohedral phase with an (8 × 8 × 8) k-points grid, D3Q [46] for the third-order anharmonic
force constants on a (4×4×4) grid and TK code [47] for the phonon Boltzmann equation with a
(12×12×12) grid and a δ -function width of 5 cm−1. The isotope abundance is taken from NIST
database [88]. Finally BaTiO3 is assumed to have a low-T rhombohedral structure.

5.3.2 Results for κℓ

I show in Figure 5.3 the inverse average of the κℓ tensor for bulk BaTiO3 and for a film with thickness
1.5 nm, given by considering the Casimir scattering for phonons in a single block of BaTiO3. As you
can see, the finite size causes a sharp decrease in κℓ and largely suppresses its T dependence, with
a value between 0.5 and 0.8 W/(m · K) throughout the temperature range. The value of the lattice
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contribution to the thermal conductivity is remarkably low and, more importantly, the size reduction
has an effect even in the plane, since the κℓ tensor is essentially isotropic.
But, on the other hand, the literature reports a κℓ for BaTiO3 of 5 W/(m · K) at room T [77]. This
suggests the presence of a systematic error of about 30% - 40 %, as in fact our estimation for the bulk
of BaTiO3 is underestimated by about 30% - 40 %. To overcome this problem, we have set κℓ = 1.2
W/(m · K).
This is in fair agreement with experiment, and supports the idea that the low lattice thermal conductivity
of La2Ti2O7 is due to the effective confinement of phonons within the stacked blocks of the layered
structure. If we used our theoretical κℓ , ZT could be slightly higher at high temperature, due to the
slight decrease of κℓ with T.

Fig. 5.3 Average of the κℓ tensor for bulk BaTiO3 and for film like BaTiO3 with thickness 1.5 nm
(i.e. the thickness of a perovskite block in La2Ti2O7). The finite size causes a sharp decrease in κℓ,
and largely suppresses its T dependence.
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5.4 Electronic parameters

5.4.1 Computational details

Ab initio calculations are performed within the generalized gradient approximation using the VASP
code and the projector augmented-wave (PAW) method, with the maximum suggested cutoff and the
PAW data sets for La, Tipv and Os .
The structure of the orthorhombic phase of La2Ti2O7 with spacegroup Cmc21 is optimized following
quantum forces and stress. The computed lattice constants are:

a (Å) b (Å) c (Å)

3.915 25.851 5.643

The electronic eigenvalues are calculated ab initio on a (24×48×16) k-points grid.
Fig. 5.4 reports the electronic density of states for La2Ti2O7 from -10 eV to 10 eV around the Fermi
level, while in Figure 5.5a and 5.5b I reported the electronic band structure (in blue the La states, in
green O states and in red the Ti states). The conduction band minimum is at the Γ-point, while the
valence band maximum is along the X-Γ direction (0.167,0,0). The minimum gap (indirect band gap)
in GGA is 2.85 eV and becomes about 4.1 eV by applying the correction of Ref. [67]. In any case,
the energy gap is not important for the purpose of our calculations according to Bloch-Boltzmann
model which depends only (or mainly) on the band where Fermi level lies 1.
The contribution to the conduction band is dominated by Ti states, while the oxygen dominates
the valence band. The La states are not relevant for the electronic behavior. This suggests us that
La2Ti2O7 could be used in alloys with other compounds with the same electronic properties, as for
example Sr2Nb2O7, recently emerged to be a promising thermoelectric material [68].
Electronic coefficients are calculated with the BoltzTrap2 [59] [60] code. We assumed the ab initio

bands are not changing with doping or temperature, in the so-called rigid bands approximation 2.
Then bands are interpolated by a Fourier-Wannier technique over a number of k-points given by the
original number of points times an amplification factor, which we choose to be A = 64, approximately
equivalent to a much finer (96×32×64) grid.

5.4.2 T-dependent relaxation time

ZT must be obtained from the various coefficients under some hypothesis for the relaxation time.
Figure 5.6 shows the relaxation time as a function of energy (at fixed T = 300 K) and temperature (at
fixed E = 0.043 meV).
The energy and temperature relaxation time is obtained from the rates of impurity, acoustic phonon,

1More specifically, it is true that, at high temperatures, states across small gaps can be involved in the transport
coefficients, but this is not relevant here given the large gap.

2In rigid band approximation (RBA) it is assumed that doping a system does not change the band structure, only the
chemical potential changes with doping concentration. This model is valid when low doping concentrations n are considered,
namely n < 1021 cm−3.
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Fig. 5.4 Density of States (DOS) as a result of a GGA calculation with Vasp. The dashed line
through energy zero represents the Fermi level. Band-gap is estimated to be 2.87 eV.

and polar phonon scattering:

τ(E,T ) =
1

Pac +Pimp +Ppolar
(5.2)

where the rates are given by equations in chapter 3.
Actually, if lattice thermal conductivity was equal to zero, since electrical and electronic thermal
conductivity can be determined as: σ0 = σ/τ0 and κe,0 = κe/τ0, ZT would be independent of
relaxation time. But this is not our case, so we should estimate ZT as:

ZT0 =
S2σT

κe +κℓ
=

S2σ0τ0T
κe,0τ0 +κl

(5.3)

which depends strongly on the choice of τ0. Here, a fixed relaxation time neglects the physically
relevant temperature dependences due to phonon occupation changes and energy averaging. To
obviate this shortcoming, we calculate:

ZTave =
S2σ0τaveT

κe,0τave +κℓ
(5.4)

with an average relaxation time given by [69]:

τave =

∫
∞

0 τ(E,T )E3/2(− ∂ fF (T,E)
∂E )dE∫

∞

0 E1/2 fF(T,E)dE
(5.5)
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(a) – The GGA generated band structure of La2Ti2O7 near the Fermi level highlighted in black.

(b) – The GGA generated band structure of La2Ti2O7 as obtained from Vasp calculation. The black line
through energy zero represents the Fermi level.

Fig. 5.5 Bandstructure of La2Ti2O7
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(a) (b)

(c)

Fig. 5.6 The relaxation time behavior vs temperature and energy considering different scattering
mechanisms described in chapter 3 and the total relaxation time given by formula 5.2. (a) Relaxation
time in function of temperature at fixed energy of: 0.043 eV. (b)Relaxation time in function of
energy computed at T = 300 K. (c) Total τ = τ(E,T )
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The τ(T ) behavior for the averaged energy is shown in Figure 5.7. This average is obtained in a
parabolic band approximation, but can be generalized easily.
By using an energy-averaged time we are assuming that τ does not vary with E; since typical electron

Fig. 5.7 Energy-averaged scattering time versus temperature obtained in a parabolic band approxi-
mation.

energies are in the low-energy region, below 30-40 meV from the band edge where τ(T,E) is large,
our averaging over all energies will tends to underestimate the relaxation time and consequently gives
a smaller estimates of ZT. Although this procedure represents an improvement over the constant-time
approximation: indeed, using a constant relaxation time means that Seebeck coefficient does not
depend on τ , which is not generally true: to convince yourself of this, it is enough just to take a look
at Chapter 4 and the trend for S obtained with a constant τ and compare it with the values for τ(E,T )
3. To compare our results with constant relaxation-time results, various quantities are recalculated
with a constant time chosen to be equal to the energy-average time at room T (34 f s as shown in
figure 5.7).

3Despite being a much better approximation that a constant-relaxation time, a T-dependent but E-independent relaxation
time will still factor out of the Seebeck coefficient, which will therefore not depend on τ . This is not generally true, as was
shown in Chapter 4.
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5.4.3 Parameters used in calculations

Since the most interesting feature is the thermoelectric transport along the a direction because it
results to be the most efficient one, let us put our attention on it.
Before starting the analysis it is relevant doing two considerations: the spontaneous polarization
points along the c-axis so any field coming from that source does not affect the transport along a
direction. Moreover, the matrix element of piezoelectric electron-phonon scattering is proportional to
the a component of dielectric displacement as reported in [38], but is zero by simmetry [70] [72] [73].
To compute our calculations, we imported some parameters from previews experiments:

• high-frequency dielectric constant4 : ε∞ = 5 .

• lattice dielectric constant : ε ii
lattice = (62,44,65) found on [75]

• average sound velocity : v = 5.2 km/s found on [79]

• density : 5879 kg/m3 found on [80]

• effective conduction mass: m∗
c = 0.2me and valence mass m∗

v ≈ me.

• dominant longitudinal optic (LO)-phonon frequencies obtained from the estimation of zone-
center transverse optical (TO) frequencies via a frozen-phonon VASP calculation, and thence
the LO frequencies by the Lyddane-Sachs-Teller relation with the T = 0 theoretical [75] lattice
dielectric constants. We include in the scattering rate only the lowest LO mode with polarization
along the a axis, which affects transport in the a direction 5: h̄ωLO = 58meV .

5.4.4 Results for n-doping

We concentrate on n-type doping, compared with less efficient p-doping shown below in Figure 5.13.
As previously said, because the largest ZT tensor component is given by a component of various
tensors, while the others are much smaller, since they produce a much smaller ZT, we concentrate our
analysis on it. In our T range, which we chose to be 300-1200 K, to avoid getting too close to the
ferroelectric transition at 1770 K for this material, the lattice thermal conductivity is only about 1 W/(K
· m) and almost T-independent. As a result, we find that the figure of merit increases monotonically
from over 0.7 at room temperature to over 2.5 at 1200 K within a T-dependent scattering-time
approximation; the results are summarized in Figure 5.8.
The interesting ZT is obviously the result of combined factors: a large value of Seebeck coefficient, a

4Authors on [74] report ε∞ = 6− 6.5 for titanates with similar electronic structures and gaps. For La2Ti2O7 no
measurements seem to be available, so we conservatively pick a lower value, as due to effective phonon confinement within
the overestimate polar phonon scattering, and produce slightly lower ZT.

5Lyddane-Sachs-Teller relation [81]:
ω2

TO
ω2

LO
=

ε0

ε∞
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Fig. 5.8 The a component of the ZT vs n-type carrier density for temperature between 300 and 1250
K (line thickness increases as temperatures decreases) in steps of 100 K. The dashed-line extends to
the whole temperature range and indicates maximum values of ZT at each T. The optimal doping
level is about 3×1021 cm−3.)
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low thermal conductivity given by the combination of the electronic and the lattice contributions, and
a significant electrical conductivity. Let us discuss now those single quantities.
All computed quantities, i.e. Seebeck coefficient in absolute value, eletrical and thermal conductivities,
are displayed as function of excess n-type carrier density as solid lines.
To represent the different temperatures, the line thickness decreases as T increases in step of 100 K.
For each temperature, dashed-dotted lines indicate the value of each quantity at the optimal doping,
or, in other words, the value at which ZT is maximum, hence the maximum theoretical efficiency in a
thermocouple is assumed to be at that doping level.
The optimal carrier density is by definition the density at which the maxima of ZT occur. Optimal
doping is clearly between 1 and 3 ·1020 cm−3 ; of course it remains to be seen if such doping densities
can be achieved experimentally.
The Seebeck coefficient is between about 200 and 300 µV/K. In that regard, it is interesting to note
that the Seebeck coefficient can achieve much larger values at lower doping, in particular, over 400
µV/K at 1019 cm−3 at room T; increasing T, Seebeck reaches even larger values (Fig. 5.9a). This is
clearly interesting for applications requiring just a large S, as this relatively low doping should be
fairly easy to achieve.
For the electrical conductivity (Figure 5.9b), we obtained values in the range of 40-100 kS/m which

results in a resistivity about 10-25 µΩm.
Passing finally to the electronic thermal conductivity, figure 5.9c shows an almost T -independent total
thermal conductivity with a value lower than 1 W/(m K) in the range of temperatues considered. It is
interesting to note that this happens despite the strong decrease in relaxation time with temperature.
With these results for the electronic contribution, total thermal conductivity reaches values of about 2
W/(m· K), very acceptable values for thermoelectric applications.
In figures 5.10a, 5.10b, 5.10c I represented the various components for Seebeck, electrical and
electronic thermal conductivity as a function of temperature at optimal doping level, provided from
data plotted in Fig. 5.8.
As it can be seen, a component is much larger than the others. In the case of Seebeck, around 20 %,
but for conductivity along a appears to be of an order of magnitudo larger than conductivity along b
and c. This is due, precisely, to the layered structure of our perovskite.
In figure 5.11 is shown the comparison between ZT computed with a constant relaxation time and a

T-dependent relaxation time. As it can be seen, since τ(T ) decreases monotonically with T, by using
a constant relaxation time, the dominant component of ZT is much larger at high temperature for
the constant relaxation time approximation, reaching 5 at 1200 K, while ZTa computed with τ(T )
approaches 2.5 at 1200 K. Once again we can see the inadequacy of a constant τ to evaluate ZT and
the need for a more refined scattering model.
In our calculation, the T dependence of the phonon frequencies and the increase of static dielectric
constant with temperature were not taken into account thereby causing underestimation of longitudinal
optical frequencies. That results in a possible over-estimation of relaxation time used. As a result, ZTa

could be lower than the real value at high temperatures [86]. Moreover, phonons with polarization
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(a) – Seebeck coefficient as function of doping
level for different temperature between 300 and
1200 K. |S| between roughly 200 and 300 µV/K at
optimal doping.

(b) – σ as function of doping level for different
temperature between 300 and 1200 K. Significant
conductivity of roughly 40 - 100 kS/m.

(c) – κe as function of doping level for different
temperature between 300 and 1200 K. It is broadly
constant with doping.

Fig. 5.9 Transport coefficients vs Temperature and doping.
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(a) – Absolute value of Seebeck coefficient vs tem-
perature at optimal n doping for each T in the range
between 300-1200 K. The a-component is the com-
ponent which stacking occurs.

(b) – Electrical conductivity σ vs temperature at
optimal n doping for each temperature. The a-
component is 6 times larger than the other two
components for the range of temperatures consid-
ered.

(c) – Electronic thermal conductivity κe vs temper-
ature at optimal n - doping for each temperature.
Although the component along stacking direction
is considerably larger than b- and c-components,
the values reached are low: between 0.7 and 0.8
W/(m · K).

Fig. 5.10 Transport coefficients vs Temperature at optimal n-doping
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along b or c are slightly lower in energy, and will reduce further the b and c components of ZT , which
in any case are small.

Fig. 5.11 Comparison between ZTa (dominant component) computed with a constant relaxation
time (CRT) and a T-dependent relaxation time at optimal doping level. With CRT we obtain values
2 times larger than in the case of τ(T ).

5.4.5 Results for p-doping

The potential of LTO in the p-type case is less remarkable than in the n-type case. In fact ZT only
reaches about 0.7 in the best instance (against we find that the figure of merit increases monotonically
from over 1 at room temperature to over 2.5 at 1200 K within a T-dependent scattering-time approxi-
mation for n-doping as we have already seen). Moreover the optimal doping is higher for p type: the a
component requires carrier densities in the high 1020 cm−3 range, and the other components requires
carrier densities in the mid of 1021 cm−3.
Anyway, the practical feasibility of p doping remains to be ascertained.
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Fig. 5.12 ZTs components versus temperature at optimal n- doping. The a component requires
carrier densities around 3×1020 cm−3, slightly higher for b and c components which are negligible
when compared with a component.

Fig. 5.13 ZTs components versus temperature at optimal p- doping. The a component requires
carrier densities in the high 1020 cm−3 range, while the optimal doping level is about 5×1021 cm−3

for b and c components. Values are significantly lower than in n-type La2Ti2O7.





Chapter 6

LaSO

6.1 High-Throughput

Obtaining materials with properties that are optimized for a particular application is at the core
of materials science. However, materials development traditionally relies on time-consuming and
expensive experimental work and theoretical support, though extremely valuable, can be sometimes
unproductive due to the sheer size of the parameter space to be explored. High-throughput materials
prediction has emerged as a tool for screening large databases of materials, to identify candidate
materials that may have optimized properties for subsequent experimental evaluation.
High-throughput screening (HTS) is a method for scientific experimentation especially used in drug
discovery and relevant to the fields of biology and chemistry. This idea is really starting to catch on
material science in order to find new promising materials: using data processing/control software,
high-throughput screening allows a researcher to quickly conduct millions of tests on almost any
kind of material. Through this process one can rapidly identify compounds with a particular desired
property. The results of these tests provide starting points for material discovery [91].
Computational power has enabled materials design to evolve from trial-and-error towards more
systematic methodologies that require large amounts of both experimentally and computationally
derived data, consequently, reseachers developed designed and developed tools and their underlying
databases in order to facilitate modern-day high-throughput computational methods.
Moreover modern high-performance computing has allowed the simulation of crystalline materials
and their properties on a huge scale, allowing the construction of large computational materials
databases. One of these, Materials Project [92], contains more than 86,000 inorganic materials.
In this work, we used HT methodologies applied to thermoelectricity: we derived from MP Database
material parameters that are helpful to predict the promise of a material for use in a thermoelectric
device. A recent paper [89] has proposed a synthetic figure of merit to asses the promise of a potential
thermoelectric based on computed or measure properties more easily accessible than those entering
the actual ZT figure of merit. Specifically, for typical semiconductor transport with a scattering rate
given by acoustic phonons in the so called deformation potential scattering, the thermoelectric quality
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factor B is:

B =
2k2

Bh̄Nv

3πm∗
c

Cl

κℓΞ
2 T (6.1)

Here, kB is the Boltzmann constant, h̄ the reduced Planck constant, Nv the number of degenerated
valleys for the band, m∗

c the conductivity effective mass while Ξ the deformation potential coefficient
which is by definition the change of band energy ( ∆E ) per relative volume change ( ∆V ) of the
crystal. Finally the average longitudinal elastic modulus Cl is equal to:

Cl =
1
5
(3C11 +2C12 +4C44)

taking into account that Ci j is the matrix of the elastic moduli tensor.
Some of these materials properties showed up here are the conductivity effective mass and the
valley degeneracy. As already mentioned in the previous chapters, electrical conductivity can be
approximated in the simplest way as:

σ =
ne2τ

m∗

and hence, the smaller the conduction effective mass, the larger the electrical conductivity.
Furthermore:

σ ∼ 1
Nv

due to electron-electron scattering. Thus, considering Eq. 6.1 for S 1, we would expect the power
factor to grow approximately linearly with Nv.
But many of the best thermoelectric materials have been recognized to have high valley degeneracy,
including lead and tin chalcogenides [89] and Zintl phases [54]. This leads to the strategy to obtain
high ZT materials by having a large number of band valleys Nv and a low and anisotropic effective
mass m∗

c .

6.2 Complexity Factor

A way to achieve this goal with a trade-off between the various parameters was proposed by [90].
They consider an inertial mass m∗

c from the electrical conductivity and a density of states (DOS) mass
m∗

S obtained from the Seebeck coefficient and carrier concentration. The ratio of these two masses
gives the the Fermi Surface complexity factor:

NvK =

(
m∗

s

m∗
c

)3/2

(6.2)

1 S ∼ Nv, consequently: S2σ ∼ Nv
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related to the valley degeneracy and the carrier pocket anisotropy factor K. They derived the two
effective masses directly from the BoltzTraP code.
From this large-scale machine-learning study of many different systems, it was found that the power
factor σS2 increases with NvK (see Fig. 3 of [90]) following a power law with exponent approximately
0.6, for about 2300 cubic compounds.

In our calculation we considered a database containing hundreds of materials properties calculated
with high-throughput methods and we have selected on the basis of the Complexity Factor C given by:

C = NvK (6.3)

which, assuming the band energy vs k has a quadratic dependence near the relevant extremum, K can
be written as:

K =

[
mg

mh

] 3
2

=

[
3
√

m1m2m3
m1m2m3

m1m2+m1m3+m2m3

] 3
2

(6.4)

where mg and mh are the geometric and harmonic averages of the locally diagonal mass tensor
elements m1, m2 and m3. It can be easily seen that K = 1 for isotropic case, making no contribution to
complexity factor C 2.

6.2.1 Screening

We consider over than 800 compounds screened for:

• symmetry;

• band-gap;

• valley degeneracy Nv;

• mass anisotropy K;

• stability;

Using the large database of DFT computed electronic structures, Material Project [92], and the results
for all compounds, we are considering only orthorhombic semiconductors with a band-gap between 1
eV and 1.6 eV as computed from Vasp in the GGA approximation and listed in the database.
For the valley degeneracy, in the database they have listed all the minima of conduction band and
maxima of valence band by using a open-source Python library for materials analysis, Pymatgen
(Python Materials Genomics) [93]. With this tool, all pockets of all bands are classified in a way
easy to read. With these data it can be possible to consider minima of 2 different bands with a small

2Generally, it turns out that the complexity factor is much more sensitive to Nv that to the masses, or put otherwise K is
usually not much larger than 1 even for quite anisotropic mass tensors.
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energy difference (we selected ∆E ≤ 0.01 eV), hence many valleys available to conduction in a small
energy range. We considered only the cases with a valley multiplicity Nv ≥ 4 within the energy range
considered.
For the mass anisotropy, we consider only material with a large Kv from the three effective mass
components (m∗

x ,m∗
y ,m∗

z ).
Finally, the stability of the structure depends on the energy above hull (Eah), the energy of decomposi-
tion of this material into the set of most stable materials for this chemical composition, in eV/atom. A
positive E above hull indicates that this material is unstable with respect to decomposition. A zero E
above hull indicates that this is the most stable material at its composition. For this reason we set the
value at 0 eV.
Our search identified a few materials of interest; in particular, based on the aforementioned criteria,
we have found six potential materials for extended analyses:

• FeBiSbS4

• DyB4Mo

• PPdS

• YB4Mo

• LaSO

• CaPtO3

We excluded FeBiSbS4 and CaPtO3 because they decompose to more stable compounds. Then,
Palladium-phosphide-sulphide PPdS has been already studied in literature for thermoelectric purposes
[94]. They found a high anisotropic thermoelectric effect in PPdS due to its layered structure. The
lattice thermal conductivity, for the same reason, is anisotropic in the three crystallographic directions,
and the bulk value goes from 10 W /(m · K) to 4 W /(m · K) in the temperature range between 300-700
K. YB4Mo and DyB4Mo have similar structures, consequently we decided to study only one of them.
The analysis is still ongoing and it will therefore not be subject of our discussion. Here we concentrate
just on the especially promising lanthanum sulfoxide LaSO.
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6.3 LaSO

6.3.1 Structure

The structure of the orthorombic phase of LaSO (Fig. 6.1), a layered material with space group
Cmca and point group mmm, is optimized following quantum forces and stress in a conventional
cell containing 8 formula units. The material is orthorhombic, and made up of bonded La-O planes
intercalated in the a direction by molecular-crystal-like layers of S dimers. The resulting computed
lattice constants are: a = 13.323 Å, b = 5.950 Å, c = 5.945 Å.

Fig. 6.1 Sketch of the structure of orthorhombic phase of LaSO. The conventional cell used is
outlined. It is made up of bonded La-O planes intercalated along a direction by molecular-crystal-
like layers of S dimers. La atoms in green, S atoms in yellow and O atoms in red. After the
optimization of the cell, the resulting computed lattice constants are: a = 13.323 Å,b = 5.950 Å,
c = 5.945 Å.
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6.3.2 Lattice thermal conductivity

The lattice thermal conductivity κℓ for LaSO has been derived from the phonon spectrum and the
Grüneisen parameters3. The phonons dispersion curve is shown in Fig. 6.2. The calculations presented
are carried out using DFT as implemented in the Quantum ESPRESSO package [27]. The exchange
and correlation functionals approximated by the generalized gradient approximation and employing
the projector augmented wave (PAW)-method and a plane waves basis set with pseudopotentials [24]
from PseudoDojo. [87]. The cutoff for the wave functions was 100 Ry, the one for the charge density
400 Ry, and the k-points mesh was 4×4×4. Density functional perturbation theory (DFPT) [29] was
used to calculate the dynamical matrices on an 4×4×4 q-points grid. These calculations are done
automatically by the thermo_pw program [97]. For the Grüneisen spectrum, we used 9 reference
geometries with lattice constants separated from each other by ∆a = 0.05 a.u. The total spectrum of
Grüneisen is shown in Fig. 6.3. The overall Grüneisen parameter is defined as:

γ =
∑i
∫ dq

8π3 γiqCiq

∑i
∫ dq

8π3 Ciq
(6.5)

Our calculation predicts γ = 0.8.
Our prediction for lattice thermal conductivity is estimated from the model suggested on [95].
Considering the definition of the lattice thermal conductivity:

κℓ =
1
3 ∑

i

∫ dq
8π3 τiqv2

iqCiq (6.6)

where the sum is over all phonon bands; the integral is over all q points in the first Brillouin zone; v2
iq

is the group velocity of a given phonon mode; τiq is the mode relaxation time; and Ciq is the mode heat
capacity depending only on the mode frequency and the temperature, they computed the relaxation
time τ for phonons as:

τ
−1 = pω

2 T
θD

e−θD/3T (6.7)

with:

p =
1−0.514γ−1 +0.288γ−2

0.0948
h̄2

γ2

kBMV 1/3vs
(6.8)

3The Grüneisen parameter, γ , describes the effect that changing the volume of a crystal lattice has on its vibrational
properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the crystal lattice.
When the restoring force acting on an atom displaced from its equilibrium position is non-linear in the atom displacement,
the phonon frequencies ωi change with the volume V . The Grüneisen parameter of an individual vibrational mode i can
then be defined as the negative of the logarithmic derivative of the corresponding frequency[98]

γi =− V
ωi

∂ωi

∂V
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Fig. 6.2 Phonon dispersion for LaSO along selected high symmetric k-point paths in the first
Brillouin zone.

Fig. 6.3 Mode-Grüneisen parameters for LaSO calculated along selected high symmetry lines in the
Brillouin zone with the method described in [97]
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where γ is the Grüneisen parameter, V is the unit cell volume and M is the average atomic mass, vs

is the sound speed 4 and θD is the Debye temperature 5. Besides phonon-phonon scattering (Equation
6.7), Casimir boundary scattering and mass disorder scattering can be easily introduced with a resistive
relaxation time sum as already done for electron scattering as shown in Equation 6.9.

τ
−1 = τ

−1
ph + τ

−1
C + τ

−1
M (6.9)

For a crystal with shortest dimension L, it is normally assumed that the boundary scattering relaxation
time is:

τ
−1
C = vS/L (6.10)

While a mass disorder may be due in our case by a vacancy which depends on the mass of the missing
atom, Mv, the vacancy concentration nV , the average mass of the crystal Mave, the number of atoms in
the unit cell na and the sound velocity vs (Equation 6.11):

τ
−1
M = nV

(
Mv

Mave
+2
)2 V ω4

(4πnav3
s )

(6.11)

The Debye temperature is computed by considering the definition from [95] and [99]:

θ
S
D = n−1/3

√(
5h̄2

3k2
B

∫
∞

0 ω2g(ω)dω∫
∞

0 g(ω)dω

)
(6.12)

obtained from the second moment of the whole phonon spectrum with n the density of LaSO. The
density of states used in our calculation is shown in Fig. 6.4.
Since the definition of Debye temperature strongly affects the lattice conductivity because of the

phonon-phonon scattering time exponential dependence, we compared the results obtained from the
definition in Eq. 6.12 with that of [96] :

θ
P
D =

h̄
kB

∫
∞

0 ω ·g(ω)dω∫
∞

0 g(ω)dω
(6.13)

The two definitions lead to two different results reported in tab 6.1 for three temperatures.
κℓ are plotted with the two definitions in a temperature range between 100 K and 1100 K. With the
latter method proposed, κℓ is larger by roughly a factor two than in the former (Fig. 6.5).
In the following we will compare results obtained with the different scattering mechanisms. Mass

disorder and micron-sized-crystallite Casimir scattering contribute to reduce the lattice thermal con-
ductivity and that is more evident in the model with θ P

D . But the choice of θD is what makes a
difference.

4In our calculation, sound velocity is assumed to be constant and is cut off to zero above the Debye energy kBθD
5Note that an energy-dependent Grüneisen parameter (obtained as q integral of γiq) could be used in Eq.6.8. These

changes leads to relatively minor changes in the present case.
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Fig. 6.4 Density of states for LaSO obtained using thermo_pw [97] software.

Table 6.1 Debye Temperature computed with the two definitions.

Debye Temperature κℓ at 300 K κℓ at 700 K κℓ at 1000 K

θ S
D = 215 (K) 1.7 [W/(K·m)] 0.82 [W/(K·m)] 0.6 [W/(K·m)]

θ P
D = 335 (K) 3.4 [W/(K·m)] 1.87 [W/(K·m)] 1.4 [W/(K·m)]

6.3.3 Computation details

Ab initio density functional structure optimization and band-structure calculations are performed with
the generalized-gradient approximation (GGA) and the projector augmented wave method (PAW)
using the VASP code, with the La, S, and Os PAW datasets at the maximum suggested cutoff.
The electronic transport coefficients are computed from the ab initio density functional band structure
as function of temperature and doping in the relaxation time approximation by using the linearized
Boltzmann equation [36] [60].
We used the same model for the temperature- and energy-dependent relaxation time.
The electronic states are calculated on a (12 ×24 ×24) k-points grid. The minimum gap in GGA is
1.5 eV, so n-type thermoelectric coefficients are essentially unaffected by valence states.
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Fig. 6.5 Calculated lattice thermal conductivity κℓ with two different definition of Debye temperature
TD: Passler at al.[96] Debye temperature θP and Debye temperature θS from the Slack [99] definition
in the enhanced form proposed by [95]
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Fig. 6.6 Lattice thermal conductivity of LaSO for the perfect crystal including only anharmonic
phonon-phonon scattering (blue curve), for anharmonic scattering and atomic disorder at 50 ppm
i.e. 1018 cm−3 (orange dotted-dashed line), for anharmonic scattering and finite size of 10 µm
(green dotted-dashed line), and finally for all the mechanisms included (red curve). The two plots
correspond to two different definitions of the Debye temperature [95] [96]
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Since our search was focused on conduction band behavior, we concentrate our attention on n-type
doping, although p-doping also seems to have interesting values.

6.3.4 Transport coefficients

The transport coefficients accounting for energy- and temperature-dependent relaxation time are
computed with BoltzTrap2 [60] transport code, allowing for the energy- and T-dependence of scat-
tering times discussed in Chapter 3. The ab initio bands (with the rigid band approximation) are
interpolated by a Fourier-Wannier technique over a finer grid with 64 times more points, equivalent
to a (96 × 192 ×192) grid. As already discussed in previous chapters, a constant τ= τ0 neglects
important contribution on transport contributions. Hence, relaxation time used is temperature- and
energy-dependent in our calculations. Details already presented in Chapter 3.

Parameters for the calculation

For the scattering mechanisms we computed:

• Conduction-band deformation potential D = 2.1 eV. We estimated it from the minimum of
conduction band for the relaxed structure and for the strained structure, with an isotropic strain
of 2% of the volume.

• density ρ = 5270 kg · m−3

• effective conduction band m∗
c = 0.1me where me.

• Sound velocity given as harmonic average over the acoustic branches is vs = 3134 m/s. From
linear-response phonon calculations

• Dielectric constants from linear-response phonon calculations: ε∞ = 6.23 and εstatic = 18.73 as
harmonic averages of the b and c components.

• The LO phonon energies are obtained via the Lyddane-Sachs-Teller relation from calculated TO
phonons; for polarization along the b axis the first few energies are 17.6 meV, 34.2 meV, and
41.6 meV, those along c are 12.0 meV, 24.5 meV, and 33.7 meV, those along a are 30.6 meV and
46.9 meV. Since LO phonons only scatter electrons moving parallel to their polarization vector,
this would entail a direction-dependent polar-phonon τ . However, the other uncertainties in
the calculations, especially the choice of the lattice thermal conductivity, are much larger than
any difference that might result from this distinction; thus, we elect to use a set of effective LO
energies for all directions, namely 15 meV, 29 meV, and 38 meV.

In Fig. 6.7 the electronic band structure is plotted as a result of Vasp calculation. The indirect band
gap is estimated to be 1.54 eV, with the maximum of the valence band in Y and the minimum of the
conduction band in the point with coordinates: (−0.300, 0.700, 0.136) in the reciprocal space.
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Fig. 6.7 Electronic band structure from DFT with Vasp in the GGA approximation calculated along
high symmetry path in the Brillouin zone

Relaxation time

The behavior of τ(E,T ) is shown as a function of energy in 6.8. As typical of polar insulators, the
polar-phonon scattering dominates. In this case, it seems to be the only relavant contribution in the
total relaxation time.

Fig. 6.8 Relaxation time vs E at T = 600 K. τac is acoustic-phonon scattering, τi is due to impurity
scattering, τpol stays for polar-optical phonon scattering while τtot is the total relaxation time. The
major contribution is due to polar optical phonons, as typical of large gap semiconductors.
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6.3.5 Electronic transport parameters

Fig. 6.9 reports the Seebeck coefficient, the electrical conductivity, the electronic thermal conductivity,
and the power factor as a function of T at optimal doping. The b and c are the in-plane components.
The large conductivity and Seebeck result in a sizable power factor for the in-plane transport and a
negligible power factor in the a-direction, in line with the values anticipated by our database search.
Fig.6.10 report the Seebeck coefficient, the electrical conductivity, the electronic thermal conductivity,
and the power factor, respectively, as a function of doping and parametrized by temperature, each line
represents a different temperature from 200 to 1100 K in step of 100 K and and the line thickness is
proportional to temperature. Since b and c components are very close and a component gives a rather
small power factor contribution, only the b component is plotted in in Fig. 6.10.
Our results for the power factor confirm that high valley multiplicity is conducive to large electronic
parameters.

Fig. 6.9 Seebeck coefficient S, electrical conductivity σ , electronic thermal conductivity κe, and
power factor vs T at optimal doping level (the level at which the maximum in ZT occurs.
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Fig. 6.10 Seebeck, conductivity, electronic thermal conductivity, and power factor vs doping at
different T from 200 to 1100 K in step of 100 K, the line thickness is proportional to temperature.
Red squares indicate values at optimal doping.
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6.3.6 Complexity factor and valley multiplicity in LaSO

One of the reasons why this material is promising, lies in the high complexity factor. Results from the
database search are summarized in Table 6.2.
From a more meticulous analysis of the band structure and the Fermi Surface, we can get a clearer

Table 6.2 Complexity Factor from Database

Nv K m∗
1 m∗

2 m∗
3

8 18.3 0.044 0.105 2.069

idea of the electronic properties leading to a high power factor and hence ZT. Fig. 6.11 reports the
conduction-band Fermi surface of doped LaSO at several chemical potentials, as well as the Brillouin
zone (BZ) with a reference path. The first four conduction bands, marked in different colors (1st in

Fig. 6.11 a) Brillouin zone with the high symmetry points path used for calculations.
b) Fermi surfaces of the 1st conduction band in blue at 0.01 eV above the conduction edge,
c) 1st (in blue) and 2nd (in red) conduction bands at 0.07 eV above the conduction edge,
d) 1st and 2nd conduction bands at 0.1 eV above the conduction edge,
e) 1st, 2nd, 3rd and 4th conduction bands in blue, red, green and yellow, respectively at 0.11 eV
f)1st, 2nd, 3rd and 4th conduction bands at 0.13 eV above the conduction edge.

blue, 2nd in red, 3rd in green and 4th in yellow), provide at least 16 available valleys within 130
meV. In particular, four valleys are internal to the BZ from the first band; eight valleys come from the
second band on the square faces, consequently with weight 1/2 because shared with adjacent BZs.
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Eight valleys from the third band on the segments Z-Z1 and S-Y/S-Y1 of the BZ path with weight
1/2, and eight valleys from the fourth band on the same segment with weight 1/2. The same can be
obtained counting the 16 bands available for conduction within about 130 meV. The carrier density
vs. energy in Fig.6.12, central panel, shows that all these bands will be occupied at the chemical
potentials and temperatures of our interest (µ near the lowest conduction edge, and temperatures in
the range of 30 to 900 K). Accordingly, all the bands just mentioned may be considered active, so
that the effective total multiplicity of the occupied valleys is Nv = 16 (see Table 6.3 for more details).
From Fig. 6.12 we can also infer at this stage that the optimal doping level, namely the doping at
which ZT is maximal for a given T, will probably fall in the mid 1020 cm−3 , and that the Seebeck
coefficient may be interesting due to the fast rise of the density of states near the band edge.

Fig. 6.12 Left: conduction bands of LaSO along the paths marked in Fig. 6.11 a). Center: the density
of states and carrier density (i.e. the Fermi distribution times the conduction density of states), both
in units of 1021 cm−3 eV−1 as a function of energy. Right: complexity factor for the b direction (c is
similar, a is about zero) vs energy. In the center and right panel, µ=0 and T =300, 600, 900 K
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Table 6.3 Valley multiplicity Nv for each valley of the first four conduction bands and their corre-
spondent energy

Band 1 Valley
1 2 3 4

Nv 4 1 - -
Energy 0.0 eV 0.08 eV - -
Band 2 Valley

1 2 3 4
Nv 4 1 1 2

Energy 0.05 eV 0.08 eV 0.095 eV 0.101 eV
Band 3 Valley

1 2 3 4
Nv 4 - - -

Energy 0.11 eV - - -
Band 4 Valley

1 2 3 4
Nv 2 - - -

Energy 0.12 eV - - -

6.3.7 Figure of merit of LaSO

Finally, in Fig. 6.13 we show the ZT tensor for the two instances of lattice thermal conductivity.
The left panels report the diagonal components of ZT as function of T at optimal doping (i.e. the
doping at which ZT is a maximum at a given temperature ), and the right panels the b component
as function of doping and for a number of temperatures. All is drawn on the same scale to ease
comparison. The b and c components deviate by only a fraction of 1% , and the a component is small
and thus, it can be neglected. ZT is very large, 3.5 and 6.5 at high temperature for the two version
of the lattice thermal conductivity and the optimal doping level is around 2.5×1020 cm−3 and the
optimal doping at each temperature is roughly the same. These values make it very promising the
future of thermoelectricity. The reason of this large ZT is to be found in the large power factor due to
the high valley multiplicity, and that confirms the potential of the method used to identify materials
with a large thermoelectric efficiency. LaSO, in particular, could be the future of thermoelectricity
with its great efficiency: further theoretical studies and experiments could confirm our findings.
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Fig. 6.13 ZT of LaSO. Top row is for lattice thermal conductivity calculated with θD = θ S
D and

bottom row for θD = θ P
D . Left column: ZT vs T at optimal doping; right column, ZTb vs doping

and for various temperatures. Temperatures in the right panels are 200 to 1100 K, line thickness
proportional to T . All quantities drawn on identical scales for easier comparison.





Conclusions

In this concluding section, all main outcomes of my research will be summarized.

Density functional theory was used in conjunction with Boltzmann transport theory to examine
the thermoelectric properties of layered semiconductors. The thermoelectric efficiency dependence on
lattice thermal conductivity was explored in all the calculations for the different materials. It would
prove to be one of the aspects to deepen, as it represents a key factor in improving figure of merit.
The second key factor is the scattering model choice for relaxation time. Hence, this work explores
various models for τ .
In Chapter 4, it was found that Mg3Sb2 demonstrates an improvement in thermoelectric efficiency
in the polycrystal sample due to its low lattice thermal conductivity of around 1.5 W/(m·K) for
the temperatures considered. The reason for that small lattice thermal conductivity is not due to
intrinsic reasons, but rather because of Casimir grain-boundary scattering. While the bulk thermal
conductivity is around 10 W/(K·m) at room temperature, it drops to about 1.5 W/(m· K) or less for a
typical experimental distribution of grain sizes. Taking into account also alloys with Bismuth and
consequentely a strong mass disorder, κℓ is found to be considerably reduced up to the value of 0.8
W/(m·K).
Added to this lattice thermal conductivity, it is the relaxation time used for the electronic part. We
have calculated the thermoelectric coefficients and figure of merit ZT in Mg3Sb2 using a temperature-
and energy-dependent relaxation time.
The effects of this improved approximation are significant, especially for the electrical and the
electronic thermal conductivity. The electronic component of thermal conductivity is found to be
reduced by at least 60 % of the value obtained with a constant relaxation time. While the electrical
conductivity temperature dependence changes by introducing the scattering model, especially at
high doping levels, reaching 3×103 ( 1/(m Ω· cm)) against 2×103 (1/(mΩ· cm)) for the constant
relaxation time calculation at room temperature. Where applicable, our results are in good agreement
with experiments.
Consequently, this work represents a good proof to validate the reliability of our scattering model
for electrons and our choice of relaxation time τ . ZT increases monotonically in the temperature
range we consider; on the other hand, it has a maximum as a function of doping: our estimate of the
peak-ZT optimal n -doping of Mg3Sb2 is about 5×1019 cm−3, over all the 300-700 K range.
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However the increase in ZT with our study is not significant enough to make Mg3Sb2 viable alternative
to present technologies with a maximum value for ZT around 1.5 at optimal doping of 5×1019 cm−3.
In Chapter 5, a study of the orthorhombic phase of perovskite La2Ti2La7 has been reported. Much of
the potential of this material is due to its small and almost T -independent lattice thermal conductivity;
using a model based on ab initio anharmonicity calculations, we explain this low value as due to
effective phonon confinement within the layered-structure blocks.
We have predicted a thermoelectric figure of merit between 1 and 2.6 in the T range of 300-1200 K
under n-doping and p-doping via calculations of the electronic structure, transport coefficients, and
thermal conductivity. The optimal carrier density for n-doping is found to be in the low-1020 cm−3

range. At that density, the Seebeck thermopower coefficient is between 200 and 300 µV/K; it can,
however, reach nearly 1 mV/K at lower doping.
The largest ZT is obtained along the a crystal axis, while the other components are one to two orders
of magnitude smaller. On the contrary, the maximum ZT in p-type conditions is a factor of 2- 4
smaller than in n-type, and it requires carrier densities about an order of magnitude higher. Much of
the potential of this material is due to its small lattice thermal conductivity; using a model based on ab
initio anharmonicity calculations, we explain this low value as due to effective phonon confinement
within the layered-structure blocks.
In Chapter 6, I have reported an on-going investigation about lanthanum oxysulphate (LaSO).
As in the previous cases, the orthorhombic phase of LaSO is a layered structure. We predicted a giant
thermoelectric figure of merit in this high-valley-multiplicity material. The lattice thermal conduc-
tivity, obtained by using the ab-initio-computed phonon dispersion and Grüneisen parameters, and
the Debye temperature is found to be 1.7 and 3.4 W/(m· K) for the [95] and [96] model, respectevely.
For the perfect crystal, ZT is linear in temperature and at 1100 K reaches a value between 3.5 and
6.5 depending on the model choice for the lattice thermal conductivity. The optimal doping is almost
temperature independent, and in the 2−3×1020 cm3 range. Our results for the power factor confirm
earlier suggestions [90] that high valley multiplicity is conductive to large power factors and therefore
large ZT.
This study has been developed in collaboration with Dr. Francesco Ricci from Institute of Condensed
Matter and Nanosciences (IMCN), at Université Catholique de Louvain (Belgium).
Further investigations of the electronic band structure and Fermi surface could explain the exceptional
values found for ZT.
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Outlook

In the last decades we have witnessed important enhancements in the field of thermoeletrics. The most
challenging goal is finding materials with large power factor and low κ at the same time, following
the idea of phonon glass electron crystal.
In this thesis, we have presented a method to analyze thermoeletric properties starting from density
functional theory and a Boltzmann Transport Equation using a energy- and temperature- dependent
relaxation time and including many important scattering contributions for the evaluation of κℓ. The
study carried out here has the potential to drive future research using the same protocol: work
presented in chapters 4 and 5 of this thesis is published in peer reviewed scientific journals.
Moreover, this work has revealed that the screening method used in the last chapter could speed up
the search of new promising thermoelectrics. This screening is already used for the large search of
thermoelectrics, as described on reference [90] for cubic compounds. Our work confirms the validity
of that previous work and opens up the possibility for future study on other interesting materials,
among them YB4Mo, the other compound identified by our screening.
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